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ABSTRACT. Let m be any positive integer and let 61,92 € {1,—1}. We show
that for some constanst C,, > 0 there are infinitely many integers n > 1 with
Pn+m — Pn < Ciy such that

(p"i) -6, and (M) =5
Pn+j Pn+i
for all 0 < i < 5 < m, where p; denotes the k-th prime, and (5) denotes the

Legendre symbol for any odd prime p. We also prove that under the Generalized
Riemann Hypothesis there are infinitely many positive integers n such that p,,4;
is a primitive root modulo p, 4 ; for any distinct ¢ and j among 0,1,... ,m.

1. INTRODUCTION

For n € Z* = {1,2,3,...} let p, denote the n-th prime. The famous
twin prime conjecture asserts that p, 1 — p, = 2 for infinitely many n € Z¥.
Although this remains open, recently Y. Zhang [Z] was able to prove that

lim inf(ppi1 — pn) < 7 x 107,
n—oo

The upper bound 7 x 107 was later reduced to 4680 by the Polymath team [Po]
led by T. Tao, and 600 by J. Maynard [M], and 270 again by the Polymath team
[Po]. Moreover, J. Maynard [M], as well as T. Tao, established the following
deep result.

Theorem 1.1 (Maynard-Tao). For any positive integer m, we have
lim inf(ppm — pn) < Cme'™,
n—oo

where C > 0 is an absolutely constant.

Earlier than this work, in 2000 D.K.L. Shiu [S] proved the following nice
theorem.
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Theorem 1.2 (Shiu). Let a € Z and q € Z" be relatively prime. Then, for
any m € Z there is a positive integer n such that

Pn =Pn+1 =" =Pntm = (IIlOd Q)

This was recently re-deduced in [BFTB] via the Maynard-Tao method.
In this paper we mainly establish the following new result on consecutive
primes and Legendre symbols.

Theorem 1.3. Let m be any positive integer and let §1,92 € {1,—1}. For
some constant C,, > 0 depending only on m, there are infinitely many integers
n > 1 with pypym — pn < Chy such that for any 0 < i < 7 < m we have

(p”“) =& and (M) — 4. (1.1)
Pn+j Pn+i

Remark 1.1. (a) Instead of (1.1) in Theorem 1.3, actually we may require both
(1.1) and the following property:

Pijl|(Pnti — Pnyj) for some prime p;; > 2m + 1. (1.2)

(As usual, for a prime p and an integer a, by p|la we mean p | a but p? { a.)
(b) We conjecture the following extension of Theorem 1.3: For any m € Z*,
d € {1,—-1} and 6;; € {1,—1} with 0 < ¢ < j < m, there are infinitely many

integers n > 1 such that
Pn+j Pn+i

Ezample 1.1. The smallest integer n > 1 with

forall 0 <i<j<m.

(pn-l-i) =1 foralli,j=0,...,6 withi#j
Pn+j

is 176833, and a list of the first 200 such values of n is available from [Su2].
The 7 consecutive primes p176s33, P176834, - -- » P178639 have concrete values

2434589, 2434609, 2434613, 2434657, 2434669, 2434673, 2434681

respectively.

Ezample 1.2. The smallest integer n > 1 with

Pn+j
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is 2066981, and the 6 consecutive primes psgesosi, P2066982, --- , P2066986¢ have
concrete values

33611561, 33611573, 33611603, 33611621, 33611629, 33611653
respectively.
Ezample 1.3. The smallest integer n > 1 with

_ (pw) —1= (p”ﬂ') forall 0 <i<j<6
Pr+j Pn+i

is 7455790, and the 7 consecutive primes pr455790, P7455791, --- , Pr45579¢6 have
concrete values

131449631, 131449639, 131449679, 131449691, 131449727, 131449739, 131449751
respectively.
Ezample 1.4. The smallest integer n > 1 with

<pn+i) :1:—<pn+j> forall0<i<j<5b
Pn+j Pn+i

is 59753753, and the 6 consecutive primes P59753753, P597537545 --- 5 P59753758
have concrete values

1185350899, 1185350939, 1185350983, 1185351031, 1185351059, 1185351091

respectively.

Actually Theorem 1.3 is motivated by the second author’s following conjec-
ture.

Conjecture 1.1 (Sun [Sul, Su2|). For any positive integer m, there are in-
finitely many n € Z such that for any distinct i and j among 0,1,...,m the
Prime Pr4i s a primitive root modulo pyy ;.

Example 1.5. The least n € Z* with p,4,; a primitive root modulo p,,; for
any distinct ¢ and 57 among 0, 1, 2, 3 is 8560, and a list of the first 50 such values
of n is available from [Su2, A243839]. Note that

Ps560 = 88259, Pss61 — 88261 and Ps562 — 88289.

Our second result is the following theorem.

Theorem 1.4. Conjecture 1.1 holds under the Generalized Riemann Hypoth-
€s1s.

We will prove Theorem 1.3 in the next section with the help of the Maynard-
Tao work, and show Theorem 1.4 in Section 3 by combining our method with a
recent result of P. Pollack [P] motivated by the Maynard-Tao work on bounded
gaps of primes and Artin’s conjecture on primitive roots modulo primes.

Throughout this paper, p always represents a prime. For two integers a and
b, their greatest common divisor is denoted by ged(a,b).
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2. PROOF OF THEOREM 1.3

Let hi,ho,..., hg be distinct positive integers. If U?Zl h;(mod p) # Z for
any prime p (where a(mod p) denotes the residue class a + pZ), then we call
{h;: i=1,...,k} an admissible set. Hardy and Littlewood conjectured that
if H={h;: i=1,...,k} is admissible then there are infinitely many n € Z*
such that n+hy,n+ ho, ... ,n+ hi are all prime. We need the following result
in this direction.

Lemma 2.1 (Maynard-Tao). Let m be any positive integer. Then there is an
integer k > m depending only on m such that if H ={h; : i=1,... ,k} is an
admissible set of cardinality k and W = Hp<w (with qo € Z77) is relatively

prime to H 1 hi with w = logloglogx large enough, then for some integer n €
[z, 2] with W | n there are more than m primes among n+hy,n+hs, ..., n+hy.

Lemma 2.2. Let k > 1 be an integer. Then there is an admissible set H =
{h1,... ,hi} with hy =0 < hy < ... < hy which has the following properties:

(i) All those hy,ha, ..., hy are multiples of K = 4]] p<2k D-

(ii) Fach h; — h; with 1 i < j <k has a prime dwzsorp > 2k with h; # h;
(mod p?).

(i) If1 <i<j<k 1<s<t<kand{ij} # {s,t}, then no prime
p > 2k dim’des both h; — h; and hg — hy.

Proof. Set hy =0 and let 1 < r < k. Suppose that we have found nonnegative
integers hy < ... < h, divisible by K such that each h; —h; with 1 <i<j <r
has a prime divisor p > 2k with h; # h; (mod p?), and that no prime p > 2k
divides both h; — h; and hy — hy if 1 <@ < j <r,1 < s <t < rand

{i,7} # {s,t}. Let
X,={p>2k: p|hs—hy forsomel<s<t<r}.

As K is relatively prime to HpeXr p, for each ¢ = 1,... ,r there is an integer
b; with Kb; = h; (mod HpEXT p). For each p € X,., as r < k < p there is an
integer a, # b; (mod p) for all ¢ =1,...,r. Choose distinct primes g, ... ,q,
which are greater than 2k but not in the set X,.. For any ¢ = 1,... ,r, there is
an integer ¢; with K¢; = h; (mod ¢?) since K is relatively prime to ¢?. By the
Chinese Remainder Theorem, there is an integer b > h, /K such that b = qa,
(mod p) for all p € X, and b = ¢; + ¢; (mod ¢?) for alli =1,...,r
Set hypp1 = Kb > h,. If 1 <s < r, then

Bri1 —hs=Kb—Kc, = K(b—c,) = Kqs (mod ¢2),

hence ¢, > 2k is a prime divisor of k.1 — hs but A1 # hs (mod ¢?).
For s,t € {1,...,r} with s # ¢, clearly

ng(hr—l—l - h57 hr—l—l - ht) = ng(hr—l—l - hs: hs - ht)
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Let 1 <i<j<randl<s<r. Ifaprimep > 2k divides h; —h;, then p € X,
and hence

hyy1 —hs = Ka, — Kby = K(ap —bs) #0 (mod p).

So ged(hy41 — hs, hi — hj;) has no prime divisor greater than 2k.

In view of the above, we have constructed nonnegative integers h; < ho <
... < hy satisfying (i)-(iii) in Lemma 2.2. Note that Ule hi(mod p) # Z if p >
k. For each p < k, clearly h; =0 # 1 (mod p) for any ¢ = 1,..., k. Therefore
the set H = {hq, ha, ..., hi} is admissible. This concludes the proof. [

Proof of Theorem 1.3. By Lemma 2.1, there is an integer k = k,,, > m de-
pending on m such that for any admissible set H = {hq,..., hi} of cardinality
k if x is sufficiently large and Hle h; is relatively prime to W = 4Hp<w P
then for some integer n € [x/W,2z/W] there are more than m primes among
Wn+hy,Wn+ ho,... ,Wn+ hy, where w = logloglog x.

Let H = {h1,...,h;} with hy =0 < hy < ... < hi be an admissible set
satisfying the conditions (i)-(iii) in Lemma 2.2. Clearly K = 4], o, p =0
(mod 8). Let = be sufficiently large with the interval (hj,w| containing more
than hy — k primes. Note that 8 | W since w > 2.

Let § := §102. For any integer b = ¢ (mod K) and each prime p < 2k, clearly
b+ h; =040 (mod p) and hence ged(b+ h;,p) =1foralli=1,... k.

For any 1 < ¢ < j < k, the number h; — h; has a prime divisor p;; > 2k with
hi # h; (mod p?j). Suppose that p > 2k is a prime dividing H1<i<j<k(hi —hj),
then there is a unique pair {7, j} with 1 <14 < j < k such that h; = h; (mod p).
Note that p < hg. All the k—2 < (p—3)/2 numbers h; —hs with 1 < s < k and
s # 1i,j are relatively prime to p, so there is an integer r, # h; — hs (mod p)
for all s =1,...,k such that

<@) B { 02 if p = pij,

p /|1 otherwise.

So, for any integer b = r, — h; (mod p), we have b+ hy # 0 (mod p) for all
s=1,...,k.

Assume that S = {h1,h1 +1,... ,hi} \ H is aset {a; : i =1,...,t} of
cardinality ¢ > 0. Clearly ¢t < hy — k 4+ 1 and hence we may choose t distinct
primes qi,...,q € (hg,w|. If b = —a; (mod ¢;), then b+ hy = hy —a; 0
(mod ¢;) for all s =1,... k since 0 < |hs — a;| < hy < ¢;.

Let

Q:{pe(Qk,w]pJ( H (hz—h])}\{qz 2:1,,t}

1<i<j<k

For any prime g € @, there is an integer r, # —h; (mod ¢) foralli=1,... ,k
since ‘H is admissible.
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By the Chinese Remainder Theorem, there is an integer b satisfying the
following (1)-(4).

(1) b=6= (5152 (mod K)

(2) b=1rp —h; =7p — h;j (mod p) if p > 2k is a prime dividing h; — h; with
1<i<j<k

(3) b= —a; (mod ¢;) foralli=1,... ¢t

(4) b=r, (mod q) for all ¢ € Q.

By the above analysis, H]:,:l(b + hg) is relatively prime to W. As H' =
{b+hs: s=1,...,k} is also an admissible set of cardinality k, for large =
there is an integer n € [z/W, 2x /W] such that there are more than m primes
among Wn+b+hs (s=1,...,k). For a; € S, we have

Wn—l—b—l—CLiEO—CLi—l—CLi:O (modqz)

and hence Wn+b+a; is composite since W > ¢;. Therefore, there are consecu-
tive primes pn, pN+1,- -+, PN+m With pni; = Wn+b+h,) foralli =0,... ,m,
where 1 < s(0) < s(1) < ... < s(m) < k. Note that

For each s = 1,... ,k, clearly Wn+b+ hs =040+ 0 = § (mod 8) and

hence ) 5
[ I R
(Wn+b+hs) 0 and (Wn+b+h5)

As pnyi = Wn+ b+ hg;) =0 (mod 8) for all # = 0,...,m, by the Quadratic
Reciprocal Law we have

(prli) :5(M) forall0 <i < j<m.
PN +i PN+j

Let 0 <7< 7 <m. Then

(pN-H') _ (Wn+b+hs<i>) :< hati) = hss) ):5( hij )
where h;; is the odd part of hg(j) — hg;). For any prime divisor p of h;;, clearly
p < hpy < w and

( p ) _ s-1)/2 (W” tbt hsw) _ 512 (b + hsm) |

If p < 2k, then p | K, hence b+ h; =6+ 0 (mod p) and thus

( p ) _ -1z (Hhs(z’)) _ 5(-1)/2 (ﬁ) 1
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If p > 2k, then by the choice of b we have

< p ) _5r=1)/2 <b+ hs(j)) _ sp=1)/2 (T_p)
Wn + b+ hyj) p p
_ (rp_é) _ { o2 if p = psgi),s()
P 1  otherwise.

Recall that py(;) s(j)|/hij. Therefore,

PN+i hij )
(pN+j ) (Wn 0+ hy(j) 0

(pN—i—j) -5 (pN—i—i) = 5.
PN+ PN+j

This concludes the proof. [

and

3. PROOF OF THEOREM 1.4

The following lemma is a slight modification of Lemma 2.2 which can be
proved in a similar way.

Lemma 3.1. Let k > 1 be an integer. Then there is an admissible set H =
{hi,...,hi} with hy =0 < hy < ... < hy which has the following properties:

(i) All those A1, ha, ..., hy are multiples of K =4[] _,. p.

(ii) Each h; —hj with 1 < i < j < k has a prime divisor p > 4k with h; # h;
(mod p?).

(i) f1 <i<j<k, 1<s<t<kand{ij}# {s,t}, then no prime p > 4k
divides both h; — h; and hg — hy.

Lemma 3.2. Let k > 1 be an integer, and let H = {hy,... ,hg} withhy =0 <
ho < --- < hy be an admissible set satisfying (1)-(iii) in Lemma 3.1. Then there
18 a positive integer b with all of the following properties:

(i) Hle(b-l- h;) is relatively prime to the least common multiple W of those
hj —h; withl1 <i<j<kand H2<p<wp if w s large enough.

(ii) Hle(b + h; — 1) is relatively prime to H2<p<wp if w is large enough.

(iii) For any i,j € {1,... ,k} with i # j, we have

hi-hi\ _
b+ h; B '
(iv) If n > b, n =0 (mod W) and a € {hy,h1 +1,... ,hx} \ H, then n+a
18 mot prime.

Proof. For any 1 < @ < j < k, the number h; — h; has a prime divisor
pi; > 4k with h; # h; (mod pfj). Suppose that p > 4k is a prime dividing
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H1<i<j<k(hi — h;), then there is a unique pair {4, j} with 1 <4 < j < k such
that h; = h; (mod p). Note that p < hi. As h; — h; = h; — h; (mod p) and

2(k—-1) < ( — 1)/2, there is an integer r, # h; — hs, h; —hs +1 (mod p) for
all s=1,...,k such that

(QQ=={_%%VM“M_M) if p = pij,
p 1 otherwise.

So, for any integer b = r, — h; (mod p), we have b+ hs # 0,1 (mod p).
Assume that

S={hi<a<hp:a#hsg,hs—1foralls=1,... k}={a;: i=1,...,t}

Y

Clearly t < hy—k and hence we may choose ¢ distinct primes ¢, ... , ¢ € (hg, W]
if w is large enough. If b = —a; (mod ¢;), then b+hs = hs—a; Z0,1 (mod ¢;)
for all s=1,...,k since |hs — a;| < hg < g;.

Let

Q= {p€(4kw] pt JI (hi—hy) }\{qi:izl,...,t}.

1<i<jgk

For any prime ¢ € @, there is an integer r, # —h;,—h; + 1 (mod ¢) for all
1=1,...,k since q > 2k.

By the Chinese Remainder Theorem, there is a positive integer b satisfying
the following (1)-(4).

(1) b= 17 (mod 24), and b =4 (mod p) for all primes p € [5, 4k].

(2) b=1rp —h; =7p — hj (mod p) if p > 4k is a prime dividing h; — h; with
1<i<j<k.

(3) b= —a; (mod ¢;) foralli=1,...,t

(4) b =1, (mod q) for all ¢ € Q.

By the above analysis, H’;Zl(b + hs)(b + hs — 1) is relatively prime to
H2<p<wp. Note that b+ h; =17+ 0 (mod 24) for alli =1,... k. If w > hy,
then any prime divisor of W does not exceed w. So both (i) and (ii) holds.

For each s =1,... ,k, clearly b+ hs =17+ 0 =1 (mod 8) and hence

(bllh) - (bfh) -t

Let i,7 € {0,...,m} with i # j. Then

b+h; ) \b+h;)’

where h;; is the odd part of |h; — hj;|. For any prime divisor p of h;j, clearly

p < hpy < w and
P b+ h;
b+ h; P
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If 3 < p <4k, then p | K, hence b+ h; =4+ 0 (mod p) and thus

(75) - (52) - G)
b-l-hj p p
If p > 4k, then by the choice of b we have
() - (57) - (%)
b-l-hj p p
::{ —(3)ords =) p = Proin .5} max(ing)
1 otherwise.

Recall that p;;||hi;. Therefore,

b+h; ) \b+h;)

So (iii) in Lemma 3.2 also holds.

Now suppose that n > b is an integer with n = b (mod W), and that a €
{h1,h1 +1,... ;hx} \ H. If a = hy — 1 for some 1 < s < k, then n + a =
b+ hs —1 =0 (mod 4) and hence n + a is not prime. If a # hy, — 1 for all
s=1,...,k, then a = a; for some 1 <i <t hence n+a=b+a; =0 (mod ¢;)
and thus n + a is not prime. (Note that n +a > W > w > ¢;.) Thus (iv) of
Lemma 3.2 also holds.

In view of the above, we have completed the proof of Lemma 3.2. [

Proof of Theorem 1.4. Choose k (depending on m) as in Pollack [P] in the
spirit of Mynard-Tao’s work. Let H = {hj,ha,...,hx} be an admissible set
constructed in Lemma 3.1 and choose an integer b as in Lemma 3.2. Let x
be sufficiently large, and let W be the least common multiple of those h; — h;
(1<i<j<k)and [[o pciogioglogs P- Then we have an analogue of Lemma
3.3 of Pollack [P]. When n + h; and n + h; (i # j) are both prime with n = b
(mod W), n+ h; is a primitive root modulo n + h; if and only if |h; — h;| is a
primitive root modulo n + h; since n + h; =1 (mod 4).
Let P be the set of all primes. For j =1... ,k, set

P;:={p e P: |h; — hj| is a primitive root modulo p for any 7 # j}.

Define the weight function w(n) as in [M, Proposition 4.1] or [P, Proposition
3.1], and let x 4(x) be the characteristic function of the set A. We need to show
that

> (ilxa(n%j))w(nh > <éXP(n+hj))w(n).

r<n<2z r<n<2z
n=b (mod W) n=b (mod W)

(3.1)
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For a prime ¢ and an integer g, define

P,(g)={peP: p=1 (modgq)and g(p_l)/q =1 (modp)}

and
Pal9) = Py(9)\ | Po(9)-
q'<q
Pollack [P, the estimations of 31 — 4] showed that if (:=%—) = —1 then

b+h,

k
YooY Xt hywn) =o (f/g:?l z(log x)k) .

qeP r<n<2x
n=b (mod W)

Note that if n € P\ P; then n € Py(|h; — h;|) for some i # j and some prime
q. Hence

> (jzi;XP(n-i-hj))w(n)— 3 (gxpj(nmj))w(n)

r<n<2x = r<n<2x
n=b (mod W) n=b (mod W)

k

p(W)*
XY X wmnenpn o) o (S etionn)”).
J=li=1lqeP z<n2z
7] n=b (mod W)

Maynard and Tao (cf. [M]) have proved

Z 04¢(W>k k
r<n<2z
n=b (mod W)

and

F k
Z (ZXP(” + h]))w(n) ~ %x(logm)k, (3.3)

r<n<2z
n=b (mod W)

where o and S are positive constants only depending on k£ and w. It follows
from (3.1) and (3.3) that

b k
Z (ZXPj(n-i-hj))w(n) ~ %x(log@k.

r<n<L2z

n=b (mod W)

Furthermore, in view of [M], we may choose a sufficiently large integer k and a
suitable weight function w such that

Bk > ma,
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ie.,

2 <Zi:1XPj(”+hj)—ma)w(n) > 0.

z<n<2x
n=b (mod W)
Since w(n) is non-negative, for some n € [x,2z] with n = b (mod W), {n +
hi,...,n + hi} contains at least m + 1 primes n + h; (j € J) with [J]| > m
and n + h; € P; for j € J. According to the construction of b and Lemma 3.2
(iv), for each j = 1,... , k, the interval (n+ h;,n+ hjy1) contains no prime. So
those primes in {n + hy,... ,n + hy} are consecutive primes. For any i,j € J
with ¢ # j, the number h; — h;, as well as the prime n + h;, is a primitive root
modulo the prime n 4 h;. This concludes the proof. [
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