
ar
X

iv
:1

40
7.

00
39

v1
 [

cs
.M

S]
 2

7
Ju

n
20

14

Integer formula encoding

SageTeX package

Edinah K. Gnang

July 2, 2014

Abstract

The following SageTeX document accompanies the papers [GZ, GRS], available from Gnang’s websites. Please re-
port bugs to gnang at cs dot rutgers dot edu. The most current version of the SageTeX document are available from
Gnang’s website

1 Introduction

As quoted by Weber (1893), Leopold Kronecker is known to have said: "God made natural numbers; all else is the work of
man". The proposed packages adresses aspects of combinatorial aspects of integer encodings and can be paraphrased as a
slight modification of Kronecker’s quote: God created the integral unit “1”; all else is the result of computation. The topic of
integer encoding schemes, is one which generates interest both from the amateur and professional mathematician alike, since
:

• barriers to entry to the subject are virtually non existent, in light of the fact that the main ideas can easily be conveyed
to elementary school students.

• it’s topics have ramifications and connections with other topics in mathematics such as algebra, cobinatorics and number
theory.

• most importantly, the topic offers a treasure trove of fascinating easy to state open questions.

A number circuit encoding Φ is a finite directed acyclic graph constructed as follows. Nodes of in-degree zero are labeled by
either of the constants 1 or (−1). All other nodes of the graph have in-degree two and are labeled either (+), (×) or (ˆ). The
two edges going into a gate labeled by (ˆ) are labelled by left and right, in order to distinguish the base (left input) from the
exponent (right input). The nodes of out-degree zero correspond to output gates of the circuit.

The size of Φ is the number of nodes in Φ. The depth of Φ is the length of the longest path in Φ. A number formula
encoding is a special circuit with the additional restriction that every node has out-degree at most one. Given an monotonically
increasing function s

s : N → N

we seek to determine the number of formula encodings for some integer n of size at most s (n). In many cases the analysis is
considerably simplified by considering monotone formula encodings, namely formula encodings further restricted to have all
in-degree zero nodes labeled with the constant 1. It is rather natural to consider formulas for which 1 is never an input to a
multiplication or an exponentiation gate. It was shown in [GRS] there exists constants c > 0 and ρ > 4 such that some real
number number ρ > 4 such that the number of formula encodings of n is asymptotically equal to

c
ρn

(
√
n)

3 (1)

In the more general setting where the label (−1) is allowed for in-zero nodes of the graphs the asymptotics for the number
formula encodings for an integer n of size not exceeding (2n− 1) as n tends to infinity is still unknown. The content of this
paper is the following. In section 2 we provide a general overview of the computational model and our basic assumptions.
The rest of the paper provides an annotated implementations of the various procedures for manipulating formulas encodings.
A seperate sage file which isolates the procedures acompanies the paper and can be used for experimental set up with our
proposed package.

1

http://arxiv.org/abs/1407.0039v1
http://www.cs.rutgers.edu/~gnang

2 Basic overview of the integer formula encoding model

Let F denote the set of formula encodings constructed by combining finitely many fan-in two addition (+), multiplication
(×) and exponentiation (ˆ) gates with restricted to either constants 1 or −1. For the sake of completeness we pin down our
computational model by describing formula transformation rules which prescribe equivalences among distinct elements of F .
Let f , g, and h denote arbitrary elements of F . The equivalence between distinct elements of F is prescribed by the following
transformation rules

1. Commutativity
f + g ⇆ g + f

f × g ⇆ g × f
(2)

2. Associativity
(f + g) + h ⇆ f + (g + h)
(f × g)× h ⇆ f × (g × h)

(3)

3. Unit element
f × 1 ⇆ f

fˆ1 ⇆ f

1ˆf ⇆ 1
f + (1 + (−1)) ⇆ f

f × (1 + (−1)) ⇆ (1 + (−1))
fˆ (1 + (−1)) ⇆ 1

(4)

4. Distributivity
f × (g + h) ⇆ f × g + f × h

fˆ (g + h) ⇆ fˆg × fˆh
(f × g) ˆh ⇆ fˆh× gˆh

. (5)

Finally an important rule is that a formula is considered invalid if admits as a subformula any formula equivalent to
(1 + (−1)) ˆ (−1) via the transformation rules prescribed above. Throughout the discussion, the efficiency of formula en-
codings will be a recurring theme and thus we (often implicitly) exclude from F formulas which admit sub-formulas of the
form

1× f, f × 1, fˆ1, 1ˆf.

We remark as is well known that any formulas from the set F can be uniquely encoded as strings from the the alphabet

A := {1, −1, +, ×, ˆ} , (6)

using either the prefix or the postfix/polish notation.
Let CS0

S1
(n) denotes the number of formulas encoding in F which evaluated to n and of size not exceeding (2n− 1)

constructed using gates from the set S1 and rooted at any of the gates in the set S0 where S0 ⊆ S1 ⊆ {+,×, ˆ}. As pointed
in [GZ, GRS], the non linear recurrence relations which determines the counts for the number of formulas encodings of n and
incidentally the number of vertices of the equivalence class graph associated with the integer n is given by

C
{+}

{+,×,ˆ} (n) =
∑

i

C
{+,×,ˆ}
{+,×,ˆ} (i) C

{+,×,ˆ}
{+,×,ˆ} (n− i) (7)

C
{×}

{+,×,ˆ} (n) =
∑

i

C
{+,×,ˆ}
{+,×,ˆ} (i) C

{+,×,ˆ}
{+,×,ˆ}

(

i(−1)n
)

(8)

C
{ˆ}
{+,×,ˆ} (n) =

∑

i

C
{+,×,ˆ}
{+,×,ˆ} (i) C

{+,×,ˆ}
{+,×,ˆ}

(

ni(−1)
)

(9)

and

C
{+,×,ˆ}
{+,×,ˆ} (n) =

∑

g∈{+,×,ˆ}
C

{g}

{+,×,ˆ} (n) (10)

In order to analyze arithmetic algorithms, we introduce the graph Gn whose vertices are elements F which belong to the
equivalence class of formulas of size at most (2n− 1) which evaluate to some given number n. We shall refer to Gn as the
arithmeticahedron of n. Edges are placed in between any two vertices of Gn if either of the following conditions are true

2

1. Each formula vertex can be obtained from the other by the use of a single associativity transformation rules.

2. Each formula vertex can be obtained from the other by the use of a single commutativity transformation rule.

3. Each formula can be obtained from the other by the use of one of the distributivity transformation rules.

Arithmetical algorithm can thus be depicted as walks on some arithmeticahedron and incidentally the performance of algo-
rithm can be measured in terms of the total length of walks on some arithmeticahedron.

3 Listing integer monotone formula encodings

We present here the implementation details of our integer encoding packages. The package will be crucial for setting up
various experiments which would suggest interesting conjecture and possibly proofs to some of these conjectures. We shall
think of our formulas as rooted binary trees with leafs labeled with the integral unit (1) and all other vertices labeled with
either the addition (+), multiplication (×), or exponentiation (ˆ) operation. It shall be convenient to use the bracket notation
to specify such trees to sage and note that the prefix notation is easily obtain from the bracket notation.

def T2Pre(expr):

"""

Converts formula written in the bracket tree encoding to the

Prefix string encoding notation

EXAMPLES:

The implementation here tacitly assumes that the input

is a valid binary bracket formula-tree expression. The usage of the function

is illustrated bellow.

::

sage: T2Pre([’+’,1,1])

’+11’

AUTHORS:

- Edinah K. Gnang and Doron Zeilberger

To Do :

-

"""

s = str(expr)

return ((((s.replace("[","")).replace("]",""))\

.replace(",","")).replace("’","")).replace(" ","")

As the code for the function T2Pre suggest the binary-tree formula is very close to the prefix notation. The usage of the
function is illustrated bellow

T2Pre ([′+′, 1, 1]) = ’+11’ (11)

A minor variation on the prefix notation called the postfix notation is implemented bellow

def T2P(expr):

"""

The function converts binary formula-tree format to the more compacts

postfix string notation.

3

EXAMPLES:

The implementation here tacitly assumes that the input

is a valid binary formula-tree expression. The usage of the function

is illustrated bellow.

::

sage: T2P([’+’,1,1])

’11+’

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

-

"""

s = str(expr)

return ((((s.replace("[","")).replace("]",""))\

.replace(",","")).replace("’","")).replace(" ","")[::-1]

T2P ([′+′, 1, 1]) = ’11+’ (12)

When using the Wilf Methodology [NW], we will require a random number generator which amounts to rolling a loaded die.
We implement here the function allowing us to roll a loaded die.

def RollLD(L):

"""

The functions constructs a loaded die according to values specified

by the input list of positive integers. The input list also

specifies the desired bias for each one of the faces of the dice

EXAMPLES:

The tacitly assume that the input list is indeed made up of positive integers

as no check is perform to validate that assumption

::

sage: RollLD([1, 2, 3])

2

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

Summing up all the

N = sum(L)

r = randint(1,N)

for i in range(len(L)):

if sum(L[:i+1]) >= r:

return i+1

4

Given a list of positive integers the procedures operates in two steps. First it samples uniformly at random a positive integer
less than the sum of all the positive integers in the input list. The last step consist in returning the largest index of the
element in the input list such that the sum of the integers preceding that index is less or equal to the sampled integers.

3.1 Formulas only using additions

We provide here a straight forward implementation of procedures for listing formulas which only uses addition.

@cached_function

def FaT(n):

"""

The procedure outputs the list of Formula-binary Trees

constructed using fan-in two addition gates and having

inputs restricted to the integral unit 1 and the resulting

formulas each evaluate to the input integer n > 0.

EXAMPLES:

The procedure expects a positive integer otherwise

it returns the empty list.

::

sage: FaT(3)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

-

"""

if n==1:

return [1]

elif n > 1 and type(n) == Integer:

gu = []

for i in range(1,n):

gu = gu + [[’+’, g1, g2] for g1 in FaT(i) for g2 in FaT(n-i)]

return gu

else :

return []

We illustrate bellow the output of the function call with the inputs 1 and 2.

FaT (1) = [1] . (13)

FaT (2) = [[+, 1, 1]] . (14)

The formulas returned by the FaT procedure are in binary tree form. For convenience we may implement a function which
output the expression in prefix notation, the function for formatting the encoding into prefix is provided bellow

@cached_function

def FaPre(n):

"""

The procedure outputs the list of Formula in prefix

5

notation constructed using fan-in two addition gates

having inputs restricted to the integral unit 1

and the resulting formula evaluates to the input

integer n > 0.

EXAMPLES:

The input n must be greater than 0

::

sage: FaPre(3)

[’+1+11’, ’++111’]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return [T2Pre(g) for g in FaT(n)]

The postfix variant of the function implemented is immediate and provided bellow.

@cached_function

def FaP(n):

"""

The set of formula only using addition gates

which evaluates to the input integer n in prefix notation.

EXAMPLES:

The input n must be greater than 0

::

sage: FaP(3)

[’11+1+’, ’111++’]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Nothing as this procedure is optimal

"""

return [T2P(g) for g in FaT(n)]

Having implemented procedures which produces formulas using only addition, we now turn to the problem of enumerating
such formulas. Clearly we could enumerate the sets by first producing the formulas and then enumerating them, but this
would lead to a very inefficient use of space and time resources. Instead we compute recurrence formulas which determines
the number of formulas encoding using only additions and with input restricted to the integral unit 1.

@cached_function

def Ca(n):

"""

The procedure outputs the number of Formula-binary Trees

6

constructed using fan-in two addition gates and having

inputs restricted to the integral unit 1 and the each

of the resulting formulas each evaluate to the input integer n > 0.

EXAMPLES:

The input n must be greater than 0

::

sage: Ca(3)

2

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n == 1:

return 1

else :

return sum([Ca(i)*Ca(n-i) for i in range(1,n)])

We illustrate the usage of the functions bellow
Ca (1) = 1. (15)

Ca (2) = 1. (16)

Ca (3) = 2. (17)

Ca (4) = 5. (18)

Ca (5) = 14. (19)

furthermore we may note that

Ca (n) =
∑

i+j=n

Ca (i) Ca (j) , Ca (1) = 1, (20)

which would suggest that for
Ca (1) = 1,

∑

n≥1

Ca (n)xn =
∑

n≥1

∑

i+j=n

Ca (i) Ca (j)

 xn, (21)

To avoid redundancy we may choose to only list formulas for which the second term of the tree is less or equal to the integer
encoded in the left term of the tree. We provide bellow the implementation of the procedure .

@cached_function

def LopFaT(n):

"""

Outputs all the formula-binary trees only using addition

such that the first term of the addition is >= the second term.

EXAMPLES:

The input n must be greater than 0

::

sage: LopFaT(3)

[[’+’, [’+’, 1, 1], 1]]

7

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n == 0:

return []

elif n == 1:

return [1]

else :

gu = []

for i in range(1,1+floor(n/2)):

gu = gu + [[’+’, g1, g2] for g1 in LopFaT(n-i) for g2 in LopFaT(i)]

return gu

For outputting such formulas in prefix notation we use the function implemented bellow

def LopFaPre(n):

"""

Outputs all the formula-binary tree

which evaluate to the input integer n such that the first

term of the addition is >= the second term in prefix notation.

EXAMPLES:

The input n must be greater than 0

::

sage: LopFaPre(2)

"+11"

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return [T2Pre(f) for f in LopFaT(n)]

For outputting such formulas in postfix notation we use the function implemented bellow

def LopFaP(n):

"""

Outputs all the formula-binary tree

which evaluate to the input integer n such that the first

term of the addition is >= the second term in postfix notation.

EXAMPLES:

The input n must be greater than 0

::

sage: LopFaP(2)

8

"11+"

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return [T2P(f) for f in LopFaT(n)]

Similarly we provide an implementation for a distinct procedure for enumerating formulas trees for which the second term
of the tree is less or equal to the integer encoded in the left term of the tree.

@cached_function

def LopCa(n):

"""

Outputs the number of formula-binary trees only using addition gates

such that the first term of the addition is >= the second term.

EXAMPLES:

The input n must be greater than 0

::

sage: LopCa(3)

1

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n == 1:

return 1

else :

return sum([LopCa(i)*LopCa(n-i) for i in range(1,1+floor(n/2))])

In many situations, there will be way more formulas then it would be reasonable to output in a list, however for experi-
mental purposes it is often sufficient to generate formulas of interest uniformly at random. Incidentally following the Wilf
Methodology we implement a function for sampling uniformly at random formula which use only addition gates and have
input restricted to the integer 1.

def RaFaT(n):

"""

Outputs a uniformly randomly chosen formula-binary tree

which evaluate to the input integer n > 0.

EXAMPLES:

The input n must be greater than 0

::

sage: RaFat(3)

[’+’, [’+’, 1, 1], 1]

9

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n == 0:

return []

if n == 1:

return [1]

else :

Rolling the Loaded Die.

j = RollLD([Ca(i)*Ca(n-i) for i in range(1,n+1)])

return [’+’, RaFaT(j), RaFaT(n-j)]

Quite straightforwardly we provide bellow the implementation of the procedure for sampling a random formulas but returning
them respectively in prefix notation

def RaFaPre(n):

"""

Outputs a uniformly randomly chosen formula-binary tree

which evaluate to the input integer n in prefix notation.

EXAMPLES:

The input n must be greater than 0

::

sage: RaFaPre(3)

"++111"

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return(T2Pre(RaFaT(n)))

For outputting uniformly sampled random formula in postfix notation we implement the function bellow

def RaFaP(n):

"""

Outputs a uniformly randomly chosen formula-binary tree

which evaluate to the input integer n in postfix notation.

EXAMPLES:

The input n must be greater than 0

::

sage: RaFaP(3)

111++

10

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return(T2P(RaFaT(n)))

a formula where the left term is greater or equal to the right term.

def RaLopFaT(n):

"""

Outputs a uniformly randomly chosen formula-binary tree

which evaluate to the input integer n such that the first

term of the addition is >= the second term.

EXAMPLES:

The input n must be greater than 0

::

sage: RaLopFaT(3)

[’+’, [’+’, 1, 1], 1]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n == 1:

return [1]

else:

Rolling the Loaded Die.

j = RollLD([LopCa(i)*LopCa(n-i) for i in range(1,1+floor(n/2))])

return [’+’, RaLopFaT(n-j), RaLopFaT(j)]

first term greater or equal to the second term in prefix notation we have

def RaLopFaPre(n):

"""

Outputs a uniformly randomly chosen formula-binary tree

which evaluate to the input integer n such that the first

term of the addition is >= the second term in Prefix notation.

EXAMPLES:

The input n must be greater than 0

::

sage: RaLopFaPre(3)

"++111"

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

11

To Do :

- Try to implement faster version of this procedure

"""

return T2Pre(RaLopFaT(n))

right term greater or equal to the left term expressed in postfix notation we use the function implemented bellow.

def RaLopFaP(n):

"""

Outputs a uniformly randomly chosen formula-binary tree

which evaluate to the input integer n such that the first

term of the addition is >= the second term in Postfix notation.

EXAMPLES:

The input n must be greater than 0

::

sage: RaLopFaP(3)

"111++"

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return T2P(RaLopFaT(n))

3.2 Formulas only using additions and multiplications

We discuss here in detail procedures for producing and enumerating formulas which result from a finite combination of fan-in
two addition, multiplication gates and having inputs restricted to integer 1. The basic principles underlying most procedures
consists in partitioning the set of formula into disjoint sets according to the root gate of the formulas considered. In this
particular case we will consider the partition of formulas according to wether or not the root gate corresponds to an addition
or a multiplication gate.

@cached_function

def FamTa(n):

"""

The set of formula-binary trees only using additions and

multiplications gates with the root gate being an addition

gate and most importantly evaluates to the input integer n.

EXAMPLES:

The input n must be greater than 0

::

sage: FamTa(3)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

12

To Do :

- Try to implement faster version of this procedure

"""

if n == 0:

return []

elif n == 1:

return [1]

else :

gu = []

for i in range(1,n):

gu = gu + [[’+’, g1, g2] for g1 in FamT(i) for g2 in FamT(n-i)]

return gu

The procedures which determines the formulas with root gate corresponding to a multiplication gate is provided bellow :

@cached_function

def FamTm(n):

"""

The set of formula-binary trees only using addition and

multiplication gates with root gate corresponding to a

multiplication gate which evaluates to the input integer n.

EXAMPLES:

The input n must be greater than 0

::

sage: FamTm(4)

[[’*’, [’+’, 1, 1], [’+’, 1, 1]]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n == 1:

return []

else :

gu = []

for i in range(2, 1+floor(n/2)):

if mod(n,i) == 0:

gu = gu + [[’*’, g1, g2] for g1 in FamT(i) for g2 in FamT(n/i)]

return gu

We implement bellow the function which compute the union of the two partition of formulas, those rooted at an addition
gate and the ones rooted at a multiplication gate.

@cached_function

def FamT(n):

"""

The set of formula-binary trees only using addition and

13

multiplication gates.

EXAMPLES:

The input n must be greater than 0

::

sage: FamT(3)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return (FamTa(n) + FamTm(n))

Again following the Wilf methodology we implement distinct procedures for enumerating formulas which result from a finite
combination of fan-in two addition and multiplication gates. We start by implementing the function which enumerate for-
mulas rooted at an addition gate

@cached_function

def Cama(n):

"""

Output the size of the set of formulas produced by the procedure FamTa(n).

EXAMPLES:

The input n must be greater than 0

::

sage: Cama(4)

5

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n==1:

return 1

else:

return sum([Cam(i)*Cam(n-i) for i in range(1,n)])

We then implement the function which enumerate formulas resulting from finite combination of addition, multiplication gates
rooted at a multiplication gate.

@cached_function

def Camm(n):

"""

Output the size of the set of formulas produced by the procedure FamTm(n).

14

EXAMPLES:

The input n must be greater than 0

::

sage: Camm(4)

1

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n==1:

return 1

else:

return sum([Cam(i)*Cam(n/i) for i in range(2,1+floor(n/2)) if mod(n,i)==0])

Finally we implement the function which enumerates all formulas which result from a finite combination of addition, multi-
plication gates which evaluate to the input integer

@cached_function

def Cam(n):

"""

Output the size of the set of formulas produced by the procedure FamT(n).

EXAMPLES:

The input n must be greater than 0

::

sage: Cam(6)

52

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return Cama(n)+Camm(n)

As we have mentioned for formulas of large sizes we implement a function which samples uniformly at random formulas
which evaluate to the input integer and result from a finite combination of addition and multiplication gates and rooted at
an addition gate

def RaFamTa(n):

"""

Outputs a formula-binary tree formula sampled uniformly at random

amoung all formulas which evaluates to the input integer n

the formula results from a finite combination of addition

and multiplication gates and is rooted at an addition gate.

EXAMPLES:

15

The input n must be greater than 0

::

sage: RaFamT(6)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n==1:

return 1

else:

j = RollLD([Cam(i)*Cam(n-i) for i in range(1,n+1)])

return [’+’, RaFamT(j), RaFamT(n-j)]

Similarly we implement a function which samples a uniformly at random a formula which evaluate to the input integer, which
results from a finite combination of addition, multiplication gates and is rooted at a multiplication gate

def RaFamTm(n):

"""

Outputs a formula-binary tree sampled uniformly at random

which evaluates to the input integer n using only addition

and multiplication gates and rooted at a mulitplication.

EXAMPLES:

The input n must be greater than 0

::

sage: RaFamT(6)

[’*’,[’+’, 1, 1], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n==1:

print ’1 has no multiplicative split’

return I

elif is_prime(n):

print str(n)+’ has no multiplicative split’

return I

else:

lu = []

L = []

for i in range(2,1+floor(n/2)):

if mod(n,i)==0:

lu.append(i)

16

L.append(Cam(i)*Cam(n/i))

j = RollLD(L)

return [’*’, RaFamT(lu[j-1]), RaFamT(n/lu[j-1])]

Finally we can combine the two functions implemented above to obtain a functions which samples uniformly at random a
formula which evaluates to the input integer and results from a finite combination of addition and multiplication gate

def RaFamT(n):

"""

Outputs a formula-binary tree sampled uniformly at random

which evaluates to the input integer n using only addition

and multiplication gates.

EXAMPLES:

The input n must be greater than 0

::

sage: RaFamT(6)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n==1:

return 1

else:

i = RollLD[Cama(n),Camm(n)]

if i==1:

return RaFamTa(n)

else :

return RaFamTm(n)

For obtaining the list all formulas which combine addition and multiplication express using the postfix notation and evaluate
to the input integer we have

@cached_function

def FamP(n):

"""

Outputs the set of formula-binary tree written in Postfix notation

which evaluates to the input integer n using only addition

and multiplication gates.

EXAMPLES:

The input n must be greater than 0

::

sage: FamP(2)

’11+’

17

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return [T2P(f) for f in FamT(n)]

Similarly for obtaining the list all formulas which combine addition and multiplication gates and evaluate to the input integer
express in the prefix notation we have

@cached_function

def FamPre(n):

"""

Outputs the set of formula-binary tree written in prefix notation

which evaluates to the input integer n using only addition

and multiplication gates.

EXAMPLES:

The input n must be greater than 0

::

sage: FamPre(6)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return [T2Pre(f) for f in FamT(n)]

For obtaining the randomly sample integer which evaluates to the input integer and is uniformly sampled among all formulas
which combine addition and multiplication express using the postfix notation we have

@cached_function

def RaFamP(n):

"""

Outputs a uniformly randomly sample formula-binary tree written

in postfix notation which evaluates to the input integer n using

only addition and multiplication gates.

EXAMPLES:

The input n must be greater than 0

::

sage: RaFamP(6)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

18

To Do :

- Try to implement faster version of this procedure

"""

return T2P(RaFamT(n))

Similarly obtaining the randomly sample integer which evaluates to the input integer and is uniformly sampled among all
formulas which combine addition and multiplication express using the prefix notation we have

@cached_function

def RaFamPre(n):

"""

Outputs a uniformly randomly sample formula-binary tree written

in prefix notation which evaluates to the input integer n using

only addition and multiplication gates.

EXAMPLES:

The input n must be greater than 0

::

sage: RaFamPre(6)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return T2Pre(RaFamT(n))

3.3 Formulas only using additions, multiplications and exponentiation

We discuss here procedures for producing and enumerating formulas using a combination of fan-in two addition, multiplica-
tion and exponentiation gates. the principles used are very much analogous to those used in the previous section. We start
by formulas rooted at addition gates

@cached_function

def FameTa(n):

"""

The set of formula-binary trees only using addition,

multiplication, and exponentiation gates. The root gate

being an addition gate and and the formula evaluates to

the input integer n.

EXAMPLES:

The input n must be greater than 0

::

sage: FameTa(2)

[’+’, 1, 1]

19

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n == 1:

return [1]

else:

gu = []

for i in range(1,n):

gu = gu + [[’+’, g1, g2] for g1 in FameT(i) for g2 in FameT(n-i)]

return gu

next we implement procedure for listing formulas rooted at a multiplication gate

@cached_function

def FameTm(n):

"""

The set of formula-binary trees only using addition.

multiplication and exponentiation gates with the top

gate being a multiplication gate which evaluates to the

input integer n.

EXAMPLES:

The input n must be greater than 0

::

sage: FameTm(3)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n == 1:

return []

else :

gu = []

for i in range(2,1+floor(n/2)):

if mod(n,i) == 0:

gu = gu + [[’*’, g1, g2] for g1 in FameT(i) for g2 in FameT(n/i)]

return gu

and finally we list formulas rooted at an exponentiation gates

@cached_function

def FameTe(n):

"""

20

The set of formula-binary trees only using addition.

multiplication and exponentiation gates with the top

gate being an exponetiation gate which evaluates to the

input integer n.

EXAMPLES:

The input n must be greater than 0

::

sage: FameTe(3)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n == 1:

return []

else :

gu = []

for i in range(2,2+floor(log(n)/log(2))):

if floor(n^(1/i)) == ceil(n^(1/i)):

gu = gu + [[’^’, g1, g2] for g1 in FameT(i) for g2 in FameT(n^(1/i))]

return gu

Finally combining the three function implemented above we obtain the function which lists all formulas which combine ad-
dition, multiplication, and exponentiation gates which evaluate to the input integer.

@cached_function

def FameT(n):

"""

The set of formula-binary trees only using addition.

multiplication and exponentiation gates which evaluates to the

input integer n.

EXAMPLES:

The input n must be greater than 0

::

sage: FameT(3)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return FameTa(n) + FameTm(n) + FameTe(n)

21

For a more efficient enumeration of the formulas resulting from combination of addition, multiplication and exponentitation
gates which evaluate to the input integer we consider here enumerating procedure for formulas rooted at the addition gate:

@cached_function

def Camea(n):

"""

Output the size of the set of formulas produced by the procedure FamTa(n).

EXAMPLES:

The input n must be greater than 0

::

sage: Camea(6)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n==1:

return 1

else:

return sum([Came(i)*Came(n-i) for i in range(1,n)])

then rooted at a multiplication gate

@cached_function

def Camem(n):

"""

Output the size of the set of formulas produced by the procedure FamTa(n).

EXAMPLES:

The input n must be greater than 0

::

sage: Camm(6)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n==1:

return 1

else:

return sum([Came(i)*Came(n/i) for i in range(2,1+floor(n/2)) if mod(n,i)==0])

then rooted at an exponentiation gate

22

@cached_function

def Camee(n):

"""

Output the size of the set of formulas produced by the procedure FamTa(n).

EXAMPLES:

The input n must be greater than 0

::

sage: Camee(6)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n==1:

return 1

else:

return sum([Came(i)*Came(n^(1/i)) for i in range(2,2+floor(log(n)/log(2)))\

if floor(n^(1/i)) == ceil(n^(1/i))])

formula expressed earlier and repeated here for the convenience of the reader

C
{+}

{+,×,ˆ} (n) =
∑

0<i<n

C
{+,×,ˆ}
{+,×,ˆ} (i) C

{+,×,ˆ}
{+,×,ˆ} (n− i) (22)

C
{×}

{+,×,ˆ} (n) =
∑

1 < i <
⌊

n
2

⌋

n | i

C
{+,×,ˆ}
{+,×,ˆ} (i) C

{+,×,ˆ}
{+,×,ˆ}

(

i(−1)n
)

(23)

C
{ˆ}
{+,×,ˆ} (n) =

∑

1 < i <
⌊

n
2

⌋

⌊

ni(−1)
⌋

=
⌈

ni(−1)
⌉

C
{+,×,ˆ}
{+,×,ˆ} (i) C

{+,×,ˆ}
{+,×,ˆ}

(

ni(−1)
)

(24)

and

C
{+,×,ˆ}
{+,×,ˆ} (n) =

∑

g∈{+,×,ˆ}
C

{g}

{+,×,ˆ} (n) (25)

so that procedure which enumerate formulas evaluating to the input integer and resulting from finite combination of addition,
multiplication and exponentitation gates is implemented bellow

@cached_function

def Came(n):

"""

Output the size of the set of formulas produced by the procedure FamTa(n).

EXAMPLES:

The input n must be greater than 0

::

23

sage: Came(6)

[[’+’, 1, [’+’, 1, 1]], [’+’, [’+’, 1, 1], 1]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

return Camea(n)+Camem(n)+Camee(n)

The code for computing the base of the exponent in the asymptotic formula, when exponentiation gates are not allowed

def ConstanI(nb_terms, nb_itrs, prec):

expressing the truncated series

f = sum([Cam(n)*x^n for n in range(1,nb_terms)])

g = sum([Cam(d)*(f.subs(x=(x^d))-x^d) for d in range(2,nb_terms)])

g = 1/4-g

xk = 1/4.077

for itr in range(nb_itrs):

xkp1 = RealField(prec)(g.subs(x=xk))

xk = xkp1

return RealField(prec)(1/xk)

The code for computing the base of the exponent in the asymptotic formula, when exponentiation gates are allowed

def ConstanII(nb_terms, nb_itrs, prec):

expressing the truncated series

f = sum([Came(n)*x^n for n in range(1,nb_terms)])

g = sum([Came(d)*(f.subs(x=(x^d))-x^d) for d in range(2,nb_terms)])

g = 1/4-g

xk = 1/4.131

for itr in range(nb_itrs):

xkp1 = RealField(prec)(g.subs(x=xk))

xk = xkp1

return RealField(prec)(1/xk)

Code for computing the constant factor multiple in the asymptotic formula

def ConstanIII(nb_terms, nb_itrs, prec):

f = sum([Cam(n)*x^n for n in range(1,100)])

g = sum([Cam(d)*(f.subs(x=(x^d))-x^d) for d in range(2,100)])

g1 = 1/4-g

Iteration

xk = 1/4.077

for itr in range(20):

xkp1 = RealField(100)(g1.subs(x=xk))

xk = xkp1

print RealField(100)(1/xk)

Setting the constant rho

r = xk

24

h = x + g

G = expand((1-4*h)*sum([(x/r)^j for j in range(100)]))

L = G.operands()

Ls = []

for i in range(100):

Ls.append(L[len(L)-i-1])

G = sum(Ls)

G1 = sqrt(G.subs(x = x*r))

c =-1/2/sqrt(pi)

print N(-G1.subs(x=1)*c/2)

C = N(-G1.subs(x=1)*c/2)

Computing the list of ratio for ploting.

Rt = [Cam(n)*sqrt(n^3)/(C*(1/r)^n) for n in range(2,100)]

Plt = line([(n,N(Rt[n])) for n in range(len(Rt))])

return [Plt,Rt]

4 Shortest Formulas

Finally we use dynamic programming to determine the shortest monotone formula which evaluates to input integers.

@cached_function

def ShortestTame(n):

"""

Outputs the length and an example of the smallest binary-tree

formula using fan-in two addition, multiplication and

exponentiation gates.

EXAMPLES:

The input n must be greater than 0

::

sage: ShortestTame(6)

[9, [’*’, [’+’, 1, 1], [’+’, 1, [’+’, 1, 1]]]]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

if n==1:

return [1,1]

else:

aluf = []

si = 2*n

for i in range(1,n):

T1 = ShortestTame(i)

T2 = ShortestTame(n-i)

if (T1[0]+T2[0]+1) < si:

si = T1[0]+T2[0]+1

if Eval(T1[1]) <= Eval(T2[1]):

aluf = [’+’, T1[1], T2[1]]

25

else:

aluf = [’+’, T2[1], T1[1]]

for i in range(2,floor(n/2)):

if mod(n,i)==0:

T1 = ShortestTame(i)

T2 = ShortestTame(n/i)

if (T1[0]+T2[0]+1) < si:

si = T1[0]+T2[0]+1

if Eval(T1[1]) <= Eval(T2[1]):

aluf = [’*’, T1[1], T2[1]]

else:

aluf = [’*’, T2[1], T1[1]]

for i in range(2,2+floor(log(n)/log(2))):

if floor(n^(1/i)) == ceil(n^(1/i)):

T1 = ShortestTame(n^(1/i))

T2 = ShortestTame(i)

if (T1[0]+T2[0]+1) < si:

si = T1[0]+T2[0]+1

aluf = [’^’, T1[1], T2[1]]

return [si, aluf]

encoding is given by the following tropicalization of the enumeration recurrence formula

S+ (n) = mink {1 + S (k) + S (n− k)}
S× (n) = mink

{

1 + S (k) + S
(

n · k−1
)}

Sˆ (n) = mink

{

1 + S (n) + S
(

n(k
−1)

)}

(26)

and
S (n) = min

{

S+ (n) , S× (n) , Sˆ (n)
}

(27)

5 Goodstein encodings

Throughout the discussion the special formula 1 + 1 occurs often enough to deserve an abbreviation, we shall use here the
symbol x, incidentally it is immediate that the our formula encoding can be viewed as functions and this fact will of some
significance in subsequent discussion. But first as we have introduced our canonical encodings let us describe two natural
algorithms for recovering formula encoding for relatively large set of integers. For computing Goodstein canonical forms for
relatively large set of integers we consider the following set recurrence defined by

N0 = {1} (28)

Nt+1 =
⋃

S⊂{{0}∪Nt}\{∅}

∑

s∈S

xs (29)

note that for k > 1, we have
|Nk| = k2. (30)

the implementation of the recurrence is just as straight forward.

def goodstein(number_of_iterations=1):

"""

Produces the set of symbolic expressions associated with the

the first canonical form. In all the expressions the symbolic

26

variable x stands for a short hand notation for the formula (1+1).

::

sage: goodstein(1)

[1, x^x, x, x^x + 1, x + 1, x^x + x, x^x + x + 1]

AUTHORS:

- Edinah K. Gnang, Maksym Radziwill and Doron Zeilberger

To Do :

- Try to implement faster version of this procedure

"""

Initial condition of Initial set

N0 = [1, x]

Main loop performing the iteration

for iteration in range(number_of_iterations):

Implementation of the set recurrence

N0 = [1] + [x^n for n in N0]

Initialization of a buffer list N1

which will store updates to N0

N1 = []

for n in Set(N0).subsets():

if n.cardinality() > 0:

N1.append(sum(n))

N0 = list(N1)

return N0

As illustration for the computation

N1 = [1, x, xx, x+ 1, xx + 1, xx + x, xx + x+ 1] (31)

One of the major benefit of the Goodstein encoding is the fact the additional transformation rule

1 + 1 ⇆ x (32)

results in the classical algorithms for integer addition, multiplication and exponentiation. In other words the Goodstein encod-
ing unifies into a single algorithm the seemingly different decimal algorithms for addition, multiplication and exponentiation,
the price we pay for such a convenience is a factor O (log log (n)) additional space for encoding the integers.

Example:

Let us illustrate the general principle by recovering the Goodstein encoding for the number encoded by the formula

(xx + 1)
(x+1)

the main steps of the sequence of transformations are thus sketch bellow:

(xx + 1) (xx + 1)
1+1 −→ (xxxx + xx + xx + 1) (xx + 1) −→

(

xxx

+ xx+1 + 1
)

(xx + 1) −→ xxx+x+xxx+1+xxx

+xx+1+x+1

6 Zeta recursion and the combinatorial tower sieve

Second Canonical Form (SCF) encoding are derived from the zeta recursion.

Ň1 := {1} ∪ P1 := {2} (33)

N(0)
k+1 = Ňk ∪

]

k2, 2(
(k−1)2+1)

]

∩
∏

p∈Pk

{

1 ∪ p
Ňk∩

[

1,logp

{

2(
(k−1)2+1)

}]}

 (34)

27

and Ň(0)
k+1 is deduced from N(0)

k+1 via completion and hence

P(0)
k+1 = Pk ∪

(

Ň(0)
k+1\N

(0)
k+1

)

(35)

more generally we have that

∀ 0 ≤ t <
(

k2− (k−1)2
)

, N
(t+1)
k+1 = Ň

(t)
k+1 ∪

]

2(
k−12+t), 2(

k−12+t+1)
]

∩
∏

p∈P
(t)
k+1

{

{1} ∪ p
Ňk∩

[

1,logp

{

2(
k−12+t+1)

}]}

(36)

quite similarly Ň(t+1)
k+1 is deduced from N(t+1)

k+1 via completion and hence

P(t+1)
k+1 = P(t)

k+1 ∪
(

Ň(t+1)
k+1 \N(t+1)

k+1

)

, (37)

finally

Ňk+1 := Ň(k2−(k−1)2)
k+1 , and Pk+1 := P(k2−(k−1)2)

k+1 (38)

The associated rational subset construction Qk is specified by

Qk+1 =
∏

p∈Pk+1

{

(

p−1
)Ňk+1 ∪ {1} ∪ pŇk+1

}

. (39)

The implementation of the zeta recurrence is therefore given by

def SCF(nbitr):

Symbol associated with the prime 2.

x = var(’x’)

Pr corresponds to the initial list of primes

Pr = [x]

Nu corresponds to the initial list of integer

NuC = [1,x]; TNuC = [1,x]

Initializing the upper and lower bound

upr_bnd = 2^2; lwr_bnd = 2

Computing the set recurrence

for itr in range(nbitr):

for jtr in range(log(upr_bnd,2)-log(lwr_bnd,2)):

TpNu = [1]

for p in Pr:

TpNu=TpNu+\

[m*pn for m in TpNu for pn in [p^n for n in NuC if (p^n).subs(x=2)<=\

2^(N(log(lwr_bnd,2))+jtr+1)] if (m*pn).subs(x=2)<=2^(N(log(lwr_bnd,2))+jtr+1)]

Keeping the elements within the range of the upper and lower bound

Nu = [f for f in TpNu if (2^(N(log(lwr_bnd,2))+jtr)<\

f.subs(x=2) and f.subs(x=2)<=2^(N(log(lwr_bnd,2))+jtr+1))]

print ’\nThe iteration will find ’+\

str(2^(N(log(lwr_bnd,2))+jtr+1)-2^(N(log(lwr_bnd,2))+jtr)-len(Nu))+\

’ new primes in [’+str(2^(N(log(lwr_bnd,2))+jtr))+\

’, ’+str(2^(N(log(lwr_bnd,2))+jtr+1))+’]’

Obtaining the corresponding sorted integer list

la = [f.subs(x=2) for f in Nu]; lb = copy(la); lb.sort()

Obtaining the sorting permutation

perm = []

for i1 in range(len(la)):

28

for i2 in range(len(lb)):

if lb[i1]==la[i2]:

perm.append(i2)

break

Sorting the list using the obtained permutation

Nu = [Nu[perm[j]] for j in range(len(Nu))]

Computing the set completion

TNuC = TNuC + Nu

l = len(TNuC)

i = 2^(log(lwr_bnd,2)+jtr)-1

while i<l-1:

if(TNuC[i+1].subs(x=2)-TNuC[i].subs(x=2)==2):

Pr.append(TNuC[i]+1)

TNuC.insert(i+1,TNuC[i]+1)

l=l+1

else:

i=i+1

Updating the list of integers

NuC = TNuC

Updating the upper and lower bound

lwr_bnd = upr_bnd; upr_bnd = 2^upr_bnd

return [Pr, NuC]

We deduce from the Similarly the code for obtaining SCF encodings for rational numbers is provided bellow.

def RationalSet(Pr, NuC):

Initialization of the rational set

QuC = [1]

Computing the set

for p in Pr:

QuC=QuC+[m*pn for m in QuC for pn in [p^n for n in NuC]+\

[p^(-n) for n in NuC]]

return QuC

If our in main interest is however to sieve out only SCF encodings of primes, we would consider the following slightly modified
zeta recursion

N2,k+1 =
⋃

n ∈ Ňk

2k+1 < 2n ≤ 2k+2

2n. (40)

∀q ∈ Pk such that q > 2 we consider the sets

N1,q,k+1 =
⋃

n ∈ Ňk

2 < qn ≤ 2k+2

qn (41)

N2,q,k+1 =
⋃

n ∈ N1,q,k+1

n < npm < 2k+2

p ∈ Pk, and p < q

n pm (42)

...

29

Nt+1,q,k+1 =
⋃

n ∈ Nt,q,k+1

n < npm < 2k+2

p ∈ Pk, and p < q

npm (43)

...

N|Pk|,q,k+1 =
⋃

n ∈ N|Pk|−1, q,k+1

2k+1 < npm < 2k+2

n pm (44)

and hence
∀q ∈ Pk\ {2} , Nq, k+1 =

⋃

0<i≤π(q)

Ni,q,k+1 (45)

furthermore we have
[

2k+1, 2k+2
]

∩ Nk+1 =
⋃

q∈Pk

Nq,k+1 (46)

Finally, the set completion of Nk+1 to Ňk+1 is obtained by adjoining to the set Nk+1 formula integer encodings of the form
1 + min {m,n}, for all unordered pairs (m,n) of distinct elements of Nk+1 such that

∄ j ∈ Nk+1 with min {m,n} < j < max {m,n} = 2 +min {m,n} . (47)

The implementation of the modified zeta recursion as discussed above is discussed bellow

def N_1_k_plus_1(Nk, Pk, k):

L = []

for q in Pk:

for n in range(floor(ln(2^(k+1))/ln(q.subs(x=2))), floor(ln(2^(k+2))/ln(q.subs(x=2)))):

L.append(q^Nk[n])

return L

composite tower with a given number of factors

def generate_factor_script(c):

Creating the string corresponding to the file name

filename = ’N_’+str(c)+’_kplus1.sage’

Opening the file

f = open(filename,’w’)

f.write(’def N_’+str(c)+’_k_plus_1(Nk, Pk, k):\n’)

f.write(’ L = []\n’)

variable storing the spaces

sp = ’’

for i in range(c):

if i<1:

sp=sp+’ ’

f.write(sp+’for p’+str(i)+’ in Pk:\n’)

sp=sp+’ ’

f.write(sp+’for n’+str(i)+’ in range(floor(ln(2^(k+2))/ln(p’+str(i)+’.subs(x=2)))):\n’)

elif i==c-1:

sp=sp+’ ’

f.write(sp+’for p’+str(i)+’ in Pk[Pk.index(p’+str(i-1)+’)+1:]:\n’)

sp=sp+’ ’

dv = ’’

30

for d in range(i):

string keeping track of the divisors

if d == i-1:

dv=dv+’(p’+str(i-1)+’^Nk[n’+str(i-1)+’]).subs(x=2)’

else:

dv=dv+’(p’+str(d)+’^Nk[n’+str(d)+’]).subs(x=2)*’

f.write(sp+’if floor(ln(2^(k+1)/(’+dv+’))/ln(p’+str(i)+’.subs(x=2)))>=0:\n’)

sp=sp+’ ’

f.write(sp+’for n’+str(i)+’ in range(floor(ln(2^(k+1)/(’+dv+’))/ln(p’+str(i)+’.subs(x=2))),\

floor(ln(2^(k+2)/(’+dv+’))/ln(p’+str(i)+’.subs(x=2)))):\n’)

sp=sp+’ ’

mt = ’’

for d in range(c):

string keeping track of the symbolic SCF expression

if d == c-1:

mt=mt+’p’+str(c-1)+’^Nk[n’+str(c-1)+’]’

else:

mt=mt+’p’+str(d)+’^Nk[n’+str(d)+’]*’

f.write(sp+’L.append(’+mt+’)\n return L’)

else:

sp=sp+’ ’

f.write(sp+’for p’+str(i)+’ in Pk[Pk.index(p’+str(i-1)+’)+1:]:\n’)

sp=sp+’ ’

dv = ’’

for d in range(i):

string keeping track of the divisors

if d==i-1:

dv=dv+’(p’+str(i-1)+’^Nk[n’+str(i-1)+’]).subs(x=2)’

else:

dv=dv+’(p’+str(d)+’^Nk[n’+str(d)+’]).subs(x=2)*’

f.write(\

sp+’for n’+str(i)+’ in range(floor(ln(2^(k+2)/(’+dv+’))/ln(p’+str(i)+’.subs(x=2)))):\n’)

Closing the file

f.close()

is implemented here

def zetarecursionII(nbitr):

Defining the symbolic variables x which corresponds

to shorthand notation for (1+1).

var(’x’)

Initial conditions for the zeta recursion.

Initial list of primes in SCF encoding

Pi = [x]

Initial list of expression associated with the SCF

integer encoding.

Ni = [1] + Pi

if nbitr == 0:

return [Ni, Pi, i]

The first iteration properly starts here

i = 0

Rb = []

Rb.append(Ni[len(Ni)-1])

Rb = Rb + N_1_k_plus_1(Ni, Pi, i)

31

Sorting the obtainted list

Tmp = []

for f in range(2^(i+1),2^(i+2)+1):

Tmp.append([])

for f in Rb:

Tmp[-2^(i+1)+f.subs(x=2)].append(f)

Filling up Rb in order

Rb = []

for f in range(len(Tmp)):

if len(Tmp[f]) == 1:

Rb.append(Tmp[f][0])

else:

Rb.append(Tmp[f-1][0]+1)

Pi.append(Tmp[f-1][0]+1)

Ni = list(Ni+Rb[1:])

if nbitr == 1:

return [Ni, Pi, i]

for i in range(1, nbitr+1):

print ’Iteration number ’+str(i)

Rb = []

Rb.append(Ni[len(Ni)-1])

Rb = Rb + N_1_k_plus_1(Ni, Pi, i)

Code for going beyound a single prime factors

prm = 6

c = 2

while prm < 2^(i+2):

generate_factor_script(c)

load(’N_’+str(c)+’_kplus1.sage’)

Rb = Rb + eval("N_%d_k_plus_1(Ni,Pi,%d)"%(c,i))

Since ironically c indexes the next prime we have

prm = prm*Integer((Pi[c-1]).subs(x=2))

c = c+1

Sorting the obtainted list

Tmp = []

for f in range(2^(i+1),2^(i+2)+1):

Tmp.append([])

for f in Rb:

Tmp[-2^(i+1)+f.subs(x=2)].append(f)

Filling up Rb in order

Rb = []

for f in range(len(Tmp)):

if len(Tmp[f]) == 1:

Rb.append(Tmp[f][0])

else:

Rb.append(Tmp[f-1][0]+1)

Pi.append(Tmp[f-1][0]+1)

Ni = list(Ni+Rb[1:])

return [Ni, Pi, i]

Lp3 = zetarecursionII(3)[1]

P3 = [x, x+ 1, xx + 1, (x+ 1)x+ 1, (xx + 1)x+ 1,

(x+ 1)xx + 1, x(xx) + 1, (x+ 1)
x
x+ 1, ((xx + 1)x+ 1)x+ 1, ((x+ 1)x+ 1)xx + 1,

32

((xx + 1)x+ 1)x+ 1, ((x+ 1)x+ 1)xx + 1] (48)

Incidentally the number of composites less than 2k+2 with the prime q in their tower connected to the root is given by

∑

q∈Pk

|Nq,k+1| (49)

so that we have
π
(

2k+2
)

− π
(

2k+1
)

= 2k+2 −
∑

q∈Pk

|Nq,k+1| (50)

7 Horner encoding.

The encoding that we discuss appears to be just as natural as the Goodstein encoding and offers the benefit of yield consid-
erably smaller monotone formula encodings of integers. The recursive Horner encoding also has the advantage that that it
can be efficiently deduced from the Goodstein endcoding, this is of course not true of the SCF.

def RecursiveHorner(nbitr=1):

x = var(’x’)

Nk = [1, x, 1+x, x^x]

Initialization of the lists

LEk = [x^x]

LOk = [1+x]

LPk = [x, x^x]

Main loop computing the encoding

for i in range(nbitr):

Updating the list

LEkp1 = [m*n for m in LPk for n in LOk] + [x^m for m in LEk+LOk]

LOkp1 = [n+1 for n in LEk]

LPkp1 = LPk + [x^m for m in LEk+LOk]

The New replaces the old

Nk = Nk + LEkp1+LOkp1

LEk = LEkp1

LOk = LOkp1

LPk = LPkp1

return Nk

Acknowledgments

This material is based upon work supported by the National Science Foundation under agreements Princeton University
Prime Award No. CCF-0832797 and Sub-contract No. 00001583. The author would like to thank the IAS for providing
excellent working conditions. The author is also grateful to Maksym Radziwill for providing the code for the computation
of the constants in the asymptotic formula, to Doron Zeilberger whos’s initial maple implementation inspired the current
implementation and to Carlo Sanna for insightful comments and suggestions while preparing this package.

References

[GZ] E. K. Gnang and D. Zeilberger, Zeroless arithmetic: representing integers ONLY using ONE, J. Differ. Equ.
Appl. 1-6 (2013)

[NW] Albert Nijhuis and Herbert S. Wilf, Combinatorial algorithms for computers and calculators, Academic Press,
2nd edition, (1978)

[S] Neil Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.oeis.org.

33

[S12] W. A. Stein et al., Sage Mathematics Software (Version 5.12), The Sage Development Team, (2013) ,
http://www.sagemath.org.

[W] Herbert S. Wilf, A unified setting for sequencing, ranking, and selection algorithms for combinatorial objects,
Advances in Mathematics 24 (1977), 281-291.

[DG] P. Devlin, E. K. Gnang, Some integer formula encodings and related Algorithm, Adv. Appl. Math. (2013)
536-541

[G] R. Goodstein, On the the restricted ordinal theorem, J. Symbolic Logic 9 (1944) 131-146.

[GRS] Edinah K. Gnang, Maksym Radziwill, Carlo Sanna, Counting arithmetic formulas, arXiv:1406.1704 [math.CO]
(2014)

34

	1 Introduction
	2 Basic overview of the integer formula encoding model
	3 Listing integer monotone formula encodings
	3.1 Formulas only using additions
	3.2 Formulas only using additions and multiplications
	3.3 Formulas only using additions, multiplications and exponentiation

	4 Shortest Formulas
	5 Goodstein encodings
	6 Zeta recursion and the combinatorial tower sieve
	7 Horner encoding.

