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a: Universitat Politècnica de Catalunya, Carrer Jordi Girona 1-3, 08034 Barcelona, Spain.

b Department of Mathematics, University of Johannesburg, Auckland Park 2006, South Africa.

c LAMSADE - CNRS UMR 7243, PSL, Université Paris-Dauphine, F-75016 Paris, France.

d: CNRS - LaBRI UMR 5800 - Université de Bordeaux, F-33400 Talence, France.

e: Computer Science Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA.

f : Mathematical Sciences Department, University of Alabama in Huntsville, Huntsville, AL 35899, USA.

(e-mails: florent.foucaud@gmail.com, ralf.klasing@labri.fr, pslater@cs.uah.edu/slaterp@uah.edu)

October 10, 2018

Abstract

We introduce the notion of a centroidal locating set of a graph G, that is, a set L of vertices
such that all vertices in G are uniquely determined by their relative distances to the vertices
of L. A centroidal locating set of G of minimum size is called a centroidal basis, and its size is
the centroidal dimension CD(G). This notion, which is related to previous concepts, gives a
new way of identifying the vertices of a graph. The centroidal dimension of a graph G is lower-
and upper-bounded by the metric dimension and twice the location-domination number of G,
respectively. The latter two parameters are standard and well-studied notions in the field of
graph identification.

We show that for any graph G with n vertices and maximum degree at least 2, (1 +
o(1)) lnn

ln lnn
≤ CD(G) ≤ n− 1. We discuss the tightness of these bounds and in particular, we

characterize the set of graphs reaching the upper bound. We then show that for graphs in which

every pair of vertices is connected via a bounded number of paths, CD(G) = Ω
(√
|E(G)|

)
, the

bound being tight for paths and cycles. We finally investigate the computational complexity
of determining CD(G) for an input graph G, showing that the problem is hard and cannot

even be approximated efficiently up to a factor of o(logn). We also give an O
(√

n lnn
)

-

approximation algorithm.

1 Introduction

A large body of work has evolved concerning the problem of identifying an “intruder” vertex in
a graph. As examples, one might seek to identify a malfunctioning processor in a multiprocessor
network, or the location of an intruder such as a thief, saboteur or fire in a graph-modeled facility.
In this paper, we introduce the new model of centroidal detection as such a graph identification
problem.

An early model considered the case where one could place detection devices like sonar or
LORAN stations at vertices in a graph; each detection device could determine the distance to the
intruder’s vertex location. As introduced independently in Slater [25] and Harary and Melter [11],
vertex set L = {w1, . . . , wk} ⊆ V (G) is a locating set (also called resolving set in the literature)
if for each vertex v ∈ V (G), the (ordered) k-tuple (d(v, w1), . . . , d(v, wk)) of distances between
the detector’s locations and the intruder vertex v uniquely determines v. A minimum cardinality
locating set is called a metric basis (also called reference set in the literature), and its order is
the metric dimension of G, denoted by MD(G). Other studies involving metric bases include

∗The authors acknowledge the financial support from the Programme IdEx Bordeaux – CPU (ANR-10-IDEX-
03-02).
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for example [1, 3, 12, 19, 22]. Carson [2] and, independently, Delmas, Gravier, Montassier and
Parreau [4] (for the latter authors, under the name of light r-codes) considered the case in which
each detection device at wi can only detect an intruder at distance at most r.

In another model, the presence of any edge {u, v} ∈ E(G) indicates that a detection device at
u is able to detect an intruder at v. Let us denote by N(u) and N [u] the open and the closed
neighbourhood of vertex u, respectively. A set D ⊆ V (G) is a dominating set if

⋃
u∈DN [u] = V (G).

Clearly, in the latter model, if every possible intruder location must be detectable, the set of
detector locations must form a dominating set.

The concepts of locating and dominating set were merged in Slater [28, 29]: when a detection
device at vertex u can distinguish between there being an intruder at u or at a vertex in N(u)
(but which precise vertex in N(u) cannot be determined), then we have the concept of a locating-
dominating set. More precisely, a set D of vertices is locating-dominating if it is dominating and
every vertex in V (G) \D is dominated by a distinct subset of D. The minimum cardinality of a
locating-dominating set of graph G is denoted LD(G). When one can only decide if there is an
intruder somewhere in N [u], one is interested in an identifying code, as introduced by Karpovsky,
Chakrabarty and Levitin [18]. Haynes, Henning and Howard [13] added the condition that the
locating-dominating set or identifying code not have any isolated vertices. When a detection
device at u can determine that an intruder is in N(u), but will not report if the intruder is at
u itself, one is interested in open-locating-dominating sets, as introduced for the hypercube by
Honkala, Laihonen and Ranto [15] and for all graphs by Seo and Slater [23, 24]. A bibliography of
related papers is maintained by Lobstein [20].

In what follows, we will denote the path and the cycle on n vertices by Pn and Cn, respectively.
In this paper, we introduce the study of centroidal bases. In this model, we assume that

detection devices have unlimited range, as for metric bases. However, exact distances to the
intruder are not known, but for detection devices u, v, if there is an intruder at vertex x, then the
presence of the intruder in the graph is determined earlier by u than by v when u is closer to x
than v, that is, when d(u, x) < d(v, x). When d(u, x) = d(v, x) we assume that u and v report
simultaneously.

x1 x2 x3 x4 x5 x6 x7 x8

Figure 1: Centroidal basis {x1, x3, x6, x8} for path P8.

For example, consider S = {x1, x3, x6, x8} ⊆ V (P8) (see Figure 1). For vertex x4, the order
in which the detectors of S report is (x3, x6, x1, x8) because d(x4, x3) = 1 < d(x4, x6) = 2 <
d(x4, x1) = 3 < d(x4, x8) = 4. For vertex x2, we have d(x2, x1) = d(x2, x3), hence the order of
reporting is ({x1, x3}, x6, x8). The smallest size of a set S ⊆ V (P8) for which the order of reporting
uniquely identifies each vertex is, in fact, four.

1.1 Medians and centroids

In 1869, Jordan [17] showed that each of the center and the (branch weight) centroid of a tree either
consists of one vertex, or of two adjacent vertices. The eccentricity of vertex u is the maximum
distance from u to another vertex in graph G, e(u) = max{d(u, v), v ∈ V (G)}, and the center C(G)
of G is the set of vertices of minimum eccentricity. For a tree T , the branch weight of u, bw(u), is
the maximum number of edges in a subtree with u as an endpoint. The branch weight centroid of
T is the set Sbw(T ) of vertices with minimum branch weight in T .

In 1964, Hakimi [9] considered two facility location problems, one involving the center. The sec-
ond one involved the distance d(u) =

∑
v∈V (G) d(u, v), measuring the total response time at u (this

notion was called status of v by Harary in 1959 [10]). The median of G,M(G) = {u ∈ V (G),∀v ∈
V (G), d(u) ≤ d(v)}, is the set of vertices of minimum distance in G. In 1968, Zelinka [33] showed
that for any tree T , M(T ) = Sbw(T ), which seemed to imply that the median would be a good
generalization of the branch weight centroid of a tree to an arbitrary graph. However (with details
in Slater [27, 30] and Slater and Smart [31]), note that components of T −u of the same order, one
being a path and the other a star, contribute the same value of a branch weight, but have much dif-
ferent distances. In trying to keep closer to the spirit of what the branch weight centroid measures,
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the centroid S(G) of an arbitrary graph G was defined in terms of competitive facility location [26].
For facilities located at vertices u and v, a customer at vertex x is interested in which of the facil-
ities is the closer. As defined in Slater [26], the set Vu,v = {x ∈ V (G), d(x, u) < d(x, v)} is the set
of vertex customer locations strictly closer to u than to v. Then, f(u, v) = |Vu,v|− |Vv,u| rates how
well u does as a facility location, in comparison to v. Letting f(u) = min{f(u, v), v ∈ V (G)− u},
the centroid of a graph G is the set S(G) = {u ∈ V (G),∀v ∈ V (G)− u, f(u) ≥ f(v)}. When G is
a tree, the centroid and branch weight centroid are easily seen to coincide. Interestingly, there are
graphs G for which f(u) < 0 for all u ∈ V (G).

Note that in our context of centroidal bases, detectors located at u and v enable us to determine
if an intruder is in Vu,v, in Vv,u, or in V (G)− Vu,v − Vv,u = {x ∈ V (G), d(x, u) = d(x, v)}.

1.2 Centroidal detection

Let B = {w1, . . . , wk} ⊆ V (G) be a set of vertices of graph G with detection devices located
at each wi. As noted, we will assume that each detection device has an unlimited range — an
intruder entering at any vertex x will, at some point, have its presence noted at each wi. Simply
the presence will be noted, with no information about the location of the intruder. In particular,
unlike in the setting of metric bases, d(x,wi) will not be known. However, the time it takes before
wi detects the intruder at x will be an increasing function of the distance d(x,wi). That is, wi will
indicate an intruder presence before wj whenever d(x,wi) < d(x,wj) (in our previous terminology,
x ∈ Vwi,wj

). We will say that x is located first by wi, and then by wj . Thus, each vertex x has
a rank ordering r(x) of the elements of a partition of B (in fact, r(x) is an ordered partition of
B, that is, an ordered set of disjoint subsets of B whose union is B). This ordering lists all the
elements of B in non-decreasing order by their distance from x, with ties noted. Note that the
number of ordered partitions of a set B of k elements is the k-th ordered Bell number, denoted b(k)
(see the book of Wilf [32, Section 5.2, Example 1]).

ForB = {x1, x3, x6, x8} in path P8 (see Figure 1), r(x1) = (x1, x3, x6, x8), r(x2) = ({x1, x3}, x6, x8),
r(x3) = (x3, x1, x6, x8), r(x4) = (x3, x6, x1, x8), r(x5) = (x6, x3, x8, x1), r(x6) = (x6, x8, x3, x1),
r(x7) = ({x6, x8}, x3, x1) and r(x8) = (x8, x6, x3, x1).

Definition 1. Vertex set B ⊆ V (G) is called a centroidal locating set of graph G if r(x) 6= r(y) for
every pair x, y of distinct vertices. A centroidal basis of G is a centroidal locating set of minimum
cardinality. The centroidal dimension of G, denoted CD(G), is the cardinality of a centroidal basis.

In our example, B = {x1, x3, x6, x8} is the unique centroidal basis of path P8, and CD(P8) = 4.
Observe that every graph G has a centroidal locating set, for example, V (G): each vertex x is

the only vertex having x as the first element of r(x).
A useful reformulation of the definition of a centroidal locating set is as follows:

Observation 2. A set B of vertices of a graph V (G) is a centroidal locating set if and only if
for every pair x, y of distinct vertices of V (G), there exist two vertices b1, b2 in B such that either
d(x, b1) ≤ d(x, b2) but d(y, b1) > d(y, b2), or d(y, b1) ≤ d(y, b2) and d(x, b1) > d(x, b2) (in other
words, y ∈ Vb2,b1 but not x, or x ∈ Vb2,b1 , but not y).

1.3 Structure of the paper

We start in Section 2 by stating some preliminary observations and lemmas, and by giving bounds
on parameter CD involving the order, the diameter, and other parameters of graphs; in particular,
we show that (1 + o(1)) lnn

ln lnn ≤ CD(G) ≤ n − 1 when G has n vertices and maximum degree at
least 2.

In Section 3, we discuss the tightness of the two aforementioned bounds by constructing graphs
with small centroidal dimension, and by fully characterizing the graphs having centroidal dimension
n− 1.

In Section 4, we give a lower bound CD(G) = Ω
(√

m
k

)
when G has m edges and every pair

of vertices is connected by a small number, k, of paths. We show that the bound is tight (up to a
constant factor) for paths and cycles.

Finally, in Section 5, we discuss the computational complexity of finding a centroidal basis; we
show that for graphs with n vertices, it is NP-hard to compute an o(lnn)-approximate solution,
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and describe an O(
√
n lnn)-approximation algorithm. We also remark that the problem is fixed-

parameter-tractable when parameterized by the solution size.

2 Preliminaries and bounds

In this section, we give a series of preliminary lemmas and bounds for parameter CD that will
prove useful later on, and also help the reader become familiar with some of the aspects of the
problem.

2.1 Preliminary results

We state a few lemmas that will prove very useful in the study of centroidal locating sets.

Lemma 3. Let G be a graph. The following statements are true:
(a) If u is a vertex of degree 1, then any centroidal locating set of G contains u.
(b) If u is a vertex of degree 1 having a neighbour v of degree 2, then any centroidal locating set of
G contains either v or a neighbour of v other than u.
(c) If u, v are two vertices with N(u) = N(v) or N [u] = N [v], then any centroidal locating set of
G contains at least one of u and v.

Proof. (a): Otherwise, u and its neighbour are not distinguished.
(b) and (c): Otherwise, u and v are not distinguished.

Lemma 4. Let S be a set of vertices of a graph G such that for each u ∈ S, |N(u) \ S| ≥ 2 and
such that for each u, v ∈ S, N(u) \ S 6= N(v) \ S. Then V (G) \ S is a centroidal locating set of G.

Proof. Let B = V (G) \ S. Every vertex of B is first located by itself, while every vertex of S is
first located by a distinct set of at least two vertices of B.

Note that in particular, Lemma 4 shows that for any vertex u of degree at least 2 in a graph
G, V (G) \ {u} is a centroidal locating set of G.

2.2 Bounds

We now provide some lower and upper bounds for the value of parameter CD.

Theorem 5. Let G be a graph on n vertices with maximum degree at least 2. Then

(1 + o(1))
lnn

ln lnn
≤ CD(G) ≤ n− 1.

Proof. Lemma 4 immediately implies the upper bound. For the lower bound, assume that B is
a centroidal basis of size k = CD(G), and G has n vertices. Then, to each vertex of G, one can
assign a distinct ordered partition of B. It is known that the number of ordered partitions of a set
of k elements, the ordered Bell number b(k), is approximated by

b(k) ∼ k!

2(ln 2)k+1
+O(0.16kk!),

see Wilf [32, Section 5.2, Example 1]. It is clear that n ≤ b(k). Let us assume that B is a centroidal
basis of G of size k, with n = b(k): for large enough n, we have n = k!(ck+1) for some constant
c. Taking the logarithm on both sides we get lnn = ln(k!) + (k + 1) ln(c). By using Stirling’s
approximation ln(k!) = k ln(k)− k +O(ln(k)), we obtain:

lnn = (1 + o(1))k ln(k). (1)

Hence, k = (1 + o(1)) lnn
ln(k) ; again taking the logarithm, we get:

ln(k) = ln lnn− ln ln(k) + ln(1 + o(1)) = (1 + o(1)) ln lnn. (2)
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Merging Equalities (1) and 2, we get:

k = (1 + o(1))
lnn

ln lnn
.

Since in G, there cannot be any smaller centroidal locating set than B, the bound follows.

The considerations of Theorem 5 can be strengthened if we assume that the distances of a
vertex to vertices in B are bounded. The following result was already known in the context of the
metric dimension, see e.g. Khuller, Raghavachari and Rosenfeld [19] or Chartrand, Eroh, Johnson
and Oellermann [3].1

Proposition 6. Let G be a graph with a centroidal locating set B of size k and let D be an integer.
If for every vertex u ∈ V (G) \ B and for every vertex b ∈ B, d(u, b) ≤ D, then n ≤ k + Dk and
hence CD(G) ≥ logD(n)− 1. In particular, this holds if G has diameter D.

Proof. Let u ∈ V (G) \ B be a vertex. Since every vertex of B is at distance at most D from u,
r(u) contains at most D sets. There are exactly Dk different ordered partitions of B into at most
D sets (this number is equal to the number of words of length k over an alphabet of size D), hence
there can be at most Dk vertices in V (G) \B, and hence k +Dk vertices in G.

The bound of Proposition 6 was improved by Hernando, Mora, Pelayo, Seara and Wood [14]:

Theorem 7 ([14]). Let G be a graph on n vertices with diameter D ≥ 2 and CD(G) = k ≥ 1.

Then n ≤
(⌊

2D
3

⌋
+ 1
)k

+ k
∑dD/3e
i=1 (2i− 1)k−1.

We improve the bound in Theorem 7 for D ≤ 3:

Theorem 8. Let G be a graph on n vertices with diameter D ∈ {2, 3} and let CD(G) = k. If
D = 2 and k ≥ 1, n ≤ 2k + k − 1. If D = 3 and k ≥ 5, n ≤ 3k − 2k+1 + 2.

Proof. Let B be a centroidal locating set of G.
• D = 2 and k ≥ 1. By Theorem 7 we have n ≤ 2k + k. However, observe that for every vertex

v /∈ B, r(v) = (N(v)∩B,B \N(v)). But there can only be 2k distinct sets N(v)∩B, and moreover
if N(v) = B and N(w) = ∅ we have r(v) = r(w) = (B). Hence |V (G) \ B| ≤ 2k − 1 and we are
done.
• D = 3 and k ≥ 5. Since the diameter is 3, for every vertex v, r(v) has at most three

components, unless v ∈ B, then it may have four. Moreover, if v /∈ B, then r(v) either has one
component (then r(v) = (B)), or two (then r(v) = (S,B \ S) with 1 ≤ |S| ≤ |B| − 1), or three
(then r(v) = (S, T,B \ (S ∪ T )) with S ∩ T = ∅ and 1 ≤ |T | ≤ |B \ S|).

Therefore, we have

|V (G) \B| ≤ 1 +

k−1∑
i=1

((
k

i

)
(2k−i − 1)

)
= 3k − 2k+1 + 2,

that is, 1 plus the number of ways of choosing a nonempty subset S of B and a nonempty subset
of B \ S.

Now, if for every pair b, b′ in B we have d(b, b′) ≤ 2, then no vertex v has four components in
r(v) and so the claimed bound holds. Now, assume that there is a pair b, b′ in B with d(b, b′) = 3.
This implies that for any vertex v, r(v) cannot be of the form ({b, b′}, T, B \ ({b, b′} ∪ T )) with S
a nonempty proper subset of T \ {b, b′} since otherwise we must have d(v, b) = d(v, b′) = 1 and
hence d(b, b′) ≤ 2, a contradiction. This gives us at least k − 2 +

(
k−2
2

)
forbidden triples of the

form ({b, b′}, T, B \ ({b, b′} ∪ T )) since T can be chosen to be one of k − 2 possible singletons and(
k−2
2

)
possible pairs. Since k ≥ 5, k − 2 +

(
k−2
2

)
≥ k and we are done.

The bounds of Theorem 8 will be proved tight in Section 3.
We will now relate parameter CD with parameters MD and LD.

1The result was stated in terms of the metric dimension but since any centroidal locating set is also a locating
set the bound holds also for the centroidal dimension.
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Lemma 9. Let G be a graph with a locating-dominating set C such that ` vertices from V (G) \C
have a unique neighbour in C. Then CD(G) ≤ LD(G) + `.

Proof. We construct a centroidal locating set C ′ from C by adding at most ` vertices to C. Note
that in the setting of a centroidal locating set and considering C as a potential solution, each
vertex of C is located first by itself, and then by its neighbourhood within C, while each vertex v
of V (G) \ C is first located by N(v) ∩ C. Hence, any two vertices both in C or both in V (G) \ C
are distinguished. However, if for some vertex v of V (G) \ C, N(v) ∩ C = {cv}, v and cv might
not be distinguished. In that case, it is enough to add v to C to solve this problem. This does not
cause any other conflict since any superset of a centroidal locating set is also a centroidal locating
set. Repeating the process ` times completes the proof (observing that any other vertex of C is
distinguished from all other vertices).

Using Lemma 9, we obtain the following theorem:

Theorem 10. For any graph G, MD(G) ≤ CD(G) ≤ 2LD(G).

Proof. For the first inequality, note that any centroidal locating set B is a locating set. Indeed, if
two vertices were at the same distance to each vertex of B, then they would not be distinguished
by their relative distances by B, a contradiction.

The second inequality is proved by Lemma 9 by observing that for any locating-dominating set
C, ` ≤ |C|: for each cv ∈ C, if there were two vertices of V (G) \ C having only cv as a neighbour
in C, they would not be distinguished by C, a contradiction.

For graphs of diameter 2, one gets the following improvement:

Theorem 11. Let G be a graph of diameter 2. Then LD(G)−1 ≤MD(G) ≤ CD(G) ≤ 2LD(G).

Proof. The last two inequalities come from Theorem 10. For the first inequality, we show that any
locating set L is almost a locating-dominating set. Each vertex v of V (G) \L has distance 1 to all
elements of its neighbourhood Nv = N(v)∩L in L, and distance 2 to all vertices of L\Nv. In other
words, vertices in L only distinguish vertices they are adjacent to, from non-adjacent ones. Since
L is a locating set, it follows that each vertex in V (G) \ L has a distinct neighbourhood within L.
Therefore, if L is dominating, it is also locating-dominating. Otherwise, there is at most one vertex
that is not dominated; adding it to set L, we get a locating-dominating set of size |L|+ 1.

3 Tightness of the bounds

In this section, we discuss the tightness of some of the bounds from Subsection 2.2.

3.1 Graphs with small centroidal dimension

For k = 1, 2 it is easy to construct graphs G on n vertices with CD(G) = k and n = b(k): for
k = 1, b(1) = 1 and K1 is the only answer; for k = 2, b(1) = 3 and both P3,K3 are answers.

For k = 3, b(3) = 13; the two graphs of Figure 2 have 13 vertices and centroidal dimension 3
(the black vertices form a centroidal basis).

It holds that b(4) = 75 [21]; a more intricate construction for this case is presented in Figure 3.
We do not know such optimal examples for k ≥ 5 (recall that b(k) grows very rapidly with k:

b(5) = 541, b(6) = 4683 [21]). Note that it is not possible to directly extend our example for k = 4
to higher values by using the same idea; indeed, every two vertices from the centroidal basis B
are at distance at most 3 from each other. But in our construction, the vertices whose vector is a
permutation of B have a neighbour in the basis. Hence their vector r can have length at most 4,
but these k! vertices need to have a vector of length k.

Bounded diameter. We now discuss the tightness of the bounds for diameter 2 and 3 of Theo-
rem 8.

Proposition 12. For any k ≥ 4, there is a graph G of diameter 2 with n = 2k + k − 1 vertices
and CD(G) = k.

6



(a) (b)

Figure 2: Two graphs on b(3) = 13 vertices with centroidal dimension 3.

Figure 3: A graph on b(4) = 75 vertices with centroidal dimension 4. In the central part of the
figure, the 4 black vertices form the centroidal basis and have their vector r of the form (a, {b, c, d});
they are at distance 3 from each other. The 12 white circle-shaped vertices have their vector of the
form (a, b, {c, d}). The 6 gray square-shaped vertices have their vector of the form ({a, b}, {c, d}).
The unique gray double-circled vertex has its vector of the form ({a, b, c, d}). In the outer parts
of the figure, the 24 gray circled-shaped vertices have their vector of the form (a, b, c, d). The 12
white square-shaped vertices have their vector of the form (a, {b, c}, d). The 12 white double-circled
vertices have their vector of the form ({a, b}, c, d). Finally, the 4 gray double-squared vertices have
their vector of the form ({a, b, c}, d).

7



Proof. We construct G in the following way. We let V (G) = B ∪ S, where B,S are disjoint sets,
B has k vertices, and S has n− k = 2k − 1 vertices. We make sure that in the subgraph induced
by B, every vertex has a neighbor and a non-neighbor, which is possible since k ≥ 4. The set S
induces a clique and the neighborhood of every vertex of S within B is distinct and nonempty.

Since G has a vertex of degree n − 1 (in S) the diameter is 2. For every vertex v in B,
r(v) = ({v}, N(v) ∩ B,B \ N [v]), and by our assumption on the structure of B, these three sets
are nonempty. For every vertex v in S, r(v) = (N(v) ∩ B,B \ N(v)). By construction all these
vectors are distinct.

In fact, in the construction of Proposition 12, B is a locating-dominating set; similar construc-
tions are well-known in this context, see for example Slater [29]. For diameter 3, we give a more
complicated construction:

Theorem 13. For any k ≥ 4, there is a graph G of diameter 3 with n = 3k − 2k+1 + 2 vertices
and CD(G) = k.

Proof. We construct G as follows (see Figure 4 for an illustration).

• Let B be an independent set of size k, which will be the centroidal locating set of G.

• Let X be a clique containing, for every subset S of B with 2 ≤ |S| ≤ k − 2, a vertex x(S)

that is adjacent to all vertices in S. Set X has size
∑k−2
i=2

(
k
i

)
.

• Let Y be an independent set containing, for every subset S of B with 1 ≤ |S| ≤ k − 2 and
for every proper nonempty subset T of B \ S, a vertex y(S, T ) (note that 1 ≤ |T | ≤ k − 2).
Vertex y(S, T ) is adjacent to all vertices of S. Moreover, if |T | ≥ 2, y(S, T ) is adjacent
to x(T ). If T = {t} has size 1, let T ′ be an arbitrary size 2-subset of B formed by t and
an arbitrary vertex of S, and let y(S, T ) be adjacent to x(T ′). Note that set Y has size∑k−2
i=1

((
k
i

)
(2k−i − 2)

)
.

• Let Z be a clique of size k + 1 containing, for each subset S of B with k − 1 ≤ |S| ≤ k, a
vertex z(S) that is adjacent to the vertices in S.

Figure 4: The construction of Theorem 13. Gray sets are cliques.

The order of G is
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|B|+ |X|+ |Y |+ |Z| = k +

k−2∑
i=2

(
k

i

)
+

k−2∑
i=1

((
k

i

)
(2k−i − 2)

)
+ k + 1

= 1 +

k∑
i=1

((
k

i

)
(2k−i − 1)

)
= 3k − 2k+1 + 2.

Furthermore, the diameter of G is exactly 3. It is at least 3: consider some vertex y = y(S, T ).
We have N(y) = S, and the vertices in T are at distance 2 of y (via vertex x(T )). However, all
vertices of B \ (S ∪ T ) are at distance 3 of y, and since T is a proper subset of B \ S, B \ (S ∪ T )
is nonempty. On the other hand, the diameter is at most 3. If v is any vertex of G, v is within
distance 1 of some vertex b in B, and since X and Z are cliques and b has a neighbor in both X
and Z, every vertex in X ∪Z is within distance 2 of b and within distance 3 of v. Moreover, every
two vertices in B are at distance at most 2 away since they all share a neighbor, z(B). Hence, any
vertex y(S, T ) ∈ Y , since it has a neighbor in B, is at distance at most 3 from any vertex in B.
Finally, any vertex in Y has a neighbor in X, which is a clique; hence any two vertices in Y have
distance at most 3 from each other.

It remains to check that B is a centroidal locating set. For every b ∈ B, we have r(b) =
({b}, B \ {b}). For every vertex x = x(S) in X, we have r(x) = (S,B \S) and 2 ≤ |S| ≤ k− 2. For
every vertex z = z(S) in Z, r(z) = {S,B \ S} if |S| = k − 1 and r((z(B)) = (B). We have now
realised all possible vectors with at most two components. Finally, for any vertex y = y(S, T ) in
Y , r(y) = (S, T,B \ (S ∪ T )) and by the definition of Y , none of these three components is empty.
This completes the proof.

We leave the question of the tightness of Theorems 5 and 7 open.

Question 14. Is the bound CD(G) ≥ (1 + o(1)) lnn
ln lnn asymptotically tight, that is, can we find an

infinite family of graphs G with CD(G) = O
(

lnn
ln lnn

)
?

Observe that, by Proposition 6, CD(G) ≥ logD(n)− 1 when G has diameter D and n vertices.

Hence, in order to construct a graph with a centroidal locating set of size O
(

lnn
f(n)

)
for some

f(n) = O(ln lnn), G should have diameter Ω
(
ef(n)

)
; in particular, for f(n) = ln lnn, the diameter

should be Ω (lnn).
It was proved by Sebő and Tannier [22] that for the hypercube Qk with n = 2k vertices,

MD(Qk) = 2 log2 n
log2 log2 n

(1 + o(1)). In this regard, it would be interesting to determine whether

the family of hypercubes is a positive answer to Question 14; determining CD(Qk) would be of
independent interest.

Question 15. What is the maximum order of a graph with centroidal dimension k and diame-
ter D ≥ 4?

3.2 Graphs with large centroidal dimension

A direct consequence of Theorem 5 is that a graph has centroidal dimension equal to its order if
and only if it has maximum degree at most 1. We now fully characterize the set of graph with
centroidal dimension of value the order minus one.

For some n ≥ 1, Kn denotes the complete graph on n vertices. For some a, b ≥ 1, Ka,b denotes
the complete bipartite graph with parts of sizes a and b. Let n ≥ 4. We denote by Sn, the graph
obtained by joining K2 to an independent set of n− 2 vertices. We call Tn the tree obtained from
P3 by attaching n − 3 degree 1-vertices to one of the ends of P3. Finally, we call Un the graph
obtained from K3 by attaching n− 3 degree 1-vertices to one of the vertices of K3.

In particular, K1,n−1 is a star, K2,2 is the cycle C4, S4 is the diamond graph, and T4 is the
path P4. See Figure 5 for illustrations of these graphs (black vertices belong to a centroidal basis).

Proposition 16. Let G be a graph on n ≥ 3 vertices belonging to {Kn,K1,n−1,K2,n−2, Sn, Tn, Un}.
Then CD(G) = n− 1.
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. . .

(a) Kn

. . .

(b) K1,n−1

..
.

(c) K2,n−2

. . .

(d) Sn

. . .

(e) Tn

. . .

(f) Un

Figure 5: The list of graphs on n vertices with centroidal dimension n− 1.

Proof. By Lemma 4 applied on a single degree 2-vertex, it is easily seen that in each case, CD(G) ≤
n− 1. If G is isomorphic to Kn, the lower bound is directly implied by Lemma 3(c).

If G is isomorphic to K1,n−1, then by Lemma 3(a) any centroidal locating set contains all n−1
leaves of K1,n−1.

If G is isomorphic to K2,n−2 or to Sn, by Lemma 3(c) at least n− 3 vertices of degree 2 belong
to any centroidal locating set, as well as one of the other two vertices. However, if no further vertex
does belong to the centroidal locating set, then the vertex of degree 2 that is not in the set is not
distinguished from its neighbour in the set, a contradiction.

If G is isomorphic to Tn, by Lemma 3(a) all n− 2 vertices of degree 1 belong to any centroidal
locating set. Moreover, one further vertex also does according to Lemma 3(b).

Finally, if G is isomorphic to Un, again by Lemma 3(a) all n − 3 vertices of degree 1 belong
to any centroidal locating set, as well as one degree 2-vertex of the triangle by Lemma 3(c). If
no further vertex does belong to a centroidal locating set, then the two degree 2-vertices of the
triangle are not distinguished, a contradiction.

In fact, the graphs from Figure 5 are the only extremal graphs, as shown in the following
theorem:

Theorem 17. Let G be a connected graph on n ≥ 3 vertices with CD(G) = n−1. Then G belongs
to {Kn,K1,n−1, K2,n−2, Sn, Tn, Un}.

Proof. We assume by contradiction that CD(G) = n− 1 but G does not belong to the list. Hence,
n ≥ 5 since all connected graphs on three or four vertices are in the list. Let u be a vertex of G of
degree at least 2. By Lemma 4, V (G) \ {u} is a centroidal locating set. First of all, observe that
there is no vertex at distance 3 of u: for contradiction, assume that z is such a vertex and let t be
a neighbour of z with deg(t) ≥ 2 that lies on a path from u to z. By Lemma 4, B = V (G) \ {u, t}
is a centroidal locating set, a contradiction.

We now assume that deg(u) = 2. Let v, w be the two neighbours of u, and let x, y be two other
vertices in G (they exist since n ≥ 5). Since there is no vertex at distance 3 of u, both x, y are
neighbours of at least one of v, w. First, assume that x is a neighbour of both v and w and that
y is only a neighbour of v. Then B = V (G) \ {v, w} is a centroidal locating set, a contradiction.
Indeed, each vertex of B is first located by itself, then by its neighbours in B, while v, w are first
located by a set of at least two vertices. Moreover, v is (in particular) first located by y, while w
is not.

Hence, either all vertices other than u, v, w are adjacent to both v, w, or none is. In the first
case, if all common neighbours of v, w form an independent set, G is isomorphic to either K2,n−2 or
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Sn, a contradiction. Hence, there is an edge between two common neighbours of v, w, say between
x, y. Then, B = V (G) \ {u, x} is a centroidal locating set, a contradiction. Indeed, each vertex of
B is first located by itself, then by its neighbours in B, while u, x are first located by a set of at
least two vertices. Moreover, x is (in particular) first located by y, while u is not.

We now have that each vertex other than u, v, w is adjacent to exactly one of v, w. Let Sv be the
set of neighbours of v other than u,w and Sw be the set of neighbours of w other than u, v. If both
|Sv|, |Sw| ≥ 1, by Lemma 4, V (G) \ {v, w} is a centroidal locating set, a contradiction. Otherwise,
either G is isomorphic to Tn if v, w are non-adjacent, or to Un otherwise, a contradiction in both
cases.

By the previous discussion, G has no degree 2-vertices. Hence deg(u) ≥ 3. Suppose moreover
that N(u) is an independent set. Since G is not isomorphic to K1,n−1, there are vertices at
distance 2 of u. Hence u has a neighbour, v, with two such vertices as neighbours (since deg(v) 6= 2):
let x, y be these vertices. Then, B = V (G) \ {u, v} is a centroidal locating set, a contradiction.
Indeed, all vertices but u, v are located first by themselves only, whereas u is located first by
N(u) \ {v} and v by a set containing both x, y.

Now, we assume that N(u) is a clique. Since G is not a complete graph, u has a neighbour v,
having a neighbour x with d(u, x) = 2. Then, by Lemma 4, V (G) \ {u, v} is a centroidal locating
set of G, a contradiction.

Hence, N(u) is neither an independent set, nor a clique: there is a vertex v in N(u) with a
neighbour w and a non-neighbour x, both being in N(u). Since no vertex in G has degree 2, v has
an additional neighbour, y. But then by Lemma 4, V (G) \ {u, v} is a centroidal locating set of G,
a contradiction.

4 Graphs with few paths connecting each pair of vertices

We now study parameter CD for graphs in which every pair of vertices is connected via a bounded
number k of paths. We show that such graphs have centroidal dimension Ω

(√
m
k

)
, where m is the

number of edges. In particular, this applies to paths and cycles; for these graphs, we show that
the lower bound is asymptotically tight. These cases are particularly interesting for the following
reason: the metric dimension of a path or a cycle with n vertices is easily seen to be constant (1
for any path, 2 for any cycle), whereas the location-domination number is linear (roughly 2

5 th of
the vertices [29]). In contrast, the centroidal dimension is about the square-root of the order.

But first, the following technical lemma will be useful when showing our lower bound.

Lemma 18. Let G be a graph with u, v two adjacent vertices, and let B be a centroidal locating
set. Then, there are two vertices b1, b2 of B and a path P : b1 − u − v − b2 such that at least one
of the following properties hold:

1. {u, v} = {b1, b2} and P is the edge {u, v};

2. d(u, b1) = d(u, b2), d(v, b1) 6= d(v, b2) (or, symmetrically, d(v, b1) = d(v, b2), d(u, b1) 6=
d(u, b2) and P contains a shortest path from u to b1 and a shortest path from v to b2;

3. d(u, b1) + 1 = d(u, b2), d(v, b1) = d(v, b2) + 1, P contains a shortest path from u to b1 and a
shortest path from v to b2, P has odd length and {u, v} is the middle edge of P .

Proof. If both u, v belong to B, we are in the first case and we are done.
Otherwise, since B is a centroidal locating set, without loss of generality there are two vertices

b, b′ of B such that d(u, b) ≤ d(u, b′) and d(v, b) > d(v, b′), or vice-versa.

Case a: d(u, b) = d(u, b′). We show that the second case of the statement holds. If v lies on a
shortest path Pu from u to one of b, b′ (say, b), we are done: then no shortest path from u to b′ can
go through v (otherwise d(v, b) = d(v, b′)). Hence, setting b = b2 and b′ = b1, the concatenation of
Pu and any shortest path from u to b′ is a path P satisfying the desired properties.

Hence, we assume that v does not lie on a shortest path from u to b. Since d(v, b) 6= d(v, b′),
we can assume without loss of generality that d(v, b′) 6= d(u, b′) + 1 (moreover since d(v, b′) ≤
d(u, b′) + 1, we have d(v, b′) ≤ d(u, b′)). Hence a shortest path Pv from v to b′ does not go through
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u. Let Pu be a shortest path from b to u. If the concatenation Pu−uv−Pv is a path, we are done
by setting P = Pu−uv−Pv, b = b1 and b′ = b2. Therefore, assume that it is not a path, and let w
be the vertex closest to u appearing in both Pu and Pv: Pu−uv−Pv contains a cycle going through
u, v, w. Now, since no shortest path from v to b′ goes through u, we have d(v, w) ≤ d(u,w). Also,
since we assumed that v does not lie on a shortest path from u to b, in particular d(u,w) ≤ d(v, w).
Therefore, d(u,w) = d(v, w). This implies that d(v, b′) = d(u, b′) (indeed, we had d(v, b′) ≤ d(u, b′)
and now d(u, b′) ≤ d(u,w) + d(w, b′) = d(v, w) + d(w, b′) = d(v, b′)). Hence, d(v, b) < d(v, b′). Let
P ′u be the path obtained from the concatenation of a shortest path from u to w and the subpath of
Pv from w to b′, and let P ′v be a shortest path from v to b. Then, P ′v does not contain any vertex of
P ′u (indeed, if there was such a vertex t, then d(u, b) ≤ d(v, b) < d(v, b′) = d(u, b′), a contradiction).
Hence, the concatenation P = P ′v − uv − P ′u is a path that has the desired properties.

Case b: d(u, b) < d(u, b′). We show that the third case of the statement holds. Since d(v, b) >
d(v, b′) and u, v are adjacent, d(v, b) = d(u, b) + 1 and d(v, b′) = d(u, b′) − 1. Hence d(v, b′) <
d(v, b) < d(v, b′) + 2 and d(u, b) < d(u, b′) < d(u, b) + 2, and d(u, b) = d(v, b′). We set b1 = b
and b2 = b′. Observe that the concatenation P of a shortest path from b1 to u, the edge uv,
and a shortest path from v to b2 is a path from b1 to b2 (if it were not a path, we would have
d(u, b) = d(u, b′) = d(v, b) = d(v, b′)). Since P has the desired properties, this completes the
proof.

In what follows, for a pair {u, v} of vertices in a graph G, we let kodd(u, v) and kev(u, v) be the
number of odd and even (not necessarily disjoint) paths connecting u to v, respectively.

Theorem 19. Let G be a graph on n vertices and m edges such that for every pair {u, v} of

vertices, 2kev(u, v) + kodd(u, v) ≤ k for some integer k. Then, CD(G) >
√

2m
k . In particular, for

every tree T , CD(T ) >
√
n− 1.

Proof. Let B be a centroidal locating set of G. To each pair u, v of adjacent vertices in G, we assign
a triple (b1, b2, P ) = T (u, v) of two vertices b1, b2 of B and a path P : b1−u− v− b2 satisfying one
of the three properties described in Lemma 18. The assignment is done as follows:

1. if both u, v belong to B, set T (u, v) = (u, v, uv) (we say that the pair u, v is of type 1 );

2. otherwise, if there is some pair {b1, b2} of B and the corresponding path P such that the
second property of Lemma 18 holds, then set T (u, v) = (b1, b2, P ) (we say that the pair u, v
is of type 2 );

3. otherwise, let T (u, v) consist of an arbitrary pair b1, b2 of vertices of B and the corresponding
path P satisfying the third property of Lemma 18 (we say that the pair u, v is of type 3 ).

Now, for a given pair b1, b2 of B and a path P from b1 to b2, we will upper-bound the number
of pairs of adjacent vertices u, v such that T (u, v) = (b1, b2, P ).

Assume first that P has odd length. If P is the edge b1, b2, there is only the pair {u, v} =
{b1, b2} of type 1 with T (u, v) = (b1, b2, P ). Otherwise, assume {u, v} is a pair of type 2 with
T (u, v) = (b1, b2, P ). Then by Lemma 18, d(u, b1) = d(u, b2) = `1 and the subpath of P from u to
b1 has length `1. Since the subpath from v to b2 is also a shortest path and d(u, b2) = `1, it has
length `2 with `1 − 1 ≤ `2 ≤ `1 + 1. The length of P is `1 + `2 + 1. Since it is an odd number,
`2 = `1 and {u, v} is the middle edge of P . If {u, v} is of type 3, by Lemma 18, {u, v} is also the
middle edge of P . Hence in total there is at most one pair u, v with T (u, v) = (b1, b2, P ).

Now, assume that P has even length. Let {u, v} be a pair with T (u, v) = (b1, b2, P ). Then, by
Lemma 18, u, v cannot be of type 1 or type 3, so it must be of type 2. By the same arguments as
in the previous paragraph, the length of the subpath of P from b1 to u is `1, and the length of the
subpath of P from v to b2 is either `1 − 1 or `1 + 1. In both cases, one of u, v is the middle vertex
of P . Hence there can be at most two such pairs.

To summarize, we proved that for each pair b1, b2 of B, the number of pairs u, v with T (u, v) =
(b1, b2, P ) for some path P is at most

2kev(b1, b2) + kodd(b1, b2) ≤ k.

12



Since in total, there are m pairs of adjacent vertices in G and each such pair is associated to

exactly one of the
(|B|

2

)
pairs of B, we have m ≤ k

(|B|
2

)
< k|B|2

2 , and the bound follows.
When G is a tree, there are n−1 edges, and there is a unique path between any pair of vertices,

hence k ≤ 2.

We now show that the bound of Theorem 19 is tight up to a constant factor for paths and
cycles.

Theorem 20. Let n ≥ 3.
(1) If n is even,

√
2
2

√
n < CD(Cn). If n is odd,

√
6
3

√
n < CD(Cn). In both cases, CD(Cn) <

7
√
2n
2 + 1. If n = 2`2 for some integer `, then CD(Cn) ≤

√
2n− 2.

(2)
√
n− 1 < CD(Pn) < 6

√
n− 1 + 3. If n = (2`)2 + 1 for some integer `, then CD(Pn) ≤

2
√
n− 1− 3.

Proof. Lower bounds. The bounds follow from Theorem 19 since paths are trees, and by ob-
serving that cycles have n edges. For even cycles, for any pair {u, v} of vertices, kodd(u, v) ≤ 2
and kev(u, v) ≤ 2 and kodd(u, v) + kev(u, v) = 2, hence 2kev(u, v) + kodd(u, v) ≤ 4. For odd cycles,
kodd(u, v) = 1 and kev(u, v) = 1, hence 2kev(u, v) + kodd(u, v) ≤ 3.

Upper bounds for cycles. We first prove that for any p, q ≥ 2, if n = p(2q + 2), then:

CD(Cn) ≤ p+ q − 1. (3)

Assuming that n = 2`2, and setting p = ` and q = ` − 1, Inequality (3) yields the claimed
bound CD(Cn) ≤ 2`− 2 =

√
2n− 2.

Let {x0, . . . , xn−1} be the vertex set of Cn. Let us divide Cn into p portions of 2q+2 consecutive
vertices each: for 0 ≤ i ≤ p − 1, Ri = {xi(2q+2), xi(2q+2)+1, . . . , x(i+1)(2q+2)−1}. For each i, we
further define two subsets of Ri as follows: Si = {s1i , . . . , s

q
i } and Ti = {t1i , . . . , t

q
i }, where for

1 ≤ j ≤ q, sji = xi(2q+2)+j and tji = xi(2q+2)+q+1+j . In other words, Si contains q vertices from
Ri, starting from the second one, and Ti contains the q last vertices of Ri. Observe that the first
and the (q + 2)-nd vertices from Ri neither belong to Si, nor Ti.

We now define a set B = B0 ∪ B1, which we claim, will be our centroidal locating set. We let
B0 = {b00, . . . , b

q−1
0 }, where for 0 ≤ i ≤ q − 1, bi0 = x2(i+1) (that is, B0 contains each second vertex

of R0). We let B1 = {b01, . . . , b
p−1
1 }, where for 0 ≤ i ≤ p− 1, bi1 = xi(2q+2) (that is, B1 contains the

first vertex of each set Ri).
An illustration of sets Si, Ti, B0, B1 is given in Figure 6.

Figure 6: Illustration of the sets defined in the proof of Theorem 20.

Observe that B has p+ q − 1 elements. It remains to show that B is a centroidal locating set.
First of all, notice that for any 0 ≤ i ≤ p− 1, bi1 ∈ B1 is the unique vertex that is first located

by itself, and later by {b(i−1) mod p
1 , b

(i+1) mod p
1 } at the same time. For i 6= 0, the (q+ 2)-nd vertex
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of Ri, xi(2q+2)+q+1, is the only one that is located first by {bi1, b
(i+1) mod p
1 } at the same time.

Similarly, xq+1 is the unique vertex first located by the vertices of B0 (in some order), and then
by {b01, b11} at the same time. If x ∈ S0 ∪ T0, if x ∈ B0, x is the only vertex located first by itself
only; if x /∈ B0, x is the only vertex located first by its two neighbours. Hence, all the previously
considered vertices are distinguished from any other vertex in Cn.

Now, let u, v be a pair of vertices not yet proved to be distinguished. If u ∈ Si, v ∈ Ti
(1 ≤ i ≤ p− 1), then d(u, bi1) < d(u, b

(i+1) mod p
1 ) but d(v, bi1) > d(v, b

(i+1) mod p
1 ). If u ∈ Si, v ∈ Si′

(1 ≤ i, i′ ≤ p − 1), then d(u, bi1) < d(u, bi
′

1 ) but d(v, bi1) > d(v, bi
′

1 ). The case where u ∈ Ti, v ∈ Ti′
is symmetric. If u ∈ Si, v ∈ Ti′ (1 ≤ i, i′ ≤ p − 1), if i = (i′ + 1) mod p, then d(u, b

(i+1) mod p
1 ) <

d(u, bi
′

1 ) while d(v, b
(i+1) mod p
1 ) > d(v, bi

′

1 ). Otherwise, d(u, bi1) < d(u, b
(i′+1) mod p
1 ) while d(v, bi1) >

d(v, b
(i′+1) mod p
1 ).

It remains to prove that for 1 ≤ i ≤ p − 1, any two vertices from Si are distinguished (the
case of two vertices of Ti would follow by symmetry). To see this, let sji ∈ Si. If i ≤

⌈
p−1
2

⌉
,

d(sji , b
2i
1 ) = d(sji , b

j
0) = (2q + 2)i − j, and no other vertex of Si has this property. Similarly, if

i >
⌈
p−1
2

⌉
, d(sji , b

2i−p
1 ) = d(sji , b

j
0) = (2q + 2)(p− i) + j. This completes the proof of validity of B.

In order to prove the bound for all cycles, if n is not of the form 2`2, let m = 2`2 be the
integer of this form that is closest to n and such that m ≤ n: n = m + k for some k, and
n < 2(` + 1)2. A construction similar to the previous one can be done. Letting p = `, q = ` − 1,
we construct B1 = {b01, . . . , b

p−1
1 } with bi1 = xi(2q+2) as previously; however this time B1 does not

include any vertex from {xm, . . . , xn−1}. Instead, we let B0 = {x1, . . . , x2q+1} ∪ {xm, . . . , xn−1}:
B0 contains the first 2q + 2 vertices (except x0), together with the k last vertices. It is clear that
the construction works the same way than in the previous proof — we omit the details as a formal
proof would be tedious.2 In total, B = B0 ∪B1 has size at most p+ 2q+ 1 + k = 3`− 1 + k. Since

2(`+ 1)2 − 2`2 = 4`+ 2, k < 4`+ 2 and |B| ≤ 7`+ 1. Furthermore 2`2 < n, and ` <
√
2n
2 . Hence

|B| < 7
√
2n
2 + 1, proving the bound.

Upper bounds for paths. A similar construction than the one for cycles can be done for the
case of paths: for any p, q ≥ 2, if n = p(2q + 2) + 1, then CD(Pn) ≤ p + 2q − 1. The idea of
the construction is again to divide the vertex set {x0, . . . , xn−1} into p portions of size 2q + 2
each (vertex xn−1 does not belong to any such portion). For 0 ≤ i ≤ p, bi1 = xi(2q+2), and B1

contains all vertices of the form bi1. B0 is defined in the same way as for our construction for
cycles, but now we also consider a set B′0 similar to B0, but on the other end of the path. We have
|B0 ∪ B′0 ∪ B1| = p + 1 + 2(q − 1) = p + 2q − 1, and similar arguments than for the construction
for cycles show that B0 ∪B′0 ∪B1 is a centroidal locating set.

Hence, assuming n = (2`)2 + 1 for some ` ≥ 2 and setting p = 2` and q = ` − 1, we get that
CD(Pn) ≤ 4`− 3 = 2

√
n− 1− 3.

For the general bound, once again we do not optimize the constant. Assume that n is not
of the form (2`)2 + 1, and let m = (2`)2 + 1 be the integer of this form that is closest to n and
m ≤ n: we have n = m + k for some k, and n < (2(` + 1))2 + 1. Let p = 2` and q = ` − 1.
Now, B1 is selected as before among the first m vertices; B1 has p elements. B0 contains the first
2q + 2 vertices (except x0), and B′0 contains the last k + 2q + 3 vertices (except xm). In total,
B = B0 ∪ B′0 ∪ B1 has p + (2q + 1) + (k + 2q + 2) = p + 4q + 3 + k = 6` − 1 + k vertices. Since
(2(`+ 1))2 + 1− (2`)2 − 1 = 6`+ 4, k < 6`+ 4. This implies |B| < 12`+ 3. Since n > (2`)2 + 1,

` <
√
n−1
2 ; hence, |B| < 6

√
n− 1 + 3.

5 Complexity results

Let us now turn our attention to the computational complexity of finding a small centroidal locat-
ing set, that is, the computational complexity of the following problem:

2In fact we have not taken care of optimizing the construction, as here all the vertices of B0 are probably not
needed.
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Centroidal Dimension
INSTANCE: A graph G.
TASK: Find a centroidal basis of G.

We have seen in Theorem 11 that for any graph of diameter 2, LD(G)−1 ≤ CD(G) ≤ 2LD(G).
We get the following corollary, showing that Centroidal Dimension is computationally very
hard, even from the approximation point of view (recall that an α-approximation algorithm for
problem P is a polynomial-time algorithm for P which always outputs a solution of size no greater
than α times the size of an optimal solution).

Corollary 21. Centroidal Dimension is NP-hard to approximate within any factor o(lnn)
for graphs on n vertices (even for graphs with a vertex adjacent to all other vertices, and hence
diameter 2-graphs). For graphs of diameter 2, it has an O(lnn)-approximation algorithm.

Proof. Since LD(G)−1 ≤ CD(G) ≤ 2LD(G) and the bounds are constructive, any α-approximation
algorithm (α ≥ 1) for Minimum Locating-Dominating Set can be transformed into an approx-
imation algorithm of factor 2α(1 + 1

OPT ) = 2α(1 + o(1)) for Centroidal Dimension for graphs
of diameter 2, and vice-versa. Indeed, given an α-approximate locating-dominating set D of G,
we construct a centroidal locating set of G of size at most 2|D|. We have 2|D| ≤ 2αLD(G) ≤
2α(CD(G) + 1) = (2α+ 2α

CD(G) )CD(G). For the converse, the reasoning is similar.

This also implies that if Minimum Locating-Dominating Set is NP-hard to α-approximate
for graphs of diameter 2 for some α ≥ 2, then Centroidal Dimension is NP-hard to approximate

within factor
(
α
2

OPT
OPT+1

)
= α(1−o(1))

2 for graphs of diameter 2.

The positive approximation bound follows, as Minimum Locating-Dominating Set is well-
known to be O(lnn)-approximable, see for example Gravier, Klasing and Moncel [8].

Moreover, it follows from a reduction for Minimum Identifying Code in the first author’s
thesis [5, Section 6.4] and a lemma from Gravier, Klasing and Moncel [8] (see also Foucaud [6, 7])
that Minimum Locating-Dominating Set is NP-hard to approximate within a factor of o(lnn)
for graphs having a vertex adjacent to all other vertices. This proves the non-approximability
bound.

Note that Corollary 21 fully determines the computational complexity of Centroidal Di-
mension in graphs of diameter 2 from the approximation point of view. It was recently proved
by Hartung and Nichterlein that the related problem Metric Dimension remains NP-hard to
approximate within a factor of o(lnn) even for subcubic graphs [12]. In general, it would be
interesting to extend the result of Corollary 21 to other families of graphs.

As it is often the case with domination or identification problems in graphs, a good way of
reformulating our problem is to represent it as an instance of Minimum Set Cover, which is
well-known to be (lnn+ 1)-approximable (see Johnson [16]):

Minimum Set Cover
INSTANCE: A hypergraph H = (V,E).
TASK: Find a minimum-size subset C ⊆ E such that

⋃
X∈C X = V .

For example, Metric Dimension for a graph G can be expressed in this way by constructing a
hypergraph HMD(G) on vertex set

(
V (G)

2

)
with a hyperedge Ev for each vertex v ∈ V (G) containing

all pairs {x, y} of vertices with d(x, v) 6= d(y, v). Then HMD(G) has a set cover of size k if and
only if G has a locating set of size k, as shown by Khuller, Raghavachari and Rosenfeld [19]. Hence
Metric Dimension is O(lnn)-approximable.

Next, we give a similar reduction for Centroidal Dimension, but with a weaker approxima-
tion ratio.

Theorem 22. Centroidal Dimension is O
(√

n lnn
)

-approximable for graphs on n vertices.

Proof. Using Observation 2, finding a centroidal locating set is equivalent to finding a set of
pairs of vertices which identifies each pair of vertices in G — where a pair b1, b2 identifies x, y if
d(x, b1) ≤ d(x, b2) but d(y, b1) > d(y, b2), or d(y, b1) ≤ d(y, b2) and d(x, b1) > d(x, b2).
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Let G be a graph on n vertices. We define the hypergraph H = HCD(G) on vertex set

V (H) =
(
V (G)

2

)
. For each pair {x, y} of vertices of G, H has a hyperedge Ex,y that contains all

pairs that are identified by {x, y}.
Let C be a set cover of H. Using our previous observation, one can construct a centroidal

locating set B(C) ofG by taking the union of all elements in the pairs that correspond to hyperedges
in C: B(C) = {x ∈ V (G) | ∃y ∈ V (G), Ex,y ∈ C}. Indeed, every pair of vertices of G is identified
by a pair corresponding to a hyperedge of H. Hence we have:

|B(C)| ≤ 2|C|. (4)

For the other direction, given a centroidal basis B of G, one can construct a set cover of H
consisting of all

(|B|
2

)
pairs of vertices of B: each pair u, v in V (G) is identified by some pair x, y in

B, hence vertex {u, v} in H is covered by the corresponding hyperedge Ex,y. Denoting by SC(H)
the size of an optimal set cover of H, this implies:

SC(H) ≤
(
|B|
2

)
≤
(
CD(G)

2

)
. (5)

Now, in order to approximate Centroidal Dimension, we construct H = HCD(G) from G,
and apply the standard approximation algorithm for Minimum Set Cover [16] to get a set cover
C of H of size O (lnn · SC(H)). By Inequalities (4) and (5), we get a centroidal locating set B(C)
of size at most 2|C| = O (lnn · SC(H)) = O

(
lnn · CD(G)2

)
.

Now, if CD(G) ≥
√

n
lnn , we have a trivial O

(√
n lnn

)
-approximation by selecting all vertices

as a solution, since n = O
(√

n lnn · CD(G)
)

.

If CD(G) ≤
√

n
lnn , |B(C)| = O

(
lnn · CD(G) ·

√
n

lnn

)
= O

(√
n lnn · CD(G)

)
.

We note that the quadratic dependence between SC(H) and CD(G) is necessary for Inequal-
ity (5) in the reduction of Theorem 22. Indeed, when we considered the case of cycles in Section 4,
we had n special pairs to distinguish using other pairs b1, b2 from B, but any pair b1, b2 could only
distinguish a small (constant) number of these n pairs. However, we could build a centroidal locat-
ing set B of size O (

√
n), meaning that a large fraction of the pairs from B were indeed necessary

to distinguish the pairs. Hence this would lead to a set cover of H of size Ω(|B|2) in our reduction.
This suggests that one cannot improve the approximation ratio from Theorem 22 for Centroidal
Dimension by using our reduction. Hence we ask the following question:

Question 23. What is the exact approximation complexity of Centroidal Dimension?

We close the section with a remark on the parameterized complexity of Centroidal Dimen-
sion: this problem is fixed-parameter-tractable with parameter k, the size of the solution, that is,
it admits an algorithm of running time f(k)nO(1) for some computable function f :

Proposition 24. Centroidal Dimension is fixed-parameter-tractable when parameterized by the
size of the solution.

Proof. We know that the order n of a graph with a centroidal locating set of size k is at most b(k),
hence, if the input has more thatn b(k) vertices, we answer NO. Otherwise, we enumerate all

(
n
k

)
subsets of vertices of size k to check if one of them is a centroidal locating set (checking whether
a given set is centroidal locating can be done in time nO(1)). This algorithm has running time(
n
k

)
nO(1) ≤ nk+O(1) = b(k)k+O(1), which is computable and only depends on k.

In contrast to Proposition 24, it was proved by Hartung and Nichterlein [12] that deciding
whether there is a solution of size k for Metric Dimension is highly unlikely to be solvable by
an algorithm of running time no(k).
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