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Abstract

We study novel arithmetic algorithms on a canonical number representation
based on the Catalan family of combinatorial objects.

Our algorithms work on a generic representation that we illustrate on in-
stances like ordered binary and multiway trees, balanced parentheses languages
as well as the usual bitstring-based natural numbers seen through the same
generic interface as members of the Catalan family.

For numbers corresponding to Catalan objects of low representation com-
plexity, our algorithms provide super-exponential gains while their average and
worst case complexity is within constant factors of their traditional counterparts.

Keywords: hereditary numbering systems, run-length compressed numbers,
arithmetic with combinatorial objects, Catalan families, representation complex-
ity of natural numbers, generic functional algorithms

1. Introduction

This paper is an extended and generalized version of [1], where a special
instance of the Catalan family of combinatorial objects, the language of balanced
parentheses, has been endowed with basic arithmetic operations corresponding
to those on bitstring-represented natural numbers.

Number representations have evolved over time from the unary “cave man”
representation where one scratch on the wall represented a unit, to the base-n
(and in particular base-2) number system, with the remarkable benefit of a loga-
rithmic representation size. Over the last 1000 years, this base-n representation
has proved to be unusually resilient, partly because all practical computations
could be performed with reasonable efficiency within the notation.

While alternative notations like Knuth’s “up-arrow” [2] are useful in describ-
ing very large numbers, they do not provide the ability to actually compute with
them, as addition or multiplication with a natural number results in a number
that cannot be expressed with the notation anymore.
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The main contribution of this paper is a Catalan family based numbering
system that allows computations with numbers comparable in size with Knuth’s
“arrow-up” notation. Moreover, these computations have a worst case and
average case complexity that is comparable with the traditional binary numbers,
while their best case complexity outperforms binary numbers by an arbitrary
tower of exponents factor.

For the curious reader, it is basically a hereditary number system [3], based
on recursively applied run-length compression of the usual binary digit notation.

To evaluate best and worst cases, a concept of representation complexity is
introduced, based on the size of representations and algorithms favoring large
numbers of small representation complexity are designed for arithmetic opera-
tions. Simple operations like successor, multiplication by 2, exponent of 2 are
constant time when using tree-representations for Catalan objects, and a num-
ber of other operations benefit from significant complexity reductions on objects
with a low representation size.

As the Catalan family [4, 5] contains a large number of computationally
isomorphic but structurally distinct combinatorial objects, we will describe our
arithmetic computations generically, using Haskell’s type classes [6], of which
typical members of the Catalan family, like binary trees, multiway trees and
balanced parentheses languages will be described as instances.

At the same time, an atypical instance will be derived, representing the set
of natural numbers N, which will be used to validate the correctness of our
generically defined arithmetic operations.

We have adopted a literate programming style, i.e. the code described in
the paper forms a self-contained Haskell module (tested with ghc 7.6.3), also
available at http://www.cse.unt.edu/~tarau/research/2014/Cats.hs as a
separate file. We hope that this will encourage the reader to experiment inter-
actively and validate the technical correctness of our claims.

The paper is organized as follows. Section 2 discusses related work. Sec-
tion 3 introduces a generic view of Catalan families as a Haskell type class,
with subsection 3.5 embedding the set of natural numbers as an instance of the
family. Section 4 introduces basic algorithms for arithmetic operations taking
advantage of our number representation, with subsection 4.2 focusing on con-
stant time successor and predecessor operations. Section 5 discusses a chain of
mutually recursive definitions centered around addition and subtraction. Sec-
tion 6 covers more advanced operations, centered around multiplication 6.1 and
division 6.3. Section 7 defines a concept of representation complexity and stud-
ies best and worst cases. Section 8 describes examples of computation with
very large numbers favored by our numbering system. Section 9 discusses some
open problems and suggest future work. Section 10 concludes the paper. The
Appendix overviews the subset of Haskell used in the paper as an executable
mathematical notation.
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2. Related work

The first instance of a hereditary number system, at our best knowledge, oc-
curs in the proof of Goodstein’s theorem [3], where replacement of finite numbers
on a tree’s branches by the ordinal ω allows him to prove that a “hailstone se-
quence”, after visiting arbitrarily large numbers, eventually turns around and
terminates.

Another hereditary number system is Knuth’s TCALC program [7] that de-
composes n = 2a + b with 0 ≤ b < 2a and then recurses on a and b with the
same decomposition. Given the constraint on a and b, while hereditary, the
TCALC system is not based on a bijection between N and N×N and therefore
the representation is not canonical. Moreover, the literate C-program that de-
fines it only implements successor, addition, comparison and multiplication and
does not provide a constant time exponent of 2 and low complexity leftshift /
rightshift operations.

Conway’s surreal numbers [8] can also be seen as inductively constructed
trees. While our focus will be on efficient large natural number arithmetic,
surreal numbers model games, transfinite ordinals and generalizations of real
numbers.

Several notations for very large numbers have been invented in the past.
Examples include Knuth’s up-arrow notation [2], covering operations like the
tetration (a notation for towers of exponents). In contrast to the tree-based
natural numbers we propose in this paper, such notations are not closed un-
der addition and multiplication, and consequently they cannot be used as a
replacement for ordinary binary or decimal numbers.

This paper is an extended and generalized version of [1] where a similar
treatment of arithmetic operations is specialized to the language of balanced
parentheses. It is also similar in purpose to [9], which describes a more com-
plex hereditary number system (based on run-length encoded “bijective base 2”
numbers, first introduced in [10] pp. 90-92 as “m-adic” numbers). Like in [1]
and in contrast to [9], we are using here the familiar binary number system, and
we represent our numbers as generic members of the Catalan family [4], rather
than the more complex data structure used in [9].

An emulation of Peano and conventional binary arithmetic operations in
Prolog, is described in [11]. Their approach is similar as far as a symbolic
representation is used. The key difference with our work is that our operations
work on tree structures, and as such, they are not based on previously known
algorithms.

In [12] a binary tree representation enables arithmetic operations which are
simpler but limited in efficiency to a smaller set of “sparse” numbers. In [13]
this number representation’s connexion to free algebras is explored.

In [14] integer decision diagrams are introduced providing a compressed rep-
resentation for sparse integers, sets and various other data types. However
likewise [12] and [15], and in contrast to those proposed in this paper, they only
compress “sparse” numbers, consisting of relatively few 1 bits in their binary
representation.
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While combinatorial enumeration and combinatorial generation, for which
a vast literature exists (see for instance [4], [16], [17], [18], [19] and [20]), can
be seen as providing unary Peano arithmetic operations implicitly, we are not
aware of any work enabling arithmetic computations of efficiency comparable
to the usual binary numbers (or better) using combinatorial families. In fact,
this is the main motivation and the most significant contribution of this paper.

3. The Catalan family of combinatorial objects

The Haskell data type T representing ordered rooted binary trees with empty
leaves E and branches provided by the constructor C is a typical member of the
Catalan family of combinatorial objects [4].

data T = E | C T T deriving (Eq,Show,Read)

Note the use of the type classes Eq, Show and Read to derive structural equality
and respectively human readable output and input for this data type.

The data type M is another well-known member of the Catalan family, defin-
ing multiway ordered rooted trees with empty leaves.

data M = F [M] deriving (Eq,Show,Read)

Another representative of the Catalan family is the language of balanced paren-
theses. We fix our set of two parentheses to be {L,R} corresponding to the
Haskell data type Par.

data Par = L | R deriving (Eq,Show,Read)

Definition 1. A Dyck word on the set of parentheses {L,R} is a list consisting
of n L’s and R’s such that no prefix of the list has more L’s than R’s.

The set of Dyck words is a member of the Catalan family of combinatorial
objects [4]. Let P be the language obtained from the set Dyck words on {L,R}
with an extra L parenthesis added at the beginning of each word and an extra
R parenthesis added at the end of each word. We represent the language P in
Haskell as the type P.

data P = P [Par] deriving (Eq,Show,Read)

We will leave the enforcement of the balancing constraints to subsection 3.4
where data type P will be made an instance of the type class representing gener-
ically objects of the Catalan family.

3.1. A generic view of Catalan families as a Haskell type class

We will work through the paper with a generic data type ranging over in-
stances of the type class Cat, representing a member of the Catalan family of
combinatorial objects [4].
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class (Show a,Read a,Eq a) ⇒ Cat a where

e :: a

c :: (a,a) → a

c’ :: a → (a,a)

The zero element is denoted e and we inherit from classes Read and Show which
ensure derivation of input and output functions for members of type class Cat

as well as from type class Eq that ensures derivation of the structural equality
predicate == and its negation /=.

We will also define the corresponding recognizer predicates e and c , relying
on the derived equality relation inherited from the Haskell type class Eq.

e_ :: a → Bool

e_ a = a == e

c_ :: a → Bool

c_ a = a /= e

For each instance, we assume that c and c’ are inverses on their respective
domains Cat × Cat and Cat - {e}, and e is distinct from objects constructed
with c, more precisely that the following hold:

∀x. c′(c x) = x ∧ ∀y. (c y ⇒ c (c′ y) = y) (1)

∀x. (e x ∨ c x) ∧ ¬(e x ∧ c x) (2)

When talking about “objects of type Cat” we will actually mean an instance
a of the polymorphic type Cat a that verifies equations (1) and (2).

3.2. The instance T of ordered rooted binary trees

The operations defined in type class Cat correspond naturally to the ordered
rooted binary tree view of the Catalan family, materialized as the data type T.

instance Cat T where

e = E

c (x,y) = C x y

c’ (C x y) = (x,y)

Note that adding and removing the constructor C trivially verifies the assump-
tion that our generic operations c and c’ are inverses1.

1In fact, one can see the functions e, e , c, c’, c as a generic API abstracting away
the essential properties of the constructors E and C. In a language like Scala [21], that allows
arbitrary functions to work as constructors / extractors, one could have defined them directly
in terms of the apply and unapply methods used to define type cases [22]. As shown in [13],
the same can be achieved using Haskell’s view construct [23].
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3.3. The instance M of ordered rooted multiway trees

The alternative view of the Catalan family as multiway trees is materialized
as the data type M.

instance Cat M where

e = F []

c (x,F xs) = F (x:xs)

c’ (F (x:xs)) = (x,F xs)

Note that the assumption that our generic operations c and c’ are inverses
is easily verified in this case as well, given the bijection between binary and
multiway trees. Moreover, note that operations on types T and M expressed in
terms of their generic type class Cat counterparts result in a constant extra
effort. Therefore, we will safely ignore it when discussing the complexity of
different operations.

3.4. The instance P of balanced parentheses

Another well known representative of the Catalan family is the language
of balanced parentheses. We refer to [1] for developing arithmetic operations
specialized to them.

instance Cat P where

e = P [L,R]

c (P xs,P (L:ys)) = P (L:xs++ys)

c’ (P (L:ps)) = (P xs,P ys) where

(xs,ys) = count_pars 0 ps

count_pars 1 (R:ps) = ([R],L:ps)

count_pars k (L:ps) = (L:hs,ts) where

(hs,ts) = count_pars (k+1) ps

count_pars k (R:ps) = (R:hs,ts) where

(hs,ts) = count_pars (k-1) ps

Note that the assumption that our generic operations c and c’ are inverses is
easily verified in this case as well.

As an interesting property, this representation is self-delimiting, in fact is a
reversible variable length code i.e. it is uniquely decodable starting from either
its beginning or its end. This property has been noticed as being important
for encoding media streams [24], such codes being later adopted in encoding
standards like MP4.

The following examples illustrate the generic operations c and c’ on the
instances T, M and P of type class Cat.

*Cats> c (E,c (E,E))

C E (C E E)

*Cats> c (F [F []],F [])

F [F [F []]]

*Cats> c’ it
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(F [F []],F [])

*Cats> c (P [L,R],P [L,R])

P [L,L,R,R]

*Cats> c’ it

(P [L,R],P [L,R])

3.5. An unusual member of the Catalan family: the set of natural numbers N
The (big-endian) binary representation of a natural number can be written

as a concatenation of binary digits of the form

n = bk00 b
k1
1 . . . bkii . . . bkmm (3)

with bi ∈ {0, 1} and the highest digit bm = 1. The following hold.

Proposition 1. An even number of the form 0ij corresponds to the operation
2ij and an odd number of the form 1ij corresponds to the operation 2i(j+1)−1.

Proof. It is clearly the case that 0ij corresponds to multiplication by a power
of 2. If f(i) = 2i+ 1 then it is shown by induction (see [9]) that the i-th iterate
of f , f i is computed as in the equation (4)

f i(j) = 2i(j + 1)− 1 (4)

Observe that each block 1i in n, represented as 1ij in equation (3), corresponds
to the iterated application of f , i times, n = f i(j).

Proposition 2. A number n is even if and only if it contains an even number
of blocks of the form bkii in equation (3). A number n is odd if and only if it

contains an odd number of blocks of the form bkii in equation (3).

Proof. It follows from the fact that the highest digit (and therefore the last
block in big-endian representation) is 1 and the parity of the blocks alternate.

This suggests defining the c operation of type class Cat as follows.

c(i, j) =

{
2i+1j if j is odd,

2i+1(j + 1)− 1 if j is even.
(5)

Note that the exponents are i + 1 instead of i as we start counting at 0. Note
also that c(i, j) will be even when j is odd and odd when j is even.

Proposition 3. The equation (5) defines a bijection c : N×N→ N+ = N−{0}.

Therefore c has an inverse c’, that we will constructively define together with
c. The following Haskell code defines the instance of the Catalan family corre-
sponding to N.
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type N = Integer

instance Cat Integer where

e = 0

c (i,j) | i≥0 && j≥0 = 2^(i+1)∗(j+d)-d where

d = mod (j+1) 2

The definition of the inverse c’ relies on the dyadic valuation of a number n,
ν2(n), defined as the largest exponent of 2 dividing n implemented as the helper
function dyadicVal.

c’ k | k>0 = (max 0 (x-1),ys) where

b = mod k 2

(i,j) = dyadicVal (k+b)
(x,ys) = (i,j-b)

dyadicVal k | even k = (1+i,j) where

(i,j) = dyadicVal (div k 2)

dyadicVal k = (0,k)

Note the use of the parity b in both definitions, which differentiates between
the computations for even and odd numbers.

The following examples illustrate the use of c and c’ on this instance.

*Cats> c (100,200)

509595541291748219401674688561151

*Cats> c’ it

(100,200)

*Cats> map c’ [1..10]

[(0,0),(0,1),(1,0),(1,1),(0,2),(0,3),(2,0),(2,1),(0,4),(0,5)]

*Cats> map c it

[1,2,3,4,5,6,7,8,9,10]

Figure 1 illustrates the DAG obtained by applying the operation c’ repeat-
edly and merging identical subtrees. The order of the edges is marked with 0

and 1.

3.6. The transformers: morphing between instances of the Catalan family

As all our instances implement the bijection c and its inverse c’, a generic
transformer from an instance to another is defined by the function view:

view :: (Cat a, Cat b) ⇒ a → b

view z | e_ z = e

view z | c_ z = c (view x,view y) where (x,y) = c’ z

To obtain transformers defining bijections with N, T, P and M as ranges, we will
simply provide specialized type declarations for them:

n :: Cat a ⇒ a→N

n = view
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Figure 1: DAG representing 2014

t :: Cat a ⇒ a→T

t = view

m :: Cat a ⇒ a→M

m = view

p :: Cat a ⇒ a→P

p = view

The following examples illustrate the resulting specialized conversion functions:

*Cats> t 42

C E (C E (C E (C E (C E (C E E)))))

*Cats> m it

F [F [],F [],F [],F [],F [],F []]

*Cats> p it

P [L,L,R,L,R,L,R,L,R,L,R,L,R,R]

*Cats> n it

42

A list view of an instance of type class Cat is obtained by iterating the
constructor c and its inverse c’.

to_list :: Cat a ⇒ a → [a]

to_list x | e_ x = []

to_list x | c_ x = h:hs where

(h,t) = c’ x

9



hs = to_list t

from_list :: Cat a ⇒ [a] → a

from_list [] = e

from_list (x:xs) = c (x,from_list xs)

They work as follows:

*Cats> to_list 2014

[0,3,0,4]

*Cats> from_list it

2014

The function to list corresponds to the children of a node in the multiway
tree view provided by instance M.

The function catShow provides a view as a string of balanced parentheses.

catShow :: Cat a ⇒ a → [Char]

catShow x | e_ x = "()"

catShow x | c_ x = r where

xs = to_list x

r = "(" ++ (concatMap catShow xs) ++ ")"

It is illustrated below.

*Cats> catShow 0

"()"

*Cats> catShow 1

"(())"

*Cats> catShow 12345

"(()(())(()())(()()())(()))"

Figure 2 shows the DAG corresponding to a multiway tree view, with merged
identical subtrees, and labels showing the result of function catShow together
with the corresponding natural numbers. The order of edges is marked with
consecutive integers starting from 0.

(()(())(()())(()()())(())) => 12345

(()()()) => 5

3

(()()) => 2

2

(()) => 1

4 1

() => 0

0

2 1 0 1 0 0

Figure 2: DAG representing 12345
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4. Generic arithmetic operations on members of the Catalan family

We will now implement arithmetic operations on Catalan families, generi-
cally, in terms of the operations on type class Cat.

4.1. Basic Utilities

We start with some simple functions to be used later.

4.1.1. Inferring even and odd

As we know for sure that the instance N, corresponding to natural numbers
supports arithmetic operations, we will try to mimic their behavior at the level
of the type class Cat.

The operations even and odd implement the observation following from of
Prop. 2 that parity (staring with 1 at the highest block) alternates with each
block of distinct 0 or 1 digits.

even_ :: Cat a ⇒ a → Bool

even_ x | e_ x = True

even_ z | c_ z = odd_ y where (_,y)=c’ z

odd_ :: Cat a ⇒ a → Bool

odd_ x | e_ x = False

odd_ z | c_ z = even_ y where (_,y)=c’ z

4.1.2. One

We also provide a constant u and a recognizer predicate u for 1.

u :: Cat a ⇒ a

u = c (e,e)

u_ :: Cat a ⇒ a→ Bool

u_ z = c_ z && e_ x && e_ y where (x,y) = c’ z

4.2. Average constant time successor and predecessor

We will now specify successor and predecessor on the family of data types
Cat through two mutually recursive functions, s and s’.

They first decompose their arguments using c’. Then, after transforming
them as a result of adding 1, they place back the results with the c operation.
Note that the two functions work on a block of 0 or 1 digits at a time. They
are based on arithmetic observations about the behavior of these blocks when
incrementing or decrementing a binary number by 1.

s :: Cat a ⇒ a → a

s x | e_ x = u -- 1

s z | c_ z && e_ y = c (x,u) where -- 2

(x,y) = c’ z
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For the general case, the successor function s delegates the transformation of
the blocks of 0 and 1 digits to functions f and g handling even and respectively
odd cases.

s a | c_ a = if even_ a then f a else g a where

f k | c_ w && e_ v = c (s x,y) where -- 3

(v,w) = c’ k

(x,y) = c’ w

f k = c (e, c (s’ x,y)) where -- 4

(x,y) = c’ k

g k | c_ w && c_ n && e_ m = c (x, c (s y,z)) where -- 5

(x,w) = c’ k

(m,n) = c’ w

(y,z) = c’ n

g k | c_ v = c (x, c (e, c (s’ y, z))) where -- 6

(x,v) = c’ k

(y,z) = c’ v

The predecessor function s’ inverts the work of s as marked by a comment of
the form k --, for k ranging from 1 to 6.

s’ :: Cat a ⇒ a → a

s’ k | u_ k = e where -- 1

(x,y) = c’ k

s’ k | c_ k && u_ v = c (x,e) where -- 2

(x,v) = c’ k

For the general case, the predecessor function s’ delegates the transformation of
the blocks of 0 and 1 digits to functions g and f handling even and respectively
odd cases.

s’ a | c_ a = if even_ a then g’ a else f’ a where

g’ k | c_ v && c_ w && e_ r = c (x, c (s y,z)) where -- 6

(x,v) = c’ k

(r,w) = c’ v

(y,z) = c’ w

g’ k | c_ v = c (x,c (e, c (s’ y, z))) where -- 5

(x,v) = c’ k

(y,z) = c’ v

f’ k | c_ v && e_ r = c (s x,z) where -- 4

(r,v) = c’ k

(x,z) = c’ v

f’ k = c (e, c (s’ x,y)) where -- 3

(x,y) = c’ k

One can see that their use matches successor and predecessor on instance N:

*Cats> map s [0..15]

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

*Cats> map s’ it

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

The following holds:
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Proposition 4. Denote Cat+ = Cat−{e}. The functions s : Cat→ Cat+ and
s′ : Cat+ → Cat are inverses.

Proof. For each instance of Cat, it follows by structural induction after ob-
serving that patterns for rules marked with the number -- k in s correspond
one by one to patterns marked by -- k in s’ and vice versa.

More generally, it can be shown that Peano’s axioms hold and as a result
< Cat, e, s > is a Peano algebra. This is expected, as s provides a combinatorial
enumeration of the infinite stream of Catalan objects, as illustrated below on
instance T:

Cats> s E

C E E

*Cats> s it

C E (C E E)

*Cats> s it

C (C E E) E

*Cats> s it

C (C E E) (C E E)

*Cats> s it

C E (C E (C E E))

*Cats> s it

C E (C (C E E) E)

Note that if parity information is kept explicitly, the calls to odd and even

are constant time, as we will assume in the rest of the paper. We will also
assume, that when complexity is discussed, a representation like the tree data
types T or M are used, making the operations c and c’ constant time. Note also
that this is clearly not the case for the instance N using the traditional bitstring
representation or the instance P where linear scanning proportional to the length
of the sequence may be involved.

Proposition 5. The worst case time complexity of the s and s’ operations on
n is given by the iterated logarithm O(log∗2(n)).

Proof. Note that calls to s,s’ in s or s’ happen on terms at most logarithmic
in the bitsize of their operands. The recurrence relation counting the worst
case number of calls to s or s’ is: T (n) = T (log2(n)) + O(1), which solves to
T (n) = O(log∗2(n)).

Note that this is much better than the logarithmic worst case for binary umbers
(when computing, for instance, binary 111...111+1=1000...000).

Proposition 6. s and s’ are constant time, on the average.

Proof. Observe that the average size of a contiguous block of 0s or 1s in a
number of bitsize n has the upper bound 2 as

∑n
k=0

1
2k

= 2 − 1
2n < 2. As on

2-bit numbers we have an average of 0.25 more calls, we can conclude that the
total average number of calls is constant, with upper bound 2 + 0.25 = 2.25.
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A quick empirical evaluation confirms this. When computing the successor
on the first 230 = 1073741824 natural numbers, there are in total 2381889348
calls to s and s’, averaging to 2.2183 per computation. The same average for
100 successor computations on 5000 bit random numbers oscillates around 2.22.

4.3. A few other average constant time operations

We will derive a few operations that inherit their complexity from s and s’.

4.3.1. Double and half

Doubling a number db and reversing the db operation (hf) are quite sim-
ple. For instance, db proceeds by adding a new counter for odd numbers and
incrementing the first counter for even ones.

db :: Cat a ⇒ a → a

db x | e_ x = e

db x | odd_ x = c (e,x)

db z = c (s x,y) where (x,y) = c’ z

hf :: Cat a ⇒ a → a

hf x | e_ x = e

hf z | e_ x = y where (x,y) = c’ z

hf z = c (s’ x,y) where (x,y) = c’ z

4.3.2. Exponent of 2 and its left inverse

Note that such efficient implementations follow directly from simple number
theoretic observations.

For instance, exp2, computing an exponent of 2 , has the following definition
in terms of c and s’ from which it inherits its complexity up to a constant factor.

exp2 :: Cat a ⇒ a → a

exp2 x | e_ x = u

exp2 x = c (s’ x, u)

The same applies to its left inverse log2:

log2 :: Cat a ⇒ a → a

log2 x | u_ x = e

log2 x | u_ z = s y where (y,z) = c’ x

Proposition 7. The operations db, hf, exp2 and log2 are average constant
time and are log∗ in the worst case.

Proof. At most one call to s,s’ is made in each definition. Therefore these
operations have the same worst and average complexity as s and s’.

We illustrate their work on instances N:

14



*Cats> map exp2 [0..15]

[1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768]

*Cats> map log2 it

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

More interestingly, a tall tower of exponents that would overflow memory on
instance N, is easily supported on instances C, T and P as shown below:

*Cats> exp2 (exp2 (exp2 (exp2 (exp2 (exp2 (exp2 E))))))

C (C (C (C (C (C E E) E) E) E) E) (C E E)

*Cats> t it

C (C (C (C (C (C E E) E) E) E) E) (C E E)

*Cats> exp2 (exp2 (exp2 (exp2 (exp2 (exp2 (exp2 E))))))

C (C (C (C (C (C E E) E) E) E) E) (C E E)

*Cats> p it

P [L,L,L,L,L,L,L,R,R,R,R,R,R,L,R,R]

*Cats> exp2 (exp2 (exp2 (exp2 (exp2 (exp2 (exp2 E))))))

C (C (C (C (C (C E E) E) E) E) E) (C E E)

*Cats> m it

F [F [F [F [F [F [F []]]]]],F []]

*Cats> p it

P [L,L,L,L,L,L,L,R,R,R,R,R,R,L,R,R]

*Cats> log2 (log2 (log2 (log2 (log2 (log2 (log2 it))))))

P [L,R]

*Cats> t it

E

This example illustrates the main motivation for defining arithmetic computa-
tion with the “typical” members of the Catalan family: their ability to deal with
giant numbers.

5. Addition, subtraction and their mutually recursive helpers

We will derive in this section efficient addition and subtraction that work
on one run-length compressed block at a time, rather than by individual 0 and
1 digit steps.

5.1. Multiplication with a power of 2

We start with the functions leftshiftBy, leftshiftBy’ and leftshiftBy”
corresponding respectively to 2nk, (λx.2x+ 1)n(k) and (λx.2x+ 2)n(k).

The function leftshiftBy prefixes an odd number with a block of 1s and
extends a block of 0s by incrementing their count.

leftshiftBy :: Cat a ⇒ a → a → a

leftshiftBy x y | e_ x = y

leftshiftBy _ y | e_ y = e

leftshiftBy x y | odd_ y = c (s’ x, y)

leftshiftBy x v = c (add x y, z) where (y,z) = c’ v

15



The function leftshiftBy’ is based on equation (6).

(λx.2x+ 1)n(k) = 2n(k + 1)− 1 (6)

leftshiftBy’ :: Cat a ⇒ a → a → a

leftshiftBy’ x k = s’ (leftshiftBy x (s k))

The function leftshiftBy’ is based on equation (7) (see [9] for an direct proof
by induction).

(λx.2x+ 2)n(k) = 2n(k + 2)− 2 (7)

leftshiftBy’’ :: Cat a ⇒ a → a → a

leftshiftBy’’ x k = s’ (s’ (leftshiftBy x (s (s k))))

They are part of a chain of mutually recursive functions as they are already
referring to the add function, to be implemented later. Note also that instead of
naively iterating, they implement a more efficient algorithm, working “one block
at a time”. For instance, when detecting that its argument counts a number of
1s, leftshiftBy’ just increments that count. As a result, the algorithm favors
numbers with relatively few large blocks of 0 and 1 digits.

5.2. Addition and subtraction, optimized for numbers built from a few large
blocks of 0s and 1s

We are now ready for defining addition. The base cases are

add :: Cat a ⇒ a → a → a

add x y | e_ x = y

add x y | e_ y = x

In the case when both terms represent even numbers, the two blocks add up to
an even block of the same size. Note the use of cmp and sub in helper function
f to trim off the larger block such that we can operate on two blocks of equal
size.

add x y |even_ x && even_ y = f (cmp a b) where

(a,as) = c’ x

(b,bs) = c’ y

f EQ = leftshiftBy (s a) (add as bs)

f GT = leftshiftBy (s b) (add (leftshiftBy (sub a b) as) bs)

f LT = leftshiftBy (s a) (add as (leftshiftBy (sub b a) bs))

In the case when the first term is even and the second odd, the two blocks add
up to an odd block of the same size.

add x y |even_ x && odd_ y = f (cmp a b) where

(a,as) = c’ x

(b,bs) = c’ y

f EQ = leftshiftBy’ (s a) (add as bs)

f GT = leftshiftBy’ (s b) (add (leftshiftBy (sub a b) as) bs)

f LT = leftshiftBy’ (s a) (add as (leftshiftBy’ (sub b a) bs))
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In the case when the second term is even and the first odd the two blocks also
add up to an odd block of the same size.

add x y |odd_ x && even_ y = add y x

In the case when both terms represent odd numbers, we use the identity (8):

(λx.2x+ 1)
k
(x) + (λx.2x+ 1)

k
(y) = (λx.2x+ 2)

k
(x+ y) (8)

add x y | odd_ x && odd_ y = f (cmp a b) where

(a,as) = c’ x

(b,bs) = c’ y

f EQ = leftshiftBy’’ (s a) (add as bs)

f GT = leftshiftBy’’ (s b) (add (leftshiftBy’ (sub a b) as) bs)

f LT = leftshiftBy’’ (s a) (add as (leftshiftBy’ (sub b a) bs))

Note the presence of the comparison operation cmp, to be defined later, also
part of our chain of mutually recursive operations. Note also the local function
f that in each case ensures that a block of the same size is extracted, depending
on which of the two operands a or b is larger.

The code for the subtraction function sub is similar:

sub :: Cat a ⇒ a → a → a

sub x y | e_ y = x

sub x y | even_ x && even_ y = f (cmp a b) where

(a,as) = c’ x

(b,bs) = c’ y

f EQ = leftshiftBy (s a) (sub as bs)

f GT = leftshiftBy (s b) (sub (leftshiftBy (sub a b) as) bs)

f LT = leftshiftBy (s a) (sub as (leftshiftBy (sub b a) bs))

The case when both terms represent 1 blocks the result is a 0 block:

sub x y | odd_ x && odd_ y = f (cmp a b) where

(a,as) = c’ x

(b,bs) = c’ y

f EQ = leftshiftBy (s a) (sub as bs)

f GT = leftshiftBy (s b) (sub (leftshiftBy’ (sub a b) as) bs)

f LT = leftshiftBy (s a) (sub as (leftshiftBy’ (sub b a) bs))

The case when the first block is 1 and the second is a 0 block is a 1 block:

sub x y | odd_ x && even_ y = f (cmp a b) where

(a,as) = c’ x

(b,bs) = c’ y

f EQ = leftshiftBy’ (s a) (sub as bs)

f GT = leftshiftBy’ (s b) (sub (leftshiftBy’ (sub a b) as) bs)

f LT = leftshiftBy’ (s a) (sub as (leftshiftBy (sub b a) bs))

Finally, when the first block is 0 and the second is 1 an identity dual to (8) is
used:

17



sub x y | even_ x && odd_ y = f (cmp a b) where

(a,as) = c’ x

(b,bs) = c’ y

f EQ = s (leftshiftBy (s a) (sub1 as bs))

f GT = s (leftshiftBy (s b) (sub1 (leftshiftBy (sub a b) as) bs))

f LT = s (leftshiftBy (s a) (sub1 as (leftshiftBy’ (sub b a) bs)))

sub1 x y = s’ (sub x y)

Note that these algorithms collapse to the ordinary binary addition and sub-
traction most of the time, given that the average size of a block of contiguous
0s or 1s is 2 bits (as shown in Prop. 6), so their average complexity is within
constant factor of their ordinary counterparts.

On the other hand, as they are limited by the representation size of the
operands rather than their bitsize, when compared with their bitstring coun-
terparts, these algorithms favor deeper trees made of large blocks, representing
giant “towers of exponents”-like numbers by working (recursively) one block at
a time rather than 1 bit at a time, resulting in possibly super-exponential gains
on them.

The following examples illustrate the agreement with their usual counter-
parts:

*Cats> map (add 10) [0..15]

[10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25]

*Cats> map (sub 15) [0..15]

[15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0]

5.3. Comparison

The comparison operation cmp provides a total order (isomorphic to that
on N) on our generic type Cat. It relies on bitsize computing the number of
binary digits constructing a term in Cat, also part of our mutually recursive
functions, to be defined later.

We first observe that only terms of the same bitsize need detailed compar-
ison, otherwise the relation between their bitsizes is enough, recursively. More
precisely, the following holds:

Proposition 8. Let bitsize count the number of digits of a base-2 number,
with the convention that it is 0 for 0. Then bitsize(x) <bitsize(y)⇒ x < y.

Proof. Observe that their lexicographic enumeration ensures that the bitsize
of base-2 numbers is a non-decreasing function.

The comparison operation also proceeds one block at a time, and it also
takes some inferential shortcuts, when possible.

cmp :: Cat a⇒ a→a→Ordering

cmp x y | e_ x && e_ y = EQ

cmp x _ | e_ x = LT

cmp _ y | e_ y = GT

cmp x y | u_ x && u_ (s’ y) = LT

cmp x y | u_ y && u_ (s’ x) = GT
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For instance, it is easy to see that comparison of x and y can be reduced to
comparison of bitsizes when they are distinct. Note that bitsize, to be defined
later, is part of the chain of our mutually recursive functions.

cmp x y | x’ /= y’ = cmp x’ y’ where

x’ = bitsize x

y’ = bitsize y

When bitsizes are equal, a more elaborate comparison needs to be done, dele-
gated to function compBigFirst.

cmp xs ys = compBigFirst True True (rev xs) (rev ys) where

rev = from_list . reverse . to_list

The function compBigFirst compares two terms known to have the same bitsize.
It works on reversed (highest order digit first) variants, computed by reverse

and it takes advantage of the block structure using the following proposition:

Proposition 9. Assuming two terms of the same bitsizes, the one with 1 as its
first before the highest order digit, is larger than the one with 0 as its first before
the highest order digit.

Proof. Observe that little-endian numbers obtained by applying the function
rev are lexicographically ordered with 0 < 1.

As a consequence, cmp only recurses when identical blocks lead the sequence
of blocks, otherwise it infers the LT or GT relation.

compBigFirst _ _ x y | e_ x && e_ y = EQ

compBigFirst False False x y = f (cmp a b) where

(a,as) = c’ x

(b,bs) = c’ y

f EQ = compBigFirst True True as bs

f LT = GT

f GT = LT

compBigFirst True True x y = f (cmp a b) where

(a,as) = c’ x

(b,bs) = c’ y

f EQ = compBigFirst False False as bs

f LT = LT

f GT = GT

compBigFirst False True x y = LT

compBigFirst True False x y = GT

The following examples illustrate the agreement of cmp with the usual order
relation on N.

*Cats> cmp 5 10

LT

*Cats> cmp 10 10

EQ

*Cats> cmp 10 5

GT
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The function bitsize, last in our chain of mutually recursive functions,
computes the number of digits, except that we define it as e for constant function
e (corresponding to 0). It works by summing up the counts of 0 and 1 digit
blocks composing a tree-represented natural number.

bitsize :: Cat a ⇒ a → a

bitsize z | e_ z = z

bitsize z = s (add x (bitsize y)) where (x,y) = c’ z

It follows that the base-2 integer logarithm is computed as

ilog2 :: Cat a ⇒ a→a

ilog2 = s’ . bitsize

6. Algorithms for advanced arithmetic operations

6.1. Multiplication, optimized for large blocks of 0s and 1s

Devising a similar optimization as for add and sub for multiplication (mul)
is actually easier.

After making sure that the recursion is on its smaller argument, mul delegates
its work to mul1. When the first term represents an even number, mul1 applies
the leftshiftBy operation and it reduces the other case to this one.

mul :: Cat a ⇒ a → a → a

mul x y = f (cmp x y) where

f GT = mul1 y x

f _ = mul1 x y

mul1 :: Cat a ⇒ a → a → a

mul1 x _ | e_ x = e

mul1 a y | even_ a = leftshiftBy (s x) (mul1 xs y) where (x,xs) = c’ a

mul1 a y | odd_ a = add y (mul1 (s’ a) y)

Note that when the operands are composed of large blocks of alternating 0 and 1
digits, the algorithm is quite efficient as it works (roughly) in time depending on
the the number of blocks in its first argument rather than its number of digits.
The following example illustrates a blend of arithmetic operations benefiting
from complexity reductions on giant tree-represented numbers:

*Cats> let term1 = sub (exp2 (exp2 (t 12345))) (exp2 (t 6789))

*Cats> let term2 = add (exp2 (exp2 (t 123))) (exp2 (t 456789))

*Cats> bitsize (bitsize (mul term1 term2))

C E (C E (C E (C (C E (C E E)) (C (C E (C E (C E E))) (C (C E E) E)))))

*Cats> n it

12346

6.2. Power

After specializing our multiplication for a squaring operation,

square :: Cat a ⇒ a → a

square x = mul1 x x
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we can implement a “ power by squaring” operation for xy, as follows:

pow :: Cat a ⇒ a → a → a

pow _ b | e_ b = u

pow a _ | e_ a = e

pow a b | even_ a = c (s’ (mul (s x) b),ys) where

(x,xs) = c’ a

ys = pow xs b

pow a b | even_ b = pow (superSquare y a) ys where

(y,ys) = c’ b

superSquare k x | e_ k = square x

superSquare k x = square (superSquare (s’ k) x)

pow x y = mul x (pow x (s’ y))

It works well with fairly large numbers, by also benefiting from efficiency of
multiplication on terms with large blocks of 0 and 1 digits:

*Cats> n (bitsize (pow (t 10) (t 100)))

333

*Cats> pow (m 32) (m 10000000)

F [F [F [F [],F [F []]],F [F [F []],F []],F [F [F []]],

F [],F [],F [],F [F [F []],F []],F [],F []],F []]

*Cats> catShow it

"(((()(()))((())())((()))()()()((())())()())())"

6.3. Division operations

We start by defining an efficient special case.

6.3.1. A special case: division by a power of 2

The function rightshiftBy goes over its argument y one block at a time,
by comparing the size of the block and its argument x that is decremented
after each block by the size of the block. The local function f handles the
details, irrespectively of the nature of the block, and stops when the argument
is exhausted. More precisely, based on the result EQ, LT, GT of the comparison,
f either stops or, calls rightshiftBy on the the value of x reduced by the size
of the block a’ = s a.

rightshiftBy :: Cat a ⇒ a → a → a

rightshiftBy x y | e_ x = y

rightshiftBy _ y | e_ y = e

rightshiftBy x y = f (cmp x a’) where

(a,b) = c’ y

a’ = s a

f LT = c (sub a x,b)

f EQ = b

f GT = rightshiftBy (sub x a’) b
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6.3.2. General division

A division algorithm is given here, but it does not provide the same com-
plexity gains as, for instance, multiplication, addition or subtraction.

div_and_rem :: Cat a ⇒ a → a → (a, a)

div_and_rem x y | LT == cmp x y = (e,x)

div_and_rem x y | c_ y = (q,r) where

(qt,rm) = divstep x y

(z,r) = div_and_rem rm y

q = add (exp2 qt) z

The function divstep implements a step of the division operation.

divstep n m = (q, sub n p) where

q = try_to_double n m e

p = leftshiftBy q m

The function try to double doubles its second argument while smaller than its
first argument and returns the number of steps it took. This value will be used
by divstep when applying the leftshiftBy operation.

try_to_double x y k =
if (LT==cmp x y) then s’ k

else try_to_double x (db y) (s k)

Division and remainder are obtained by specializing div and rem.

divide :: Cat b ⇒ b → b → b

divide n m = fst (div_and_rem n m)

remainder :: Cat b ⇒ b → b → b

remainder n m = snd (div_and_rem n m)

The following examples illustrate the agreement with their usual counter-
parts:

*Cats> divide 26 3

8

*Cats> remainder 26 3

2

7. Representation complexity

While a precise average complexity analysis of our algorithms is beyond the
scope of this paper, arguments similar to those about the average behavior of
s and s’ can be carried out to prove that for all our operations, their average
complexity matches their traditional counterparts, using the fact, shown in the
proof of Prop. 6, that the average size of a block of contiguous 0 or 1 bits is at
most 2.
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7.1. Complexity as representation size

To evaluate the best and worst case space requirements of our number rep-
resentation, we introduce here a measure of representation complexity, defined
by the function catsize that counts the non-empty nodes of an object of type
Cat.

catsize :: Cat a ⇒ a → a

catsize z | e_ z = z

catsize z = s (add (catsize x) (catsize y)) where (x,y) = c’ z

The following holds:

Proposition 10. For all terms t ∈ Cat, catsize t ≤ bitsize t.

Proof. By induction on the structure of t, observing that the two functions
have similar definitions and corresponding calls to catsize return terms induc-
tively assumed smaller than those of bitsize.

The following example illustrates their use:

*Cats> map catsize [0,100,1000,10000]

[0,7,9,13]

*Cats> map catsize [2^16,2^32,2^64,2^256]

[5,6,6,6]

*Cats> map bitsize [2^16,2^32,2^64,2^256]

[17,33,65,257]

Figure 3 shows the reductions in representation complexity compared with bit-
size for an initial interval of N, from 0 to 210 − 1.

Figure 3: Representation complexity (lower line) bounded by bitsize (upper
line)
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7.2. Enumerating objects of given representation size

The total number of Catalan objects corresponding to n is given by:

Cn =
1

n+ 1

(
2n

n

)
(9)

It is shown in [4] that if Ln = 22n

n
3
2
√
π

then limn→∞
Cn
Ln

= 1 , providing an

asymptotic bound for Cn.
The function cat describes an efficient computation for of the Catalan num-

ber Cn using a direct recursion formula derived from equation (9).

cat :: N→N

cat 0 = 1

cat n | n>0 = (2∗(2∗n-1)∗(cat (n-1))) ‘div‘ (n+1)

The first few members of the sequence are computed below:

*Cats> map cat [0..14]

[1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440]

The following holds.

Proposition 11. Let k = catsize x where x is an object of type Cat. Then
x relates to k as follows, for instances of Cat:

1. x is a binary tree of type T with k internal nodes and k + 1 leaves

2. x is a multiway tree of type M with k + 1 nodes

3. x is a term of the type P with 2k + 2 matching parentheses.

Proof. Observe that catsize k counts the Ck − 1 number of C constructors
in objects of size k of type T. The rest is a consequence of well-known relations
between Catalan numbers and nodes of binary trees, nodes of multiway trees
and parentheses in Dyck words as given in [4].

The function catsized enumerates for each of our instances, the objects of
size k corresponding to a given Catalan number.

catsized :: Cat a ⇒ a → [a]

catsized a = take k [x | x←iterate s e,catsize x == a] where

k = fromIntegral (cat (n a))

The function extracts exactly k elements (with k the Catalan number corre-
sponding to size a) from the infinite enumeration of Catalan objects of type Cat
provided by iterate s e, as illustrated below:

*Cats> catsized (t 2)

[C E (C E E),C (C E E) E]

*Cats> catsized 4

[8,9,10,11,12,13,14,16,30,31,63,127,255,65535]
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7.3. Best and worst cases

Next we define the higher order function iterated that applies k times the
function f, which, contrary to Haskell’s iterate, returns only the final element
rather than building the infinite list of all iterates.

iterated :: Cat a ⇒ (t → t) → a → t → t

iterated f k x |e_ k = x

iterated f k x = f (iterated f (s’ k) x)

We can exhibit, for a given bitsize, a best case

bestCase :: Cat a ⇒ a → a

bestCase k = iterated f k e where f x = c (x,e)

and a worst case

worstCase :: Cat a ⇒ a → a

worstCase k = iterated f k e where f x = c (e,x)

The following examples illustrate these functions:

*Cats> bestCase (t 5)

C (C (C (C (C E E) E) E) E) E

*Cats> n (bitsize (bestCase (t 5)))

65536

*Cats> n (catsize (bestCase (t 5)))

5

*Cats> worstCase (t 5)

C E (C E (C E (C E (C E E))))

*Cats> n (bitsize (worstCase (t 5)))

5

*Cats> n (catsize (worstCase (t 5)))

5

The function bestCase computes the iterated exponent of 2 (tetration) and
then applies the predecessor to it. For k = 4 it corresponds to

(2(2
(2(2

0+1−1)+1−1)+1−1)+1 − 1) = 22
22 − 1 = 65535.

For k = 5 it corresponds to 265536 − 1.
Note that our concept of representation complexity is only a weak approx-

imation of Kolmogorov complexity [25]. For instance, the reader might notice
that our worst case example is computable by a program of relatively small size.
However, as bitsize is an upper limit to catsize, we can be sure that we are
within constant factors from the corresponding bitstring computations, even on
random data of high Kolmogorov complexity.

Note also that an alternative concept of representation complexity can be
defined by considering the (vertices+edges) size of the DAG obtained by folding
together identical subtrees.
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7.4. A Concept of duality

As our instances of Cat are members of the Catalan family of combinatorial
objects, they can be seen as binary trees with empty leaves. Therefore, we
can transform the tree representation of our objects by swapping left and right
branches under a binary tree view, recursively. The corresponding Haskell code
is:

dual :: Cat a ⇒ a → a

dual x | e_ x = e

dual z = c (dual y,dual x) where (x,y) = c’ z

As clearly dual is an involution (i.e., dual ◦ dual is the identity of Cat), the
corresponding permutation of N will bring together huge and small natural
numbers sharing representations of the same size, as illustrated by the following
example.

*Cats> map dual [0..20]

[0,1,3,2,4,15,7,6,12,31,65535,16,8,255,127,5,11,8191,4294967295,32,65536]

*CatsBM> catShow 10

"(()()()())"

*CatsBM> catShow (dual 10)

"((((()))))"

For instance, 18 and its dual 4294967295 have representations of the same
size, except that the wide tree associated to 18 maps to the tall tree associated
to 4294967295, as illustrated by Fig. 4, with trees folded to DAGs by merging
together shared subtrees. Note the significantly different bitsizes that can result
for a term and its dual.

*Cats> m 18

F [F [],F [],F [F []],F []]

*Cats> dual (m 18)

F [F [F [F [F []],F []]]]

*Cats> n (bitsize (m 18))

5

*Cats> n (bitsize (dual (m 18)))

32

It follows immediately from the definitions of the respective functions, that, as
an extreme case, the following holds:

Proposition 12. ∀x. dual (bestCase x) = worstCase x.

The following example illustrates it, with a tower of exponents 10000 tall,
reached by bestCase. Note that we run it on objects of type T, as it would
dramatically overflow memory on bitstring-represented numbers of type N.

*Cats> dual (bestCase (t 10000)) == worstCase (t 10000)

True

Another interesting property of dual is illustrated by the following examples:
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Figure 4: 18 and its dual, with multiway trees folded to DAGs

*Cats> [x|x<-[0..2^5-1],cmp (t x) (dual (t x)) == LT]

[2,5,6,8,9,10,11,13,14,17,18,19,20,21,22,23,25,26,27,28,29,30]

*Cats> [x|x<-[0..2^5-1],cmp (t x) (dual (t x)) == EQ]

[0,1,4,24]

*Cats> [x|x<-[0..2^5-1],cmp (t x) (dual (t x)) == GT]

[3,7,12,15,16,31]

The discrepancy between the number of elements for which x is smaller than
(dual x) and those for which it is greater or equal, is growing as numbers get
larger, contrary to the intuition that, as dual is an involution, the grater and
smaller sets would have similar sizes for an initial interval of N. For instance,
between 0 and 216−1 one will find only 68 numbers for which the dual is smaller
and 11 for which it is equal.

Note that random elements of N tend to have relatively shallow (and wide)
multiway tree representations, given that the average size of a contiguous block
of 0s or 1s is 2. Consequently, dual provides an interesting bijection between
“incompressible” natural numbers (of high Kolmogorov complexity) and their
deep, highly compressible, duals.

The existence of such a bijection (computed by a program of constant size)
between natural numbers of high and low Kolmogorov complexity reveals a
somewhat non-intuitive aspect of this concept and its use for the definition of
randomness [25].

We will explore next definitions for concepts of depth for our number repre-
sentation.
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7.5. Representation Depth

As we can switch between the binary and multiway view of our Catalan
objects, we will define two sets of representation-depth functions. They use the
the helper functions minimum min2 and maximum max2.

min2, max2 :: Cat a ⇒ a → a → a

min2 x y = if LT==cmp x y then x else y

max2 x y = if LT==cmp x y then y else x

Corresponding to the binary tree view exemplified by instance T, we define
maxTdepth returning the length of the longest path from the root to a leaf.

maxTdepth :: Cat a ⇒ a → a

maxTdepth z | e_ z = z

maxTdepth z = s (max2 (maxTdepth x) (maxTdepth y)) where (x,y) = c’ z

Corresponding to the multiway tree view exemplified by instance M we define
maxTdepth returning the length of the longest path from the root to a leaf.

maxMdepth :: Cat a ⇒ a → a

maxMdepth z | e_ z = z

maxMdepth z = s (foldr max2 m ms) where

(m:ms) = map maxMdepth (to_list z)

The following simple facts hold, derived from properties of binary and mul-
tiway rooted ordered trees.

Proposition 13. Let x ≥ y stand for cmp x y == GT and = stand for cmp x

y == EQ.

1. For all objects x of type Cat, catsize x ≥ maxTdepth x ≥ maxMdepth x.

2. For all objects x of type Cat, catsize x = catsize (dual x)

3. For all objects x of type Cat maxTdepth x = maxTdepth (dual x).

4. For all objects x of type Cat, maxMdepth (bestCase x) = x.

8. Compact representation and tractable computations with some gi-
ant numbers

We will illustrate the representation and computation power of our new
numbering system with two case studies. The first shows that several record
holder primes have compact Catalan representations.

The second shows computation of the hailstone sequence for an equivalent
of the Collatz conjecture on giant numbers.

8.1. Record holder primes

Interestingly, most record holder giant primes have a fairly simple struc-
ture: they are of the form p = i2k ± j with i ∈ N and j ∈ N comparatively
small. This is a perfect fit for our representation which favors numbers “in
the neighborhood” of linear combinations of (towers of) exponents of two with
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Record holder prime bitsize catsize

Mersenne prime 57,885,161 25
Generalized Fermat prime 9,167,448 37
Cullen prime 6,679,904 46
Woodall prime 3,752,970 37
Sophie Germain prime 666,712 62
Twin primes 1 666,711 59
Twin primes 2 666,711 60

Figure 5: Bitsizes vs. Catalan representation sizes of record holder primes

comparatively small coefficients, resulting in large contiguous blocks of 0s and
1s when represented as bitstrings.

The largest known primes (as of early 2014) of several types are given by
the following Haskell code.

mersennePrime f = s’ (exp2 (f 57885161))

generizedFermatPrime f = s (leftshiftBy (f 9167433) (f 27653))

cullenPrime f = s (leftshiftBy x x) where x = f 6679881

woodallPrime f = s’ (leftshiftBy x x) where x = f 3752948

prothPrime f = s (leftshiftBy (f 13018586) (f 19249))

sophieGermainPrime f = s’ (leftshiftBy (f 666667) (f 18543637900515))

twinPrimes f = (s’ y,s y) where

y = leftshiftBy (f 666669) (f 3756801695685)

For instance, the largest known prime, having about 17 million decimal
digits, (a Mersenne number) has an unusually small Catalan representation as
illustrated below:

*Cats> catShow (mersennePrime t)

"(((()())()()((()))((())())()()(())(())(()())()(())))"

*Cats> n (catsize (mersennePrime t))

25

*Cats> n (bitsize (mersennePrime t))

57885161

Note the use of parameter t indicating that computation proceeds with type T,
as it would overflow memory with with bitstring-represented natural numbers.

Figure 5 summarizes comparative bitstring and Catalan representation sizes
bitsize and catsize for record holder primes.

8.2. Computing the Collatz/Syracuse sequence for huge numbers

As an interesting application, that achieves something one cannot do with
traditional arbitrary bitsize integers is to explore the behavior of interesting
conjectures in the “new world” of numbers limited not by their sizes but by
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their representation complexity. The Collatz conjecture [26] states that the
function

collatz(x) =

{
x
2 if x is even,

3x+ 1 if x is odd.
(10)

reaches 1 after a finite number of iterations. An equivalent formulation, by
grouping together all the division by 2 steps, is the function:

collatz′(x) =

{
x

2ν2(x) if x is even,

3x+ 1 if x is odd.
(11)

where ν2(x) denotes the dyadic valuation of x, i.e., the largest exponent of 2
that divides x. One step further, the syracuse function is defined as the odd
integer k′ such that n = 3k + 1 = 2ν2(n)k′. One more step further, by writing
k′ = 2m+ 1 we get a function that associates k ∈ N to m ∈ N.

The function tl computes efficiently the equivalent of

tl(k) =
k

2ν2(k) − 1

2
(12)

Together with its hd counterpart, it is defined as

hd x = fst (decons x)

tl x = snd (decons x)

decons a | even_ a = (s x,hf (s’ xs)) where (x,xs) = c’ a

decons a = (e,hf (s’ a))

where the function decons is the inverse of

cons (x,y) = leftshiftBy x (s (db y))

corresponding to 2x (2y + 1). Then our variant of the syracuse function corre-
sponds to

syracuse(n) = tl(3n+ 2) (13)

which is defined from N to N and can be implemented as

syracuse :: Cat b ⇒ b → b

syracuse n = tl (add n (db (s n)))

Note that all operations except the addition add are constant average time.
The function nsyr computes the iterates of this function, until (possibly)

stopping:

nsyr :: Cat t ⇒ t → [t]

nsyr x | e_ x = [e]

nsyr x = x : nsyr (syracuse x)
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It is easy to see that the Collatz conjecture is true2 if and only if nsyr
terminates for all n, as illustrated by the following example:

*Cats> nsyr 2014

[2014,755,1133,1700,1275,1913,2870,1076,807,1211,1817,2726,1022,383,

575,863,1295,1943,2915,4373,6560,4920,3690,86,32,24,18,3,5,8,6,2,0]

Moreover, in this formulation, the conjecture implies that the the elements of
sequence generated by nsyr are all different.

The next examples will show that computations for nsyr can be efficiently
carried out for giant numbers that, with the traditional bitstring representation,
would easily overflow the memory of a computer with more transistors than the
atoms in the known universe.

And finally something we are quite sure has never been computed before,
we can also start with a tower of exponents 100 levels tall:

*Cats> take 100 (map(n . catsize) (nsyr (bestCase (t 100))))

[100,199,297,298,300,...,440,436,429,434,445,439]

Note that we have only computed the decimal equivalents of the representation
complexity catsize of these numbers, which, obviously, would not fit themselves
in a decimal representation.

A slightly longer computation (taking a few minutes) can be also performed
on a twin tower of exponents 101 and 103 levels tall like in

*Cats> take 2 (map(n.catsize) (nsyr

(add (bestCase (t 101)) (bestCase (t 103)))))

[10206,10500]

where the Catalan representation size at 10500, proportional to the product of
the representation sizes of the operands, slows down computation but still keeps
it in a tractable range.

9. Discussion

Our Catalan families based numbering system provides compact represen-
tations of giant numbers and can perform interesting computations intractable
with their bitstring-based counterparts.

This ability comes from the fact that our canonical tree representation, in
contrast to the traditional binary representation supports constant average time
and space application of exponentials.

We have not performed a precise time and space complexity analysis (except
for the the constant average-time operations), but our experiments indicate that
(low) polynomial bounds are likely for addition and subtraction with worst cases

2 As a side note, it might be interesting to approach the Collatz conjecture by trying to
compare the growth in the Catalan representation size induced by 3n+2 expressed as add n

(db (s n)) vs. its decrease induced by tl.
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of size expansion happening with towers of exponents, where results are likely
to be proportional to the product of the height of the towers, as illustrated in
subsection 8.2.

Our multiplication and division algorithms are derived from relatively simple
traditional ones, with some focus on taking advantage of large blocks of 0 and 1
digits. However, it would be interesting to further explore asymptotically better
algorithms like Karatsuba multiplication or division based on Newton’s method.

As most numbers have high Kolmogorov complexity, it makes sense to extend
our type class mechanism to devise a hybrid numbering system that switches
between representations as needed, to delegate cases where there are no bene-
fits, to the underlying bitstring representation. This is likely to be needed for
designing a practical extension with Catalan representations for the arithmetic
subsystem used in a programming language like Haskell that benefits from the
very fast C-based GMP library.

10. Conclusion

We have provided in the form of a literate Haskell program a specification
of a tree-based numbering system where members of the Catalan family of
combinatorial objects are built by recursively applying run-length encoding on
the usual binary representation, until the empty leaves corresponding to 0 are
reached.

We have shown that arithmetic computations like addition, subtraction, mul-
tiplication, bitsize and exponent of 2, that favor giant numbers with low repre-
sentation complexity, are performed in constant time, or time proportional to
their representation complexity.

We have also studied the best and worst case representation complexity of
our operations and shown that, as representation complexity is bounded by
bitsize, computations and data representations are within constant factors of
conventional arithmetic even in the worst case.

The resulting numbering system is canonical - each natural number is repre-
sented as a unique object. Besides unique decoding, canonical representations
allow testing for syntactic equality.

It is also generic – no commitment is made to a particular member of the
Catalan family – our type class provides all the arithmetic operations to several
instances, including typical members of the Catalan family together with the
usual natural numbers.

The conditions for lower time and space complexity for algorithms working
on numbers consisting of large contiguous blocks of 0s and 1s are likely to apply
to several practical data representations ranging from quad-trees to audio/video
encoding formats.
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Appendix

A subset of Haskell as an executable function notation

We have refrained from using any advanced features of Haskell to ensure that
our minimalist subset of the language is understandable to the reader familiar
only with the usual mathematical notation conventions.

We mention, for the benefit of the reader unfamiliar with Haskell, that a
notation like f x y stands for f(x, y), [t] represents lists of type t and a
type declaration like f :: a -> b -> c stands for a function f : a × b → c.
Haskell’s ordered pairs of the form (x,y) aggregate elements of possibly distinct
types x and y. They are useful also when one wants to return multiple results
from a function.

Our Haskell functions are always represented as sequences of recursive equa-
tions guided by pattern matching, conditional to constraints (simple relations
following | and before the = symbol).

Locally scoped helper functions are defined in Haskell after the where key-
word, using the same equational style. Patterns match and deconstruct argu-
ments on the left side of equations and build new terms of their corresponding
date type definitions on the right side of equations.

The composition of functions f and g is denoted f . g.
The higher order function map is used to apply a function to all elements of

a list and return the list of the results.
Haskell’s type classes can be seen simply as dictionaries that associate to

each polymorphic type specific implementations of functions.
As a small detail, occasionally used in our examples, the result of the last

evaluation is stored in the special Haskell variable it.
Finally, the code in this paper is meant to be a compact and mathematically

obvious specification rather than an implementation fine-tuned for performance.
Faster but more verbose equivalent code can be derived in procedural or object
oriented languages by replacing lists with (dynamic) arrays and some instances
of recursion with iteration.
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