CONSECUTIVE PRIMES AND LEGENDRE SYMBOLS

Hao Pan and Zhi-Wei Sun
Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
haopan1979@gmail.com zwsun@nju.edu.cn

Abstract. Let m be any positive integer and let $\delta_{1}, \delta_{2} \in\{1,-1\}$. We show that for some constanst $C_{m}>0$ there are infinitely many integers $n>1$ with $p_{n+m}-p_{n} \leqslant C_{m}$ such that

$$
\left(\frac{p_{n+i}}{p_{n+j}}\right)=\delta_{1} \quad \text { and } \quad\left(\frac{p_{n+j}}{p_{n+i}}\right)=\delta_{2}
$$

for all $0 \leqslant i<j \leqslant m$, where p_{k} denotes the k-th prime, and ($\dot{\bar{p}}$) denotes the Legendre symbol for any odd prime p. We also prove that under the Generalized Riemann Hypothesis there are infinitely many positive integers n such that p_{n+i} is a primitive root modulo p_{n+j} for any distinct i and j among $0,1, \ldots, m$.

1. Introduction

For $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$ let p_{n} denote the n-th prime. The famous twin prime conjecture asserts that $p_{n+1}-p_{n}=2$ for infinitely many $n \in \mathbb{Z}^{+}$. Although this remains open, recently Y. Zhang [Z] was able to prove that

$$
\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right) \leqslant 7 \times 10^{7}
$$

The upper bound 7×10^{7} was later reduced to 4680 by the Polymath team [Po] led by T. Tao, and 600 by J. Maynard [M], and 270 again by the Polymath team [Po]. Moreover, J. Maynard [M], as well as T. Tao, established the following deep result.

Theorem 1.1 (Maynard-Tao). For any positive integer m, we have

$$
\liminf _{n \rightarrow \infty}\left(p_{n+m}-p_{n}\right) \leqslant C m^{3} e^{4 m}
$$

where $C>0$ is an absolutely constant.
Earlier than this work, in 2000 D.K.L. Shiu [S] proved the following nice theorem.

2010 Mathematics Subject Classification. Primary 11A41; Secondary 11A07, 11A15, 11N99.

Keywords. Consequtive primes, Legendre symbols, quadratic residues.
The second author is supported by the National Natural Science Foundation (Grant No. 11171140) of China.

Theorem 1.2 (Shiu). Let $a \in \mathbb{Z}$ and $q \in \mathbb{Z}^{+}$be relatively prime. Then, for any $m \in \mathbb{Z}^{+}$there is a positive integer n such that

$$
p_{n} \equiv p_{n+1} \equiv \cdots \equiv p_{n+m} \equiv a \quad(\bmod q)
$$

This was recently re-deduced in [BFTB] via the Maynard-Tao method.
In this paper we mainly establish the following new result on consecutive primes and Legendre symbols.

Theorem 1.3. Let m be any positive integer and let $\delta_{1}, \delta_{2} \in\{1,-1\}$. For some constant $C_{m}>0$ depending only on m, there are infinitely many integers $n>1$ with $p_{n+m}-p_{n} \leqslant C_{m}$ such that for any $0 \leqslant i<j \leqslant m$ we have

$$
\begin{equation*}
\left(\frac{p_{n+i}}{p_{n+j}}\right)=\delta_{1} \quad \text { and } \quad\left(\frac{p_{n+j}}{p_{n+i}}\right)=\delta_{2} . \tag{1.1}
\end{equation*}
$$

Remark 1.1. (a) Instead of (1.1) in Theorem 1.3, actually we may require both (1.1) and the following property:

$$
\begin{equation*}
p_{i j} \|\left(p_{n+i}-p_{n+j}\right) \quad \text { for some prime } p_{i j}>2 m+1 \tag{1.2}
\end{equation*}
$$

(As usual, for a prime p and an integer a, by $p \| a$ we mean $p \mid a$ but $p^{2} \nmid a$.)
(b) We conjecture the following extension of Theorem 1.3: For any $m \in \mathbb{Z}^{+}$, $\delta \in\{1,-1\}$ and $\delta_{i j} \in\{1,-1\}$ with $0 \leqslant i<j \leqslant m$, there are infinitely many integers $n>1$ such that

$$
\left(\frac{p_{n+i}}{p_{n+j}}\right)=\delta_{i j}=\delta\left(\frac{p_{n+j}}{p_{n+i}}\right)
$$

for all $0 \leqslant i<j \leqslant m$.
Example 1.1. The smallest integer $n>1$ with

$$
\left(\frac{p_{n+i}}{p_{n+j}}\right)=1 \quad \text { for all } i, j=0, \ldots, 6 \text { with } i \neq j
$$

is 176833 , and a list of the first 200 such values of n is available from [Su2]. The 7 consecutive primes $p_{176833}, p_{176834}, \ldots, p_{178639}$ have concrete values

$$
2434589,2434609,2434613,2434657,2434669,2434673,2434681
$$

respectively.
Example 1.2. The smallest integer $n>1$ with

$$
\left(\frac{p_{n+i}}{p_{n+j}}\right)=-1 \quad \text { for all } i, j=0, \ldots, 5 \text { with } i \neq j
$$

is 2066981 , and the 6 consecutive primes $p_{2066981}, p_{2066982}, \ldots, p_{2066986}$ have concrete values

$$
33611561,33611573,33611603,33611621,33611629,33611653
$$

respectively.
Example 1.3. The smallest integer $n>1$ with

$$
-\left(\frac{p_{n+i}}{p_{n+j}}\right)=1=\left(\frac{p_{n+j}}{p_{n+i}}\right) \quad \text { for all } 0 \leqslant i<j \leqslant 6
$$

is 7455790 , and the 7 consecutive primes $p_{7455790}, p_{7455791}, \ldots, p_{7455796}$ have concrete values

131449631, 131449639, 131449679, 131449691, 131449727, 131449739, 131449751
respectively.
Example 1.4. The smallest integer $n>1$ with

$$
\left(\frac{p_{n+i}}{p_{n+j}}\right)=1=-\left(\frac{p_{n+j}}{p_{n+i}}\right) \quad \text { for all } 0 \leqslant i<j \leqslant 5
$$

is 59753753 , and the 6 consecutive primes $p_{59753753}, p_{59753754}, \ldots, p_{59753758}$ have concrete values

1185350899, 1185350939, 1185350983, 1185351031, 1185351059, 1185351091 respectively.

Actually Theorem 1.3 is motivated by the second author's following conjecture.

Conjecture 1.1 (Sun [Su1, Su2]). For any positive integer m, there are infinitely many $n \in \mathbb{Z}^{+}$such that for any distinct i and j among $0,1, \ldots, m$ the prime p_{n+i} is a primitive root modulo p_{n+j}.

Example 1.5. The least $n \in \mathbb{Z}^{+}$with p_{n+i} a primitive root modulo p_{n+j} for any distinct i and j among $0,1,2,3$ is 8560 , and a list of the first 50 such values of n is available from [Su2, A243839]. Note that

$$
p_{8560}=88259, p_{8561}=88261 \text { and } p_{8562}=88289
$$

Our second result is the following theorem.
Theorem 1.4. Conjecture 1.1 holds under the Generalized Riemann Hypothesis.

We will prove Theorem 1.3 in the next section with the help of the MaynardTao work, and show Theorem 1.4 in Section 3 by combining our method with a recent result of P. Pollack [P] motivated by the Maynard-Tao work on bounded gaps of primes and Artin's conjecture on primitive roots modulo primes.

Throughout this paper, p always represents a prime. For two integers a and b, their greatest common divisor is denoted by $\operatorname{gcd}(a, b)$.

2. Proof of Theorem 1.3

Let $h_{1}, h_{2}, \ldots, h_{k}$ be distinct positive integers. If $\bigcup_{j=1}^{k} h_{i}(\bmod p) \neq \mathbb{Z}$ for any prime $p($ where $a(\bmod p)$ denotes the residue class $a+p \mathbb{Z})$, then we call $\left\{h_{i}: i=1, \ldots, k\right\}$ an admissible set. Hardy and Littlewood conjectured that if $\mathcal{H}=\left\{h_{i}: \quad i=1, \ldots, k\right\}$ is admissible then there are infinitely many $n \in \mathbb{Z}^{+}$ such that $n+h_{1}, n+h_{2}, \ldots, n+h_{k}$ are all prime. We need the following result in this direction.

Lemma 2.1 (Maynard-Tao). Let m be any positive integer. Then there is an integer $k>m$ depending only on m such that if $\mathcal{H}=\left\{h_{i}: i=1, \ldots, k\right\}$ is an admissible set of cardinality k and $W=q_{0} \prod_{p \leqslant w} p$ (with $q_{0} \in \mathbb{Z}^{+}$) is relatively prime to $\prod_{i=1}^{k} h_{i}$ with $w=\log \log \log x$ large enough, then for some integer $n \in$ $[x, 2 x]$ with $W \mid n$ there are more than m primes among $n+h_{1}, n+h_{2}, \ldots, n+h_{k}$.

Lemma 2.2. Let $k>1$ be an integer. Then there is an admissible set $\mathcal{H}=$ $\left\{h_{1}, \ldots, h_{k}\right\}$ with $h_{1}=0<h_{2}<\ldots<h_{k}$ which has the following properties:
(i) All those $h_{1}, h_{2}, \ldots, h_{k}$ are multiples of $K=4 \prod_{p<2 k} p$.
(ii) Each $h_{i}-h_{j}$ with $1 \leqslant i<j \leqslant k$ has a prime divisor $p>2 k$ with $h_{i} \not \equiv h_{j}$ $\left(\bmod p^{2}\right)$.
(iii) If $1 \leqslant i<j \leqslant k, 1 \leqslant s<t \leqslant k$ and $\{i, j\} \neq\{s, t\}$, then no prime $p>2 k$ divides both $h_{i}-h_{j}$ and $h_{s}-h_{t}$.

Proof. Set $h_{1}=0$ and let $1 \leqslant r<k$. Suppose that we have found nonnegative integers $h_{1}<\ldots<h_{r}$ divisible by K such that each $h_{i}-h_{j}$ with $1 \leqslant i<j \leqslant r$ has a prime divisor $p>2 k$ with $h_{i} \not \equiv h_{j}\left(\bmod p^{2}\right)$, and that no prime $p>2 k$ divides both $h_{i}-h_{j}$ and $h_{s}-h_{t}$ if $1 \leqslant i<j \leqslant r, 1 \leqslant s<t \leqslant r$ and $\{i, j\} \neq\{s, t\}$. Let

$$
X_{r}=\left\{p>2 k: p \mid h_{s}-h_{t} \quad \text { for some } 1 \leqslant s<t \leqslant r\right\}
$$

As K is relatively prime to $\prod_{p \in X_{r}} p$, for each $i=1, \ldots, r$ there is an integer b_{i} with $K b_{i} \equiv h_{i}\left(\bmod \prod_{p \in X_{r}} p\right)$. For each $p \in X_{r}$, as $r<k<p$ there is an integer $a_{p} \not \equiv b_{i}(\bmod p)$ for all $i=1, \ldots, r$. Choose distinct primes q_{1}, \ldots, q_{r} which are greater than $2 k$ but not in the set X_{r}. For any $i=1, \ldots, r$, there is an integer c_{i} with $K c_{i} \equiv h_{i}\left(\bmod q_{i}^{2}\right)$ since K is relatively prime to q_{i}^{2}. By the Chinese Remainder Theorem, there is an integer $b>h_{r} / K$ such that $b \equiv a_{p}$ $(\bmod p)$ for all $p \in X_{r}$, and $b \equiv c_{i}+q_{i}\left(\bmod q_{i}^{2}\right)$ for all $i=1, \ldots, r$.

Set $h_{r+1}=K b>h_{r}$. If $1 \leqslant s \leqslant r$, then

$$
h_{r+1}-h_{s} \equiv K b-K c_{s}=K\left(b-c_{s}\right) \equiv K q_{s} \quad\left(\bmod q_{s}^{2}\right)
$$

hence $q_{s}>2 k$ is a prime divisor of $h_{r+1}-h_{s}$ but $h_{r+1} \not \equiv h_{s}\left(\bmod q_{s}^{2}\right)$.
For $s, t \in\{1, \ldots, r\}$ with $s \neq t$, clearly

$$
\operatorname{gcd}\left(h_{r+1}-h_{s}, h_{r+1}-h_{t}\right)=\operatorname{gcd}\left(h_{r+1}-h_{s}, h_{s}-h_{t}\right)
$$

Let $1 \leqslant i<j \leqslant r$ and $1 \leqslant s \leqslant r$. If a prime $p>2 k$ divides $h_{i}-h_{j}$, then $p \in X_{r}$ and hence

$$
h_{r+1}-h_{s} \equiv K a_{p}-K b_{s}=K\left(a_{p}-b_{s}\right) \not \equiv 0 \quad(\bmod p)
$$

So $\operatorname{gcd}\left(h_{r+1}-h_{s}, h_{i}-h_{j}\right)$ has no prime divisor greater than $2 k$.
In view of the above, we have constructed nonnegative integers $h_{1}<h_{2}<$ $\ldots<h_{k}$ satisfying (i)-(iii) in Lemma 2.2. Note that $\bigcup_{i=1}^{k} h_{i}(\bmod p) \neq \mathbb{Z}$ if $p>$ k. For each $p \leqslant k$, clearly $h_{i} \equiv 0 \not \equiv 1(\bmod p)$ for any $i=1, \ldots, k$. Therefore the set $\mathcal{H}=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$ is admissible. This concludes the proof.

Proof of Theorem 1.3. By Lemma 2.1, there is an integer $k=k_{m}>m$ depending on m such that for any admissible set $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ of cardinality k if x is sufficiently large and $\prod_{i=1}^{k} h_{i}$ is relatively prime to $W=4 \prod_{p \leqslant w} p$ then for some integer $n \in[x / W, 2 x / W]$ there are more than m primes among $W n+h_{1}, W n+h_{2}, \ldots, W n+h_{k}$, where $w=\log \log \log x$.

Let $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ with $h_{1}=0<h_{2}<\ldots<h_{k}$ be an admissible set satisfying the conditions (i)-(iii) in Lemma 2.2. Clearly $K=4 \prod_{p \leqslant 2 k} p \equiv 0$ $(\bmod 8)$. Let x be sufficiently large with the interval $\left(h_{k}, w\right]$ containing more than $h_{k}-k$ primes. Note that $8 \mid W$ since $w \geqslant 2$.

Let $\delta:=\delta_{1} \delta_{2}$. For any integer $b \equiv \delta(\bmod K)$ and each prime $p<2 k$, clearly $b+h_{i} \equiv \delta+0(\bmod p)$ and hence $\operatorname{gcd}\left(b+h_{i}, p\right)=1$ for all $i=1, \ldots, k$.

For any $1 \leqslant i<j \leqslant k$, the number $h_{i}-h_{j}$ has a prime divisor $p_{i j}>2 k$ with $h_{i} \not \equiv h_{j}\left(\bmod p_{i j}^{2}\right)$. Suppose that $p>2 k$ is a prime dividing $\prod_{1 \leqslant i<j \leqslant k}\left(h_{i}-h_{j}\right)$, then there is a unique pair $\{i, j\}$ with $1 \leqslant i<j \leqslant k$ such that $h_{i} \equiv h_{j}(\bmod p)$. Note that $p \leqslant h_{k}$. All the $k-2<(p-3) / 2$ numbers $h_{i}-h_{s}$ with $1 \leqslant s \leqslant k$ and $s \neq i, j$ are relatively prime to p, so there is an integer $r_{p} \not \equiv h_{i}-h_{s}(\bmod p)$ for all $s=1, \ldots, k$ such that

$$
\left(\frac{r_{p} \delta}{p}\right)= \begin{cases}\delta_{2} & \text { if } p=p_{i j} \\ 1 & \text { otherwise }\end{cases}
$$

So, for any integer $b \equiv r_{p}-h_{i}(\bmod p)$, we have $b+h_{s} \not \equiv 0(\bmod p)$ for all $s=1, \ldots, k$.

Assume that $S=\left\{h_{1}, h_{1}+1, \ldots, h_{k}\right\} \backslash \mathcal{H}$ is a set $\left\{a_{i}: i=1, \ldots, t\right\}$ of cardinality $t>0$. Clearly $t \leqslant h_{k}-k+1$ and hence we may choose t distinct primes $q_{1}, \ldots, q_{t} \in\left(h_{k}, w\right]$. If $b \equiv-a_{i}\left(\bmod q_{i}\right)$, then $b+h_{s} \equiv h_{s}-a_{i} \not \equiv 0$ $\left(\bmod q_{i}\right)$ for all $s=1, \ldots, k$ since $0<\left|h_{s}-a_{i}\right|<h_{k}<q_{i}$.

Let

$$
Q=\left\{p \in(2 k, w]: p \nmid \prod_{1 \leqslant i<j \leqslant k}\left(h_{i}-h_{j}\right)\right\} \backslash\left\{q_{i}: i=1, \ldots, t\right\} .
$$

For any prime $q \in Q$, there is an integer $r_{q} \not \equiv-h_{i}(\bmod q)$ for all $i=1, \ldots, k$ since \mathcal{H} is admissible.

By the Chinese Remainder Theorem, there is an integer b satisfying the following (1)-(4).
(1) $b \equiv \delta=\delta_{1} \delta_{2}(\bmod K)$.
(2) $b \equiv r_{p}-h_{i} \equiv r_{p}-h_{j}(\bmod p)$ if $p>2 k$ is a prime dividing $h_{i}-h_{j}$ with $1 \leqslant i<j \leqslant k$.
(3) $b \equiv-a_{i}\left(\bmod q_{i}\right)$ for all $i=1, \ldots, t$.
(4) $b \equiv r_{q}(\bmod q)$ for all $q \in Q$.

By the above analysis, $\prod_{s=1}^{k}\left(b+h_{s}\right)$ is relatively prime to W. As $\mathcal{H}^{\prime}=$ $\left\{b+h_{s}: s=1, \ldots, k\right\}$ is also an admissible set of cardinality k, for large x there is an integer $n \in[x / W, 2 x / W]$ such that there are more than m primes among $W n+b+h_{s}(s=1, \ldots, k)$. For $a_{i} \in S$, we have

$$
W n+b+a_{i} \equiv 0-a_{i}+a_{i}=0 \quad\left(\bmod q_{i}\right)
$$

and hence $W n+b+a_{i}$ is composite since $W>q_{i}$. Therefore, there are consecutive primes $p_{N}, p_{N+1}, \ldots, p_{N+m}$ with $p_{N+i}=W n+b+h_{s(i)}$ for all $i=0, \ldots, m$, where $1 \leqslant s(0)<s(1)<\ldots<s(m) \leqslant k$. Note that

$$
p_{N+m}-p_{N}=\left(W n+b+h_{s(m)}\right)-\left(W n+b+h_{s(0)}\right)=h_{s(m)}-h_{s(0)} \leqslant h_{k} .
$$

For each $s=1, \ldots, k$, clearly $W n+b+h_{s} \equiv 0+\delta+0=\delta(\bmod 8)$ and hence

$$
\left(\frac{-1}{W n+b+h_{s}}\right)=\delta \text { and }\left(\frac{2}{W n+b+h_{s}}\right)=1 .
$$

As $p_{N+i}=W n+b+h_{s(i)} \equiv \delta(\bmod 8)$ for all $i=0, \ldots, m$, by the Quadratic Reciprocal Law we have

$$
\left(\frac{p_{n+j}}{p_{N+i}}\right)=\delta\left(\frac{p_{n+i}}{p_{N+j}}\right) \quad \text { for all } 0 \leqslant i<j \leqslant m
$$

Let $0 \leqslant i<j \leqslant m$. Then

$$
\left(\frac{p_{N+i}}{p_{N+j}}\right)=\left(\frac{W n+b+h_{s(i)}}{W n+b+h_{s(j)}}\right)=\left(\frac{h_{s(i)}-h_{s(j)}}{W n+b+h_{s(j)}}\right)=\delta\left(\frac{h_{i j}}{W n+b+h_{s(j)}}\right),
$$

where $h_{i j}$ is the odd part of $h_{s(j)}-h_{s(i)}$. For any prime divisor p of $h_{i j}$, clearly $p \leqslant h_{k} \leqslant w$ and

$$
\left(\frac{p}{W n+b+h_{s(j)}}\right)=\delta^{(p-1) / 2}\left(\frac{W n+b+h_{s(j)}}{p}\right)=\delta^{(p-1) / 2}\left(\frac{b+h_{s(j)}}{p}\right) .
$$

If $p<2 k$, then $p \mid K$, hence $b+h_{j} \equiv \delta+0(\bmod p)$ and thus

$$
\left(\frac{p}{W n+b+h_{s(j)}}\right)=\delta^{(p-1) / 2}\left(\frac{b+h_{s(j)}}{p}\right)=\delta^{(p-1) / 2}\left(\frac{\delta}{p}\right)=1 .
$$

If $p>2 k$, then by the choice of b we have

$$
\begin{aligned}
\left(\frac{p}{W n+b+h_{s(j)}}\right) & =\delta^{(p-1) / 2}\left(\frac{b+h_{s(j)}}{p}\right)=\delta^{(p-1) / 2}\left(\frac{r_{p}}{p}\right) \\
& =\left(\frac{r_{p} \delta}{p}\right)= \begin{cases}\delta_{2} & \text { if } p=p_{s(i), s(j)}, \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Recall that $p_{s(i), s(j)} \| h_{i j}$. Therefore,

$$
\left(\frac{p_{N+i}}{p_{N+j}}\right)=\delta\left(\frac{h_{i j}}{W n+b+h_{s(j)}}\right)=\delta \delta_{2}=\delta_{1}
$$

and

$$
\left(\frac{p_{N+j}}{p_{N+i}}\right)=\delta\left(\frac{p_{N+i}}{p_{N+j}}\right)=\delta_{2}
$$

This concludes the proof.

3. Proof of Theorem 1.4

The following lemma is a slight modification of Lemma 2.2 which can be proved in a similar way.
Lemma 3.1. Let $k>1$ be an integer. Then there is an admissible set $\mathcal{H}=$ $\left\{h_{1}, \ldots, h_{k}\right\}$ with $h_{1}=0<h_{2}<\ldots<h_{k}$ which has the following properties:
(i) All those $h_{1}, h_{2}, \ldots, h_{k}$ are multiples of $K=4 \prod_{p<4 k} p$.
(ii) Each $h_{i}-h_{j}$ with $1 \leqslant i<j \leqslant k$ has a prime divisor $p>4 k$ with $h_{i} \not \equiv h_{j}$ $\left(\bmod p^{2}\right)$.
(iii) If $1 \leqslant i<j \leqslant k, 1 \leqslant s<t \leqslant k$ and $\{i, j\} \neq\{s, t\}$, then no prime $p>4 k$ divides both $h_{i}-h_{j}$ and $h_{s}-h_{t}$.

Lemma 3.2. Let $k>1$ be an integer, and let $\mathcal{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ with $h_{1}=0<$ $h_{2}<\cdots<h_{k}$ be an admissible set satisfying (i)-(iii) in Lemma 3.1. Then there is a positive integer b with all of the following properties:
(i) $\prod_{i=1}^{k}\left(b+h_{i}\right)$ is relatively prime to the least common multiple W of those $h_{j}-h_{i}$ with $1 \leqslant i<j \leqslant k$ and $\prod_{2<p \leqslant w} p$ if w is large enough.
(ii) $\prod_{i=1}^{k}\left(b+h_{i}-1\right)$ is relatively prime to $\prod_{2<p \leqslant w} p$ if w is large enough.
(iii) For any $i, j \in\{1, \ldots, k\}$ with $i \neq j$, we have

$$
\left(\frac{h_{i}-h_{j}}{b+h_{j}}\right)=-1 .
$$

(iv) If $n>b, n \equiv b(\bmod W)$ and $a \in\left\{h_{1}, h_{1}+1, \ldots, h_{k}\right\} \backslash \mathcal{H}$, then $n+a$ is not prime.

Proof. For any $1 \leqslant i<j \leqslant k$, the number $h_{i}-h_{j}$ has a prime divisor $p_{i j}>4 k$ with $h_{i} \not \equiv h_{j}\left(\bmod p_{i j}^{2}\right)$. Suppose that $p>4 k$ is a prime dividing
$\prod_{1 \leqslant i<j \leqslant k}\left(h_{i}-h_{j}\right)$, then there is a unique pair $\{i, j\}$ with $1 \leqslant i<j \leqslant k$ such that $h_{i} \equiv h_{j}(\bmod p)$. Note that $p \leqslant h_{k}$. As $h_{i}-h_{j} \equiv h_{i}-h_{i}(\bmod p)$ and $2(k-1)<(p-1) / 2$, there is an integer $r_{p} \not \equiv h_{i}-h_{s}, h_{i}-h_{s}+1(\bmod p)$ for all $s=1, \ldots, k$ such that

$$
\left(\frac{r_{p}}{p}\right)= \begin{cases}-\left(\frac{3}{p}\right)^{\operatorname{ord}_{3}\left(h_{j}-h_{i}\right)} & \text { if } p=p_{i j} \\ 1 & \text { otherwise }\end{cases}
$$

So, for any integer $b \equiv r_{p}-h_{i}(\bmod p)$, we have $b+h_{s} \not \equiv 0,1(\bmod p)$.
Assume that

$$
S=\left\{h_{1}<a<h_{k}: a \neq h_{s}, h_{s}-1 \text { for all } s=1, \ldots, k\right\}=\left\{a_{i}: i=1, \ldots, t\right\} .
$$

Clearly $t \leqslant h_{k}-k$ and hence we may choose t distinct primes $q_{1}, \ldots, q_{t} \in\left(h_{k}, w\right]$ if w is large enough. If $b \equiv-a_{i}\left(\bmod q_{i}\right)$, then $b+h_{s} \equiv h_{s}-a_{i} \not \equiv 0,1\left(\bmod q_{i}\right)$ for all $s=1, \ldots, k$ since $\left|h_{s}-a_{i}\right|<h_{k}<q_{i}$.

Let

$$
Q=\left\{p \in(4 k, w]: p \nmid \prod_{1 \leqslant i<j \leqslant k}\left(h_{i}-h_{j}\right)\right\} \backslash\left\{q_{i}: i=1, \ldots, t\right\} .
$$

For any prime $q \in Q$, there is an integer $r_{q} \not \equiv-h_{i},-h_{i}+1(\bmod q)$ for all $i=1, \ldots, k$ since $q>2 k$.

By the Chinese Remainder Theorem, there is a positive integer b satisfying the following (1)-(4).
(1) $b \equiv 17(\bmod 24)$, and $b \equiv 4(\bmod p)$ for all primes $p \in[5,4 k]$.
(2) $b \equiv r_{p}-h_{i} \equiv r_{p}-h_{j}(\bmod p)$ if $p>4 k$ is a prime dividing $h_{i}-h_{j}$ with $1 \leqslant i<j \leqslant k$.
(3) $b \equiv-a_{i}\left(\bmod q_{i}\right)$ for all $i=1, \ldots, t$.
(4) $b \equiv r_{q}(\bmod q)$ for all $q \in Q$.

By the above analysis, $\prod_{s=1}^{k}\left(b+h_{s}\right)\left(b+h_{s}-1\right)$ is relatively prime to $\prod_{2<p \leqslant w} p$. Note that $b+h_{i} \equiv 17+0(\bmod 24)$ for all $i=1, \ldots, k$. If $w \geqslant h_{k}$, then any prime divisor of W does not exceed w. So both (i) and (ii) holds.

For each $s=1, \ldots, k$, clearly $b+h_{s} \equiv 17+0 \equiv 1(\bmod 8)$ and hence

$$
\left(\frac{-1}{b+h_{s}}\right)=\left(\frac{2}{b+h_{s}}\right)=1 .
$$

Let $i, j \in\{0, \ldots, m\}$ with $i \neq j$. Then

$$
\left(\frac{h_{i}-h_{j}}{b+h_{j}}\right)=\left(\frac{h_{i j}}{b+h_{j}}\right),
$$

where $h_{i j}$ is the odd part of $\left|h_{i}-h_{j}\right|$. For any prime divisor p of $h_{i j}$, clearly $p \leqslant h_{k} \leqslant w$ and

$$
\left(\frac{p}{b+h_{j}}\right)=\left(\frac{b+h_{j}}{p}\right) .
$$

If $3<p<4 k$, then $p \mid K$, hence $b+h_{j} \equiv 4+0(\bmod p)$ and thus

$$
\left(\frac{p}{b+h_{j}}\right)=\left(\frac{b+h_{j}}{p}\right)=\left(\frac{4}{p}\right)=1
$$

If $p>4 k$, then by the choice of b we have

$$
\begin{aligned}
\left(\frac{p}{b+h_{j}}\right) & =\left(\frac{b+h_{j}}{p}\right)=\left(\frac{r_{p}}{p}\right) \\
& = \begin{cases}-\left(\frac{3}{p}\right)^{\operatorname{ord}_{3}\left(h_{j}-h_{i}\right)} & \text { if } p=p_{\min \{i, j\}, \max \{i, j\}}, \\
1 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Recall that $p_{i j} \| h_{i j}$. Therefore,

$$
\left(\frac{h_{i}-h_{j}}{b+h_{j}}\right)=\left(\frac{h_{i j}}{b+h_{j}}\right)=-1
$$

So (iii) in Lemma 3.2 also holds.
Now suppose that $n>b$ is an integer with $n \equiv b(\bmod W)$, and that $a \in$ $\left\{h_{1}, h_{1}+1, \ldots, h_{k}\right\} \backslash \mathcal{H}$. If $a=h_{s}-1$ for some $1 \leqslant s \leqslant k$, then $n+a \equiv$ $b+h_{s}-1 \equiv 0(\bmod 4)$ and hence $n+a$ is not prime. If $a \neq h_{s}-1$ for all $s=1, \ldots, k$, then $a=a_{i}$ for some $1 \leqslant i \leqslant t$, hence $n+a \equiv b+a_{i} \equiv 0\left(\bmod q_{i}\right)$ and thus $n+a$ is not prime. (Note that $n+a>W>w \geqslant q_{i}$.) Thus (iv) of Lemma 3.2 also holds.

In view of the above, we have completed the proof of Lemma 3.2.
Proof of Theorem 1.4. Choose k (depending on m) as in Pollack [P] in the spirit of Mynard-Tao's work. Let $\mathcal{H}=\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$ be an admissible set constructed in Lemma 3.1 and choose an integer b as in Lemma 3.2. Let x be sufficiently large, and let W be the least common multiple of those $h_{j}-h_{i}$ $(1 \leqslant i<j \leqslant k)$ and $\prod_{2<p \leqslant \log \log \log x} p$. Then we have an analogue of Lemma 3.3 of Pollack [P]. When $n+h_{i}$ and $n+h_{j}(i \neq j)$ are both prime with $n \equiv b$ $(\bmod W), n+h_{i}$ is a primitive root modulo $n+h_{j}$ if and only if $\left|h_{i}-h_{j}\right|$ is a primitive root modulo $n+h_{j}$ since $n+h_{j} \equiv 1(\bmod 4)$.

Let P be the set of all primes. For $j=1 \ldots, k$, set

$$
P_{j}:=\left\{p \in P:\left|h_{i}-h_{j}\right| \text { is a primitive root modulo } p \text { for any } i \neq j\right\} .
$$

Define the weight function $w(n)$ as in [M, Proposition 4.1] or [P, Proposition 3.1], and let $\chi_{A}(x)$ be the characteristic function of the set A. We need to show that

$$
\begin{equation*}
\sum_{\substack{x \leqslant n \leqslant 2 x \\ n \equiv b(\bmod W)}}\left(\sum_{j=1}^{k} \chi_{P_{j}}\left(n+h_{j}\right)\right) w(n) \sim \sum_{\substack{x \leqslant n \leqslant 2 x \\ n \equiv b(\bmod W)}}\left(\sum_{j=1}^{k} \chi_{P}\left(n+h_{j}\right)\right) w(n) \tag{3.1}
\end{equation*}
$$

For a prime q and an integer g, define

$$
P_{q}(g)=\left\{p \in P: p \equiv 1 \quad(\bmod q) \text { and } g^{(p-1) / q} \equiv 1 \quad(\bmod p)\right\}
$$

and

$$
\mathcal{P}_{q}(g)=P_{q}(g) \backslash \bigcup_{q^{\prime}<q} P_{q^{\prime}}(g) .
$$

Pollack [P, the estimations of $\Sigma_{1}-\Sigma_{4}$] showed that if $\left(\frac{g}{b+h_{j}}\right)=-1$ then

$$
\sum_{q \in P} \sum_{\substack{x \leqslant n \leqslant 2 x \\ n \equiv b(\bmod W)}} \chi_{\mathcal{P}_{q}(g)}\left(n+h_{j}\right) w(n)=o\left(\frac{\varphi(W)^{k}}{W^{k+1}} x(\log x)^{k}\right) .
$$

Note that if $n \in P \backslash P_{j}$ then $n \in \mathcal{P}_{q}\left(\left|h_{i}-h_{j}\right|\right)$ for some $i \neq j$ and some prime q. Hence

$$
\begin{aligned}
& \sum_{\substack{x \leqslant n \leqslant 2 x \\
n \equiv b(\bmod W)}}\left(\sum_{j=1}^{k} \chi_{P}\left(n+h_{j}\right)\right) w(n)-\sum_{\substack{x \leqslant n \leqslant 2 x \\
n \equiv b(\bmod W)}}\left(\sum_{j=1}^{k} \chi_{P_{j}}\left(n+h_{j}\right)\right) w(n) \\
\leqslant & \sum_{j=1}^{k} \sum_{\substack{i=1 \\
i \neq j}}^{k} \sum_{q \in P} \sum_{\substack{x \leqslant n \leqslant 2 x \\
n \equiv b(\bmod W)}} \chi_{\mathcal{P}_{q}\left(\left|h_{i}-h_{j}\right|\right)}\left(n+h_{j}\right) w(n)=o\left(\frac{\varphi(W)^{k}}{W^{k+1}} x(\log x)^{k}\right) .
\end{aligned}
$$

Maynard and Tao (cf. [M]) have proved

$$
\begin{equation*}
\sum_{\substack{x \leqslant n \leqslant 2 x \\ n \equiv b(\bmod W)}} w(n) \sim \frac{\alpha \phi(W)^{k}}{W^{k+1}} x(\log x)^{k} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{x \leqslant n \leqslant 2 x \\ n \equiv b(\bmod W)}}\left(\sum_{j=1}^{k} \chi_{P}\left(n+h_{j}\right)\right) w(n) \sim \frac{\beta k \phi(W)^{k}}{W^{k+1}} x(\log x)^{k}, \tag{3.3}
\end{equation*}
$$

where α and β are positive constants only depending on k and w. It follows from (3.1) and (3.3) that

$$
\sum_{\substack{x \leqslant n \leqslant 2 x \\ n \equiv b(\bmod W)}}\left(\sum_{j=1}^{k} \chi_{P_{j}}\left(n+h_{j}\right)\right) w(n) \sim \frac{\beta k \phi(W)^{k}}{W^{k+1}} x(\log x)^{k} .
$$

Furthermore, in view of $[\mathrm{M}]$, we may choose a sufficiently large integer k and a suitable weight function w such that

$$
\beta k>m \alpha
$$

i.e.,

$$
\sum_{\substack{x \leqslant n \leqslant 2 x \\ n \equiv b(\bmod W)}}\left(\sum_{j=1}^{k} \chi_{P_{j}}\left(n+h_{j}\right)-m \alpha\right) w(n)>0
$$

Since $w(n)$ is non-negative, for some $n \in[x, 2 x]$ with $n \equiv b(\bmod W),\{n+$ $\left.h_{1}, \ldots, n+h_{k}\right\}$ contains at least $m+1$ primes $n+h_{j}(j \in J)$ with $|J|>m$ and $n+h_{j} \in P_{j}$ for $j \in J$. According to the construction of b and Lemma 3.2 (iv), for each $j=1, \ldots, k$, the interval $\left(n+h_{j}, n+h_{j+1}\right)$ contains no prime. So those primes in $\left\{n+h_{1}, \ldots, n+h_{k}\right\}$ are consecutive primes. For any $i, j \in J$ with $i \neq j$, the number $h_{i}-h_{j}$, as well as the prime $n+h_{i}$, is a primitive root modulo the prime $n+h_{j}$. This concludes the proof.

References

[BFTB] W.D. Banks, T. Freiberg and C.L. Turnage-Butterbaugh, Consecutive primes in tuples, Acta Arith. 167 (2015), 261-266.
[P] P. Pollack, Bounded gaps between primes with a given primitive root, preprint, arXiv:1404.4007.
[Po] D.H.J. Polymath, Bounded gaps between primes, Polymath 8 Project. Available from http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes.
[M] J. Maynard, Small gaps between primes, Annals of Math. 181 (2015), 383-413.
[S] D.K.L. Shiu, Strings of congruent primes, J. London Math. Soc. 61 (2000), 359-373.
[Su1] Z.-W.Sun, New observations on primitive roots modulo primes, preperint, arXiv:1405.0290.
[Su2] Z.-W. Sun, Sequences A243839 and A243901 in OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org.
[Z] Y. Zhang, Bounded gaps between primes, Annals of Math. 179 (2014), 1121-1174.

