
ar
X

iv
:1

40
7.

09
67

v7
  [

m
at

h.
N

T
] 

 2
0 

O
ct

 2
01

5

Ramanujan J., in press. Doi: 10.1007/s11139-015-9727-3

CONGRUENCES INVOLVING gn(x) =
∑n

k=0

(

n
k

)2(2k
k

)

xk

Zhi-Wei Sun

Department of Mathematics, Nanjing University
Nanjing 210093, People’s Republic of China

zwsun@nju.edu.cn
http://math.nju.edu.cn/∼zwsun

Abstract. Define gn(x) =
∑n

k=0

(

n

k

)

2
(

2k

k

)

xk for n = 0, 1, 2, . . . . Those num-

bers gn = gn(1) are closely related to Apéry numbers and Franel numbers. In
this paper we establish some fundamental congruences involving gn(x). For

example, for any prime p > 5 we have

p−1
∑

k=1

gk(−1)

k
≡ 0 (mod p2) and

p−1
∑

k=1

gk(−1)

k2
≡ 0 (mod p).

This is similar to Wolstenholme’s classical congruences

p−1
∑

k=1

1

k
≡ 0 (mod p2) and

p−1
∑

k=1

1

k2
≡ 0 (mod p)

for any prime p > 3.

1. Introduction

It is well known that

n
∑

k=0

(

n

k

)2

=

(

2n

n

)

(n = 0, 1, 2, . . . )

and central binomial coefficients play important roles in mathematics. A fa-
mous theorem of J. Wolstenholme [W] asserts that for any prime p > 3 we
have

1

2

(

2p

p

)

=

(

2p− 1

p− 1

)

≡ 1 (mod p3),
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Hp−1 ≡ 0 (mod p2) and H
(2)
p−1 ≡ 0 (mod p),

where

Hn :=
∑

0<k6n

1

k
and H(2)

n :=
∑

0<k6n

1

k2
for n ∈ N = {0, 1, 2, . . .};

see also [Zh] for some extensions. The reader may consult [S11a], [S11b], [ST1]
and [ST2] for recent work on congruences involving central binomial coefficients.

The Franel numbers given by

fn =

n
∑

k=0

(

n

k

)3

(n = 0, 1, 2, . . . )

(cf. [Sl, A000172]) were first introduced by J. Franel in 1895 who noted the
recurrence relation:

(n+ 1)2fn+1 = (7n(n+ 1) + 2)fn + 8n2fn−1 (n = 1, 2, 3, . . . ).

In 1992 C. Strehl [St92] showed that the Apéry numbers given by

An =
n
∑

k=0

(

n

k

)2(
n+ k

k

)2

=
n
∑

k=0

(

n+ k

2k

)2(
2k

k

)2

(n = 0, 1, 2, . . . )

(arising from Apéry’s proof of the irrationality of ζ(3) =
∑∞

n=1 1/n
3 (cf. [vP]))

can be expressed in terms of Franel numbers, namely,

An =
n
∑

k=0

(

n

k

)(

n+ k

k

)

fk. (1.1)

Define

gn =

n
∑

k=0

(

n

k

)2(
2k

k

)

for n ∈ N. (1.2)

Such numbers are interesting due to Barrucand’s identity ([B])

n
∑

k=0

(

n

k

)

fk = gn (n = 0, 1, 2, . . . ). (1.3)

For a combinatorial interpretation of such numbers, see D. Callan [C]. The
sequences (fn)n>0 and (gn)n>0 are two of the five sporadic sequences (cf. D.
Zagier [Z, Section 4]) which are integral solutions of certain Apéry-like recur-
rence equations and closely related to the theory of modular forms.
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In [S12] and [S13b] the author introduced the Apéry polynomials

An(x) :=
n
∑

k=0

(

n

k

)2(
n+ k

k

)2

xk (n = 0, 1, 2, . . . )

and the Franel polynomials

fn(x) :=
n
∑

k=0

(

n

k

)2(
2k

n

)

xk =
n
∑

k=0

(

n

k

)(

k

n− k

)(

2k

k

)

xk (n = 0, 1, 2, . . . ),

and deduced various congruences involving such polynomials. (Note thatAn(1) =
An, and fn(1) = fn by [St94].) See also [S13a] for connections between primes
p = x2 + 3y2 and the Franel numbers. Here we introduce the polynomials

gn(x) :=
n
∑

k=0

(

n

k

)2(
2k

k

)

xk (n = 0, 1, 2, . . . ).

Both fn(x) and gn(x) play important roles in some kinds of series for 1/π (cf.
Conjecture 3 and the subsequent remark in [S11]).

In this paper we study various congruences involving gn(x). As usual, for
an odd prime p and an integer a, (ap ) denotes the Legendre symbol, and qp(a)

stands for the Fermat quotient (ap−1 − 1)/p if p ∤ a. Also, B0, B1, B2, . . . are
the well-known Bernoulli numbers and E0, E1, E2, . . . are the Euler numbers.

Now we state our main results.

Theorem 1.1. Let p > 3 be a prime.

(i) We have

p−1
∑

k=0

gk(x)(1− p2H
(2)
k ) ≡

p−1
∑

k=0

p

2k + 1

(

1− 2p2H
(2)
k

)

xk (mod p4). (1.4)

Consequently,

p−1
∑

k=1

gk ≡p2
p−1
∑

k=1

gkH
(2)
k +

7

6
p3Bp−3 (mod p4), (1.5)

p−1
∑

k=0

gk(−1) ≡

(

−1

p

)

+ p2
( p−1
∑

k=0

gk(−1)H
(2)
k − Ep−3

)

(mod p3),
(1.6)

p−1
∑

k=0

gk(−3) ≡
(p

3

)

(mod p2). (1.7)
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(ii) We also have

p−1
∑

k=1

gk(x)

k
≡0 (mod p), (1.8)

p−1
∑

k=1

gk−1

k
≡−

(p

3

)

2qp(3) (mod p), (1.9)

p−1
∑

k=1

kgk ≡−
3

4
(mod p2), (1.10)

and moreover

1

3n2

n−1
∑

k=0

(4k + 3)gk =
n−1
∑

k=0

(

n− 1

k

)2

Ck (1.11)

for all n ∈ Z+ = {1, 2, 3, . . .}, where Ck denotes the Catalan number
(

2k
k

)

/(k+

1) =
(

2k
k

)

−
(

2k
k+1

)

.

(iii) Provided p > 5, we have

p−1
∑

k=1

gk(−1)

k2
≡0 (mod p), (1.12)

p−1
∑

k=1

gk(−1)

k
≡0 (mod p2), (1.13)

p−1
∑

k=1

(−1)kfk(−1)

k
Hk ≡− 2

(

−1

p

)

Ep−3 (mod p). (1.14)

Remark 1.1. Let p > 3 be a prime. By [JV, Lemma 2.7], gk ≡ ( p
3
)9kgp−1−k

(mod p) for all k = 0, . . . , p− 1. So (1.9) implies that

p−1
∑

k=1

gk
k9k

≡
(p

3

)

p−1
∑

k=1

gp−1−k

k
=

(p

3

)

p−1
∑

k=1

gk−1

p− k
≡ 2qp(3) (mod p).

We conjecture further that

p−1
∑

k=1

gk−1

k
≡ −

(p

3

)

qp(9) (mod p2) and

p−1
∑

k=0

gk
9k

≡
(p

3

)

(mod p2).

In [S13b] the author showed the following congruences similar to (1.12) and
(1.13):

p−1
∑

k=1

(−1)kfk
k2

≡ 0 (mod p) and

p−1
∑

k=1

(−1)kfk
k

≡ 0 (mod p2).
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Such congruences are interesting in view ofWolstenholme’s congruencesHp−1 ≡

0 (mod p2) and H
(2)
p−1 ≡ 0 (mod p). Applying the Zeilberger algorithm (cf.

[PWZ, pp. 101-119]) via Mathematica 9 we find the recurrence for sn = gn(−1) (n =
0, 1, 2, . . . ):

(n+ 3)2(4n+ 5)sn+3 + (20n3 + 125n2 + 254n+ 165)sn+2

+ (76n3 + 399n2 + 678n+ 375)sn+1 − 25(n+ 1)2(4n+ 9)sn = 0.

In contrast with (1.11), we are also able to show the congruence

p−1
∑

k=0

(3k + 1)
fk
8k

≡ p2 − 2p3qp(2) + 4p4qp(2)
2 (mod p5) (1.15)

via the combinatorial identity

1

n2

n−1
∑

k=0

(3k + 1)fk8
n−1−k =

n−1
∑

k=0

(

n− 1

k

)3 (

1−
n

k + 1
+

n2

(k + 1)2

)

(1.16)

which can be shown by the Zeilberger algorithm.

We are going to investigate in the next section connections among the poly-
nomials An(x), fn(x) and gn(x). Section 3 is devoted to our proof of Theorem
1.1. In Section 4 we shall propose some conjectures for further research.

2. Relations among An(x), fn(x) and gn(x)

Obviously,

1

n

n−1
∑

k=0

(2k + 1) = n ∈ Z and
1

n

n−1
∑

k=0

(2k + 1)(−1)k = (−1)n−1 ∈ Z

for all n = 1, 2, 3, . . . . This is a special case of our following general result.

Theorem 2.1. Let

Xn =
n
∑

k=0

(

n

k

)(

n+ k

k

)

xk and yn =
n
∑

k=0

(

n

k

)

xk for all n ∈ N. (2.1)

Then

Xn =
n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)n−kyk for every n ∈ N. (2.2)
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Also, for any n ∈ Z+ we have

(−1)n−1

n

n−1
∑

k=0

(2k + 1)Xk =
n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)

(−1)kyk (2.3)

and

(−1)n−1

n

n−1
∑

k=0

(2k + 1)(−1)kXk =

n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)

xk. (2.4)

Proof. If n ∈ N, then

n
∑

l=0

(

n

l

)(

n+ l

l

)

(−1)lyl

=
n
∑

l=0

(

n

l

)(

−n− 1

l

) l
∑

k=0

(

l

k

)

xk

=

n
∑

k=0

(

n

k

)

xk

n
∑

l=k

(

n− k

n− l

)(

−n − 1

l

)

=

n
∑

k=0

(

n

k

)

xk

(

−k − 1

n

)

(by the Chu-Vandermonde identity [G, (2.1)])

=(−1)n
n
∑

k=0

(

n

k

)(

n+ k

k

)

xk

and hence (2.2) holds.
For any given integer k > 0, by induction on n we have

n−1
∑

l=k

(−1)l(2l + 1)

(

l + k

2k

)

= (−1)n−1(n− k)

(

n+ k

2k

)

(2.5)

for all n = k+1, k+2, . . . . Fix a positive integer n. In view of (2.2) and (2.5),

n−1
∑

l=0

(2l + 1)Xl =
n−1
∑

l=0

(2l + 1)
l

∑

k=0

(

l + k

2k

)(

2k

k

)

(−1)l−kyk

=
n−1
∑

k=0

(

2k

k

)

(−1)kyk

n−1
∑

l=k

(−1)l(2l + 1)

(

l + k

2k

)

=
n−1
∑

k=0

(

2k

k

)

(−1)kyk(−1)n−1(n− k)

(

n+ k

2k

)

=(−1)n−1n
n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)

(−1)kyk.
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This proves (2.3). Similarly,

n−1
∑

l=0

(2l + 1)(−1)lXl =

n−1
∑

l=0

(2l + 1)(−1)l
l

∑

k=0

(

l + k

2k

)(

2k

k

)

xk

=

n−1
∑

k=0

(

2k

k

)

xk

n−1
∑

l=k

(−1)l(2l + 1)

(

l + k

2k

)

=

n−1
∑

k=0

(

2k

k

)

xk(−1)n−1(n− k)

(

n+ k

2k

)

=(−1)n−1n

n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)

xk.

and hence (2.4) is also valid.
Combining the above, we have completed the proof of Theorem 2.1. �

Lemma 2.1. For any nonnegative integers m and n we have the combinatorial

identity
n
∑

k=0

(

m− x+ y

k

)(

n+ x− y

n− k

)(

x+ k

m+ n

)

=

(

x

m

)(

y

n

)

. (2.6)

Remark 2.1. (2.6) is due to Nanjundiah, see, e.g., (4.17) of [G, p. 53].

The author [S12] proved that 1
n

∑n−1
k=0 (2k + 1)Ak(x) ∈ Z[x] for all n ∈ Z+,

and conjectured that 1
n

∑n−1
k=0(2k+1)(−1)kAk(x) ∈ Z[x] for any n ∈ Z+, which

was confirmed by Guo and Zeng [GZ].

Theorem 2.2. Let n be any nonnegative integer. Then

n
∑

k=0

(

n

k

)

fk(x) = gn(x), fn(x) =

n
∑

k=0

(

n

k

)

(−1)n−kgk(x), (2.7)

and

An(x) =

n
∑

k=0

(

n

k

)(

n+ k

k

)

fk(x) =

n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)n−kgk(x). (2.8)

Also, for any n ∈ Z+ we have

(−1)n−1

n

n−1
∑

k=0

(2k + 1)Ak(x) =
n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)

(−1)kgk(x) (2.9)
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and

(−1)n−1

n

n−1
∑

k=0

(2k + 1)(−1)kAk(x) =
n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)

fk(x). (2.10)

Proof. By the binomial inversion formula (cf. (5.48) of [GKP, p. 192]), the two
identities in (2.7) are equivalent. Observe that

n
∑

l=0

(

n

l

)

fl(x) =

n
∑

l=0

(

n

l

) l
∑

k=0

(

l

k

)(

k

l − k

)(

2k

k

)

xk

=

n
∑

k=0

(

n

k

)(

2k

k

)

xk
n
∑

l=k

(

n− k

n− l

)(

k

l − k

)

=
n
∑

k=0

(

n

k

)(

2k

k

)

xk

(

n

n− k

)

= gn(x)

with the help of the Chu-Vandermonde identity. Thus (2.7) holds.
Next we show (2.8). Clearly

n
∑

l=0

(

n

l

)(

n+ l

l

)

fl(x) =

n
∑

l=0

(

n

l

)(

n+ l

l

) l
∑

k=0

(

l

k

)(

k

l − k

)(

2k

k

)

xk

=

n
∑

k=0

(

n

k

)(

2k

k

)

xk
n
∑

l=k

(

n− k

l − k

)(

k

l − k

)(

n+ l

n

)

=
n
∑

k=0

(

n

k

)(

2k

k

)

xk
k

∑

j=0

(

n− k

j

)(

k

k − j

)(

n+ k + j

n

)

=

n
∑

k=0

(

n

k

)(

2k

k

)

xk

(

n+ k

n− k

)(

n+ k

k

)

(by Lemma 2.1).

This proves the first identity in (2.8). Applying Theorem 2.1 with xn = fn(x)
and Xn = An(x) for n ∈ N, we get the identity

An(x) =

n
∑

k=0

(

n

k

)(

n+ k

k

)

(−1)n−kgk(x) (2.11)

as well as (2.9) and (2.10), with the help of (2.7).
The proof of Theorem 2.2 is now complete. �

Remark 2.2. (2.7) and (2.8) in the case x = 1 are well known.
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Corollary 2.1. Let p be an odd prime. Then

p−1
∑

k=0

Ak(x) ≡ p

p−1
∑

k=0

(−1)kfk(x)

2k + 1
(mod p2) (2.12)

and
p−1
∑

k=0

(−1)kAk(x) ≡ p

p−1
∑

k=0

gk(x)

2k + 1
(mod p2). (2.13)

Proof. In view of (2.8),

p−1
∑

l=0

Al(x) =

p−1
∑

l=0

l
∑

k=0

(

k + l

2k

)(

2k

k

)

fk(x) =

p−1
∑

k=0

(

2k

k

)

fk(x)

p−1
∑

l=k

(

k + l

2k

)

=

p−1
∑

k=0

(

2k

k

)

fk(x)

(

p+ k

2k + 1

)

=

p−1
∑

k=0

(

2k

k

)

fk(x)
p

(2k + 1)!

∏

0<j6k

(p2 − j2)

≡

p−1
∑

k=0

fk(x)
p

2k + 1
(−1)k (mod p2).

Similarly,

p−1
∑

l=0

(−1)lAl(x) =

p−1
∑

l=0

l
∑

k=0

(

k + l

2k

)(

2k

k

)

(−1)kgk(x)

=

p−1
∑

k=0

(

2k

k

)

(−1)kgk(x)

(

p+ k

2k + 1

)

≡

p−1
∑

k=0

gk(x)
p

2k + 1
(mod p2).

This concludes the proof of Corollary 2.1. �

Remark 2.3. In [S12] the author investigated
∑p−1

k=0(±1)kAk(x) mod p2 (where
p is an odd prime) and made some conjectures.

For any n ∈ Z we set

[n]q =
1− qn

1− q
=

{
∑

06k<n qk if n > 0,

−qn
∑

06k<−n qk if n < 0;

this is the usual q-analogue of the integer n. Define

[

n

0

]

q

= 1 and

[

n

k

]

q

=
k
∏

j=1

[n− j + 1]q
[j]q

for k ∈ Z+.



10 ZHI-WEI SUN

Obviously, limq→1

[

n
k

]

q
=

(

n
k

)

.

For n ∈ N we define

An(x; q) :=
n
∑

k=0

q2n(n−k)

[

n

k

]2

q

[

n+ k

k

]2

q

xk

and

gn(x; q) :=
n
∑

k=0

q2n(n−k)

[

n

k

]2

q

[

2k

k

]

q

xk.

Clearly

lim
q→1

An(x; q) = An(x) and lim
q→1

gn(x; q) = gn(x).

Those identities in Theorem 2.2 have their q-analogues. For example, the fol-
lowing theorem gives a q-analogue of (2.11).

Theorem 2.3. Let n ∈ N. Then we have

An(x; q) =
n
∑

k=0

(−1)n−kq(n−k)(5n+3k+1)/2

[

n

k

]

q

[

n+ k

k

]

q

gk(x; q). (2.14)

Proof. Let j ∈ {0, . . . , n}. By the q-Chu-Vandermonde identity (see, e.g., Ex.
4(b) of [AAR, p. 542]),

n
∑

k=j

q(k−j)2
[

−n − 1− j

k − j

]

q

[

n− j

n− k

]

q

=

[

−2j − 1

n− j

]

q

.

This, together with

[

−n− 1

k

]

q

[

k

j

]

q

=

[

−n− 1

j

]

q

[

−n− 1− j

k − j

]

q

,

yields that

n
∑

k=j

q(k−j)2
[

−n− 1

k

]

q

[

k

j

]

q

[

n− j

k − j

]

q

=

[

−n − 1

j

]

q

[

−2j − 1

n− j

]

q

.

It is easy to see that

[

−m − 1

k

]

q

= (−1)kq−km−k(k+1)/2

[

m+ k

k

]

q

.
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So we are led to the identity

n
∑

k=j

(−1)n−kq(
n−k+1

2 )+2j(n−k)

[

n+ k

k

]

q

[

k

j

]

q

[

n− j

k − j

]

q

=

[

n+ j

j

]

q

[

n+ j

2j

]

q

.

(2.15)
Since

[

n

k

]

q

[

k

j

]

q

=

[

n

j

]

q

[

n− j

k − j

]

q

and

[

n

j

]

q

[

n+ j

j

]

q

=

[

n+ j

2j

]

q

[

2j

j

]

q

,

multiplying both sides of (2.15) by
[

n
j

]

q

[

2j
j

]

q
xj we get

n
∑

k=j

(−1)n−kq(
n−k+1

2 )+2j(n−k)

[

n

k

]

q

[

n+ k

k

]

q

[

k

j

]2

q

[

2j

j

]

q

xj =

[

n

j

]2

q

[

n+ j

j

]2

q

xj .

In view of the last identity we can easily deduce the desired (2.14). �

By applying Theorem 2.2 we obtain the following new result.

Theorem 2.4. Let n be any positive integer. Then

n−1
∑

k=0

(−1)k(6k3 + 9k2 + 5k + 1)Ak ≡ 0 (mod n3). (2.16)

Proof. By induction on n, for each k = 0, . . . , n− 1 we have

n−1
∑

l=k

(−1)l(6l3 + 9l2 + 5l + 1)

(

l + k

2k

)

= (−1)n−1(n− k)(3n2 − 3k − 2)

(

n+ k

2k

)

.

Thus, in view of (2.8),

1

n

n−1
∑

l=0

(−1)n−l(6l3 + 9l2 + 5l + 1)Al(x)

=
(−1)n

n

n−1
∑

l=0

(−1)l(6l3 + 9l2 + 5l + 1)
l

∑

k=0

(

l + k

2k

)(

2k

k

)

fk(x)

=
(−1)n

n

n−1
∑

k=0

(

2k

k

)

fk(x)
n−1
∑

l=k

(−1)l(6l3 + 9l2 + 5l + 1)

(

l + k

2l

)

=
(−1)n

n

n−1
∑

k=0

(

2k

k

)

fk(x)(−1)n−1(n− k)(3n2 − 3k − 2)

(

n+ k

2k

)

=
n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)

(3k + 2− 3n2)fk(x).
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Hence we have reduced (2.16) to the congruence

n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)

(3k + 2)fk ≡ 0 (mod n2). (2.17)

The author [S13a, (1.12)] conjectured that

am :=
1

m2

m−1
∑

k=0

(3k + 2)(−1)kfk ∈ Z for all m = 1, 2, 3, . . . ,

and this was confirmed by V.J.W. Guo [Gu]. Set a0 = 0. Observe that

n−1
∑

k=0

(

n− 1

k

)(

n+ k

k

)

(3k + 2)fk

=
n−1
∑

k=0

(

n− 1

k

)(

−n− 1

k

)

(

(k + 1)2ak+1 − k2ak
)

=
n
∑

k=1

(

n− 1

k − 1

)(

−n− 1

k − 1

)

k2ak −
n−1
∑

k=0

(

n− 1

k

)(

−n − 1

k

)

k2ak

=

(

−n − 1

n− 1

)

n2an +
∑

0<k<n

k2ak

((

n− 1

k − 1

)(

−n− 1

k − 1

)

−

(

n− 1

k

)(

−n− 1

k

))

.

As

(

n− 1

k − 1

)(

−n − 1

k − 1

)

−

(

n− 1

k

)(

−n − 1

k

)

=
n2

k2

(

n− 1

k − 1

)(

−n − 1

k − 1

)

for all k = 1, . . . , n−1, we have (2.17) by the above, and hence (2.16) holds. �

The author [S12] conjectured that for any prime p > 3 we have

p−1
∑

k=0

(2k + 1)(−1)kAk ≡ p
(p

3

)

(mod p3), (2.18)

and this was confirmed by Guo and Zeng [GZ].

Corollary 2.2. Let p > 3 be a prime. Then

p−1
∑

k=0

(2k + 1)3(−1)kAk ≡ −
p

3

(p

3

)

(mod p3). (2.19)
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Proof. Clearly

3(2k + 1)3 = 4(6k3 + 9k2 + 5k + 1)− (2k + 1).

Thus (2.19) follows from (2.16) and (2.18). �

Remark 2.4. Let p > 3 be a prime. We are also able to prove that

p−1
∑

k=0

(2k + 1)5(−1)kAk ≡ −
13

27
p
(p

3

)

(mod p3) (2.20)

and
p−1
∑

k=0

(2k + 1)7(−1)kAk ≡
5

9
p
(p

3

)

(mod p3). (2.21)

It seems that for each r = 0, 1, 2, . . . there is a p-adic integer cr only depending
on r such that

p−1
∑

k=0

(2k + 1)2r+1(−1)kAk ≡ crp
(p

3

)

(mod p3).

3. Proof of Theorem 1.1

Lemma 3.1. For any odd prime p, we have

1

p

p−1
∑

k=0

(2k + 1)Ak(x) ≡

p−1
∑

k=0

gk(x)− p2
p−1
∑

k=0

gk(x)H
(2)
k (mod p4). (3.1)

Proof. Obviously,

(−1)k
(

p− 1

k

)(

p+ k

k

)

=
∏

0<j6k

(

1−
p2

j2

)

≡ 1− p2H
(2)
k (mod p4) (3.2)

for every k = 0, . . . , p− 1. Thus (3.1) follows from (2.9) with n = p. �

Lemma 3.2. Let p > 3 be a prime. Then

gp−1 ≡
(p

3

)

(1 + 2p qp(3)) (mod p2). (3.3)

Proof. For k = 0, . . . , p− 1, clearly
(

p− 1

k

)2

=
∏

0<j6k

(

1−
p

j

)2

≡
∏

0<j6k

(

1−
2p

j

)

= (−1)k
(

2p− 1

k

)

(mod p2).

Thus, with the help of [S12b, Corollary 2.2] we obtain

gp−1 ≡

p−1
∑

k=0

(

2p− 1

k

)

(−1)k
(

2k

k

)

≡
(p

3

)

(

2× 3p−1 − 1
)

(mod p2).

and hence (3.3) holds. �
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Lemma 3.3. For any odd prime p, we have

p

p−1
∑

k=0

(−3)k

2k + 1
≡

(p

3

)

(mod p2). (3.4)

Proof. Clearly (3.4) holds for p = 3. Below we assume p > 3. Observe that

p−1
∑

k=0
k 6=(p−1)/2

(−3)k

2k + 1
=

(p−1)/2
∑

k=1

(

(−3)(p−1)/2−k

2((p− 1)/2− k) + 1
+

(−3)(p−1)/2+k

2((p− 1)/2 + k) + 1

)

≡

(

−3

p

)

1

2

(p−1)/2
∑

k=1

(

(−3)k

k
−

1

3
·
(−3)p−k

p− k

)

=
1

2

(p

3

)

(

4

3

(p−1)/2
∑

k=1

(−3)k

k
−

1

3

p−1
∑

k=1

(−3)k

k

)

=− 2
(p

3

)

(p−1)/2
∑

k=1

(−3)k−1

k
+

1

2

(p

3

)

p−1
∑

k=1

(−3)k−1

k
(mod p).

Since

1

p

(

p

k

)

=
1

k

(

p− 1

k − 1

)

≡
(−1)k−1

k
(mod p) for k = 1, . . . , p− 1,

we have
p−1
∑

k=1

(−3)k−1

k
≡

1

3p

p−1
∑

k=1

(

p

k

)

3k =
4p − 1− 3p

3p
= 4(2p−1 + 1)

2p−1 − 1

3p
−

3p−1 − 1

p

≡
8

3
qp(2)− qp(3) (mod p).

Note also that

(p−1)/2
∑

k=1

(−3)k−1

k
=

(p−1)/2
∑

k=1

∫ 1

0

(−3x)k−1dx =

∫ 1

0

1− (−3x)(p−1)/2

1 + 3x
dx

=

∫ 1

0

(p−1)/2
∑

k=1

(

(p− 1)/2

k

)

(−1− 3x)k−1dx

=

p−1
∑

k=1

(

(p− 1)/2

k

)

(−1− 3x)k

−3k

∣

∣

∣

∣

1

x=0

≡

p−1
∑

k=1

(

−1/2

k

)

(−1)k − (−4)k

3k
=

1

3

p−1
∑

k=1

(

2k
k

)

k4k
−

1

3

p−1
∑

k=1

(

2k
k

)

k

≡
2

3
qp(2) (mod p)
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since
p−1
∑

k=1

(

2k
k

)

k4k
≡ 2qp(2) (mod p) and

p−1
∑

k=1

(

2k
k

)

k
≡ 0 (mod p2)

by [ST1, (1.12) and (1.20)]. Thus, in view of the above, we get

p−1
∑

k=0
k 6=(p−1)/2

(−3)k

2k + 1
≡− 2

(p

3

) 2

3
qp(2) +

1

2

(p

3

)

(

8

3
qp(2)− qp(3)

)

=−
(p

3

) qp(3)

2
(mod p).

It follows that

p

p−1
∑

k=0

(−3)k

2k + 1
≡(−3)(p−1)/2 −

(p

3

) 3p−1 − 1

2

=(−3)(p−1)/2 −
(p

3

) (−3)(p−1)/2 + (−3
p )

2

(

(−3)(p−1)/2 −

(

−3

p

))

≡(−3)(p−1)/2 −

(

(−3)(p−1)/2 −

(

−3

p

))

=
(p

3

)

(mod p2).

We are done. �

Lemma 3.4. For any prime p, we have

k

(

2k

k

) p−1
∑

r=0

(

−k

r

)(

−k − 1

r

)

≡ p (mod p2) for all k = 1, . . . , p− 1. (3.5)

Proof. Define

uk =

p−1
∑

r=0

(

−k

r

)(

−k − 1

r

)

for all k ∈ N.

Applying the Zeilberger algorithm via Mathematica 9, we find the recurrence

k(k + 1)2(2(2k + 1)uk+1 − kuk)

=(p+ k)(p+ k − 1)(2kp+ p+ 3k2 + 3k + 1)

(

−1− k

p− 1

)(

−k

p− 1

)

=p2
(

p+ k

p

)(

p+ k − 1

p

)

(2kp+ p+ 3k2 + 3k + 1).

Thus, for each k = 1, . . . , p− 2, we have

2(2k + 1)uk+1 ≡ kuk (mod p2)
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and hence

(k + 1)

(

2(k + 1)

k + 1

)

uk+1 =2(k + 1)

(

2k + 1

k + 1

)

uk+1

=2(2k + 1)

(

2k

k

)

uk+1 ≡ k

(

2k

k

)

uk (mod p2).

So it remains to prove
(

2
1

)

u1 ≡ p (mod p2). With the help of the Chu-
Vandermonde identity, we actually have

u1 =

p−1
∑

r=0

(−1)r
(

−2

r

)

= (−1)p−1

p−1
∑

r=0

(

−1

p− 1− r

)(

−2

r

)

=(−1)p−1

(

−3

p− 1

)

=

(

p+ 1

p− 1

)

=
p2 + p

2
.

This concludes the proof. �

Proof of Theorem 1.1. (i) By [S12, (2.13)],

1

p

p−1
∑

k=0

(2k + 1)Ak(x) ≡

p−1
∑

k=0

p

2k + 1

(

1− 2p2H
(2)
k

)

xk (mod p4).

Combining this with (3.1) we immediately get (1.4).
By [S12, (1.6)-(1.7)],

1

p

p−1
∑

k=0

(2k + 1)Ak ≡ 1 +
7

6
p3Bp−3 (mod p4)

and

1

p

p−1
∑

k=0

(2k + 1)Ak(−1) ≡

(

−1

p

)

− p2Ep−3 (mod p3).

Combining this with (3.1) we obtain (1.5) and (1.6). In view of (1.4) and (3.4),
we get (1.7).

(ii) With the help of (2.7),

p−1
∑

l=1

gl(x)

l
=

p−1
∑

l=1

1

l

l
∑

k=0

(

l

k

)

fk(x) = Hp−1 +

p−1
∑

l=1

l
∑

k=1

fk(x)

l

(

l

k

)

≡

p−1
∑

k=1

fk(x)

k

p−1
∑

l=k

(

l − 1

k − 1

)

=

p−1
∑

k=1

fk(x)

k

(

p− 1

k

)

≡

p−1
∑

k=1

(−1)k

k
fk(x)(1− pHk) (mod p2).
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In view of [S13b, (2.7)], this implies that

p−1
∑

k=1

gk(x)

k
≡ p

p−1
∑

k=(p+1)/2

xk

k2
− p

p−1
∑

k=1

(−1)kHk

k
fk(x) (mod p2). (3.6)

So (1.8) follows.

By induction, for any integers m > k > 0, we have

m−1
∑

n=k

(2n+ 1)

(

n+ k

2k

)

=
m(m− k)

k + 1

(

m+ k

2k

)

.

This, together with (2.8) and (3.2), yields

p−1
∑

n=0

(−1)n(2n+ 1)An =

p−1
∑

n=0

(2n+ 1)

n
∑

k=0

(

n+ k

2k

)(

2k

k

)

(−1)kgk

=

p−1
∑

k=0

(

2k

k

)

(−1)kgk

p−1
∑

n=k

(2n+ 1)

(

n+ k

2k

)

=

p−1
∑

k=0

(

2k

k

)

(−1)kgk
p(p− k)

k + 1

(

p+ k

2k

)

=gp−1

(

2p− 2

p− 1

)

(2p− 1) + p2
p−2
∑

k=0

(

p− 1

k

)(

p+ k

k

)

(−1)k
gk

k + 1

=p gp−1

(

2p− 1

p− 1

)

+ p2
p−1
∑

k=1

gk−1

k

≡p gp−1 + p2
p−1
∑

k=1

gk−1

k
(mod p4)

since
(

2p−1
p−1

)

≡ 1 (mod p3) by Wolstenholme’s theorem. Combining this with

(2.18) and (3.3), we obtain

p
(p

3

)

≡ p
(p

3

)

(1 + 2p qp(3)) + p2
p−1
∑

k=1

gk−1

k
(mod p3)

and hence (1.9) follows.

(1.10) follows from a combination of (1.5) and (1.11) in the case n = p. If
we let un denote the left-hand side or the right-hand side of (1.11), then by
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applying the Zeilberger algorithm via Mathematica 9 we get the recurrence
relation

(n+ 2)(n+ 3)2(2n+ 3)un+3

=(n+ 2)(22n3 + 121n2 + 211n+ 120)un+2

− (n+ 1)(38n3 + 171n2 + 229n+ 102)un+1 + 9n2(n+ 1)(2n+ 5)un

for n = 1, 2, 3, . . . . Thus (1.11) can be proved by induction.
(iii) Now we show (1.12)-(1.14) provided p > 5.
Observe that

p−1
∑

l=1

gl(x)− 1

l2
=

p−1
∑

l=1

1

l2

l
∑

k=1

(

l

k

)2(
2k

k

)

xk =

p−1
∑

k=1

(

2k
k

)

k2
xk

p−1
∑

l=k

(

l − 1

k − 1

)2

=

p−1
∑

k=1

(

2k
k

)

k2
xk

p−1−k
∑

j=0

(

k + j − 1

j

)2

=

p−1
∑

k=1

(

2k
k

)

k2
xk

p−1−k
∑

j=0

(

−k

j

)2

≡

p−1
∑

k=1

(

2k
k

)

k2
xk

p−1−k
∑

j=0

(

p− k

j

)2

(mod p).

Recall that H
(2)
p−1 ≡ 0 (mod p). Also, for any k = 1, . . . , p− 1 we have

p−1−k
∑

j=0

(

p− k

j

)2

=

p−k
∑

j=0

(

p− k

j

)(

p− k

p− k − j

)

− 1 =

(

2(p− k)

p− k

)

− 1

by the Chu-Vandermonde identity. Thus

p−1
∑

k=1

gk(x)

k2
≡

p−1
∑

k=1

(

2k
k

)

k2
xk

((

2(p− k)

p− k

)

− 1

)

≡ −

p−1
∑

k=1

(

2k
k

)

k2
xk (mod p)

(Note that
(

2k
k

)(

2(p−k)
p−k

)

≡ 0 (mod p) for k = 1, . . . , p− 1.) It is known that

p−1
∑

k=1

(−1)k

k2

(

2k

k

)

≡ 0 (mod p) (3.7)

(cf. Tauraso [T]) and moreover

(p−1)/2
∑

k=1

(−1)k

k2

(

2k

k

)

≡
56

15
pBp−3 (mod p2)
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by Sun [S14]. So (1.12) is valid.

Note that

p−1
∑

l=1

gl(x)− 1

l
=

p−1
∑

l=1

1

l

l
∑

k=1

(

l

k

)2(
2k

k

)

xk =

p−1
∑

k=1

(

2k

k

)

xk

p−1
∑

l=k

1

k

(

l − 1

k − 1

)(

l

k

)

=

p−1
∑

k=1

(

2k
k

)

k
xk

p−1−k
∑

j=0

(

k + j − 1

j

)(

k + j

j

)

.

For 1 6 k 6 p− 1 and p− k < j 6 p− 1, clearly
(

k + j − 1

j

)(

k + j

j

)

=
(k + j − 1)!(k + j)!

(k − 1)!k!(j!)2
≡ 0 (mod p2).

If j = p− k with 1 6 k 6 p− 1, then
(

k + j − 1

j

)(

k + j

j

)

=

(

p− 1

j

)(

p

j

)

=
p

j

(

p− 1

j − 1

)(

p− 1

j

)

≡−
p

j
≡

p

k
(mod p2).

Recall that Hp−1 ≡ 0 (mod p2). So we have

p−1
∑

k=1

gk(x)

k
≡

p−1
∑

k=1

(

2k
k

)

k
xk

( p−1
∑

j=0

(

k + j − 1

j

)(

k + j

j

)

−
p

k

)

=

p−1
∑

k=1

(

2k
k

)

k
xk

p−1
∑

j=0

(

−k

j

)(

−k − 1

j

)

− p

p−1
∑

k=1

(

2k
k

)

k2
xk

≡

p−1
∑

k=1

xk

k2
p− p

p−1
∑

k=1

(

2k
k

)

k2
xk = p

p−1
∑

k=1

1−
(

2k
k

)

k2
xk (mod p2)

with the help of (3.5). Thus, in view of (3.7) we get

p−1
∑

k=1

gk(−1)

k
≡ p

p−1
∑

k=1

(−1)k

k2
= p

(p−1)/2
∑

k=1

(

(−1)k

k2
+

(−1)p−k

(p− k)2

)

≡ 0 (mod p2).

This proves (1.13). Combining this with (3.6) we obtain

p−1
∑

k=1

(−1)kfk(−1)

k
Hk ≡

p−1
∑

k=(p+1)/2

(−1)k

k2
≡ −

(p−1)/2
∑

j=1

(−1)j

j2

≡− 2

(

−1

p

)

Ep−3 (mod p)

with the help of [S11b, Lemma 2.4]. So (1.14) holds.
In view of the above, we have completed the proof of Theorem 1.1. �
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4. Some open conjectural congruences

In this section we pose several related conjectural congruences.

Conjecture 4.1. (i) For any integer n > 1, we have

n−1
∑

k=0

(9k2 + 5k)(−1)kfk ≡ 0 (mod (n− 1)n2)

Also, for each odd prime p we have

p−1
∑

k=0

(9k2 + 5k)(−1)kfk ≡ 3p2(p− 1)− 16p3qp(2) (mod p4).

(ii) For every n = 1, 2, 3, . . . , we have

1

n

n−1
∑

k=0

(4k + 3)gk(x) ∈ Z[x]

and the number

1

n2

n−1
∑

k=0

(8k2 + 12k + 5)gk(−1)

is always an odd integer. Also, for any prime p we have

p−1
∑

k=0

(8k2 + 12k + 5)gk(−1) ≡ 3p2 (mod p3).

For any nonzero integer m, the 3-adic valuation ν3(m) of m is the largest
a ∈ N with 3a | m. For convenience, we also set ν3(0) = +∞.

Conjecture 4.2. Let n be any positive integer. Then

ν3

( n−1
∑

k=0

(2k + 1)(−1)kAk

)

= 3ν3(n) 6 ν3

( n−1
∑

k=0

(2k + 1)3(−1)kAk

)

.

If n is a positive multiple of 3, then

ν3

( n−1
∑

k=0

(2k + 1)3(−1)kAk

)

= 3ν3(n) + 2.
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(

n

k

)

2
(

2k

k

)
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Conjecture 4.3. For n ∈ N define

Fn :=

n
∑

k=0

(

n

k

)3

(−8)k and Gn :=

n
∑

k=0

(

n

k

)2

(6k + 1)Ck.

For any n ∈ Z+, the number

1

n

n−1
∑

k=0

(6k + 5)(−1)kFk

is always an odd integer. Also, for any prime p > 3 we have

p−1
∑

k=0

(−1)kFk ≡
(p

3

)

(mod p2) and

p−1
∑

k=1

Gk ≡ −
4

3
p3Bp−3 (mod p4).

Remark 4.1. For any prime p > 3, the author [S13b, S12] proved that
∑p−1

k=0(−1)kfk ≡

( p3 ) (mod p2) and
∑p−1

k=1 hk ≡ 0 (mod p2) with hk =
∑k

j=0

(

k
j

)2
Cj .
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