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Abstract. Let m be any positive integer and let δ1, δ2 ∈ {1,−1}. We show
that for some constanst Cm > 0 there are infinitely many integers n > 1 with

pn+m − pn 6 Cm such that

(

pn+i

pn+j

)

= δ1 and

(

pn+j

pn+i

)

= δ2

for all 0 6 i < j 6 m, where pk denotes the k-th prime, and ( ·

p
) denotes the

Legendre symbol for any odd prime p. We also prove that under the Generalized
Riemann Hypothesis there are infinitely many positive integers n such that pn+i

is a primitive root modulo pn+j for any distinct i and j among 0, 1, . . . ,m.

1. Introduction

For n ∈ Z+ = {1, 2, 3, . . .} let pn denote the n-th prime. The famous
twin prime conjecture asserts that pn+1 − pn = 2 for infinitely many n ∈ Z+.
Although this remains open, recently Y. Zhang [Z] was able to prove that

lim inf
n→∞

(pn+1 − pn) 6 7× 107.

The upper bound 7×107 was later reduced to 4680 by the Polymath team [Po]
led by T. Tao, and 600 by J. Maynard [M], and 270 again by the Polymath team
[Po]. Moreover, J. Maynard [M], as well as T. Tao, established the following
deep result.

Theorem 1.1 (Maynard-Tao). For any positive integer m, we have

lim inf
n→∞

(pn+m − pn) 6 Cm3e4m,

where C > 0 is an absolutely constant.

Earlier than this work, in 2000 D.K.L. Shiu [S] proved the following nice
theorem.
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Theorem 1.2 (Shiu). Let a ∈ Z and q ∈ Z+ be relatively prime. Then, for

any m ∈ Z+ there is a positive integer n such that

pn ≡ pn+1 ≡ · · · ≡ pn+m ≡ a (mod q).

This was recently re-deduced in [BFTB] via the Maynard-Tao method.
In this paper we mainly establish the following new result on consecutive

primes and Legendre symbols.

Theorem 1.3. Let m be any positive integer and let δ1, δ2 ∈ {1,−1}. For

some constant Cm > 0 depending only on m, there are infinitely many integers

n > 1 with pn+m − pn 6 Cm such that for any 0 6 i < j 6 m we have

(

pn+i

pn+j

)

= δ1 and

(

pn+j

pn+i

)

= δ2. (1.1)

Remark 1.1. (a) Instead of (1.1) in Theorem 1.3, actually we may require both
(1.1) and the following property:

pij‖(pn+i − pn+j) for some prime pij > 2m+ 1. (1.2)

(As usual, for a prime p and an integer a, by p‖a we mean p | a but p2 ∤ a.)
(b) We conjecture the following extension of Theorem 1.3: For any m ∈ Z+,

δ ∈ {1,−1} and δij ∈ {1,−1} with 0 6 i < j 6 m, there are infinitely many
integers n > 1 such that

(

pn+i

pn+j

)

= δij = δ

(

pn+j

pn+i

)

for all 0 6 i < j 6 m.

Example 1.1. The smallest integer n > 1 with

(

pn+i

pn+j

)

= 1 for all i, j = 0, . . . , 6 with i 6= j

is 176833, and a list of the first 200 such values of n is available from [Su2].
The 7 consecutive primes p176833, p176834, . . . , p178639 have concrete values

2434589, 2434609, 2434613, 2434657, 2434669, 2434673, 2434681

respectively.

Example 1.2. The smallest integer n > 1 with

(

pn+i

pn+j

)

= −1 for all i, j = 0, . . . , 5 with i 6= j
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is 2066981, and the 6 consecutive primes p2066981, p2066982, . . . , p2066986 have
concrete values

33611561, 33611573, 33611603, 33611621, 33611629, 33611653

respectively.

Example 1.3. The smallest integer n > 1 with

−

(

pn+i

pn+j

)

= 1 =

(

pn+j

pn+i

)

for all 0 6 i < j 6 6

is 7455790, and the 7 consecutive primes p7455790, p7455791, . . . , p7455796 have
concrete values

131449631, 131449639, 131449679, 131449691, 131449727, 131449739, 131449751

respectively.

Example 1.4. The smallest integer n > 1 with
(

pn+i

pn+j

)

= 1 = −

(

pn+j

pn+i

)

for all 0 6 i < j 6 5

is 59753753, and the 6 consecutive primes p59753753, p59753754, . . . , p59753758
have concrete values

1185350899, 1185350939, 1185350983, 1185351031, 1185351059, 1185351091

respectively.

Actually Theorem 1.3 is motivated by the second author’s following conjec-
ture.

Conjecture 1.1 (Sun [Su1, Su2]). For any positive integer m, there are in-

finitely many n ∈ Z+ such that for any distinct i and j among 0, 1, . . . , m the

prime pn+i is a primitive root modulo pn+j.

Example 1.5. The least n ∈ Z+ with pn+i a primitive root modulo pn+j for
any distinct i and j among 0, 1, 2, 3 is 8560, and a list of the first 50 such values
of n is available from [Su2, A243839]. Note that

p8560 = 88259, p8561 = 88261 and p8562 = 88289.

Our second result is the following theorem.

Theorem 1.4. Conjecture 1.1 holds under the Generalized Riemann Hypoth-

esis.

We will prove Theorem 1.3 in the next section with the help of the Maynard-
Tao work, and show Theorem 1.4 in Section 3 by combining our method with a
recent result of P. Pollack [P] motivated by the Maynard-Tao work on bounded
gaps of primes and Artin’s conjecture on primitive roots modulo primes.

Throughout this paper, p always represents a prime. For two integers a and
b, their greatest common divisor is denoted by gcd(a, b).
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2. Proof of Theorem 1.3

Let h1, h2, . . . , hk be distinct positive integers. If
⋃k

j=1 hi(mod p) 6= Z for

any prime p (where a(mod p) denotes the residue class a + pZ), then we call
{hi : i = 1, . . . , k} an admissible set. Hardy and Littlewood conjectured that
if H = {hi : i = 1, . . . , k} is admissible then there are infinitely many n ∈ Z+

such that n+h1, n+h2, . . . , n+hk are all prime. We need the following result
in this direction.

Lemma 2.1 (Maynard-Tao). Let m be any positive integer. Then there is an

integer k > m depending only on m such that if H = {hi : i = 1, . . . , k} is an

admissible set of cardinality k and W = q0
∏

p6w p (with q0 ∈ Z+) is relatively

prime to
∏k

i=1 hi with w = log log log x large enough, then for some integer n ∈
[x, 2x] with W | n there are more than m primes among n+h1, n+h2, . . . , n+hk.

Lemma 2.2. Let k > 1 be an integer. Then there is an admissible set H =
{h1, . . . , hk} with h1 = 0 < h2 < . . . < hk which has the following properties:

(i) All those h1, h2, . . . , hk are multiples of K = 4
∏

p<2k p.

(ii) Each hi−hj with 1 6 i < j 6 k has a prime divisor p > 2k with hi 6≡ hj

(mod p2).
(iii) If 1 6 i < j 6 k, 1 6 s < t 6 k and {i, j} 6= {s, t}, then no prime

p > 2k divides both hi − hj and hs − ht.

Proof. Set h1 = 0 and let 1 6 r < k. Suppose that we have found nonnegative
integers h1 < . . . < hr divisible by K such that each hi −hj with 1 6 i < j 6 r
has a prime divisor p > 2k with hi 6≡ hj (mod p2), and that no prime p > 2k
divides both hi − hj and hs − ht if 1 6 i < j 6 r, 1 6 s < t 6 r and
{i, j} 6= {s, t}. Let

Xr = {p > 2k : p | hs − ht for some 1 6 s < t 6 r}.

As K is relatively prime to
∏

p∈Xr
p, for each i = 1, . . . , r there is an integer

bi with Kbi ≡ hi (mod
∏

p∈Xr
p). For each p ∈ Xr, as r < k < p there is an

integer ap 6≡ bi (mod p) for all i = 1, . . . , r. Choose distinct primes q1, . . . , qr
which are greater than 2k but not in the set Xr. For any i = 1, . . . , r, there is
an integer ci with Kci ≡ hi (mod q2i ) since K is relatively prime to q2i . By the
Chinese Remainder Theorem, there is an integer b > hr/K such that b ≡ ap
(mod p) for all p ∈ Xr, and b ≡ ci + qi (mod q2i ) for all i = 1, . . . , r.

Set hr+1 = Kb > hr. If 1 6 s 6 r, then

hr+1 − hs ≡ Kb−Kcs = K(b− cs) ≡ Kqs (mod q2s),

hence qs > 2k is a prime divisor of hr+1 − hs but hr+1 6≡ hs (mod q2s).
For s, t ∈ {1, . . . , r} with s 6= t, clearly

gcd(hr+1 − hs, hr+1 − ht) = gcd(hr+1 − hs, hs − ht).
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Let 1 6 i < j 6 r and 1 6 s 6 r. If a prime p > 2k divides hi−hj , then p ∈ Xr

and hence

hr+1 − hs ≡ Kap −Kbs = K(ap − bs) 6≡ 0 (mod p).

So gcd(hr+1 − hs, hi − hj) has no prime divisor greater than 2k.
In view of the above, we have constructed nonnegative integers h1 < h2 <

. . . < hk satisfying (i)-(iii) in Lemma 2.2. Note that
⋃k

i=1 hi(mod p) 6= Z if p >
k. For each p 6 k, clearly hi ≡ 0 6≡ 1 (mod p) for any i = 1, . . . , k. Therefore
the set H = {h1, h2, . . . , hk} is admissible. This concludes the proof. �

Proof of Theorem 1.3. By Lemma 2.1, there is an integer k = km > m de-
pending on m such that for any admissible set H = {h1, . . . , hk} of cardinality

k if x is sufficiently large and
∏k

i=1 hi is relatively prime to W = 4
∏

p6w p

then for some integer n ∈ [x/W, 2x/W ] there are more than m primes among
Wn+ h1,Wn+ h2, . . . ,Wn+ hk, where w = log log log x.

Let H = {h1, . . . , hk} with h1 = 0 < h2 < . . . < hk be an admissible set
satisfying the conditions (i)-(iii) in Lemma 2.2. Clearly K = 4

∏

p62k p ≡ 0

(mod 8). Let x be sufficiently large with the interval (hk, w] containing more
than hk − k primes. Note that 8 | W since w > 2.

Let δ := δ1δ2. For any integer b ≡ δ (mod K) and each prime p < 2k, clearly
b+ hi ≡ δ + 0 (mod p) and hence gcd(b+ hi, p) = 1 for all i = 1, . . . , k.

For any 1 6 i < j 6 k, the number hi−hj has a prime divisor pij > 2k with
hi 6≡ hj (mod p2ij). Suppose that p > 2k is a prime dividing

∏

16i<j6k(hi−hj),

then there is a unique pair {i, j} with 1 6 i < j 6 k such that hi ≡ hj (mod p).
Note that p 6 hk. All the k−2 < (p−3)/2 numbers hi−hs with 1 6 s 6 k and
s 6= i, j are relatively prime to p, so there is an integer rp 6≡ hi − hs (mod p)
for all s = 1, . . . , k such that

(

rp δ

p

)

=

{

δ2 if p = pij ,

1 otherwise.

So, for any integer b ≡ rp − hi (mod p), we have b + hs 6≡ 0 (mod p) for all
s = 1, . . . , k.

Assume that S = {h1, h1 + 1, . . . , hk} \ H is a set {ai : i = 1, . . . , t} of
cardinality t > 0. Clearly t 6 hk − k + 1 and hence we may choose t distinct
primes q1, . . . , qt ∈ (hk, w]. If b ≡ −ai (mod qi), then b + hs ≡ hs − ai 6≡ 0
(mod qi) for all s = 1, . . . , k since 0 < |hs − ai| < hk < qi.

Let

Q =

{

p ∈ (2k, w] : p ∤
∏

16i<j6k

(hi − hj)

}

\ {qi : i = 1, . . . , t}.

For any prime q ∈ Q, there is an integer rq 6≡ −hi (mod q) for all i = 1, . . . , k
since H is admissible.
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By the Chinese Remainder Theorem, there is an integer b satisfying the
following (1)-(4).

(1) b ≡ δ = δ1δ2 (mod K).
(2) b ≡ rp − hi ≡ rp − hj (mod p) if p > 2k is a prime dividing hi − hj with

1 6 i < j 6 k.
(3) b ≡ −ai (mod qi) for all i = 1, . . . , t.
(4) b ≡ rq (mod q) for all q ∈ Q.

By the above analysis,
∏k

s=1(b + hs) is relatively prime to W . As H′ =
{b + hs : s = 1, . . . , k} is also an admissible set of cardinality k, for large x
there is an integer n ∈ [x/W, 2x/W ] such that there are more than m primes
among Wn+ b+ hs (s = 1, . . . , k). For ai ∈ S, we have

Wn+ b+ ai ≡ 0− ai + ai = 0 (mod qi)

and hence Wn+b+ai is composite since W > qi. Therefore, there are consecu-
tive primes pN , pN+1, . . . , pN+m with pN+i = Wn+b+hs(i) for all i = 0, . . . , m,
where 1 6 s(0) < s(1) < . . . < s(m) 6 k. Note that

pN+m − pN = (Wn+ b+ hs(m))− (Wn+ b+ hs(0)) = hs(m) − hs(0) 6 hk.

For each s = 1, . . . , k, clearly Wn + b + hs ≡ 0 + δ + 0 = δ (mod 8) and
hence

(

−1

Wn+ b+ hs

)

= δ and

(

2

Wn+ b+ hs

)

= 1.

As pN+i = Wn + b + hs(i) ≡ δ (mod 8) for all i = 0, . . . , m, by the Quadratic
Reciprocal Law we have

(

pn+j

pN+i

)

= δ

(

pn+i

pN+j

)

for all 0 6 i < j 6 m.

Let 0 6 i < j 6 m. Then

(

pN+i

pN+j

)

=

(

Wn+ b+ hs(i)

Wn+ b+ hs(j)

)

=

(

hs(i) − hs(j)

Wn+ b+ hs(j)

)

= δ

(

hij

Wn+ b+ hs(j)

)

,

where hij is the odd part of hs(j)−hs(i). For any prime divisor p of hij , clearly
p 6 hk 6 w and

(

p

Wn+ b+ hs(j)

)

= δ(p−1)/2

(

Wn+ b+ hs(j)

p

)

= δ(p−1)/2

(

b+ hs(j)

p

)

.

If p < 2k, then p | K, hence b+ hj ≡ δ + 0 (mod p) and thus

(

p

Wn+ b+ hs(j)

)

= δ(p−1)/2

(

b+ hs(j)

p

)

= δ(p−1)/2

(

δ

p

)

= 1.
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If p > 2k, then by the choice of b we have

(

p

Wn+ b+ hs(j)

)

=δ(p−1)/2

(

b+ hs(j)

p

)

= δ(p−1)/2

(

rp
p

)

=

(

rp δ

p

)

=

{

δ2 if p = ps(i),s(j),

1 otherwise.

Recall that ps(i),s(j)‖hij . Therefore,

(

pN+i

pN+j

)

= δ

(

hij

Wn+ b+ hs(j)

)

= δδ2 = δ1

and
(

pN+j

pN+i

)

= δ

(

pN+i

pN+j

)

= δ2.

This concludes the proof. �

3. Proof of Theorem 1.4

The following lemma is a slight modification of Lemma 2.2 which can be
proved in a similar way.

Lemma 3.1. Let k > 1 be an integer. Then there is an admissible set H =
{h1, . . . , hk} with h1 = 0 < h2 < . . . < hk which has the following properties:

(i) All those h1, h2, . . . , hk are multiples of K = 4
∏

p<4k p.

(ii) Each hi−hj with 1 6 i < j 6 k has a prime divisor p > 4k with hi 6≡ hj

(mod p2).
(iii) If 1 6 i < j 6 k, 1 6 s < t 6 k and {i, j} 6= {s, t}, then no prime p > 4k

divides both hi − hj and hs − ht.

Lemma 3.2. Let k > 1 be an integer, and let H = {h1, . . . , hk} with h1 = 0 <
h2 < · · · < hk be an admissible set satisfying (i)-(iii) in Lemma 3.1. Then there

is a positive integer b with all of the following properties:

(i)
∏k

i=1(b+ hi) is relatively prime to the least common multiple W of those

hj − hi with 1 6 i < j 6 k and
∏

2<p6w p if w is large enough.

(ii)
∏k

i=1(b+ hi − 1) is relatively prime to
∏

2<p6w p if w is large enough.

(iii) For any i, j ∈ {1, . . . , k} with i 6= j, we have

(

hi − hj

b+ hj

)

= −1.

(iv) If n > b, n ≡ b (mod W ) and a ∈ {h1, h1 + 1, . . . , hk} \ H, then n + a
is not prime.

Proof. For any 1 6 i < j 6 k, the number hi − hj has a prime divisor
pij > 4k with hi 6≡ hj (mod p2ij). Suppose that p > 4k is a prime dividing
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∏

16i<j6k(hi − hj), then there is a unique pair {i, j} with 1 6 i < j 6 k such

that hi ≡ hj (mod p). Note that p 6 hk. As hi − hj ≡ hi − hi (mod p) and
2(k − 1) < (p− 1)/2, there is an integer rp 6≡ hi − hs, hi − hs + 1 (mod p) for
all s = 1, . . . , k such that

(

rp
p

)

=

{

−( 3p )
ord3(hj−hi) if p = pij ,

1 otherwise.

So, for any integer b ≡ rp − hi (mod p), we have b+ hs 6≡ 0, 1 (mod p).
Assume that

S = {h1 < a < hk : a 6= hs, hs − 1 for all s = 1, . . . , k} = {ai : i = 1, . . . , t}.

Clearly t 6 hk−k and hence we may choose t distinct primes q1, . . . , qt ∈ (hk, w]
if w is large enough. If b ≡ −ai (mod qi), then b+hs ≡ hs−ai 6≡ 0, 1 (mod qi)
for all s = 1, . . . , k since |hs − ai| < hk < qi.

Let

Q =

{

p ∈ (4k, w] : p ∤
∏

16i<j6k

(hi − hj)

}

\ {qi : i = 1, . . . , t}.

For any prime q ∈ Q, there is an integer rq 6≡ −hi,−hi + 1 (mod q) for all
i = 1, . . . , k since q > 2k.

By the Chinese Remainder Theorem, there is a positive integer b satisfying
the following (1)-(4).

(1) b ≡ 17 (mod 24), and b ≡ 4 (mod p) for all primes p ∈ [5, 4k].
(2) b ≡ rp − hi ≡ rp − hj (mod p) if p > 4k is a prime dividing hi − hj with

1 6 i < j 6 k.
(3) b ≡ −ai (mod qi) for all i = 1, . . . , t.
(4) b ≡ rq (mod q) for all q ∈ Q.

By the above analysis,
∏k

s=1(b + hs)(b + hs − 1) is relatively prime to
∏

2<p6w p. Note that b+ hi ≡ 17 + 0 (mod 24) for all i = 1, . . . , k. If w > hk,

then any prime divisor of W does not exceed w. So both (i) and (ii) holds.
For each s = 1, . . . , k, clearly b+ hs ≡ 17 + 0 ≡ 1 (mod 8) and hence

(

−1

b+ hs

)

=

(

2

b+ hs

)

= 1.

Let i, j ∈ {0, . . . , m} with i 6= j. Then
(

hi − hj

b+ hj

)

=

(

hij

b+ hj

)

,

where hij is the odd part of |hi − hj |. For any prime divisor p of hij , clearly
p 6 hk 6 w and

(

p

b+ hj

)

=

(

b+ hj

p

)

.
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If 3 < p < 4k, then p | K, hence b+ hj ≡ 4 + 0 (mod p) and thus

(

p

b+ hj

)

=

(

b+ hj

p

)

=

(

4

p

)

= 1.

If p > 4k, then by the choice of b we have

(

p

b+ hj

)

=

(

b+ hj

p

)

=

(

rp
p

)

=

{

−( 3p )
ord3(hj−hi) if p = pmin{i,j},max{i,j},

1 otherwise.

Recall that pij‖hij . Therefore,

(

hi − hj

b+ hj

)

=

(

hij

b+ hj

)

= −1.

So (iii) in Lemma 3.2 also holds.
Now suppose that n > b is an integer with n ≡ b (mod W ), and that a ∈

{h1, h1 + 1, . . . , hk} \ H. If a = hs − 1 for some 1 6 s 6 k, then n + a ≡
b + hs − 1 ≡ 0 (mod 4) and hence n + a is not prime. If a 6= hs − 1 for all
s = 1, . . . , k, then a = ai for some 1 6 i 6 t, hence n+a ≡ b+ai ≡ 0 (mod qi)
and thus n + a is not prime. (Note that n + a > W > w > qi.) Thus (iv) of
Lemma 3.2 also holds.

In view of the above, we have completed the proof of Lemma 3.2. �

Proof of Theorem 1.4. Choose k (depending on m) as in Pollack [P] in the
spirit of Mynard-Tao’s work. Let H = {h1, h2, . . . , hk} be an admissible set
constructed in Lemma 3.1 and choose an integer b as in Lemma 3.2. Let x
be sufficiently large, and let W be the least common multiple of those hj − hi

(1 6 i < j 6 k) and
∏

2<p6log log log x p. Then we have an analogue of Lemma

3.3 of Pollack [P]. When n + hi and n+ hj (i 6= j) are both prime with n ≡ b
(mod W ), n+ hi is a primitive root modulo n+ hj if and only if |hi − hj | is a
primitive root modulo n+ hj since n+ hj ≡ 1 (mod 4).

Let P be the set of all primes. For j = 1 . . . , k, set

Pj := {p ∈ P : |hi − hj | is a primitive root modulo p for any i 6= j}.

Define the weight function w(n) as in [M, Proposition 4.1] or [P, Proposition
3.1], and let χA(x) be the characteristic function of the set A. We need to show
that

∑

x6n62x
n≡b (mod W )

( k
∑

j=1

χPj
(n+ hj)

)

w(n) ∼
∑

x6n62x
n≡b (mod W )

( k
∑

j=1

χP (n+ hj)

)

w(n).

(3.1)
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For a prime q and an integer g, define

Pq(g) = {p ∈ P : p ≡ 1 (mod q) and g(p−1)/q ≡ 1 (mod p)}

and
Pq(g) = Pq(g) \

⋃

q′<q

Pq′(g).

Pollack [P, the estimations of Σ1 − Σ4] showed that if ( g
b+hj

) = −1 then

∑

q∈P

∑

x6n62x
n≡b (mod W )

χPq(g)(n+ hj)w(n) = o

(

ϕ(W )k

W k+1
x(log x)k

)

.

Note that if n ∈ P \ Pj then n ∈ Pq(|hi − hj |) for some i 6= j and some prime
q. Hence

∑

x6n62x
n≡b (mod W )

( k
∑

j=1

χP (n+ hj)

)

w(n)−
∑

x6n62x
n≡b (mod W )

( k
∑

j=1

χPj
(n+ hj)

)

w(n)

6

k
∑

j=1

k
∑

i=1
i6=j

∑

q∈P

∑

x6n62x
n≡b (mod W )

χPq(|hi−hj |)(n+ hj)w(n) = o

(

ϕ(W )k

W k+1
x(log x)k

)

.

Maynard and Tao (cf. [M]) have proved

∑

x6n62x
n≡b (mod W )

w(n) ∼
αφ(W )k

W k+1
x(log x)k (3.2)

and
∑

x6n62x
n≡b (mod W )

( k
∑

j=1

χP (n+ hj)

)

w(n) ∼
βkφ(W )k

W k+1
x(log x)k, (3.3)

where α and β are positive constants only depending on k and w. It follows
from (3.1) and (3.3) that

∑

x6n62x
n≡b (mod W )

( k
∑

j=1

χPj
(n+ hj)

)

w(n) ∼
βkφ(W )k

W k+1
x(log x)k.

Furthermore, in view of [M], we may choose a sufficiently large integer k and a
suitable weight function w such that

βk > mα,
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i.e.,
∑

x6n62x
n≡b (mod W )

( k
∑

j=1

χPj
(n+ hj)−mα

)

w(n) > 0.

Since w(n) is non-negative, for some n ∈ [x, 2x] with n ≡ b (mod W ), {n +
h1, . . . , n + hk} contains at least m + 1 primes n + hj (j ∈ J) with |J | > m
and n + hj ∈ Pj for j ∈ J . According to the construction of b and Lemma 3.2
(iv), for each j = 1, . . . , k, the interval (n+hj , n+hj+1) contains no prime. So
those primes in {n + h1, . . . , n+ hk} are consecutive primes. For any i, j ∈ J
with i 6= j, the number hi − hj , as well as the prime n+ hi, is a primitive root
modulo the prime n+ hj . This concludes the proof. �
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