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Abstract

We use a sign-reversing involution to show that trees on the vertex set [n],

considered to be rooted at 1, in which no vertex has exactly one child are counted

by 1
n

∑
n

k=1(−1)n−k
(
n

k

) (n−1)!
(k−1)!k

k−1. This result corrects a persistent misprint in the

Encyclopedia of Integer Sequences.

1 Introduction

A graph is said to be series-reduced or homeomorphically irreducible if no vertex has degree

2, and a tree is a connected graph with no cycles. Several kinds of series-reduced trees

have been enumerated, such as free (sequence A000014 in OEIS [1] ), rooted (A059123),

labeled (A005512), and rooted labeled (A060313), the latter two differing only by a factor

of the number of vertices. A planted tree is a rooted tree in which the root has degree

1. Series-reduced planted trees are counted by A001678. Let us say a rooted tree is

lone-child-avoiding if no vertex has exactly one child. A series-reduced planted labeled

tree on vertex set {0, 1, 2, . . . , n} with root 0 is equivalent to a lone-child-avoiding tree on

[n] := {1, 2, . . . , n}: delete the root and its one edge and re-root the new tree at the child

of the old root.

The number of lone-child-avoiding rooted trees on [n] is, of course, n times the number

of such trees with root 1. We will show that the latter are counted by the alternating sum

1

n

n∑

k=1

(−1)n−k

(
n

k

)
(n− 1)!

(k − 1)!
kk−1 , (1)

correcting an erroneous entry in OEIS that has stood for 40+ years, namely A002792,

which is 1, 0, 1, 1, 13, 51, 601, 4806, 39173, 775351 (that’s all) and surely should be the

sequence 1, 0, 1, 1, 13, 51, 601, 4803, 63673, 775351, . . . (A108919) generated by (1).
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While the standard methods of recurrence relations and generating functions can read-

ily be applied to our problem (see [2], [3, Ex. 3.3.26] for similar applications), we will use

a sign-reversing involution. Section 2 introduces weighted objects whose total weight is

obviously given by (1). Section 3 then presents a sign-reversing involution to show that

the total weight is also equal to the number of trees being counted.

2 G-configurations

A rooted G-configuration of size n is a hybrid graph object on the vertex set [n] with

n − 1 edges, some of which are directed and some not as follows. The undirected edges

form a tree on some nonempty subset V of [n] with some element r of V designated as

the root of the tree. There is exactly one directed edge (arc) from each vertex in [n] \ V

to [n] \ {r} (thus no arc goes into the root) and no two arcs end at the same vertex. We

distinguish between tree vertices (in the tree) and arc vertices (that start an arc). Figure

1 shows an example.
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Figure 1

The number of G-configurations of size n with k tree vertices is
(
n

k

)
[ choose tree

vertices ] × kk−1 [ form rooted tree, Cayley’s formula [4, Chap. 30] ] × (n− 1)(n− 2) · · ·
︸ ︷︷ ︸

n−k

[ choose arcs ].

Now we restrict the root to be 1. A (plain) G-configuration is a rooted G-configuration

whose root is 1, dividing the count by a factor of n. Assign a weight of (−1)n−k to each

G-configuration of size n with k tree vertices. Thus the total weight of all G-configurations

of size n is given by (1).
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3 A sign-reversing involution

We now define a sign-reversing involution on all G-configurations of size n except the ones

whose tree has n vertices and no lone children. The involution converts a lone child to

an arc vertex or vice versa, thereby changing the sign of the weight. The vertex m to be

converted is the maximum among all the arc vertices and the lone-child vertices. This

maximum exists unless all vertices are in the tree and none is a lone child.

Suppose first that m is an arc vertex. Either m is a vertex in a cycle comprised of arcs

or there is a path from m along arcs terminating at some tree vertex c. In both cases,

remove the arc that starts at m. Then, in the first case, insert m into the tree as the

lone child of the root, redirecting into m all the edges that originally went into the root

(Figure 2a). An original arc m → m is lost, but an arc a → m with a 6= m is retained.
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Figure 2a

In the second case, insert m into the tree as the lone child of c, redirecting into m all

the original child edges of c (Figure 2b).
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Figure 2b

After the conversion, m has become a lone-child vertex in the tree and is still the

max among the arc and lone-child vertices. The conversion map is clearly reversible, and
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so defines an involution that changes the sign of the weight. Thus all weights cancel out

except those of the trees we wish to count, all of whose weights are 1, and the total weight,

(1), is the number of our trees.
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