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INVOLUTIONS AND THEIR PROGENIES

TEWODROS AMDEBERHAN AND VICTOR H. MOLL

Abstract. Any permutation has a disjoint cycle decomposition and concept
generates an equivalence class on the symmetry group called the cycle-type.
The main focus of this work is on permutations of restricted cycle-types, with
particular emphasis on the special class of involutions and their partial sums.
The paper provides generating functions, determinantal expressions, asymp-
totic estimates as well as arithmetic and combinatorial properties.

1. Introduction

For n ∈ N, the group of permutations in n symbols {a1, a2, · · · , an} is called the
symmetric group, denoted by Sn. A cycle ρ ∈ Sn is a permutation of the form, in
a one-line notation, ρ = (ai1 ai2 · · · air ). The notation indicates that all the entries
of the cycle are distinct and ρ(aij ) = aij+1

for 1 ≤ j ≤ r − 1 and ρ(air ) = ai1 . The
cycle ρ is said to have length r, written as r = L(ρ). Every permutation π ∈ Sn

can be written as a product of cycles π = ρ1ρ2 · · · ρm. This decomposition is not
unique, but if the cycles are assumed to be disjoint and the lengths are taken in
weakly decreasing order, then {L(ρ1), L(ρ2), · · · , L(ρm)} is uniquely determined by
π, called the cycle type of π.

The following notation is used: for 1 ≤ ℓ, t ≤ n,

(1.1) Cn,ℓ = {π ∈ Sn

∣

∣

∣
with every cycle in π of length at most ℓ},

(1.2) αt(π) = number of cycles in π ∈ Sn of length t.

and the cardinality of Cn,ℓ is denoted by dn,ℓ = #Cn,ℓ.

Definition 1.1. A permutation π in Sn is called an involution if π2(j) = j, for
1 ≤ j ≤ n. The set of involutions in Sn is denoted by Inv(n). The cardinality of
this set, denoted by I1(n), is called the involution number.

The factorization of π as a product of disjoint cycles shows that any cycle in the
factorization of an involution has length 1 or 2. This implies Inv(n) = Cn,2 and thus
I1(n) = dn,2. It follows that if π ∈ Inv(n) is an involution, then α1(π)+2α2(π) = n.

Example 1.2. Every permutation of 2 symbols (a transposition) is an involution
and for n = 3 there are 4 involutions

(1.3) π1 = (1)(2)(3), π2 = (12), π3 = (13), π4 = (23).

The cycles (123) and (132) are the only elements of S3 that are not involutions.
Therefore I1(2) = 2 and I1(3) = 4.

Date: June 11, 2014.
1991 Mathematics Subject Classification. Primary 05A15, 11B75.
Key words and phrases. involutions, valuations, asymptotics.

1

http://arxiv.org/abs/1406.2356v1


2 TEWODROS AMDEBERHAN AND VICTOR H. MOLL

Elementary properties of the numbers I1(n) are described in Section 2. These
include a second order recurrence, an exponential generating function as well as an
explicit finite sum. These are generalized to the involution polynomials I1(n; t) in
Section 3 which are intimately linked to the (probabilistic) Hermite polynomials
defined by

(1.4) Hn(t) = n!

⌊n/2⌋
∑

j=0

(−1)j

j!(n− 2j)!

tn−2j

2j

with generating function

(1.5)
∞
∑

n=0

Hn(t)
xn

n!
= exp

(

xt− 1
2x

2
)

.

The involution polynomials have a combinatorial interpretation as the generating
function for fixed points of permutation in Sn. Arithmetic properties of I1(n) are
presented in Section 4. Particular emphasis is given to the 2-adic valuation of I1(n).
Recall that, for x ∈ N and p prime, the p-adic valuation of x, denoted by νp(x),
is the highest power of p that divides x. An odd prime p is called efficient if p
does not divide I1(j) for 0 ≤ j ≤ p − 1. Otherwise it is called inefficient. The
prime p = 3 is efficient and p = 5 is inefficient since I1(4) = 10. A periodicity
argument is used to show that νp(I1(n) = 0; i.e., p is efficient. Morever, for a prime
p, it is shown that either p divides I1(n) infinitely often or never. In the case of
an inefficient prime, it is conjecture that the p-adic valuation of the sequence I1(n)
can be given in terms of a tree Tp. This phenomena is illustrated for the prime
p = 5. It is an open question to characterize efficient (or inefficient) primes. The
partial sums of I1(n), denoted by an, are discussed in Section 5. Their arithmetic
properties are presented in Section 6. For instance, an explicit expression for their
2-adic valuation is given there. The valuations for odd primes are also conjectured
to have a tree structure. This is illustrated in the case p = 5. Section 7 considers
the statistics of the sequence dn,ℓ in (1.1). This is a generalization of I1(n) = Cn,2.
Finally, the asymptotic behavior of dn,ℓ = |Cn,ℓ| is given in Section 8.

2. Basic properties of the involution numbers

This section discusses fundamental properties of I1(n). Some of them are well-
known but proofs are included here for the convenience of the reader.

Theorem 2.1. The sequence I1(n) satisfies the recurrence

(2.1) I1(n) = I1(n− 1) + (n− 1)I1(n− 2), for n ≥ 2,

with initial conditions I1(0) = I1(1) = 1.

Proof. There are I1(n− 1) involutions that fix n. The number of involutions that
contain a cycle (j n), with 1 ≤ j ≤ n− 1 is n− 1 times the number of involutions
containing the cycle (n− 1, n). This is (n− 1)I1(n− 2). �

The recurrence above generates the values

n 0 1 2 3 4 5 6 7 8 9 10
I1(n) 1 1 2 4 10 26 76 232 764 2620 9496

This is sequence A000085 in OEIS.

The recurrence (2.1) now enables to write a generating function for {I1(n)}.



INVOLUTIONS AND THEIR PROGENIES 3

Theorem 2.2. The exponential generating function for I1(n) is

(2.2)
∞
∑

n=0

I1(n)

n!
xn = exp(x + 1

2x
2).

Proof. On the basis of (2.1) verify that both sides of (2.2) satisfy
f ′(x) = (1 + x)f(x) and the value f(0) = 1. �

Cauchy’s product formula on ex and ex
2/2 allows to express I1(n) as a finite sum.

Corollary 2.3. The involution numbers I1(n) are given by

(2.3) I1(n) =

⌊n/2⌋
∑

j=0

(

n

2j

)(

2j

j

)

j!

2j
.

The numbers

(

2j

j

)

j!

2j
appearing in (2.3) are now shown to be of the same parity.

Corollary 2.4. For j ∈ N, the numbers (2j)!/(j!2j) are odd integers.

Proof. The identity

(2.4)
(2j)!

j!2j
=

(2j)(2j − 1) · · · (j + 1)

2j

shows that the denominator is a power of 2. To compute this power, use Legendre’s
formula

(2.5) ν2(n!) = n− s2(n),

where s2(n) is the sum of the digits of n in its binary expansion. Therefore,

(2.6) ν2

(

(2j)!

j!2j

)

= (2j − s2(2j))− (j − s2(j))− j = 0,

in view of s2(2j) = s2(j). �

A second recurrence for the involution numbers is presented next.

Theorem 2.5. For n,m ∈ N, the involution numbers satisfy

(2.7) I1(n+m) =
∑

k≥0

k!

(

n

k

)(

m

k

)

I1(n− k)I1(m− k).

Proof. Split up the set [n+m] into two disjoint subsets A and B, of n and m letters,
respectively. Count the involutions in Inv(n + m) acoording to the number k of
cross-permutations that make up a cycle (ab), with a ∈ A and b ∈ B. The letters
a and b can be chosen in

(

n
k

)(

m
k

)

ways and k! ways to place the k cycles (ab). The
remaining elements in A (respectively B) allow I1(n − k) (respectively I1(m− k))
involutions. To complete the argument, summing k!

(

n
k

)(

m
k

)

I1(n− k)I1(m− k) over
k. �

As a direct consequence of (in fact, equivalent to) Theorem 2.5 the following
analytic statement is recorded. This result bypasses the need for an otherwise
messy chain rule for derivatives.
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Corollary 2.6. Higher order derivatives of the function f(x) = exp
(

x+ x2/2
)

are
computed by the umbral

(2.8)
dm

dxm
f(x) = f(x)

m
∑

k=0

(

m

k

)

I1(m− k)xk := f(x)(x + I1)
m.

Proof. From Theorem 2.2,
dm

dxm
f(x) =

∑

n

I1(n + m)
xn

n!
. The right-hand side of

Theorem 2.5 implies

∑

n

∑

k

k!

(

n

k

)(

m

k

)

I1(n− k)I1(m− k)
xn

n!
=

∑

k

(

m

k

)

I1(m− k)xk
∑

n

I1(n− k)
xn−k

(n− k)!

= f(x)
∑

k

(

m

k

)

I1(m− k)xk.

The claim follows. �

The recurrence (2.7) is now used to prove periodicity of I1(n) mod pr.

Theorem 2.7. Let p be a prime and r ∈ N. Then I1 mod pr is a periodic sequence
of period pr.

Proof. Write n = cpr + t with 0 ≤ t < pr. Theorem 2.5 gives

(2.9) I1(cp
r + t) =

t
∑

k=0

k!

(

cpr

k

)(

t

k

)

I1(cp
r − k)I1(t− k).

For k > 0,
(

cpr

k

)

k! = (cpr)(cpr − 1) · · · (cpr − k + 1) ≡ 0 mod pr yields

(2.10) I1(cp
r + t) ≡ I1(cp

r)I1(t) mod pr.

Using Theorem 2.5 again

(2.11) I1(2p
r) =

pr

∑

k=0

k!

(

pr

k

)2

I1)(p
r − k)2 ≡ I1(p

r)2 mod pr

and then induction on c gives

(2.12) I1(cp
r) ≡ I1(p

r)c mod pr.

The next step is to show that I1(p
r) ≡ 1 mod pr. Then (2.10) and (2.12) imply

the required periodicity. Observe first that for m 6≡ 0 mod p,

(2.13)

(

pr

m

)

=
pr

m

(

pr − 1

m− 1

)

≡ 0 mod pr,

so that

(2.14) I1(p
r) ≡

r−1
∑

m=0

(

pr

2mp

)(

2mp

mp

)

(mp)!

2mp
mod pr,

where the upper bound arises from νp((mp)!) ≥ m+ ⌊m/r⌋ ≥ r if m ≥ r.
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The final step is to show that

(2.15) νp

(

pr

2mp

)

=

{

r − 1 if m 6≡ 0 mod p

r − 2 if m ≡ 0 mod p.

This would imply I1(p
r) ≡ 1 mod pr since νp((mp)!) ≥ 2 form ≥ 2. The periodicity

of I1(n) mod pr follows from here.

To prove (2.15), recall Legendre’s formula

(2.16) νp(x!) =
x− sp(x)

p− 1

where sp(x) is the digit sum of x in base p. This gives

νp

((

pr

2mp

))

=
−sp(p

r) + sp(2mp) + sp(p
r − 2mp)

p− 1
(2.17)

=
−1 + sp(2m) + sp(p

r−1 − 2m)

p− 1
.

Write 2m =
r−2
∑

i=0

uip
i with 0 ≤ ui ≤ p− 1. Then

pr−1 − 2m = pr−1 −
r−2
∑

i=0

uip
i = 1 +

r−2
∑

i=0

(p− 1− ui)p
i

= (p− u0) +
r−2
∑

i=1

(p− 1− ui)p
i.

If m 6≡ 0 mod p, then

(2.18) sp(p
r−1 − 2m) = (p− u0) +

r−2
∑

i=1

(p− 1− ui).

On the other hand, if νp(m) = a, a direct calculation leads to

(2.19) sp(p
r−1 − 2m) = (p− ua) +

r−2
∑

i=a+1

(p− 1− ui).

The claim (2.15) now follows from (2.17). �

Corollary 2.8. Assume I1(n) 6≡ 0 mod p for 0 ≤ n ≤ p− 1 and p an odd prime.
Then νp(I1(n)) ≡ 0.

Corollary 2.9. A prime p divides the sequence I1(n) infinitely often or never at
all.

In the process of discovering the previous congruences, the following result was
obtained by the authors. Even though it is not related yet to the material that
follows, it is of intrinsic interest and thus placed here for future use. In the sequel,
λ ⊢ n means λ is a partition of n.

Proposition 2.10. Let λ = (λ1, · · · , λk) ⊢ n with λ1 ≥ · · · ≥ λk ≥ 1. Denote
(

pn
pλ

)

=
(

pn
pλ1, ··· , pλk

)

.

a) If p ≥ 3 is a prime, then
(

pn
pλ

)

≡
(

n
λ

)

mod p2.

b) If p ≥ 5 is a prime, then
(

pn
pλ

)

≡
(

n
λ

)

mod p3.



6 TEWODROS AMDEBERHAN AND VICTOR H. MOLL

Proof. The case k = 2 is considered first. Take an n× p rectangular grid. Choose
pb of these squares and paint them red. One option is to paint b entire rows red,
call this type-1. This can be done in

(

n
b

)

different ways. In all other cases, there
exist at least two rows each consisting of t red squares, where 0 < t < p. Two such
coloring are considered equivalent if one is produced from the other by a cyclic shift
of the squares in each row independently. This generates equivalence classes and
the number of elements in each class is then divisible by p2. Thus, modulo p2, one
only type-1 coverings remain.

To prove the general case, choose pλi of these squares and paint them with color
ci, 1 ≤ i ≤ k, in

(

pn
pλ

)

ways. Then proceed as in the case k = 2. The general case

also follows from the special case k = 2 and the identity
(

pn

pλ

)

=

(

pn

pλ1

)(

p(n− λ1)

pλ2

)

· · ·
(

p(n− λ1 − · · · − λk−1

pλk

)

≡
(

n

λ1

)(

n− λ1

λ2

)

· · ·
(

n− λ1 − · · · − λk−1

λk

)

mod p2

=

(

n

λ

)

.

A similar argument reveals the second congruence. �

3. The involution polynomials

This section introduces a sequence of polynomials generalizing the involution
numbers I1(n). To this end, modify (2.1) so that I1(n; 1) = I1(n).

Definition 3.1. The involution polynomials I1(n; t) are defined by the recurrence

(3.1) I1(n; t) = tI1(n− 1; t) + (n− 1)I1(n− 2; t),

with initial conditions I1(0; t) = 1 and I1(1; t) = t.

Proposition 3.2. The involution polynomials are expressible as

(3.2) I1(n; t) =

⌊n
2 ⌋

∑

j=0

(

n

2j

)

(2j)!

2jj!
tn−2j .

Proof. A direct calculation shows that the right-hand side of (3.2) satisfies the
recurrence (3.1) with the same initial conditions as I1(n, t). �

Theorem 3.1. There is an exponential generating function for the involution poly-
nomials

(3.3)
∞
∑

n=0

I1(n; t)
xn

n!
= exp

(

tx+ 1
2x

2
)

.

Proof. Multiply the recurrence (3.1) by xn/n! and sum over n ≥ 2 to produce

(3.4)

∞
∑

n=2

I1(n; t)
xn

n!
=

∞
∑

n=1

tI1(n; t)
xn+1

(n+ 1)!
+

∞
∑

n=0

I1(n; t)
xn+2

(n+ 1)n!
.

Denote the generating function by h(x, t). The recurrence implies
∂h

∂x
= (x+ t)h and the proof follows from a standard argument. �
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Note 3.3. The generating function (1.5) shows the relation

(3.5) I1(n; t) = ınHn(−ıt)

between the involution polynomials I1(n; t) and the Hermite polynomials Hn(t).

The next result offers a combinatorial interpretations of the involution polyno-
mials.

Proposition 3.4. The involution polynomials can be expressed as

(3.6) I1(n; t) =
∑

π∈Inv(n)

tα1(π),

where α1(π) is the number of fixed points of π.

Proof. Let gn(t) be the right-hand side in (3.6). Rearrange the set of involutions
π ∈ Inv(n) into two groups according to whether π(n) = n or not. In the first case
π = π1 with π1 ∈ Inv(n− 1). The involution π has the same number of 2-cycles as
π1 and the extra fixed point n. Therefore the term tc1(π) in gn(t) cancels a unique
term in tgn−1(t). In the second case, let π(n) = k with 1 ≤ k ≤ n− 1. Then π is π2

times the cycle (nk); that is, π = π2(nk), with π2 ∈ Inv(n− 2). The permutation
π2 has the same number of fixed points as π. Thus, tc1(π) in gn(t) cancels a unique
term in gn−2(t). Summing over n gives the relation

(3.7) gn(t) = tgn−1(t) + gn−2(t),

since every term on both sides has been canceled in the previous description. The
polynomials gn(t) and I1(n; t) satisfy the same recurrence with matching initial
conditions. This establishes the assertion. �

4. Arithmetic properties of the numbers I1(n).

This section discusses the p-adic valuation of the sequence {I1(n)}. The analysis
begins with the prime p = 2.

Theorem 4.1. The 2-adic valuation of I1(n) is given by

(4.1) ν2(I1(n)) =



















k if n = 4k

k if n = 4k + 1

k + 1 if n = 4k + 2

k + 2 if n = 4k + 3

This is equivalent to ν2(I1(n)) =
⌊n

2

⌋

− 2
⌊n

4

⌋

+

⌊

n+ 1

4

⌋

.

Proof. Let n ∈ N and assume the result is valid up to n− 1. The proof is divided
into four cases according to the residue of n modulo 4. The symbol Oi stands for
an odd number.

Case 1: n = 4k. The induction hypothesis states that

(4.2) ν2(I1(n− 1)) = k + 1, ν2(I1(n− 2)) = k and ν2(n− 1) = 0.

The recurrence (2.1) implies that I1(n) = 2k+1O1 + 2kO2 = 2k (2O1 +O2) , for
some O1, O2 odd integers. This proves ν2(I1(n)) = k.

Case 2: n = 4k + 1. The argument is similar to Case 1.
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Case 3: n = 4k + 2. By induction hypothesis, I1(n − 1) = 2kO1 and I1(n− 2) =
2kO2. The recurrence (2.1) now yields I1(n) = 2k (O1 +O2O3), with O1 + O2O3

even, so that ν2(I1(n) is not determined from here. It is necessary to iterate (2.1)
to obtain I1(n) = nI1(n−2)+(n−2)I1(n−3). The result now follows immediately.

Case 4: n = 4k + 3. The recurrence (2.1) now needs to be iterated twice to
produce I1(n) = 2(n − 1)I1(n − 3) + n(n − 3)I1(n − 4). Induction gives I1(n) =
2k+2

[

O1 + 21+ν2(k)O2

]

, showing that ν2(I1(n)) = k + 2.

An alternative proof follows from the recurrence (2.7). Write n = 4k + r for
0 ≤ r ≤ 3 and proceed by induction on k. The result follows directly from the
identities

I1(4k + 1) = I1(4k) + 4kI1(4k − 1)

I1(4k + 2) = 2I1(4k) + 8kI1(4k − 1) + 4k(4k − 1)I1(4k − 2)

I1(4k + 3) = 4I1(4k) + 24kI1(4k − 1) + 12k(4k − 1)I1(4k − 2)

+6

(

4k

3

)

I1(4k − 3)

I1(4k + 4) = 10I1(4k) + 64kI1(4k − 1) + 48k(4k − 1)I1(4k − 2)

+24

(

4k

3

)

I1(4k − 3) + 24

(

4k

4

)

I1(4k − 4).

�

The case of νp(I1(n)) for p an odd prime is considered next. Lemma 2.8 shows
that if I1(n) 6≡ 0 mod p for 0 ≤ n ≤ p− 1, then νp(I1(n)) ≡ 0.

Definition 4.2. The prime p is called efficient if I1(n) 6≡ 0 mod p, for every n in
the range 0 ≤ n ≤ p− 1. Otherwise, it is called inefficient.

Lemma 2.8 shows that νp(I1(n)) ≡ 0 if p is an efficient prime.

Example 4.3. The values I1(0) = 1, I1(1) = 1, I1(2) = 2 show that p = 3 is
efficient. Therefore ν3(I1(n)) ≡ 0. The prime p = 5 is inefficient since I1(4) = 10 is
divisible by 5. Similarly p = 7 is efficient, in view of the table

n 0 1 2 3 4 5 6
I1(n) 1 1 2 4 10 26 76

Mod(I1(n), 7) 1 1 2 4 3 5 6

Among the first 100 primes, there are 62 inefficient ones. These are listed in the
table below.

(4.3)

5 13 19 23 29 31 43 53
59 61 67 73 79 83 89 97
103 131 137 151 157 163 173 179
181 191 197 199 211 229 233 239
241 281 293 307 317 347 359 367
373 379 389 397 409 419 421 431
433 443 449 457 461 463 479 487
491 499 509 521 523 541
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The p-adic valuation νp(I1(n)) for inefficient primes is (conjecturally) described
by a tree structure Tp and certain modular classes. The case p = 5 is prototypical.

Each vertex V of the tree T5 corresponds to a subset of N. The vertex V is
called terminal if {ν5(I1(n)) : n ∈ V } reduces to a single value; that is, ν5(I1(n))
is independent of n ∈ V ; otherwise it is called non-terminal. The description of the
tree T5 uses the notation Ω5 := {0, 1, 2, 3, 4}.

The construction begins with a root vertex V0 that represents all N. Since
ν5(I1(n)) is not a constant function, the vertex V0 is non-terminal. The root is
now split into five different vertices, denoted by V1,k : k ∈ Ω5, with

(4.4) V1,k = {n ∈ N : n ≡ k mod 5}.
These five vertices form the first level. Theorem 2.7 shows that

(4.5) I1(k + 5n) ≡ I1(k) mod 5

for k ∈ Ω5. The values I1(0) = 1, I1(1) = 1, I1(2) = 2, I1(3) = 4, I1(4) = 10 give

(4.6) ν5(V1,k) = 0 for 0 ≤ k ≤ 3 and ν5(V1,4) ≥ 1.

Thus, V1,k is a terminal vertex for 0 ≤ k ≤ 3 and V1,4 is non-terminal.
In order to determine the valuation of numbers associated to the vertex V1,4,

that is, numbers of the form 5n1 + 4, split the index n1 according to its residue
modulo 5 and write 5n1 + 4 = 52n2 + 5k + 4, with k ∈ Ω5. Then

(4.7) ν5(I1(5
2n2 + 5k + 4)) ≥ 1, for k ∈ Ω5.

The second level is formed by vertices V2,k corresponding to the sets

{n ∈ N : n ≡ 5k + 4 mod 52}. Theorem 2.7 gives

(4.8) I1(5
2n2 + 5k + 4) ≡ I1(5k + 4) mod 52, for every k ∈ Ω5.

Therefore if I1(5k+4) 6≡ 0 mod 52, it follows that ν5(V2,k) = 1 and V2,k is a terminal
vertex. The values

(4.9) I1(4) ≡ 10, I1(9) ≡ 20, I1(14) ≡ 5, I1(19) ≡ 15, I1(24) ≡ 0 mod 52,

show that ν5(V2,k) = 1, for k ∈ Ω5, k 6= 4 and, in the single remaining case,
ν5(V2,4) ≥ 2.

Conjecture. Assume p is an inefficient prime. Then, for every n ∈ N, the n-th
level of the tree Tp contains a single non-terminal vertex. This level contains p− 1
vertices with valuation n − 1 and the single non-terminal vertex has valuation at
least n. This determines the tree Tp and the valuations νp(I1(n)).

5. Partial sums of involution numbers

What happens if the term
(

n
2k

)

is replaced by
(

n
2k+1

)

in the formula

(5.1) I1(n) =
∑

k≥0

(2k)!

k! 2k

(

n

2k

)

?

It is perhaps convenient to also shift n and define

(5.2) an =
∑

k≥0

(2k)!

k! 2k

(

n+ 1

2k + 1

)

.

The next result shows that an is actually closely tied to I1.
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Theorem 5.1. If n ∈ N, then

(5.3) an =

n
∑

j=0

I1(j).

Proof. This is immediate from a simple binomial identity so that

n
∑

j=0

I1(j) =

n
∑

j=0

⌊j/2⌋
∑

k=0

(

j

2k

)

(2k)!

k!2k

=

⌊n/2⌋
∑

k=0

(2k)!

k!2k

n
∑

j=⌊k/2⌋

(

j

2k

)

=

⌊n/2⌋
∑

k=0

(2k)!

k!2k

(

j + 1

2k + 1

)

= an.

�

A recurrence for an is routinely generated by the WZ-method (see [4, 5]).

Proposition 5.1. The sequence an satisfies the recurrence

(5.4) an = 2an−1 + (n− 2)an−2 − (n− 1)an−3, for n ≥ 3,

with initial conditions a0 = 1, a1 = 2 and a2 = 4.

The first few values are tabulated below.

n 0 1 2 3 4 5 6 7 8 9 10
an 1 2 4 8 18 44 120 352 1116 3736 13232

This sequence does not appear in OEIS.

Given any sequence {qn} with ordinary generating function f(x), then the par-
tial sums q1 + · · · + qn have the ordinary generating function f(x)/(1 − x). The
corresponding statement for exponential generating functions is given below.

Lemma 5.2. If w(x) =
∑

n≥0

cn
xn

n!
and un =

n
∑

k=0

ck, then

(5.5)

∞
∑

n=0

un
xn

n!
= w(x) + ex

∫ x

0

e−tw(t) dt.

Proof. Start with un = cn+un−1, multiply through by xn−1/(n−1)! and sum over
n. The outcome is the differential equation g′(x) − g(x) = w(x). Now solve this
linear differential equation to obtain the result. �

Corollary 5.3. The exponential generating function for the sequence {an} is

(5.6)

∞
∑

n=0

an
xn

n!
= ex+x2/2 + ex

∫ x

0

et
2/2 dt.

Proof. Using
∞
∑

n=0

I1(n)
xn

n!
= exp

(

x+ x2/2
)

, the claim follows from Lemma 5.2. �
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Corollary 5.4. The sequence {an} satisfies

(5.7)
n
∑

k=1

(−1)n−k

(

n

k

)

ak−1 =

{

(2m)!/2mm! if n = 2m+ 1,

0, if n = 2m.

Proof. Using the notation of Lemma 5.2,
∫ x

0

et
2/2 dt = e−x[g(x)− w(x)] = e−x

∞
∑

n=0

[an − I1(n)]
xn

n!
= e−x

∞
∑

n=1

an−1
xn

n!
.

Now write e−x as a series and multiply out to arrive at the assertion. �

Corollary 5.5. The following identity holds:

(5.8)

m
∑

j=1

(

2m

2j

)

a2j−1 =

m
∑

j=1

(

2m

2j − 1

)

a2j−2.

Proof. This is Corollary 5.4 for n = 2m. �

6. Arithmetic properties of the sequence an

The next statement is the corresponding counterpart to Theorem 4.1.

Theorem 6.1. The 2-adic valuation of the sequence an is given by

(6.1) ν2(an) =



















k, if n = 4k − 3,

k + 1, if n = 4k − 2,

k, if n = 4k,

ν2(k) + k + 2, if n = 4k − 1.

Proof. The inductive proof distinguishes the four values of n modulo 4.

Case 1: n = 4k − 3. Then, the induction hypothesis shows that

(6.2) an−1 = 2k−1O1, an−2 = 2k+1+ν2(k−1)O2, and an−3 = 2kO3

with Oj odd integers. Then the recurrence (5.4) implies

(6.3) a4k−3 = 2k
[

O1 + (4k − 5)21+ν2(k−1)O2 − (k − 1)22O3

]

.

Thus ν2(a4k−3) = k.

Case 2: n = 4k. Then

(6.4) an−1 = 2ν2(k)+k+2O1, an−2 = 2k+1O2, and an−3 = 2kO3

and (5.4) implies

(6.5) a4k = 2k
[

2ν2(k)+3O1 + 22(2k − 1)O2 − (4k − 1)O3

]

and ν2(a4k) = k follows form here.

Case 3: n = 4k − 2. Then, as in the proof of Theorem 4.1, the recurrence needs
to be iterated to produce

(6.6) a4k−2 = 4ka4k−4 + (4k − 7)a4k−5 − 8(k − 1)a4k−6.

The induction hypothesis gives

(6.7) a4k−2 = 2k+1
[

kO1 + (4k − 7)2ν2(k−1)O2 − 4(k − 1)O3

]

.
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For k odd, the first term in the square bracket is odd and the other two are even.
For k even, the second term is odd and the other two are even. In either case,
ν2(a4k−2) = k + 1.

Case 4: n = 4k − 1. The statement to be proved is

(6.8) ν2(an) = ν2(4k) + k.

Observe that

a4k−1 =

2k−1
∑

j=0

(2j)!

j!2j

(

4k

2j + 1

)

(6.9)

= 4k

2k−1
∑

j=0

(2j)!

j!2j
1

2j + 1

(

4k − 1

2j

)

.

Therefore, it suffices to show that ν2(bk) = k where

(6.10) bk =

2k−1
∑

j=0

(2j)!

j!2j
1

2j + 1

(

4k − 1

2j

)

.

It should be noted that not all summands in bk are integers.

The proof of this last step is based on the valuations of the sum

(6.11) F (α, β, k) =

2k−1
∑

j=0

(2j + α)β
(2j)!

j!2j

(

4k − 1

2j

)

.

Observe that

(6.12) F (α, 0, k) =

2k−1
∑

j=0

(2j)!

j!2j

(

4k − 1

2j

)

= I1(4k − 1).

The next lemma relates F (α, 1, k) with the involution numbers.

Lemma 6.2. Let α, k ∈ N. Then

(6.13) F (α, 1, k) = αI4k−1 + 2(4k − 1)(2k − 1)I4k−3.

Proof. Simply observe that

F (α, 1, k) = αF (α, 0, k) + 2

2k−1
∑

j=1

j · (2j)!
j!2j

(

4k − 1

2j

)

and then check that the last sum is 2(4k − 1)(2k − 1)I4k−3. �

The 2-adic valuation of F (α, β, k) is computed next when α, β ∈ N and α is odd.

Theorem 6.3. Let α, β ∈ N with α odd. Then

(6.14) ν2(F (α, β, k)) =

{

k + 1 if β is even,

k if β is odd.

Proof. The case β = 0 is Theorem 4.1. The case β = 1 is obtained from the identity
(6.13) and Theorem 4.1. The rest of the proof is divided according to the parity of
β.
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Case 1: β > 1 odd. Expand (2j + α)β by the binomial theorem to obtain

(6.15) F (α, β, k) =

β
∑

ℓ=0

(

β

ℓ

)

αβ−ℓ
2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

j!2j
2ℓjℓ.

The term corresponding to ℓ = 0 is

(6.16) tℓ=0 := αβ
2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

j!2j
= αβI1(4k − 1).

Theorem 4.1 gives its 2-adic valuation as

(6.17) ν2(tℓ=0) = ν2(I4k−1) = k + 1.

The term for ℓ = 1 is

(6.18) tℓ=1 := βαβ−1
2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

j!2j
· 2j = 2(4k − 1)(2k − 1)I1(4k − 3)

and its 2-adic valuation is

(6.19) ν2(tℓ=1) = ν2(I4k−3) = k.

For the remaining terms in the sum F (α, β, k) use the identity

(6.20) jℓ =
ℓ

∑

r=1

cr
j!

(j − r)!

where cr ∈ Z (these are the Stirling numbers, but only their integrality matters
here). This leads to the expression

(6.21)

β
∑

ℓ=2

(

β

ℓ

)

αβ−ℓ
ℓ

∑

r=1

cr

2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

(j − r)!2j−ℓ
.

The theorem now follows from the fact that the internal sum has 2-adic valuation
at least k + 1. This implies that ℓ = 1 controls the valuation. In order to verify
this statement, observe that

2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

(j − r)!2j−ℓ
= 2ℓ−r

2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

(j − r)!2r−j

= 2ℓ−r (4k − 1)!

(4k − 2r − 1)!

2k−r
∑

m=0

(

4k − 2r − 1

2m

)

(2m)!

m!2m

= 2ℓ−r (4k − 1)!

(4k − 2r − 1)!
I4k−2r−1.

A direct application of Theorem 4.1 shows that

ν2

(

2ℓ−r(4k − 1)!

(4k − 2r − 1)!
I4k−2r−1

)

≥ ℓ− r +
(

r +
⌊r

2

⌋)

+
(

k +
⌊r

2

⌋

− 1
)

≥ ℓ+ k − 1.

The statement about the valuation of the internal sums is now immediate since
ℓ ≥ 2.
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Case 2: β even. As in the case β odd, the valuations of the internal sums are
bounded from below by ℓ + k − 1. In particular, the lower bound is at least k + 2
if ℓ ≥ 3. This leads to the decomposition

(6.22) F (α, β, k) = X1(α, β, k) +X2(α, β, k) +X3(α, β, k)

where

X1(α, β, k) = αβ
2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

j!2j
(6.23)

X2(α, β, k) =

2
∑

ℓ=1

(

β

ℓ

)

αβ−ℓ
2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

j!2j
(2j)ℓ

X3(α, β, k) =

β
∑

ℓ=3

(

β

ℓ

)

αβ−ℓ
2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

j!2j
(2j)ℓ.

Then ν2(X3(α, β, k)) ≥ k + 2. It is now shown that ν2(X1(α, β, k)) = k + 1 and
ν2(X2(α, β, k)) ≥ k + 3. This proves the formula for the valuation of F (α, β, k)
when β is even.

To prove the statement about the valuation of X1 use the identity X1(α, β, k) =
αβI1(4k − 1) and Theorem 4.1. The proof of the corresponding formula for X2

starts with the expression

X2(α, β, k) = βαβ−1
2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

j!2j
(2j)(6.24)

+

(

β

2

)

αβ−2
2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

j!2j
(4j2)

and then use 4j2 = 4j(j − 1) + 4j and the identities

2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

j!2j
(2j) = (4k − 1)(4k − 2)I4k−3

2k−1
∑

j=0

(

4k − 1

2j

)

(2j)!

j!2j
(4j2) = (4k − 1)(4k − 2)(4k − 3)(4k − 4)I4k−5

to arrive at

X2(α, β, k) = 2βαβ−2(α + β − 1)(2k − 1)(4k − 1)I4k−3

+ 8

(

β

2

)

αβ−2(4k − 1)(2k − 1)(4k − 3)(k − 1)I4k−5.

Then Theorem 4.1 implies

(6.25) ν2(β) + ν2(α+ β − 1) + 1+ ν2(I4k−3) = ν2(β) + ν2(α+ β − 1) + k ≥ k+2,

and the valuation of the second term is

(6.26) ν2(β) − 1 + 3 + ν2(I4k−5) = ν2(β) + 2 + k ≥ k + 3.

The statement about ν2(X2) is established . The formula for ν2(F (α, β, k)), when
β is even, follows from these results. �
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The remainder of the proof of Theorem 6.1 has been reduced to verifying that
ν2(bk) = k, where bk = F (1,−1, k) is defined in (6.10).

For m ∈ N and a odd, Euler’s theorem yields

(6.27) a−1 ≡ aϕ(2m)−1 = a2
m−1−1 mod 2m.

Therefore

F (1,−1, k) ≡
2k−1
∑

j=0

(2j + 1)2
m−1−1 (2j)!

j!2j

(

4k − 1

2j

)

= F (1, 2m−1 − 1, k) mod 2m.

Since 2m−1 − 1 is odd, Proposition 6.3 gives

(6.28) ν2(F (1, 2m−1 − 1, k)) = k.

Now choose m = k to compute

(6.29) F (1,−1, k) ≡ F (1, 2k−1 − 1, k) ≡ 0 mod 2k

and then choose m = k + 1 to obtain

(6.30) F (1,−1, k) ≡ F (1, 2k − 1, k) 6≡ 0 mod 2k+1.

It follows that ν2(F (1,−1, k)) = k, as desired. The proof of Theorem 6.1 is now
complete. �

Note 6.4. For p odd, the p-adic valuation of an also exhibits some interesting
patterns which will be investigated in the future. For instance, when p = 3, it is
noted that

(6.31) ν3(an) = 0 if n 6≡ 8 mod 9

and

(6.32) ν3(a9n+8) =











0 if n ≡ 0 mod 3,

0 if n ≡ 1 mod 3,

ν3(n+ 1) if n ≡ 2 mod 3.

Similar formulas may be tested out experimentally for other primes.

7. Permutations of restricted length

Let n ∈ N and 0 ≤ ℓ ≤ n. This section considers the set

Cn,ℓ = {π ∈ Sn

∣

∣

∣ every cycle in π is of length at most ℓ}

and its cardinality dn,ℓ = #Cn,ℓ.

Proposition 7.1. The numbers dn,ℓ satisfy the recurrence

dn+1,ℓ = dn,ℓ +
n!

(n− 1)!
dn−1,ℓ +

n!

(n− 2)!
dn−2,ℓ + · · ·+ n!

(n− ℓ+ 1)!
dn+1−ℓ,ℓ.

Equivalently

(7.1)
∞
∑

n=0

dn,ℓ
xn

n!
= exp

(

x+
x2

2
+

x3

3
+ · · ·+ xℓ

ℓ

)

.
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Proof. For 1 ≤ j ≤ ℓ, the number 1 is in exactly n!/(n− j + 1)! cycles of length j.
Now count the elements in Cn+1,ℓ according to the length of the cycle containing
the number 1. �

A multivariate generalization of Proposition 7.1 is given in terms of Toeplitz
matrices.

Definition 7.2. For n, ℓ ∈ N and indeterminates Y1, Y2, · · · , Yℓ, the square matrix
Mn,ℓ(Y), of size n+ 1, has entries

(7.2) Mn,ℓ(k, j) =











ıj−kYj−k+1 if 0 ≤ j − k ≤ ℓ− 1,

ıj if k = j + 1,

0, otherwise.

Example 7.3. Let n = 5 and ℓ = 4, then

(7.3) M5,4(Y) =













Y1 ıY2 ı2Y3 ı3Y4 0
ı Y1 ıY2 ı2Y3 ı3Y4

0 2ı Y1 ıY2 ı2Y3

0 0 3ı Y1 ıY2

0 0 0 4ı Y1













.

A generalization of Proposition 7.1 is stated next.

Theorem 7.1. The exponential generating function for the determinants ofMn,ℓ(Y)
is

(7.4)

∞
∑

n=0

det(Mn,ℓ(Y))
xn

n!
= exp

(

Y1x+ Y2
x2

2
+ · · ·+ Yℓ

xℓ

ℓ

)

.

Proof. Fix ℓ and let gn,ℓ(Y) = det(Mn,ℓ(Y)). Use Laplace expansion of gn,ℓ along
the last row to obtain

gn,ℓ(Y) = gn−1,ℓ(Y)Y1 +(n− 1)gn−2,ℓ(Y)Y2 +(n− 1)(n− 2)gn−3,ℓ(Y)Y3 + · · ·+
+ (n− 1)(n− 2) · · · (n− ℓ+ 1)gn−ℓ,ℓ(Y)Yℓ.

Now set Fℓ(x;Y) =
∞
∑

n=0

gn,ℓ(Y)
xn

n!
. The recurrence shows that Fℓ(x;Y) matches

the right-hand side of (7.4). �

Comparing coefficients in the expansion (7.4) gives a statistic on the set Cn,ℓ.

Theorem 7.2. Let n ∈ N and 0 ≤ ℓ ≤ n. Recall αt(π) = number of t-cycles in
π ∈ Sn. Then

(7.5) det Mn,ℓ(Y1, · · · , Yℓ) =
∑

π∈Cn,ℓ

Y
α1(π)
1 · · ·Y αℓ(π)

2 .

Example 7.4. Let n = 5 and ℓ = 4. Then the cycle-index polynomial is computed
as

detM5,4(Y) = Y 5
1 + 10Y 3

1 Y2 + 20Y 2
1 Y3 + 15Y1Y

2
2 + 30Y1Y4 + 20Y2Y3

=
∑

π∈C5,4

Y
α1(π)
1 Y

α2(π)
2 Y

α3(π)
3 Y

α4(π)
4
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and it encodes the statistic on the set C5,4. For instance, 20 permutations in S5

are a product of a 2-cycle and a 3-cycle. Also, there are #C5,4 = detM5,4(1) = 96
permutations formed by cycles of length 4 or less. This is 5! = 120 minus the 24
cycles of length 5.

Note 7.5. The special case Yj = 1 (for all j) produces

(7.6) dn,ℓ = det(Mn,ℓ)(1).

.

8. Asymptotics

This section considers the asymptotic behavior, as n → ∞ with ℓ fixed, of the
numbers dn,ℓ = #Cn,ℓ, counting the number of permutations in Sn with every
cycle of length at most ℓ. Their exponential generating function is

(8.1) fℓ(z) =

∞
∑

n=0

dn,ℓ
zn

n!
= exp

(

z +
z2

2
+ · · ·+ zℓ

ℓ

)

.

Several authors provide asymptotic expansions for fℓ(z) (see Moser-Wyman [3] and
Knuth [1] when ℓ = 2; Wimp-Zeilberger [6] for any ℓ using methods from Birkhoff-
Trjitzinsky). In this section, the general case is revisited using the saddle-point
technique in order to generate a first-order estimate.

Cauchy’s integral formula gives

(8.2) dn,ℓ =
n!

2πı

∮

C

fℓ(z)

zn+1
dz

where C is a simple closed curve around the origin. In the analysis presented here
C is a circle of radius r. Therefore

dn,ℓ =
n!

2πı

∫

|z|=r

fℓ(z) exp(−n log z)
dz

z
(8.3)

=
n!

2πı

∫

|z|=r

exp

(

z +
z2

2
+ · · ·+ zℓ

ℓ
− n log z

)

dz

z

The saddle-point method [2] gives

(8.4) dn,ℓ ∼
n!√
2πℓn

exp
(

r + r2/2 + · · ·+ rℓ/ℓ− n log r
)

where the saddle point r+ ∈ R+ is defined by the equation

(8.5)
d

dr

(

r + r2/2 + · · ·+ rℓ/ℓ− n log r
)

= 1 + r + r2 + · · ·+ rℓ−1 − n

r
= 0.

This is equivalent to r+ r2 + · · ·+ rℓ = n. To obtain information about the saddle
point r+, it is convenient to rewrite (8.5) in the form

(8.6) r

(

1− r−ℓ

1− r−1

)1/ℓ

− η = 0, for η ∈ C.

This defines r = r(η). For η = n1/ℓ, this becomes r(n1/ℓ) = r+.

The limiting value r/η → 1, as r → ∞, suggests the asymptotic expansion

(8.7) r = r(η) = η + α0 +
α−1

η
+

α−2

η2
+ · · · , as η → ∞.
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The exponent in (8.4) is now written as Φ(η)− ηℓ log η, with

(8.8) Φ(η) = r(η) +
1

2
r(η)2 + · · ·+ 1

ℓ
r(η)ℓ − ηℓ log

r(η)

η
.

The expansion (8.7) leads to

(8.9) Φ(η) = βℓη
ℓ + · · ·+ β1η + β0 +

β−1

η
+ · · ·

and the relevant contributions to the behavior of (8.4) come from the positive
powers in this expansion. To compute these contributions observe that, for k > 0,

(8.10) βk =
1

2πı

∫

C

Φ(η)

ηk+1
dη =

1

2πı

∫

C

Φ′(η)

kηk
dη,

where the second expression is obtained by using Cauchy’s integral formula on the
expansion of Φ′(η). The contour C is made to pass through the point r+. Therefore,
using Φ′(η) = ηℓ−1 − ℓηℓ−1 log r

η it follows that, for 0 < k < ℓ,

βk =
1

2πı

∫

C

1

kηk−ℓ+1
dη − 1

2πi

∫

C

ℓ log r
η

kηk−ℓ+1
dη(8.11)

= − 1

2πı

∫

C

ℓ log r
η

kηk−ℓ+1
dη

since the first integral vanishes. This is now written as

βk = − 1

2πı

ℓ

k(ℓ− k)

∫

C

log
r

η

d

dη
ηℓ−k dη(8.12)

=
1

2πı

ℓ

k(ℓ− k)

∫

C

(

r′

r
− 1

η

)

ηℓ−kdη

=
1

2πı

ℓ

k(ℓ− k)

∫

C

r′

r
ηℓ−kdη

since the integral of ηℓ−k−1 vanishes. Now make the change of variables r 7→ r(η)
to obtain

(8.13) βk =
1

2πı

∫

C1

ℓ

k(ℓ− k)

(

1− r−ℓ

1− r−1

)

ℓ−k
k

rℓ−k−1dr.

A residue calculation then gives

(8.14) βk =
1

k(ℓ− k)!

(

ℓ− k

ℓ
+ 1

)

· · ·
(

ℓ− k

ℓ
+ ℓ− 1

)

.

An easier calculation, left to the reader, gives β0 = −1

ℓ

ℓ
∑

j=2

1

j
and βℓ =

1

ℓ
.

Combining the above and invoking Stirling’s formula n! ∼
√
2πnnne−n produces

the following result.

Theorem 8.1. Let ℓ ∈ N be fixed. Then

dn,ℓ =
1√
ℓ
nn(1−1/ℓ) exp



−1

ℓ

ℓ
∑

j=2

1

j
+

n

ℓ
+

ℓ−1
∑

k=1

(

k
ℓ + 1

)

· · ·
(

k
ℓ + ℓ− 1

)

k!(ℓ− k)
n

ℓ−k
ℓ



 .
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