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Abstract 

We prove our earlier conjecture that the determinant of a Gaussian-covariance matrix V with 

elements        
    (   )   

  (                                ), of evenly spaced 

points with nearest-neighbor distance    , is   
  ( )  (   ) + higher-degree terms in  . We 

show that  ( )    (   )  (  ) (   )  ⁄ , where    is the superfactorial operator. The proof 

uses Neville elimination to determine all elements of the upper triangular matrix U of V and 

provides a factorization of     ( ). The proof makes use of an inter-dimensional multiset duality, 

which involves simplices that emerge during the factorization. We conjecture that   (for this 

evenly spaced case) is strictly totally positive. 

 

Note with v2: After v1 appeared, Prof. Michael L. Stein of the Univ. of Chicago pointed us to a 

Y2000 paper by Wei-Liem Loh and Tao-Kai Lam [7] that had proved, using a different method, 

Part b of the Lemma presented here. 

 

1 Motivation 

We presented a conjecture, two years ago, that the determinant of the Gaussian-covariance 

matrix V with elements        
    (   )   

  (  
         

                       ), of 

evenly spaced points with nearest-neighbor distance    , is  ( )  (   )  ⁄  + higher-degree 

terms in   [1]. This paper provides a proof of this conjecture. 

 
 

2 Outline 

After a few simple definitions and two elementary algebraic identities, we prove six multiset 

identities, the ultimate of which relates the union of a pair of multisets, defined on the lattice 

points of an  -simplex, to the union of a corresponding pair of multisets defined on an (   )-

simplex. This identity, which can be considered variously as a lifting transformation or a duality, 

is key to the proof of our earlier conjecture, which we state as a lemma. The proof proceeds via 

Neville elimination and provides a complete determination of the upper triangular matrix U of V, 

as well as a complete factorization of     ( ). We end by conjecturing that the 1D Gaussian-

covariance matrix of evenly spaced points, under the conditions used in this paper, is strictly 

totally positive [2]. 

 
 

3 Definitions and Algebraic Identities 



 

 

Definitions: 
 

    denotes the set of whole numbers {       }. 
 

    denotes the set of natural numbers {       }. 
 

  denotes the set of real numbers. 
 

       
  (               ). 

 

          (     ).  
 

  ( )  ∏      
   (     ) is the superfactorial operator [3]. 

 

Neville-elimination: Neville elimination is pivot-free Gaussian elimination of the     upper 

triangular matrix   in LU-decomposition and uses the following formula for the relevant Stage 

   , Row  , and Column   elements, in terms of elements at the immediately prior stage: 
 

 (       )   (     )  
 (     ) (     )

 (     )
  (                 ) [4]. 

 
Algebraic identities: 
 

AI1: (   )  (   )   (   )(   )  (   )   (         ). 
 

AI2:     ∑    (   )     
       (   )(   )  (               ). 

 

Proof:     ∑    (   )   
    [    (   )][    (   )      (   )(   )] 

 

      (   )(   ). 

 
 

4 Notation for Simplicial Multisets 

Consider an array of points from a 2x1 rectangular lattice aligned commensurately with the axes 

and vertices of a Manhattan-aligned 2-simplex of size 6x3, as show in Fig. 1, below. The 

multiset of L1-norm distances from the simplex’s lower-left vertex to each of the overlying 

lattice points is 
 

{                   } , or, written  somewhat  differently,  {

 
    

       
          

} . We  are  interested  in 

 

generalizations of such multisets, as they will prove useful in the proof of the lemma. 
 

 



 

 

Figure 1: A simple example of a point lattice aligned commensurately 

with the axes and vertices of a simplex is a rectangular lattice of 

points aligned with a right-isosceles triangle. 

 

We define the following notation for the multiset of L1-norm distances, added to a possibly non-

zero constant  , from an apex of an n-simplex to the points of a hyper-rectangular lattice aligned 

commensurately with the axes and vertices of the simplex, with         (   )  being the 

geometric coordinates, where the notation  (   )  denotes the letter   appended with     

prime symbols. We note that all coordinates, save the first, enter on roughly equal footing, with 

each unit increase in any coordinate resulting in a unit increase in L1-norm distances to which it 

is relevant, all other coordinates held fixed. By contrast, each unit increase of the first coordinate, 

viz.  , results in a  -unit increase in L1-norm distances. 
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Detail for cases with       or 3: In the case    , all  ’s with at least one prime symbol, 

which, reading from left to right as the number of prime symbols increases, are the elements 

      ( ) , are undefined. Thus, for this case, the first row of the curly bracket is to be read 

“     ,” and the third and subsequent rows are                . When    , the first row of 

the bracket is to be read “        ,” and the fourth and subsequent rows are to be neglected. 

When    , the first row of the bracket is to be read “            ,” and the ultimate row 

is to be neglected. 
 

We note that if     or      , the relevant lattice points for                do not overlie a 

simplex, but just a contiguous part of one. 
 

The example shown in Fig. 1, above, is, by this definition,               . Another simple example 
 

is                {

 
    

       
           

} , a multiset that will reappear in another example, a few pages 

below. 
 

 

                ⨄    ̃  ̃  ̃  ̃  ̃  ̃  ̃ is the multiset union of                and   ̃  ̃  ̃  ̃  ̃  ̃  ̃. 
 

(  )                 is the multiset                , with each element multiplied by -1. 

 
 

5 Simplex Multiset Identities 

We now give six multiset identities (MI1 through MI6) relating                multisets. For 

identities MI3 through MI6, an example with (             )  (             ) is provided.  
 



 

 

MI1:                                 ⨄                 . (The RHS is the union of the two multisets 

resulting from slicing off the       face of the n-simplex on the LHS.) 
 

Proof: By the definition of               , the variable   ranges from   through    . This 

multiset can be decomposed into the union of two mutually exclusive and exhaustive multisets, 

with different values of the fourth and fifth indices, and with all other indices unchanged. In the 

former of these constituent multisets,   ranges from   through    , while, in the latter, 

     . These two constituent multisets are                  and               , respectively. 

Three special cases that will be used later are the following: 
 

MI1a:                                 ⨄                 . 
 

MI1b:                                               ⨄                           . 
 

MI1c:    (   )(   )              (   )(   )             ⨄     (   )(   )           . 

 

MI2:                                             ⨄                       . (The RHS is the union 

of the two multisets resulting from slicing off the      face of the (   )-simplex on the 

LHS.) 
 

Proof: By the definition of                     , the variable    ranges from   through  . This 

multiset can be decomposed into the union of two exhaustive multisets, with different values of 

the sixth and seventh indices, and with all other indices unchanged. In the former of these 

constituent multisets,    ranges from   through    , while in the latter      . These two 

constituent multisets are                      and                     , respectively. However, these 

two multisets are not mutually exclusive, as they share the 0 element. This element can be 

removed from the former of the constituent multisets, if that multiset is changed to 

                      . 

 

MI3:                                       . 
 

In the (             )  (             ) example, the LHS and RHS of this identity are the 
 

non-crossed-out parts of {

 
    

       
           

} and {
 

       
                

} , respectively. 

 

Proof:                  
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 . 

 

Then, after a change of variables, in the last curly brackets, from [         ] to 

[          (   ) ], 
 

                     

{
 
 

 
 
         (   )  

          
        

 
 (   )       (   ) }

 
 

 
 

=                 .    

 

MI4:                   (   )(   )           .  
 

In the (             )  (             ) example, the LHS and RHS of this identity are the 
 

non-crossed-out parts of {

 
    

       
           

} and {

 
     

        
           

} , respectively. 

 

Proof:                
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}                 .    

 

MI5:                             (   )(   )             . 
 

In the (             )  (             ) example, the LHS and RHS of this identity are the 
 

non-crossed-out parts of {
 

       
                

} and {

 
     

        
           

} , respectively. 

 

Proof:                          

{
 
 

 
 
    (   )           
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(   )(   )            (   )  

          
        

 
 (   )       (   ) }

 
 

 
 

 . 

 

Then, after changing variables, in the ultimate curly brackets, from [        (   ) ] to 

[            ], 
 

    (   )             {

(   )(   )           

          
 

         (   ) 

}                            .    

 

MI6: (inter-dimensional simplex duality): 
 

                ⨄                                                ⨄      (   )(   )            
 

In the (             )  (             ) example, this equation is 
 

{

 
    

       
           

} ⨄  {
 

       
                

}  {
 

       
                

} ⨄  {

 
     

        
           

} . 

 

Proof: The four simplex multisets in the statement can be expanded, using MI1a, MI1b, MI2, 

and MI1c, respectively, and the statement can be rewritten as 

 

                 ⨄                  ⨄                         ⨄                            
 

                         ⨄                        ⨄     (   )(   )             ⨄     (   )(   )           . 
 

 (1) 

 

In the (             )  (             ) example, the first four terms of each side of  Eq. 1 are 

colored respectively red, orange, green, and blue, in the following: 

 

{

 
    

       
           

} ⨄  {
 

       
                

}  {
 

       
                

} ⨄  {

 
     

        
           

} .  (2) 

 

The third multiset of the LHS of Eq. 1 cancels with the first multiset of the RHS, so Eq. 1 can be 

rewritten as 
 

                 ⨄                  ⨄                            
 

                        ⨄     (   )(   )             ⨄     (   )(   )           . 

 



 

 

In the example, this represents the cancellation of the green terms in Eq. 2. 
 

Then, MI3, MI4, MI5 can be applied, in turn, to show that each multiset on the LHS has exactly 

one equal multiset on the RHS, and vice versa, as follows: the first multisets on the LHS and 

RHS (red, in the example) are equal, the second multiset on the LHS is equal to the ultimate 

multiset on the RHS (yellow, in the example), and the ultimate multiset on the LHS is equal to 

the second multiset on the RHS (blue, in the example).    

 
 

6 Lemma (Factorization of the Determinant of 1D Gaussian-Covariance 

Matrices) 

a. At the end of s stages of Neville elimination, the elements of the upper triangular matrix  , 

for a Gaussian-covariance matrix V with elements        
    (   )   

  (             

                   ) of n evenly spaced points with nearest-neighbor distance    , are 

the following, where   and   are the integer row and column indices of  , respectively: 
 

                                               (     )   
 ⁄    

 

                                               (   )  
 

                                       same as Stage 1 

                                               

          (   )     ∑   [ (   )  ]   
    

 

                                       same as Stage 2 

                                               

         (   )         ∑ ∑   [ (   )     ] 
    

   
    

 

                                                              
 

                     same as Stage s-1 

                                                 

         (   ) ∏     
   
   ∑ ∑   

    
   
    

 

  ∑   [ (   )         (   ) ] (   ) 

 (   ) . 
 

b. The determinant of    
 ⁄  can be factored as    (   

 ⁄ )  ∏ ∏   
   
   

 
    ,which is positive. 

 

c. The lowest-degree term in the expansion of    (   
 ⁄ ), in powers of  , is 

   (   
 ⁄ )    (   )  (  ) (   )  ⁄    (   ), where SF is the superfactorial operator. 

 

Proof of Part a: The elements of   are        
    (   )   

   
  (   ) , where        

. 

Neville elimination is carried out in n stages, with the first stage just copying the elements of V. 

Thus, at the end of Stage 1,  (     )   
 ⁄   (   ) , for        , which is the result sought 

for this stage. For conciseness, and without loss of generality, we drop the factor   
  that is 

common to all elements, in most of the remainder of the proof of this part. 
 



 

 

We proceed with a proof by induction. During Stage 2, the first row is unchanged, while the 

Neville-elimination formula is applied to all other elements. Thus, at the end of Stage 2, 

excluding the first row, the first column is zero, and the other elements are 

 (     )   (     )  
 (     )

 (     )
 (     )   (   )   (   )  (   ) . Applying AI1, with    , 

gives  (     )   (   ) [    (   )(   )  ]. Next, applying AI2 gives 

 (     )   (   )     ∑   [ (   )  ]   
   , which is the result sought for this stage. 

 

To complete the proof, we show that if the statement is true for arbitrary Stage    , then the 

statement is true for Stage (   )   . For Stage  , the statement is 
 

 (     )   (   ) ∏     
   
   ∑ ∑   

    
   
   ∑   [ (   )         (   ) ] (   ) 

 (   )    . 
 

During Stage (   ), the first   rows and     columns are unchanged, while the Neville-

elimination formula  (       )   (     )  
 (     )

 (     )
 (     ) is applied to all other 

elements, giving, after cancellations, 
 

 (       )   (   ) ∏     
   
   ∑ ∑  ∑   [ (   )         (   ) ] (   ) 

 (   )   
 
    

   
     

 

    (   )  (   ) ∏     
   
   ∑ ∑  ∑   [        (   ) ] (   ) 

 (   )   
 
    

   
   . 

 

Collecting common factors, and applying AI1, with   in that identity being   here, the last 

equation becomes, 
 

 (       )   (   ) ∏     
   
   ∑ ∑  ∑ (

  [ (   )         (   ) ]

   (   )(   )  [        (   ) ]
) (   ) 

 (   ) 
 
    

   
     

 

 (         ).  (3) 
 

Applying MI6, with (               ) here being (     ) in the identity, gives 
 

                          ⨄                         
 

                      ⨄        (   )(   )               , 
 

or, allowing for negative elements in the multisets [5], and after collecting the (   )-simplices 

and  -simplices on the LHS and RHS, respectively, we get the lifting transformation, 
 

                          ⨄   (  )       (   )(   )                
 

                      ⨄   (  )                       . 
 

The LHS of the last equation is the set of exponents of    in the sum of the two terms in the 

parenthesis in Eq. 3. Thus, Eq. 3 can be rewritten, using the RHS of the last equation, 
 

 (       )  

   (   ) ∏     
   
   ∑ ∑  ∑ (

  [ (     )         (   ) ]

   (   )  [ (     )         (   ) ]
) (   ) 

 (   ) 
 
    

     
     

 

   (   ) [    (   )]∏     
   
   ∑ ∑  ∑   [ (     )         (   ) ] (   ) 

 (   ) 
 
    

     
      

 



 

 

   (   )     ∏     
   
   ∑ ∑  ∑   [ (     )         (   ) ] (   ) 

 (   ) 
 
    

     
      

 

   (   ) ∏     
 
   ∑ ∑  ∑   [ (     )         (   ) ] (   ) 

 (   ) 
 
    

     
    . 

 

 (         ) 
 

Changing the name of the stage variable from     to  , and including the   
 , which, for 

conciseness, was dropped earlier, gives 
 

 (     )   
 ⁄   (   ) ∏     

   
   ∑ ∑  ∑   [ (   )         (   ) ] (   ) 

 (   ) 
 
    

   
    , which is the 

expression in the statement.    

 
Proof of Part b: The determinant of a real,     matrix with positive elements, as is the case at 

hand, is the product of the main-diagonal elements of its upper triangular matrix [6], i.e., 

   (   
 ⁄ )  ∏  (     )   

 ⁄ 
   , where we have chosen to write the product in terms of the 

diagonal elements established at the end of each Neville-elimination stage. From the statement of 

Part a,  (     )   
 ⁄   , and  (     )   

 ⁄  ∏     
   
     (   ), so    (   

 ⁄ )  
∏ ∏     

   
   

 
   , which is positive because each    is positive.    

 

Proof of Part c: Substituting the polynomials    (   ) into the statement of Part b, gives 
 

   (   
 ⁄ )  ∏ ∏ [    (   )]   

   
 
    . 

 

By Definition 3,        
, so     (   )       (   )   

, which, for sufficiently small  , 

expands to  (   )     (    ), giving, 
 

   (   
 ⁄ )  ∏ ∏ [ (   )     (    )]   

   
 
     

 

  ∏ {(   ) (    )     [(   ) ]} 
     

 

    (   )  (    ) (   )  ⁄                          , 
 

thus proving the conjecture in [1].     

 
 

7 Interpretation 

Part b of the lemma tells us that the determinant is given by a product of h functions, as follows. 

When there is just one point, i.e.    ,    ( )   . When a second point is added,    ( ) 
increases by a factor h1 that we can consider as due to the fact that we now have a pair of points. 

When a third evenly spaced point is added to the previous two,    ( )) increases by a factor 

h1h2. This can be interpreted as a factor h1 due to the newly created, near-neighbor pair, as 
well as a factor h2 due to the newly created, second-nearest-neighbor pair. This pairwise, 
multiplicative, particle-interaction interpretation holds nicely for any number of evenly 
spaced points. 
 
Part c of the lemma tells us that the expansion of    ( ), in powers of  , commences with a 

term proportional to   (   ), i.e. a factor    for each of the (
 
 
)   (   )  ⁄  pairs of 

points. Because    ( ) enters the denominator of each element of    , we can think of 



 

 

each pair of points in the design as contributing a factor    to the denominator of each 
element of    . Of course, the effect of the design also affects the numerator, so the 
situation is more complex than just naively considering only the denominator. This subject 
will be taken up in a more-detailed, follow-up report. 
 

 

8 Conjecture  

Based on our experience proving the lemma, as well as simple numerical experiments for    , 

we conjecture that   for evenly spaced points is strictly totally positive, i.e., that all sub-matrices 

(not just the principal minors) of   are positive [2]. 
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