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We propose a systematic scheme for the construction of graphs associated with binary stabilizer
codes. The scheme is characterized by three main steps: first, the stabilizer code is realized as a
codeword-stabilized (CWS) quantum code; second, the canonical form of the CWS code is uncovered;
third, the input vertices are attached to the graphs. To check the effectiveness of the scheme, we
discuss several graphical constructions of various useful stabilizer codes characterized by single and
multi-qubit encoding operators. In particular, the error-correcting capabilities of such quantum
codes are verified in graph-theoretic terms as originally advocated by Schlingemann and Werner.
Finally, possible generalizations of our scheme for the graphical construction of both (stabilizer and
nonadditive) nonbinary and continuous-variable quantum codes are briefly addressed.

PACS numbers: 03.67.-a (quantum information)

I. INTRODUCTION

Classical graphs [1–3] are closely related to quantum error correcting codes (QECCs) [4]. The first construction of
QECCs based upon the use of graphs and finite Abelian groups appears in [5] and is provided by Schlingemann and
Werner (SW-work). However, while in [5] it is proved that all codes constructed from graphs are stabilizer codes, it
remains unclear how to embed the usual stabilizer code constructions into the proposed graphical scheme. Therefore,
although necessary and sufficient conditions are uncovered for the graph such that the resulting code corrects a certain
number of errors, the power of the graphical approach to quantum coding for stabilizer codes cannot be fully exploited
unless this embedding issue is resolved. In [6], Schlingemann (S-work) clarifies this issue by establishing that each
quantum stabilizer code (both binary and nonbinary) could be realized as a graph code and vice-versa. Almost at the
same time, inspired by the work presented in [5], the equivalence of graphical quantum codes and stabilizer codes is
also established by Grassl et al. in [7]. Despite being very important, the works in [6] and [7] still suffer from the fact
that no systematic scheme for constructing a graph of a stabilizer code or the stabilizer of a graphical quantum code
is available. The solution of this point is especially important in view of the fact that although any stabilizer code
over a finite field has an equivalent representation as a graphical quantum code, unfortunately, this representation
is not unique. Furthermore, the chosen representation does not reflect all the properties of the quantum code. A
crucial step forward for the description and understanding of the interplay between properties of graphs and stabilizer
codes is achieved thanks to the introduction of the notion of graph states (and cluster states, [8]) into the graphical
construction of QECCs as presented by Hein et al. in [9]. In this last work, it is shown how graph states are in
correspondence to graphs and special focus is devoted to the question of how the entanglement in a graph state is
related to the topology of its underlying graph. In [9], it is also pointed out that codewords of various QECCs could
be regarded as special instances of graph states and criteria for the equivalence of graph states under local unitary
transformations entirely on the level of the underlying graphs are presented. Similar findings are uncovered by Van den
Nest et al. in [10] (VdN-work) where a constructive scheme showing that each stabilizer state is equivalent to a graph
state under local Clifford operations is discussed. Thus, the main finding of Schlingemann in [6] is re-obtained in [10]
for the special case of binary quantum states. Most importantly, in [10], an algorithmic procedure for transforming
any binary quantum stabilizer code into a graph code appears. However, to the best of our knowledge, nobody has
fully and jointly exploited the results provided by either Schlingemann in [6] or Van den Nest et al. in [10] to provide
a more systematic procedure for constructing graphs associated with arbitrary binary stabilizer codes with special
emphasis on the verification of their error-correcting capabilities. We emphasize that this last point constitutes one
of the original motivations for introducing the concept of a graph into quantum error correction (QEC) [5].

The CWS quantum code formalism presents a unifying approach for constructing both additive and nonadditive
QECCs, for both binary [11] (CWS-work) and nonbinary states [12]. Furthermore, every CWS code in its canonical
form can be fully characterized by a graph and a classical code. In particular, any CWS code is locally Clifford
equivalent to a CWS code with a graph state stabilizer and word operators consistent only of Zs [11]. Since the
notion of stabilizer codes, graph codes and graph states can be recast into the CWS formalism, it seems natural to
investigate the graphical depiction of stabilizer codes as originally thought by Schlingemann and Werner within this
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generalized framework where stabilizer codes are realized as CWS codes. Proceeding along this line of investigation,
we shall observe that the notion of graph state in QEC as presented in [9] emerges naturally. Furthermore, the
algorithmic procedure for transforming any (binary) quantum stabilizer code into a graph code advocated in [10] can
be exploited and jointly used with the results in [6] where the notions of both coincidence and adjacency matrices
of a classical graphs are introduced. For the sake of completeness, we point out that the CWS formalism has been
already employed into the literature for the graphical construction of both binary [13] and nonbinary [14] (both
additive/stabilizer and nonadditive) QECCs. For instance in [13], regarding stabilizer codes as CWS codes and
employing a graphical approach to quantum coding, a classification of all the extremal stabilizer codes up to eight
qubits and the construction of the optimal ((10, 24, 3)) code together with a family of 1-error detecting nonadditive
codes with the highest encoding rate so far is presented. With a leap of imagination, in [13] it is also envisioned
a graphical quantum computation based directly on graphical objects. Indeed, this vision became recently more
realistic in the work of Beigi et al. [15]. Here, being essentially within the CWS framework, a systematic method
for constructing both binary and nonbinary concatenated quantum codes based on graph concatenation is developed.
Graphs representing the inner and the outer codes are concatenated via a simple graph operation (the so-called
generalized local complementation, [15]). Despite their very illuminating findings, in [15] it is emphasized that the
elusive role played by graphs in QEC is still not well-understood. In neither [13] nor [15], the Authors are concerned
with the joint exploitation of the results provided by either Van den Nest et al. in [10] (algorithmic procedure
for transforming any binary quantum stabilizer code into a graph code) or Schlingemann in [6] (use of both the
coincidence and adjacency matrices of a classical graphs in QEC) in order to provide a more systematic procedure for
constructing graphs associated with arbitrary binary stabilizer codes with special emphasis on the verification of their
error correcting capabilities which, as pointed out earlier, constituted a major driving motivation for the introduction
of graphs in QEC [5]. Instead, we aim here at investigating such unexplored topics and hope to further advance our
understanding of the role played by classical graphs in quantum coding.

In this article, we propose a systematic scheme for the construction of graphs with both input and output vertices
associated with arbitrary binary stabilizer codes. The scheme is characterized by three main steps: first, the stabilizer
code is realized as a CWS quantum code; second, the canonical form of the CWS code is uncovered; third, the input
vertices are attached to the graphs with only output vertices. To check the effectiveness of the scheme, we discuss
several graphical constructions of various useful stabilizer codes characterized by single and multi-qubit encoding
operators. In particular, the error-correcting capabilities of such quantum codes are verified in graph-theoretic terms
as originally advocated by Schlingemann and Werner. Finally, possible generalizations of our scheme for the graph-
ical construction of both (stabilizer and nonadditive) nonbinary and continuous variables quantum codes is briefly
addressed.

The layout of the article is as follows. In Section II, we introduce some preliminary material. First, the notions of
graphs, graph states and graph codes are presented. Second, local Clifford transformations on graph states and local
complementations on graphs are briefly described. Third, the CWS quantum codes formalism is briefly explained. In
Section III, we re-examine some basic ingredients of the Schlingemann-Werner work (SW-work, [5]), the Schlingemann
work (S-work, [6]) and, finally, the Van den Nest et al. work (VdN-work, [10]). We focus on those aspects of these
works that are especially important for our systematic scheme. In this Section IV, we formally describe our scheme
and, for the sake of clarity, apply it to the graphical construction of the Leung et al. four-qubit quantum code
for the error correction of single amplitude damping errors [16]. Finally, concluding remarks and a brief discussion
on possible extensions of our schematic graphical construction to both (stabilizer and nonadditive) nonbinary and
continuous variables quantum codes appear in Section V.

Several explicit constructions of graphs for various stabilizer codes characterized by either single or multi-qubit en-
coding operators are worked out in the Appendices. Specifically, we discuss the graphical construction of the following
quantum codes: the three-qubit repetition code, the perfect 1-erasure correcting four-qubit code, the perfect 1-error
correcting five-qubit code, 1-error correcting six-qubit quantum degenerate codes, the CSS seven-qubit stabilizer code,
the Shor nine-qubit stabilizer code, the Gottesman 2-error correcting eleven-qubit code, [[4, 2, 2]] stabilizer codes,
and, finally, the Gottesman [[8, 3, 3]] stabilizer code.

II. FROM GRAPH THEORY TO THE CWS FORMALISM

In this section, we present some preliminary material. First, the notions of graphs, graph states and graph codes
are introduced. Second, local Clifford transformations on graph states and local complementations on graphs are
briefly presented. Third, the CWS quantum codes formalism is briefly discussed.
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A. Graphs, graph states, and graph codes

A graph G = G (V , E) is characterized by a set V of n vertices and a set of edges E specified by the adjacency
matrix Γ [1–3]. This matrix is a n× n symmetric matrix with vanishing diagonal elements and Γij = 1 if vertices i, j
are connected and Γij = 0 otherwise. The neighborhood of a vertex i is the set of all vertices v ∈ V that are connected

to i and is defined by Ni
def
= {v ∈ V : Γiv = 1}. When the vertices a, b ∈ V are the end points of an edge, they are

referred to as being adjacent. An {a, c} path is an ordered list of vertices a = a1, a2,..., an−1, an = c, such that for
all i, ai and ai+1 are adjacent. A connected graph is a graph that has an {a, c} path for any two a, c ∈ V . Otherwise
it is referred to as disconnected. A vertex represents a physical system, e.g., a qubit (two-dimensional Hilbert space),
qudit (d-dimensional Hilbert space), or continuous variables (CV) (continuous Hilbert space). An edge between two
vertices represents the physical interaction between the corresponding systems. In what follows, we shall take into
consideration simple graphs only. These are graphs that contain neither loops (edges connecting vertices with itself)
nor multiple edges. Furthermore, for the time being, we do not make a distinction between different types of vertices.
However, later on we will assign some vertices as inputs, and some as outputs.

Graph states [8] are multipartite entangled states that play a key-role in graphical constructions of QECCs codes
and, in addition, are very important in quantum secret sharing [17] which is, to a certain extent, equivalent to error
correction [18]. For a very recent experimental demonstration of a graph state quantum error correcting code, we
refer to [19].

Consider a system of n qubits that are labeled by those n vertices in V and denote by Ii, Xi, Y i, Zi (or, equivalently,
Xi ≡ σix, Y i ≡ σiy, Zi ≡ σiz) the identity matrix and the three Pauli operators acting on the qubit i ∈ V . The n-qubit
graph state |G〉 associated with the graph G is defined by [9],

|G〉 def
=

∏
Γij=1

Uij |+〉Vx =
1√
2n

1∑
~µ=0

(−1)
1
2 ~µ·Γ·~µ |~µ〉z , (1)

where |+〉Vx is the joint +1 eigenstate of Xi with i ∈ V , Uij is the controlled phase gate between qubits i and j given
by,

Uij
def
=

1

2
[I + Zi + Zj − ZiZj ] , (2)

and |~µ〉z is the joint eigenstate of Zi with i ∈ V and (−1)
µi as eigenvalues. The graph-state basis of the n-qubit

Hilbert space Hn2 is given by
{∣∣GC〉 def

= ZC |G〉
}

where C is an element of the set of all the subsets of V denoted by

2V . A collection of subsets {C1,..., CK} specifies a K-dimensional subspace of Hn2 that is spanned by the graph-state
basis

{∣∣GCi〉} with i = 1,..., K. The graph state |G〉 is the unique joint +1 eigenstate of the n-vertex stabilizers Gi
with i ∈ V defined as [9],

Gi
def
= XiZNi

def
= Xi

∏
j∈Ni

Zj . (3)

A graph code, first introduced into the realm of QEC in [5] and later reformulated into the graph state formalism in
[9], is defined to be one in which a graph G is given and the codespace (or, coding space) is spanned by a subset of
the graph state basis. These states are regarded as codewords, although we recall that what is significant from the
point of view of the QEC properties is the subspace they span, not the codewords themselves [20].

B. Local Clifford transformations and local complementations

1. Transformations on quantum states

The Clifford group Cn is the normalizer of the Pauli group PHn2 in U (2n), i.e., it is the group of unitary operators

U satisfying UPHn2U
† = PHn2 . The local Clifford group Cln is the subgroup of Cn and consists of all n-fold tensor

products of elements in C1. The Clifford group is generated by a simple set of quantum gates: the Hadamard gate H,
the phase gate P and the CNOT gate UCNOT [21]. Using the well-known representations of the Pauli matrices in the
computational basis, it is straightforward to show that the action of H on such matrices reads

σx → HσxH
† = σz, σy → HσyH

† = −σy, σz → HσzH
† = σx. (4)
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The action of the phase gate P on σx, σy and σz is given by,

σx → Pσ†xP = σy, σy → Pσ†yP = −σx, σz → Pσ†zP = σz. (5)

Finally, the CNOT gate leads to the following transformations rules,

σx ⊗ I → UCNOT (σx ⊗ I)U†CNOT = σx ⊗ σx, I ⊗ σx → UCNOT (I ⊗ σx)U†CNOT = I ⊗ σx,

σz ⊗ I → UCNOT (σz ⊗ I)U†CNOT = σz ⊗ I, I ⊗ σz → UCNOT (I ⊗ σz)U†CNOT = σz ⊗ σz. (6)

Observe that the CNOT gate propagates bit flip errors from the control to the target, and phase errors from the
target to the control. As a side remark, we stress that another useful two-qubit gate is the controlled-phase gate

UCP
def
= (I ⊗H)UCNOT (I ⊗H). The controlled-phase gate has the following action on the generators of PH2

2
,

σx ⊗ I → UCP (σx ⊗ I)U†CP = σx ⊗ σz, I ⊗ σx → UCP (I ⊗ σx)U†CP = σz ⊗ σx,

σz ⊗ I → UCP (σz ⊗ I)U†CP = σz ⊗ I, I ⊗ σz → UCP (I ⊗ σz)U†CP = I ⊗ σz. (7)

We observe that a controlled-phase gate does not propagate phase errors, though a bit-flip error on one qubit spreads
to a phase error on the other qubit.

We also point out that a unitary operator U that fixes the stabilizer group Sstabilizer (we refer to [22] for a detailed
characterization of the quantum stabilizer formalism in QEC) of a quantum stabilizer code Cstabilizer under conjugation
is an encoded operation. In other words, U is an encoded operation that maps codewords to codewords whenever

USstabilizerU
† = Sstabilizer. In particular, if S′

def
= USU† (every element of S′ can be written as UsU† for some s ∈ S)

and |c〉 is a codeword stabilized by every element in S, then |c′〉 = U |c〉 is stabilized by every stabilizer element in S′.

2. Transformations on graphs

If there exists a local unitary (LU) transformation U such that U |G〉 = |G′〉, the states |G〉 and |G′〉 will have
the same entanglement properties. If |G〉 and |G′〉 are graph states, we say that their corresponding graphs G and
G′ will then represent equivalent quantum codes, with the same distance, weight distribution, and other properties.
Determining whether two graphs are LU-equivalent is a difficult task, but a sufficient condition for equivalence was
given in [9]. Let the graphs G = (V , E) and G′ = (V , E′) on n vertices correspond to the n-qubit graph states |G〉
and |G′〉. We define the two 2× 2 unitary matrices,

τx
def
=
√
−iσx =

1√
2

(
−1 i
i −1

)
and, τz

def
=
√
iσz =

(
ω 0
0 ω3

)
, (8)

where ω4 = i2 = −1, and σx and σz are Pauli matrices. Given a graph G = (V = {0,..., n− 1} , E), corresponding to
the graph state |G〉, we define a local unitary transformation Ua,

Ua
def
=
⊗
i∈Na

τ (i)
x

⊗
i/∈Na

τ (i)
z , (9)

where a ∈ V is any vertex, Na ⊂ V is the neighborhood of a, and τ
(i)
x means that the transform τx should be applied

to the qubit corresponding to vertex i. Given a graph G, if there exists a finite sequence of vertices (u0,..., uk−1)
such that Uuk−1

...Uu0
|G〉 = |G′〉, then G and G′ are LU-equivalent [9]. It was discovered by Hein et al. and by Van

den Nest et al. that the sequence of transformations taking |G〉 to |G′〉 can equivalently be expressed as a sequence
of simple graph operations taking G to G′. In particular, it was shown in [10] that a graph G determines uniquely a
graph state |G〉 and two graph states (|G1〉 and |G2〉) determined by two graphs (G1 and G2) are equivalent up to
some local Clifford transformations iff these two graphs are related to each other by local complementations (LCs).
The concept of LC was originally introduced by Bouchet in [23]. A LC of a graph on a vertex v refers to the operation
that in the neighborhood of v we connect all the disconnected vertices and disconnect all the connected vertices. All
the graphs on up to 12 vertices have been classified under LCs and graph isomorphisms [24]. In summary, the relation
between graphs and quantum codes can be rather complicated since one graph may provide inequivalent codes and
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different graphs may provide equivalent codes. However, it has been established that the family of codes given by a
graph is equivalent to the family of codes given by a local complementation of that graph.

As pointed out earlier, unitary operations U in the local Clifford group Cln act on graph states |G〉. However, there
exists also graph theoretical rules, transformations acting on graphs, which correspond to local Clifford operations.
These operations generate the orbit of any graph state under local Clifford operations. The LC orbit of a graph G
is the set of all non-isomorphic graphs, including G itself, that can be transformed into G by any sequence of local
complementations and vertex permutations. The transformation laws for a graph state|G〉 and a graph stabilizer
under local unitary transformations U read,

|G〉 → |G′〉 = U |G〉 and, SΓ → SΓ′ = USΓU
†, (10)

respectively. Neglecting overall phases, it turns out that local Clifford operations U ∈ Cln are just the symplectic
transformations Q of Z2n

2 which preserve the symplectic inner product [25]. Therefore, the (2n× 2n)-matrices Q
satisfy the relation QTPQ = P where T denotes the transpose operation and P is the (2n× 2n)-matrix that defines
a symplectic inner product in Z2n

2 ,

P
def
=

(
0 I
I 0

)
. (11)

Furthermore, since local Clifford operations act on each qubit separately, they have the additional block structure

Q
def
=

(
A B
C D

)
, (12)

where the (n× n)-blocks A, B, C, D are diagonal. It was shown in [10] that each binary stabilizer code is equivalent
to a graph code. In particular, each graph code characterized by the adjacency matrix Γ corresponds to a stabilizer

matrix Sb
def
= (Γ |I ) and transpose stabilizer (generator matrix) T def

= STb =
(

Γ
I

)
. The generator matrix

(
Γ′

I

)
for a graph

state with adjacency matrix Γ′ reads,(
Γ

I

)
→
(

Γ′

I

)
=

(
A B
C D

)(
Γ

I

)
(CΓ +D)

−1
, (13)

where,

Γ′
def
= Q (Γ) = (AΓ +B) (CΓ +D)

−1
. (14)

Observe that in order to have properly defined generators matrices in Eq. (13), CΓ +D must be nonsingular and Γ′

must have vanishing diagonal elements. The graphical analog of the transformation law in Eq. (14) was provided in
[10]. Before stating this result, some additional terminology awaits to be introduced.

Two vertices i and j of a graph G = (V , E) are called adjacent vertices, or neighbors, if {i, j} ∈ E. The
neighborhood N (i) ⊆ V of a vertex i is the set of all neighbors of i. A graph G′ = (V ′, E′) which satisfies V ′ ⊆ V
and E′ ⊆ E is a subgraph of G and one writes G′ ⊆ G. For a subset A ⊆ V of vertices, the induced subgraph
G [A] ⊆ G is the graph with vertex set A and edge set {{i, j} ∈ E : i, j ∈ A}. If G has an adjacency matrix Γ, its
complement Gc is the graph with adjacency matrix Γ + I, where I is the (n× n)-matrix which has all ones, except
for the diagonal entries which are zero. For each vertex i = 1,..., n, a local complementation gi sends the n-vertex
graph G to the graph gi (G) which is obtained by replacing the induced subgraph G [N (i)] by its complement. In
other words,

Γ→ Γ′ ≡ gi(Γ)
def
= Γ + ΓΛiΓ + Λ(i), (15)

where Λi has a 1 on the ith diagonal entry and zeros elsewhere and Λ(i) is a diagonal matrix such that yields zeros
on the diagonal of gi(Γ). Finally, the graphical analog of Eq. (14) becomes,

Qi (Γ) = gi(Γ), (16)

with,

Qi
def
=

(
I diag (Γi)
Λi I

)
, (17)
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and diag(Γi)
def
=diag(Γi1,..., Γin). Observe that substituting (17) in (14) and using (15), Eq. (16) gives

Qi (Γ) = gi(Γ)⇔ Γ + ΓΛiΓ + Λ(i) = Γ + ΓΛiΓ + [diag (Γi) + diag (Γi) ΛiΓ] , (18)

that is,

Λ(i) = diag (Γi) + diag (Γi) ΛiΓ. (19)

The translation of the action of local Clifford operations on graph states into the action of local complementations on
graphs as presented in Eq. (16) is a major achievement of [10].

C. The CWS-work

CWS codes include all stabilizer codes as well as several nonadditive codes. However, for the sake of completeness,
we point out that there are indeed quantum codes that cannot be recast within the CWS framework as pointed out
in [11] and shown in [26]. CWS codes in standard form can be specified by a graph G and a (nonadditive, in general)
classical binary code Cclassical . The n vertices of the graph G correspond to the n qubits of the code and its adjacency
matrix is Γ. Given the graph state |G〉 and the binary code Cclassical , a unique base state |S〉 and a set of word operators
{wk} are specified. The base state |S〉 is a single stabilizer state stabilized by the word stabilizer SCWS, a maximal
Abelian subgroup of the Pauli group PHn2 .

Let ((n, K, d)) denote a quantum code on n qubits that encodes K dimensions with distance d. Following [11],
it can be shown that a ((n, K, d)) codeword stabilized code with word operators W = {wl} with l ∈ {1,..., K} and
codeword stabilizer SCWS is locally Clifford equivalent to a codeword stabilized code with word operators W ′,

W ′ def
= {w′l = Zcl} , (20)

and codeword stabilizer S ′CWS,

S ′CWS
def
= 〈S′l〉 = 〈XlZ

rl〉 , (21)

where cls are codewords defining the classical binary code Cclassical and rl is the lth row vector of the adjacency matrix
Γ of the graph G. For the sake of clarity, we stress that Zv in Eq. (21) is the notational shorthand for

Zv def
= Zv1 ⊗ ...⊗ Zvn , (22)

where v = (v1,..., vn) ∈ Fn2 is a binary n-vector. Thus, any CWS code is locally Clifford equivalent to a CWS code
with a graph-state stabilizer and word operators consisting only of Zs. Moreover, the word operators can always be
chosen to include the identity. Eqs. (20) and (21) characterize the so-called standard form of a CWS quantum code.
For a CWS code in standard form, the base state |S〉 is a graph state. Furthermore, the codespace of a CWS code is
spanned by a set of basis vectors which result from applying the word operators wk on the base state |S〉,

CCWS
def
= Span {|wl〉} with, |wl〉

def
= wl |S〉 . (23)

Therefore, the dimension of the codespace equals the number of word operators. These operators are Pauli operators
in PHn2 that anticommute with one or more of the stabilizer generators for the base state. Thus, word operators map
the base state onto an orthogonal state. The only exception is that in general the set of word operators also includes
the identity operator so that the base state is a codeword of the quantum code as well. These basis states are also
eigenstates of the stabilizer generators, but with some of the eigenvalues differing from +1. In addition, it turns out
that a single qubit Pauli error X, Z or ZX acting on a codeword ω |S〉 of a CWS code in standard form is equivalent
up to a sign to another multi-qubit error consisting of Zs. Therefore, since all errors become Zs, the original quantum
error model is transformed into a classical (induced by the CWS formalism) error model characterized, in general, by
multi-qubit errors. The map ClSCWS

that defines this transformation reads,

ClSCWS
: E 3 E ≡ ±ZvXu 7→ ClSCWS

(±ZvXu)
def
= v⊕

n⊕
l=1

ulrl ∈ {0, 1}n , (24)

where E denotes the set of Pauli errors E, rl is the lth row of the adjacency matrix Γ for the graph G and ul is
the lth bit of the vector u. Finally, it was shown in [11] that any stabilizer code is a CWS code. Specifically, a
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quantum stabilizer code [[n, k, d]] (where the parameters n, k, d denote the length, the dimension and the distance

of the quantum code, respectively) with stabilizer S def
= 〈S1,..., Sn−k〉 where Sj with j ∈ {1,..., n− k} denote the

stabilizer generators and logical operations X̄1,..., X̄k and Z̄1,..., Z̄k is equivalent to a CWS code defined by,

SCWS
def
=
〈
S1, ..., Sn−k, Z̄1,..., Z̄k

〉
, (25)

and word operators ωv,

ωv = X̄
(v)1
1 ⊗ ...⊗ X̄(v)k

k . (26)

The vector v denotes a k-bit string and (v)l ≡ vl with l ∈ {1,..., k} is the lth bit of the vector v. For further details
on binary CWS quantum codes, we refer to [11]. Finally, for a very recent investigation on the symmetries of CWS
codes, we refer to [27].

III. FROM GRAPHS TO STABILIZER CODES AND VICE-VERSA

In this section, we revisit some basic ingredients of the Schlingemann-Werner work (SW-work, [5]), the Schlingemann
work (S-work, [6]) and, finally, the Van den Nest et al. work (VdN-work, [10]). We focus on those aspects of these
works that will be especially relevant for our proposed scheme.

A. The Schlingemann-Werner work

The basic graphical construction of quantum codes within the SW-work [5] can be described as follows. Quantum
codes are completely characterized by a unidirected graph G = G (V , E) characterized by a set V of n vertices and a
set of edges E specified by the coincidence matrix Ξ with both input and output vertices and a finite Abelian group
G with a nondegenerate symmetric bicharacter χ. We remark that there are various types of matrices that can be
used to specify a given graph (for instance, incidence and adjacency matrices [1]). The coincidence matrix introduced
in [5] is simply the adjacency matrix of a graph with both input and output vertices (and, it should not be confused
with the so-called incidence matrix of a graph). The sets of input and output vertices will be denoted by X and Y ,
respectively. Let G be any finite additive Abelian group of cardinality |G| = n with the addition operation denoted
by + and null element 0. A nondegenerate symmetric bicharacter is a map χ : G ×G 3 (g, h) 7→ χ (g, h) ≡ 〈g, h〉 ∈ C
satisfying the following properties [28]: (i) 〈g, h〉 = 〈h, g〉, ∀g, h ∈ G; (ii) 〈g, h1 + h2〉 = 〈g, h1〉 〈g, h2〉, ∀g, h1, h2 ∈ G;

(iii) 〈g, h〉 = 1 ∀h ∈ G ⇔ g = 0. If G = Zn
def
= {0,..., n− 1} (the cyclic group of order n) with addition modulo n as

the group operation, the bicharacter χ can be chosen as

χ (g, h) ≡ 〈g, h〉 def
= ei

2π
n gh, (27)

with g, h ∈ Zn. The encoding operator vG of an error correcting code is an isometry (a bijective map between two
metric spaces that preserve distances),

vG : L2
(
GX
)
→ L2

(
GY
)

, (28)

where L2
(
GX
)

is the |X|-fold tensor product H⊗X with H = L2 (G) (the Hilbert space H is realized as the space of

integrable functions over G) and G def
= Z2 in the qubit case. Similarly, L2

(
GY
)

is the |Y |-fold tensor product H⊗Y .

The Hilbert space L2 (G) is defined as,

L2 (G)
def
= {ψ |ψ : G → C} , (29)

with scalar product between two elements ψ1 and ψ2 in L2 (G) given by,

〈ψ1, ψ2〉
def
=

1

|G|
∑
g

ψ̄1 (g)ψ2 (g) . (30)

The action of vG on L2
(
GX
)

is defined as [5],

(vGψ)
(
gY
) def

=

∫
dgXvG

[
gX∪Y

]
ψ
(
gX
)

, (31)
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where v
G

[
gX∪Y

]
, the integral kernel of the isometry v

G
, is given by [5],

vG
[
gX∪Y

]
= |G|

|X|
2

∏
{z, z′}

χ (gz, gz′)
Ξ(z, z′) = |G|

|X|
2

∏
{z, z′}

[
exp

(
2πi

p
gzgz′

)]Ξ(z, z′)

= |G|
|X|
2

∏
{z, z′}

[
exp

(
2πi

p
gzΞ (z, z′) gz′

)]
= |G|

|X|
2 exp

(
πi

p
gX∪Y · Ξ · gX∪Y

)
. (32)

The product in Eq. (32) must be taken over each two elementary subsets {z, z′} in X ∪ Y . Substituting Eq. (32)
into Eq. (31), the action of vG on L2

(
GX
)

finally becomes,

(vGψ)
(
gY
)

=

∫
dgX |G|

|X|
2 exp

(
πi

p
gX∪Y · Ξ · gX∪Y

)
ψ
(
gX
)

. (33)

We recall that the sequential steps of a QEC cycle can be described as follows,

ρ
coding−→ vρv∗ ≡ ρ′, ρ′ noise−→ T (ρ′) =

∑
α

Fαρ
′F ∗α ≡ ρ′′, ρ′′

recovery−→ R (ρ′′) = ρ, (34)

that is,

R (T (vρv∗)) = ρ. (35)

Furthermore, the traditional Knill-Laflamme error-correction conditions read,

〈vψ1, F ∗αFβvψ2〉 = ω (F ∗αFβ) 〈ψ1, ψ2〉 , (36)

where the multiplicative factor ω (F ∗αFβ) does not depend on the states ψ1 and ψ2. The graphical analog of Eq. (36)
is given by,

〈vψ1, Fvψ2〉 = ω (F ) 〈ψ1, ψ2〉 , (37)

for all operators in U(E), the set of all operators in L2(GY ) which are localized in E ⊂ Y . Thus, operators in U(E)
are given by the tensor product of an arbitrary operator on H⊗E with the identity on H⊗Y \E . A graph code corrects
e errors if and only if it detects all error configurations E ⊂ Y with |E| ≤ 2e. Given this graphical construction
of the encoding operator vG in Eq. (33) and the graphical quantum error-correction conditions in Eq. (37), the
main finding provided by Schlingemann and Werner can be restated as follows: given a finite Abelian group G and a
weighted graph G, an error configuration E ⊂ Y is detected by the quantum code vG if and only if given that

dX = 0 and, ΞXE d
E = 0, (38)

then,

ΞIX∪Ed
X∪E = 0⇒ dX∪E = 0, (39)

with I = Y \E. In general, the condition ΞABd
B = 0 is a set of equations, one for each integration vertex a ∈ A: for

each vertex a ∈ A, we have to sum the db for all vertices b ∈ B connected to a, and equate it to zero. Furthermore,
we underline that the fact that vG is an isometry is equivalent to the detection of zero errors. In graph-theoretic
terms, the detection of zero errors requires that ΞYXd

X = 0 implies dX = 0. A code that satisfies Eq. (39) given
Eq. (38) can be either nondegenerate or degenerate. We shall assume that Eq. (39) with the additional constraints
in Eq. (38) denotes the weak version (necessary and sufficient conditions) of the graph-theoretic error detection
conditions. However, sufficient graph-theoretic error detection conditions can be introduced as well. Specifically, an
error configuration E is detectable by a quantum code if,

ΞIX∪Ed
X∪E = 0⇒ dX∪E = 0. (40)

We shall denote conditions in Eq. (40) without any additional set of graph-theoretic constraints (like the ones provided
in Eq. (38)) the strong version (sufficient conditions) of the graph-theoretic error detection conditions. We finally
emphasize, as originally pointed out in [5], that a code that satisfies Eq. (40) is nondegenerate.
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B. The Schlingemann-work

Schlingemann was able to show that stabilizer codes, either binary or nonbinary, are equivalent to graph codes
(and vice-versa). However, as far as our proposed scheme concerns, the main finding uncovered in the S-work [6]
may be stated as follows. Consider a graph code with only one input and (n− 1)-output vertices. Its corresponding
coincidence matrix Ξn×n can be written as,

Ξn×n
def
=

(
01×1 B†1×(n−1)

B(n−1)×(1) A(n−1)×(n−1)

)
, (41)

where A(n−1)×(n−1) denotes the (n− 1) × (n− 1)-symmetric adjacency matrix Γ(n−1)×(n−1). Then, the graph code
with symmetric coincidence matrix Ξn×n in Eq. (41) is equivalent to stabilizer codes being associated with the
isotropic subspace Sisotropic defined as,

Sisotropic
def
=
{

(Ak |k ) : k ∈ kerB†
}

, (42)

that is, omitting unimportant phase factors, with the binary stabilizer group Sbinary,

Sbinary
def
=
{
gk = XkZAk : k ∈ kerB†

}
. (43)

Observe that a stabilizer operator gk ∈ Sbinary for an n-vertex graph has a 2n-dimensional binary vector space

representation such that gk ↔ vgk
def
= (Ak |k ).

More generally, consider a [[n, k, d]] binary quantum stabilizer code associated with a graph G = (V , E) character-
ized by the (n+ k)× (n+ k) symmetric coincidence matrix Ξ(n+k)×(n+k),

Ξ(n+k)×(n+k)
def
=

(
0k×k B†k×n
Bn×k Γn×n

)
. (44)

To attach the input vertices, Ξ has to be constructed in such a manner that the following conditions are satisfied: i)

first, det Γn×n = 0 (mod 2); ii) second, the matrix B†k×n must define a k-dimensional subspace in Fn2 spanned by k
linearly independent binary vectors of length n not included in the Span of the raw-vectors defining the symmetric
adjacency matrix Γn×n,

Span {~v1,..., ~vk} ∩ Span
{
~v

(1)
Γ ,..., ~v

(n)
Γ

}
= {∅} , (45)

where ~vj ∈ Fn2 for j ∈ {1,..., k} and ~v
(i)
Γ ∈ Fn2 for i ∈ {1,..., n}; iii) third, Span{~v1,..., ~vk} contains a vector ~vB ∈ Fn2

such that ~vB · ~v(i)
Γ = 0 for any i ∈ {1,..., n}. Condition i) is needed to avoid disconnected graphs. Condition ii)

is required to have a properly defined isometry capable of detecting zero errors. Finally, condition iii) is needed to
generate an isotropic subspace (or, in other words, an Abelian subgroup of the Pauli group, the so-called stabilizer
group) with, (

Γ~v
(l)
Γ , ~v

(l)
Γ

)
�
(

Γ~v
(m)
Γ , ~v

(m)
Γ

)
= 0, (46)

for any pair
(
~v

(l)
Γ , ~v

(m)
Γ

)
in
{
~v

(1)
Γ ,..., ~v

(n)
Γ

}
where the symbol � denotes the symplectic product [21].

As a final remark, we point out that in a more general framework like the one presented in [6], we could consider
three types of vertices: input, auxiliary and output vertices. The input vertices label the input systems and are
used for encoding. The auxiliary vertices are inputs used as auxiliary degrees of freedom for implementing additional
constraints for the protected code subspace. Finally, output vertices simply label the output quantum systems.

C. The Van den Nest-work

The main achievement of the VdN-work in [10] is the construction of a very useful algorithmic procedure for
transforming any binary quantum stabilizer code into a graph code. Before describing this procedure, we remark that
it is straightforward to check that a graph code given by the adjacency matrix Γ corresponds to a stabilizer matrix
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Sb
def
= (Γ |I ) and transpose stabilizer T def

= ST
b =

(
Γ
I

)
. That said, consider a quantum stabilizer code with stabilizer

matrix,

Sb
def
= (Z |X ) , (47)

and transpose stabilizer T given by,

T def
= ST

b =

(
ZT

XT

)
≡
(
A

B

)
. (48)

Let us define Sb in Eq. (47). Given a set of generators of the stabilizer, the stabilizer matrix Sb is constructed by
assembling the binary representations of the generators as the rows of a full rank (n× 2n)-matrix. The transpose of
the binary stabilizer matrix (i.e., the transpose stabilizer) T is simply the full rank (2n× n)-matrix obtained from
Sb after exchanging rows with columns. The goal of the algorithmic procedure is to convert the transpose stabilizer

T in Eq. (48) of a given stabilizer code into the transpose stabilizer T ′ =
(
A′

B′

)
of an equivalent graph code. Then, the

matrix A′ will represent the adjacency matrix of the corresponding graph. Two scenarios may occur: i) B is a n× n
invertible matrix; ii) B is not an invertible matrix. In the first scenario where B is invertible, a right-multiplication of

the transpose stabilizer T =
(
A
B

)
by B−1 will perform a basis change, an operation that provides us with an equivalent

stabilizer code,

T B−1 =

(
A

B

)
B−1 =

(
AB−1

I

)
. (49)

Then, the matrix AB−1 will denote the resulting adjacency matrix of the corresponding graph. Furthermore, if the
matrix AB−1 has nonzero diagonal elements, we can simply set these elements to zero in order to satisfy the standard
requirements for a correct definition of an adjacency matrix of simple graphs. In the second scenario where B is not
invertible, we can always find a suitable local Clifford unitary transformation U such that [10],

Sb
def
= (Z |X )

U→ S ′b
def
= (Z ′ |X ′ ) , (50)

and,

T def
= ST

b =

(
ZT

XT

)
≡
(
A

B

)
U→ T ′ def

= S ′Tb =

(
Z
′T

X ′T

)
≡
(
A′

B′

)
, (51)

with detB′ 6= 0. Therefore, right-multiplying T ′ with B′−1, we get

T ′B′−1 =

(
A′

B′

)
B′−1 =

(
A′B′−1

I

)
. (52)

Thus, the adjacency matrix of the corresponding graph becomes A′B′−1.
The above-described algorithmic procedure for transforming any binary quantum stabilizer code into a graph code

is very important for our proposed scheme as it will become clear in the next section.

IV. THE SCHEME

In this section, we formally describe our scheme and apply it to the graphical construction of the Leung et al.
four-qubit quantum code for the error correction of single amplitude damping errors.

A. Description of the scheme

We emphasize that our ultimate goal is the construction of classical graphs G (V , E) with both input and output
vertices defined by the coincidence matrix Ξ in order to verify the error-correcting capabilities of the corresponding
quantum stabilizer codes via the graph-theoretic error correction conditions advocated in the SW-work. To achieve this
goal, we propose a systematic scheme based on a very simple idea. The CWS-, VdN- and S-works must be combined
in such a manner that, with respect to our ultimate goal, the weak-points of one method should be compensated by
the strong-points of another method.



11

1. Step one

The CWS formalism offers a very general framework where both binary/nonbinary and/or additive/nonadditive
quantum codes can be described. For this reason, the starting point of our scheme is the realization of binary
stabilizer codes as CWS quantum codes. Although this is a relatively straightforward step, the CWS code that one
obtains is not, in general, in the standard canonical form. From the CWS-work in [11], it is known that there does
exist a local (unitary) Clifford operations that allows in principle to write down the CWS code that realizes the
binary stabilizer code in standard form. However, the CWS-work does not suggest any algorithmic procedure to
achieve this standard form. In the absence of a systematic procedure, uncovering a local Clifford unitary U such that

S ′CWS
def
= USCWSU

† (every element s′ ∈ S ′CWS can be written as UsU† for some s ∈ SCWS) may constitute a very
tedious challenge. Fortunately, we can avoid this. Before explaining how, let us introduce the codeword stabilizer

matrix HSCWS

def
= (Z |X ) corresponding to the codeword stabilizer SCWS.

2. Step two

Two main achievements of the VdN-work in [10] are the following: first, each stabilizer state is equivalent to a
graph state under local Clifford operations; second, an algorithmic procedure for transforming any binary quantum
stabilizer code into a graph code is provided. Observe that a stabilizer state can be regarded as a quantum code with
parameters [[n, 0, d]]. Our idea is to exploit the algorithmic procedure provided by the VdN-work by translating the
starting point of the algorithmic procedure in the CWS language. To achieve this, we replace the generator matrix
of the stabilizer state with the codeword stabilizer matrix HSCWS corresponding to the codeword stabilizer SCWS of
the CWS code that realizes the binary stabilizer code whose graphical depiction is being sought. This way, we can
simply apply the VdN algorithmic procedure to uncover the standard form of the CWS code and, if necessary, the
explicit expression for the local (unitary) Clifford operation that links the non-standard to the standard forms of the
CWS code. After applying this VdN algorithmic procedure adapted to the CWS formalism, we can construct a graph
characterized by a symmetric adjacency matrix Γ with only output vertices. How do we attach possible input vertices
to this graph associated with the [[n, k, d]] binary stabilizer codes with k 6= 0?

3. Step three

Unlike the VdN-work whose findings are limited to the binary quantum states, the S-work extends its applicability
to both binary and nonbinary quantum codes. In particular, in [6] it was shown that any stabilizer code is a graph
code and vice-versa. However, in the S-work an analog of the algorithmic procedure for transforming any binary
quantum stabilizer code into a graph code is missing. Despite this fact, the S-work does provide a very useful result
for our proposed scheme. Namely, it is shown that a graph code with associated graph G (V,E) with both input and
output vertices and corresponding symmetric coincidence matrix Ξ is equivalent to stabilizer codes being associated
with a suitable isotropic subspace space Sisotropic. Recall that at the end of the above-mentioned step two, we are
basically given both the isotropic subspace and the graph without input vertices, that is the symmetric adjacency
matrix Γ embedded in the more general coincidence matrix Ξ. Therefore, by exploiting the just mentioned very useful
specific finding of the S-work in a reverse direction (we are allowed to do so since a graph code is equivalent to a
stabilizer code and vice-versa), in some sense, we can construct the full coincidence matrix Ξ and finally attach the
input vertices to the graph. What can we do with a graphical depiction of a binary stabilizer code?

4. Step three+one

In the SW-work, outstanding graphical QEC conditions were introduced [5]. However, these conditions were only
partially employed for quantum codes associated with graphs and the codes needed not be necessarily stabilizer codes.
By logically combining the CWS-, VdN- and S-works, the power of the graphical QEC conditions in [5] can be fully
exploited in a systematic manner in both directions: from graph codes to stabilizer codes and vice-versa.

In summary, given a binary quantum stabilizer code Cstabilizer, the systematic procedure that we propose can be
described in 3 + 1 = 4 points as follows:

• Realize the stabilizer code Cstabilizer as a CWS quantum code CCWS;
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• Apply the VdN-work adapted to the CWS formalism to identify the standard form of the CWS code that realizes
the stabilizer code whose graphical depiction is being sought. In other words, find the graph G with only output
vertices characterized by the symmetric adjacency matrix Γ associated with CCWS in the standard form;

• Exploit the S-work as explained to identify the extended graph with both input and output vertices characterized
by the symmetric coincidence matrix Ξ associated with the isometric encoding map that defines CCWS;

• Use the SW-work to apply the graph-theoretic error-correction conditions to the extended graph in order to
explicitly verify the error-correcting capabilities of the corresponding Cstabilizer realized as a CCWS quantum code.

B. Application of the scheme

We think there is no better way to describe and understand the effectiveness of our proposed scheme than by
simply working out in detail a simple illustrative example. In what follows, we wish to uncover the graph associated
with the Leung et al. [[4,1]] four-qubit stabilizer (nondegenerate) quantum code [16]. Several explicit constructions
of graphs for various stabilizer codes characterized by either single or multi-qubit encoding operators are added in
the Appendices: the three-qubit repetition code, the perfect 1-erasure correcting four-qubit code, the perfect 1-error
correcting five-qubit code, 1-error correcting six-qubit quantum degenerate codes, the CSS seven-qubit stabilizer code,
the Shor nine-qubit stabilizer code, the Gottesman 2-error correcting eleven-qubit code, [[4, 2, 2]] stabilizer codes,
and, finally, the Gottesman [[8, 3, 3]] stabilizer code.

1. Step one

Recall that the stabilizer SLeung
b of the Leung et al. [[4, 1]] code is given by [29],

SLeung
b

def
=
〈
X1X2X3X4, Z1Z2, Z3Z4

〉
, (53)

with a suitable logical Z̄ operation given by Z̄ = Z1Z3. Therefore, when regarded within the CWS framework [11],
the Leung et al. code is equivalent to a CWS code defined with codeword stabilizer,

SLeung
CWS

def
=
〈
X1X2X3X4, Z1Z2, Z3Z4, Z1Z3

〉
. (54)

2. Step two

Taking into consideration Eq. (54), we observe that SCWS
Leung is local Clifford equivalent to S′CWS

Leung given by,

S ′Leung
CWS

def
= USLeung

CWS U†, (55)

with U
def
= I1⊗H2⊗H3⊗H4 where H denotes the Hadamard transformation. We notice that the codeword stabilizer

matrix HS′Leung
CWS

associated with the codeword stabilizer S ′Leung
CWS reads,

HS′Leung
CWS

def
= (Z ′ |X ′ ) =

 0 1 1 1
1 0 0 0
0 0 0 0
1 0 0 0

∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0

 , (56)

with detX ′ 6= 0. Therefore, we can find a suitable graph with output vertices only that is associated with the Leung
et al. code by applying the VdN algorithmic procedure. The transpose of HS′Leung

CWS
becomes,

T ′ def
= HT

S′Leung
CWS

≡
(
A′

B′

)
=



0 1 0 1
1 0 0 0
1 0 0 0
1 0 0 0

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0


. (57)
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From Eq. (57) it turns out that B′ is a 4× 4 invertible matrix with inverse given by,

B′−1 =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 1

 . (58)

Finally, the adjacency matrix Γ of a graph that realizes the Leung et al. code is given by Γ = A′B′−1, that is

Γ = A′B′−1 =

 0 1 0 1
1 0 0 0
1 0 0 0
1 0 0 0


 1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 1

 =

 0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 def
= ΓLeung. (59)

As a side remark, we recall that a graph determines uniquely a graph state and two graph states determined by two
graphs are equivalent up to some local Clifford transformations if and only if these two graphs are related to each
other via local complementations (LC) [10]. Avoiding unnecessary formalities, we recall that a local complementation
of a graph on a vertex v can be regarded as the the operation where in the neighborhood of v we connect all the
disconnected vertices and disconnect all the connected vertices. For instance, applying a local complementation on
vertex v = 1 on the graph with adjacency matrix Γ in Eq. (59), we obtain

ΓLeung
def
=

 0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 LCv=1−→ Γ′Leung
def
=

 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (60)

It turns out that ΓLeung and Γ′Leung are the only two adjacency matrices corresponding to the only two connected

graphs, up to graph isomorphisms, that realize the Leung et al. [[4, 1]] code. As a matter of fact, recall that the LC
orbit L = [G] of a graph G is the set of all non-isomorphic graphs, including G itself, that can be transformed into
G by any sequence of local complementations and vertex permutations. Let Gn denote the set of all non-isomorphic

simple unidirected connected graphs on n vertices. Let Ln
def
= {L1,..., Lk} be the set of all distinct orbits of graphs in

Gn. All L ∈ Ln are disjoint and Ln constitutes a partitioning of Gn, that is to say

Gn
def
=

k⋃
i=1

Li. (61)

Two graphs, G1 and G2, are equivalent with respect to local complementations and vertex permutations if one of the
graphs is in the LC orbit of the other, for instance G2 ∈ [G1]. In [30], the set L4 of all LC orbits on 4 vertices was

generated. It was shown that despite the fact that there are 2(4
2) = 64 unidirected simple graphs on 4 vertices, the

number of non-isomorphic connected graphs is only |G4| = 6. Furthermore, it was shown that there are only |L4| = 2
distinct LC orbits on 4 vertices, L4 = {L1, L2} with,

Γ
(1)
L1

def
=

 0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

 , Γ
(2)
L1

def
=

 0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 , Γ
(3)
L1

def
=

 0 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

 , Γ
(4)
L1

def
=

 0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , (62)

and,

Γ
(5)
L2

def
=

 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , Γ
(6)
L2

def
=

 0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 . (63)

We stress that Γ
(5)
L2

and Γ
(6)
L2

correspond to Γ′Leung and ΓLeung, respectively. Therefore, we have uncovered that the

Leung et al. [[4, 1]] code can be realized by graphs that belong to the orbit L2 of L4 in G4 = L1 ∪ L2, the set of all
non-isomorphic unidirected connected graphs on 4 vertices.

For the sake of completeness, we also point out that all graphs on up to 12 vertices have been classified under LCs
and graph isomorphisms [24]. Furthermore, the number of graphs on n unlabeled vertices or the number of connected
graphs with n vertices can be found in [31]. Finally, a very recent database of interesting graphs appears in [32].
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3. Step three

Let us consider the symmetric adjacency matrix ΓLeung as given in Eq. (60). How do we find the enlarged graph
with corresponding symmetric coincidence matrix ΞLeung given ΓLeung? Recall that the graph related to ΓLeung realizes
a stabilizer code which is locally Clifford equivalent to the Leung et al. code with standard binary stabilizer matrix
S ′b given by

S ′b
def
=
〈
X1Z2Z3Z4, Z1X2, X3X4

〉
. (64)

Putting g1
def
= X1Z2Z3Z4, g2

def
= Z1X2 and g3

def
= X3X4, we have

S ′b = 〈g1, g2, g3〉 = {I, g1, g2, g3, g1g2, g1g3, g2g3, g1g2g3} . (65)

The 8-dimensional binary vector representation of these stabilizer operators is given by,

I ↔ vI = (0000 |0000) , g1 ↔ vg1 = (0111 |1000) , g2 ↔ vg2 = (1000 |0100) ,

g3 ↔ vg3 = (0000 |0011) , g1g2 ↔ vg1g2 = (1111 |1100) , g1g3 ↔ vg1g3 = (0111 |1011) ,

g2g3 ↔ vg2g3 = (1000 |0111) , g1g2g3 ↔ vg1g2g3 = (1111 |1111) . (66)

Recall that for a graph code with both 1-input and n-output vertices, its corresponding coincidence matrix
Ξ(n+1)×(n+1) has the form expressed in Eq. (44). The graph code with symmetric coincidence matrix Ξ(n+1)×(n+1) is
equivalent to stabilizer codes being associated with the isotropic subspace Sisotropic defined as,

Sisotropic
def
=
{

(Ak |k ) : k ∈ kerB†
}

, (67)

that is, omitting unimportant phase factors, with the binary stabilizer group Sb,

Sb
def
=
{
gk = XkZAk : k ∈ kerB†

}
. (68)

In our case, in agreement with the four conditions for attaching input vertices as outlined in the S-work paragraph,
it turns out that

B4×1
def
=

 0
0
1
1

 and, A
def
=

 0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 ≡ ΓLeung. (69)

Finally, the enlarged graph is defined by the following symmetric coincidence matrix ΞLeung,

ΞLeung
def
=


0 0 0 1 1
0 0 1 1 1
0 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 . (70)

An additional self-consistency check that substantiates the correctness of ΞLeung in Eq. (70) is represented by the

fact that any gk in S ′b in Eq. (65) has a 8-dimensional binary vector representation of the form vgk with vgk
def
=

(ΓLeungkgk |kgk ) with kgk ∈ kerB† with B given in Eq. (69).

V. FINAL REMARKS

In this article, we proposed a systematic scheme for the construction of graphs with both input and output vertices
associated with arbitrary binary stabilizer codes. The scheme is characterized by three main steps: first, the stabilizer
code is realized as a codeword-stabilized (CWS) quantum code; second, the canonical form of the CWS code is
uncovered; third, the input vertices are attached to the graphs. To check the effectiveness of the scheme, we discussed
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several graphical constructions of various useful stabilizer codes characterized by single and multi-qubit encoding
operators (for details, see appendices). In particular, the error correction capabilities of such quantum codes are
verified in graph-theoretic terms as originally advocated by Schlingemann and Werner (for details, see appendices).

Finally, in what follows, possible generalizations of our scheme for the graphical construction of both (stabilizer
and nonadditive) nonbinary and continuous-variable quantum codes will be briefly addressed.

The scheme proposed is limited to binary stabilizer codes. How about nonbinary and continuous-variable (CV)
codes? How about nonadditive codes? We point out the following three points:

• From additive to nonadditive case. The codeword-stabilized quantum code formalism presents a unifying ap-
proach to both additive and nonadditive quantum error-correcting codes, for both binary and nonbinary states
[12].

• From binary to nonbinary case. The stabilizer formalism, graph states and quantum error correcting codes for
d-dimensional quantum systems have been extensively considered in [33] and [34]. However, as pointed out in
[35], no straightforward extension of the stabilizer formalism in terms of generators within the Pauli group is
possible for d-level systems. As a consequence, it is possible that results obtained within the binary framework
are no longer valid when taking into consideration weighted graph states. The generalizations of the Pauli
group, the Clifford group, and the stabilizer states for qudits in a Hilbert space of arbitrary dimension d appears
in [36]. When moving into the nonbinary case, new features emerge. For instance, the symmetric adjacency
matrix does not contain any longer binary entries as in the case of a simple graph as in qubit systems. The
generalization of the Pauli operators, the so-called Weyl operators, are no longer Hermitian. The finite field
F2 is replaced by the finite field of prime order d and all arithmetic operations are defined modulo d. The
dimension d can be naturally generalized to prime power dimension d = pr with p being prime and r being an
integer. If, however, the underlying integer ring is no longer a field, one loses the vector space structure of Fd,
which demands some caution with respect to the concept of a basis. If d contains multiple prime factors, the
stabilizer, consisting of dN different elements, is in general no longer generated by a set of only N generators.
For the minimal generating set, more elements N ≤ m ≤ 2N of the stabilizer might be needed as pointed
out in [36]. Furthermore, it is possible to show that the action of the local (generalized) Clifford group on
nonbinary stabilizer states can be translated into operations on graphs. However, unlike the binary case, the
single local complementation is replaced by a pair of two different graph-theoretic operations. Furthermore, an
efficient polynomial time algorithm to verify whether two graph states, in the non-binary case, are locally Clifford
equivalent is available [37]. Despite these challenges, new important advances have been recently achieved. For
instance, an explicit method of going from qudit CSS codes to qudit graph codes, including all the encoding
and decoding procedures, has been presented in [38].

• From discrete to continuous case. A remarkable difference between discrete and continuous variables (DV and
CV, respectively) quantum information is that while quantum states and unitary transformations involved are
described by integer-valued parameters in the DV case, they are characterized by real -valued parameters in the
CV case. The continuous-variable analog of the Pauli and Clifford algebras and groups together with sets of
gates that can efficiently simulate any arbitrary unitary transformation in these groups were defined in [39].
The standard Pauli group for CV quantum computation on n coupled oscillator is the Heisenberg-Weyl group
HW (n) which consists of phase-space displacement operators for the n oscillators. Unlike the discrete Pauli
group for qubits, the group HW (n) is a continuous Lie group, and can therefore only be generalized by a
set of continuously parametrized operators. Furthermore, the Clifford group for CV is the semidirect product
group of the symplectic group and Heisenberg-Weyl group, Sp (2n, R) nHW (n), consisting of all phase-space
translations along with all one-mode and two-mode squeezing transformations [39]. This group is generated by
inhomogeneous quadratic polynomials in the canonical operators. For DV, it is possible to generate the Clifford
group using only the CNOT, Hadamard and phase gates. However, in the CV case, the analog of these gates
(namely, the SUM , the Fourier F and the phase P (η) gates with η ∈ R) are all elements of Sp (2n, R). They
are generated by homogeneous quadratic Hamiltonians only. Thus, they are in the subgroup of the Clifford
group. In order to generate the entire Clifford group, one requires a continuous HW (1) transformation (i.e., a
linear Hamiltonian that generates a one-parameter subgroup of HW (1)) such as the Pauli operator X (q) with
q ∈ R. Finally, the Clifford group in the CV case is generated by the set {SUM , F , P (η) , X (q) : η, q ∈ R}.
Continuous-variable graph states were proposed in [40, 41]. It is of great relevance understanding the graph-
theoretic transformation rules that describe both local unitary and local Clifford unitary equivalences of arbitrary
CV graph states. For a particular class of CV graph states, the so-called CV four-mode unweighted graph states,
such transformation rules have been uncovered in [42]. It turns out that even for such restricted class of states,
the corresponding local Clifford unitary cannot exactly mirror that for the qubit case and a greater level of
complexity arises in the CV framework. In addition, the complete implementation of local complementations
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for CV weighted graphs (a weighted graph state is described by a graph G = (V , E) in which every edge is
specified by a factor Ωab corresponding to the strength of modes a and b; for unweighted graph states, all
the interactions have the same strength) remains an open problem. In [43], the graphical description of local
Clifford transformations for CV weighted graph states were considered. In particular, it was shown that unlike
qubit weighted graph states, CV weighted graph states can be expressed by the stabilizer formalism in terms of
generators in the Pauli group. The main reason for this difference is that the CZ gate for qubit is periodic as a
function of the interaction strength while the CV CZ gate is not. We remark that in this context, the CV case
is even more subtle, besides the fact that weighted CV graph states are still stabilizer states unlike weighted
qubit graph states. In particular, the most general form of weighted CV graph states has a complex adjacency
matrix. In fact, all real-valued (with real adjacency matrix) CV graph states (weighted or unweighted) are
unphysical states (only defined in the limit of infinite squeezing). In order to represent physical CV graph
states, corresponding to pure multi-mode Gaussian states, the weights become necessarily complex. All this is
introduced and discussed in [44] where it is also described how such general, physical CV graph states transform
under local and general Gaussian transformations. In particular, we emphasize that the general results presented
in [44] include Zhang’s results in [42, 43] as the limiting cases of infinite squeezing and real-weighted states. We
recall that in the qubit-case a systematic classification of local Clifford equivalence of qubit graph states has
been executed and an efficient algorithm with polynomial time complexity in the number of qubits to decide
whether two given stabilizer states are local Clifford equivalent is known. In the CV framework, it can be
proved that any CV stabilizer state is equivalent to a weighted graph state under local Clifford operations, the
equivalence between two stabilizer states under local Clifford operations can be investigated by studying the
equivalence between weighted graph states under local Clifford operations [45]. However, the existence of a
universal method to determine whether two CV stabilizer states with finite modes are equivalent or not under
local Clifford operation has been only partially addressed in [44]. In the CV case, the local-Clifford equivalence of
stabilizer states translates into local-Gaussian unitary equivalence of (pure) Gaussian states. Furthermore, while
a single unifying definition of complex-weighted CV graph states (Gaussian pure states) together with graph
transformation rules for all local Gaussian unitary operations were presented in [44], no systematic algorithm
for deciding on the local equivalence of two given CV (Gaussian) stabilizer states was discussed. This issue,
however, was recently addressed in [46]. Specifically, necessary and sufficient conditions of Gaussian local unitary
equivalence for arbitrary (mixed or pure) Gaussian states were derived. Despite such advances, several questions
remain to be better understood. For instance, the relation between local equivalence of CV Gaussian states and
Gaussian local equivalence deserves further investigation [46, 47]. A thorough analysis of this type of questions
is not only important from a theoretical point of view, it can also be of practical use concerning which states
are the most suitable for optical realizations of stabilizer quantum error correction codes in any dimension [48].

In view of these considerations, we conclude that the extension of our proposed scheme to arbitrary nonbinary/CV
codes and/or additive/nonadditive codes might turn out to be nontrivial. However, in light of the recent advances,
we are confident that its generalization could be achieved with a reasonable effort.
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Appendix A: Single qubit encoding

Before presenting our illustrative examples, we would like to make few remarks on graphs in quantum error correc-
tion.

The coincidence matrix of a graph characterizes the structural properties of a graph: number of vertices, number of
edges, and, above all, the manner in which vertices are connected. The structure of graphs associated with stabilizer
quantum codes hides essential information about the graphical error detection conditions in Eqs. (38) and (39).
Such graphical conditions may not be necessarily visible in a direct manner as originally pointed out in [6]. This
becomes especially evident when the number of vertices and edges in the graph increases in the presence of multi-
qubit encodings and/or big code lengths. However, graphs do maintain part of their appeal in that they provide
a geometric aid in identifying the explicit algebraic linear equations that characterize the graphical error detection
conditions without taking into consideration the explicit form of their corresponding coincidence matrices. In our
opinion, this is no negligible advantage of our graphical approach since identifying the algebraic equations directly
from the coincidence matrices can become quite tedious without a visual aid provided by graphs. Clearly, the peculiar
advantage of our scheme is that it allows to uncover the expression of the coincidence matrix of a graph associated
with a binary stabilizer code. We shall further discuss some of these aspects in our illustrative examples that appear
below.

As an additional side remark, we point out that there could be scenarios where one can exploit the high symmetry
of the graph in an efficient manner in order to check the graphical conditions for error detection [5]. While symmetry
arguments are elegant and powerful, they require some caution in the case of graphs in quantum error correction:
symmetries of graphs are not necessarily the same as symmetries of the associated stabilizer codes [6, 7, 27]. For
instance, graphs with different symmetries can lead to a class of codes that are equivalent to the CSS seven-qubit
code as shown in Ref. [7]. As recently pointed out in [27], a clear understanding of the requirements under which a
graph can exhibit the same symmetry as the quantum (CWS, in general) code is still missing. In this article, we do
not address this issue. However, in agreement with the statement appeared in Ref. [27], we do think that this point
is definitively worth further attention.

1. The [[3, 1, 1]] stabilizer code

Before applying our scheme for the construction of the graph associated with a [[3, 1, 1]] stabilizer code [21], we
emphasize how intricate can be finding the explicit expression of unitary transformations that relate sets of vertex
stabilizers of graphs. For the sake of reasoning, consider the following sets S|Γ1〉, S|Γ2〉 and S|Γ3〉 defined as

S|Γ1〉
def
=
〈
X1, X2, X3

〉
, S|Γ2〉

def
=
〈
X1Z2Z3, Z1X2, Z1X3

〉
and, S|Γ3〉

def
=
〈
X1Z2Z3, Z1X2Z3, Z1Z2X3

〉
, (A1)

respectively. In the canonical basis BH3
2

of the eight-dimensional complex Hilbert space H3
2,

BH3
2

def
= {|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉} , (A2)

the graph states |Γ1〉, |Γ2〉 and |Γ3〉 read,

|Γ1〉
def
=
|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉√

8
,

|Γ2〉
def
=
|000〉+ |001〉+ |010〉+ |011〉+ |100〉 − |101〉 − |110〉+ |111〉√

8
,

|Γ3〉
def
=
|000〉+ |001〉+ |010〉 − |011〉+ |100〉 − |101〉 − |110〉 − |111〉√

8
. (A3)

We observe that,

S|Γ3〉 = U|Γ1〉→|Γ3〉S|Γ1〉U
†
|Γ1〉→|Γ3〉, (A4)

with,

U|Γ1〉→|Γ3〉
def
=
(
I1 ⊗ I2 ⊗H3

)
·
(
U12
CP ⊗ I3

) (
I1 ⊗H2 ⊗ I3

)
·
(
I1 ⊗ U23

CP

)
·
(
U12
CP ⊗ I3

)
. (A5)
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Similarly, it can be shown that

S|Γ2〉 = U|Γ1〉→|Γ2〉S|Γ1〉U
†
|Γ1〉→|Γ2〉, (A6)

with,

U|Γ1〉→|Γ2〉
def
=
(
H1 ⊗ I2 ⊗ I3

)
·
(
I1 ⊗H2 ⊗ I3

)
·
(
I1 ⊗ U23

CP

)
·
(
U12
CP ⊗ I3

)
. (A7)

Finally, combining (A4) and (A6), we get

S|Γ3〉 = U|Γ2〉→|Γ3〉S|Γ2〉U
†
|Γ2〉→|Γ3〉 = U|Γ1〉→|Γ3〉S|Γ1〉U

†
|Γ1〉→|Γ3〉 = U|Γ1〉→|Γ3〉U

†
|Γ1〉→|Γ2〉S|Γ2〉U|Γ1〉→|Γ2〉U

†
|Γ1〉→|Γ3〉, (A8)

that is,

U|Γ2〉→|Γ3〉 = U|Γ1〉→|Γ3〉U
†
|Γ1〉→|Γ2〉. (A9)

After some algebra, we obtain that the explicit expressions for the Clifford unitary matrices U|Γ1〉→|Γ3〉, U|Γ1〉→|Γ2〉,
and U|Γ2〉→|Γ3〉 become,

U|Γ1〉→|Γ3〉
def
=

1

2



1 1 1 −1 0 0 0 0
1 −1 1 1 0 0 0 0
1 1 −1 1 0 0 0 0
1 −1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 1
0 0 0 0 1 −1 −1 −1
0 0 0 0 −1 −1 −1 1
0 0 0 0 −1 1 −1 −1


, U|Γ1〉→|Γ2〉

def
=

1

2



1 0 1 0 1 0 −1 0
0 1 0 −1 0 1 0 1
1 0 −1 0 1 0 1 0
0 1 0 1 0 1 0 −1
1 0 1 0 −1 0 1 0
0 1 0 −1 0 −1 0 −1
1 0 −1 0 −1 0 −1 0
0 1 0 1 0 −1 0 1


,

U|Γ2〉→|Γ3〉
def
=

1

2



1 1 0 0 1 1 0 0
1 −1 0 0 1 −1 0 0
0 0 1 1 0 0 1 1
0 0 1 −1 0 0 1 −1
1 1 0 0 −1 −1 0 0
1 −1 0 0 −1 1 0 0
0 0 −1 −1 0 0 1 1
0 0 −1 1 0 0 1 −1


. (A10)

A systematic strategy for finding the explicit expressions for the unitary transformations in Eqs. (A5), (A7) and (A9)
would be very useful. The VdN-work is especially important in this regard, as we shall see.

Let us consider the three-qubit bit-flip repetition code with codespace spanned by the codewords |0L〉
def
= |000〉 and

|1L〉
def
= |111〉. The two stabilizer generators of this code are g1

def
= Z1Z2 and g2

def
= Z1Z3 while the logical operations

can read Z̄
def
= Z1Z2Z3 and X̄

def
= X1X2X3 with,

Z̄ |0L〉 = |0L〉 , Z̄ |1L〉 = − |1L〉 , X̄ |0L〉 = |1L〉 and, X̄ |1L〉 = |0L〉 . (A11)

This stabilizer code can be regarded as a CWS code with codeword stabilizer given by,

SCWS
def
=
〈
g1, g2, Z̄

〉
=
〈
Z1Z2, Z1Z3, Z1Z2Z3

〉
=
〈
Z1, Z2, Z3

〉
. (A12)

Observe that SCWS = US|Γ1〉U
† with S|Γ1〉 in Eq. (A1) and U

def
= H1H2H3. Therefore, the graph state associated

with SCWS is locally Clifford equivalent to the graph state |Γ1〉 in Eq. (A3). Let us consider now an alternative
graphical description of the three-qubit bit-flip repetition code that better fits into our scheme.

Let us consider the codespace of the code spanned by the following new codewords,

C def
= Span

{
|0L〉

def
= |000〉 , |1L〉

def
= |111〉

}
→ C′ def

= Span

{
|0′L〉

def
=
|0L〉+ |1L〉√

2
, |1′L〉

def
=
|0L〉 − |1L〉√

2

}
. (A13)
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Notice that the codespace of the code does not change since C′ = C and we have simply chosen a different orthonormal
basis to describe the code. However, with this alternative choice, the new codeword stabilizer reads

S ′CWS
def
=
〈
g1, g2, Z̄ ′

〉
=
〈
Z1Z2, Z1Z3, X1X2X3

〉
, (A14)

and the remaining logical operation is given by X̄ ′
def
= Z1Z2Z3. Observe that S ′CWS is locally Clifford equivalent to

S ′′CWS with S ′′CWS
def
= US ′CWSU and U

def
= H2H3. The codeword stabilizer S ′′CWS reads,

S
′′

CWS =
〈
Z1X2, Z1X3, X1Z2Z3

〉
. (A15)

Observe that S ′′CWS equals S|Γ2〉 in Eq. (A1). Therefore, the graph state associated with S ′′CWS is |Γ2〉 in Eq. (A3).
We notice that this is such a simple example that we really do not need to apply our scheme. The adjacency matrix
Γ of the graph associated with the CWS code with codeword stabilizer S ′′CWS reads,

Γ =

 0 1 1
1 0 0
1 0 0

 . (A16)

However, acting with a local complementation on the vertex 1 of the graph with adjacency matrix Γ in (A16), we get

Γ→ Γ′ =

 0 1 1
1 0 1
1 1 0

 . (A17)

Furthermore, the new codeword stabilizer becomes
[
S ′′CWS

]
new

,

S
′′

CWS →
[
S
′′

CWS

]
new

def
=
〈
X1Z2Z3, Z1X2Z3, Z1Z2X3

〉
. (A18)

Note that the graph state associated with
[
S ′′CWS

]
new

is |Γ3〉 in Eq. (A3). We also point out that following the

VdN-work, it turns out that the 6 × 6 local unitary Clifford transformation Q that links the six-dimensional binary

vector representation of the operators in S ′′CWS and
[
S ′′CWS

]
new

is given by,

Q
def
=


1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (A19)

For the sake of clarity, consider[
S
′′

CWS

]
new

def
= {I, g′1, g′2, g′3, g′1g

′
2, g′1g

′
3, g′2g

′
3, g′1g

′
2g
′
3} , (A20)

with g′1
def
= X1Z2Z3, g′2

def
= Z1X2Z3, g′3

def
= Z1Z2X3 and,

vI = (000 |000) , vg′1 = (011 |100) , vg′2 = (101 |010) , vg′3 = (110 |001) , vg′1g′2 = (110 |110) ,

vg′1g′3 = (101 |101) , vg′2g′3 = (011 |011) , vg′1g′2g′3 = (000 |111) , (A21)

where vg′ denotes the binary vectorial representation of the Pauli operators. Furthermore,

S
′′

CWS
def
= {I, g1, g2, g3, g1g2, g1g3, g2g3, g1g2g3} , (A22)
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FIG. 1: Graph for a quantum code that is locally Clifford equivalent to the [[3,1,1]]-code.

with g1
def
= Z1X2, g2

def
= Z1X3, g3

def
= X1Z2Z3. Using Q in Eq. (A19), we have

I → vQI = (000 |000) , g1 → vQg1 = (110 |110) , g2 → vQg2 = (101 |101) ,

g3 → vQg3 = (011 |100) , g1g2 → vQg1g2 = (011 |011) , g1g3 → vQg1g3 = (101 |010) ,

g2g3 → vQg2g3 = (110 |001) , g1g2g3 → vQg1g2g3 = (000 |111) . (A23)

From Eqs. (A21) and (A23), we arrive at

vI = vQI , vg′1 = vQg3 , vg′2 = vQg1g3 , vg′3 = vQg2g3 ,

vg′1g′2 = vQg1 , vg′1g′3 = vQg2 , vg′2g′3 = vQg1g2 , vg′1g′2g′3 = vQg1g2g3 . (A24)

Finally, given Γ′ in Eq. (A17) and applying the S-work, the coincidence matrix for a graph associated with a [[3, 1, 1]]
stabilizer code becomes,

Ξ[[3,1,1]]
def
=

 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (A25)

It is not that difficult to use the graphical quantum error correction conditions presented in the SW-work and verify
that the [[3, 1, 1]] code with associated coincidence matrix in Eq. (A25) is not a 1-error correcting quantum code.

2. The [[4, 1]] stabilizer code

Let us consider the Grassl et al. perfect 1-erasure correcting four-qubit code with codespace spanned by the
following codewords [49],

|0L〉
def
=
|0000〉+ |1111〉√

2
and, |1L〉

def
=
|1001〉+ |0110〉√

2
. (A26)

The three stabilizer generators of such a code are given by g1
def
= X1X2X3X4, g2

def
= Z1Z4 and g3

def
= Z2Z3. Further-

more, the logical operations are X̄
def
= X1X4 and Z̄

def
= Z1Z3. We notice that such a code, just like the four-qubit code

provided by Leung et al., is also a 1-error detecting code and can be used for the error correction of single amplitude
damping errors. When viewed as a CWS code, the codeword stabilizer reads

SCWS
def
=
〈
g1, g2, g3, Z̄

〉
=
〈
X1X2X3X4, Z1Z4, Z2Z3, Z1Z3

〉
. (A27)
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Observe that SCWS is local Clifford equivalent to S ′CWS with S ′CWS
def
= USCWSU

† and U
def
= H2H3H4. Therefore,

S ′CWS is given by

S ′CWS =
〈
X1Z2Z3Z4, Z1X4, X2X3, Z1X3

〉
. (A28)

The codeword stabilizer matrix HS′CWS
associated with S ′CWS is given by,

HS′CWS

def
= (Z ′ |X ′ ) =

 0 1 1 1
1 0 0 0
0 0 0 0
1 0 0 0

∣∣∣∣∣∣∣
1 0 0 0
0 0 0 1
0 1 1 0
0 0 1 0

 . (A29)

We observe that detX ′T 6= 0 and, applying the VdN-work, the symmetric adjacency matrix Γ reads,

Γ
def
= Z ′T ·

(
X ′T

)−1
=

 0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 . (A30)

Therefore, applying now the S-work, the 5× 5 symmetric coincidence matrix Ξ[[4,1]] that characterizes the graph with
both input and output vertices becomes,

Ξ[[4,1]]
def
=


0 0 0 1 1
0 0 1 1 1
0 1 0 0 0
1 1 0 0 0
1 1 0 0 0

 . (A31)

For the sake of completeness, we also remark that acting with a local complementation with respect to the vertex 1
of the graph with adjacency matrix Γ in Eq. (A30), we obtain the fully connected graph with adjacency matrix Γ′,

Γ→ Γ′ ≡ g1 (Γ)
def
= Γ + ΓΛ1Γ + Λ(1) =

 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , (A32)

where,

Λ1
def
=

 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 and, Λ(1) def
=

 0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (A33)

We also point out that following the VdN-work, it turns out that the 8 × 8 local unitary Clifford transformation Q

that links the eight-dimensional binary vector representation of the operators in S ′CWS and
[
S ′CWS

]
new

(associated

with the graph with adjacency matrix Γ′ in Eq. (A32)) with,

S
′

CWS →
[
S
′

CWS

]
new

def
=
〈
X1Z2Z3Z4, Z1X2Z3Z4, Z1Z2X3Z4, Z1Z2Z3X4

〉
, (A34)

reads,

Q
def
=



1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (A35)
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FIG. 2: Graph for a quantum code that is locally Clifford equivalent to the Leung et al. [[4,1]]-code.

To verify that Q is indeed a local Clifford operation, we observe that it exhibits the required block-diagonal structure
and satisfies the relation QTPQ = P with

P
def
=

(
0 I4×4

I4×4 0

)
. (A36)

Finally, it is fairly simple to use the graphical quantum error correction conditions presented in the SW-work and
verify that the [[4, 1]] code with associated coincidence matrix in Eq. (A31) is a 1-error detecting quantum code.

3. The [[5, 1, 3]] stabilizer code

The codespace of the perfect five-qubit stabilizer code is spanned by the following codewords [50, 51],

|0L〉
def
=

1

4

 |00000〉+ |11000〉+ |01100〉+ |00110〉+ |00011〉+ |10001〉 − |01010〉 − |00101〉+

− |10010〉 − |01001〉 − |10100〉 − |11110〉 − |01111〉 − |10111〉 − |11011〉 − |11101〉

 , (A37)

and,

|1L〉
def
=

1

4

 |11111〉+ |00111〉+ |10011〉+ |11001〉+ |11100〉+ |01110〉 − |10101〉 − |11010〉+

− |01101〉 − |10110〉 − |01011〉 − |00001〉 − |10000〉 − |01000〉 − |00100〉 − |00010〉

 . (A38)

Furthermore, the four stabilizer generators of the code are given by,

g1
def
= X1Z2Z3X4, g2

def
= X2Z3Z4X5, g3

def
= X1X3Z4Z5 and, g4

def
= Z1X2X4Z5. (A39)

A suitable choice of logical operations reads,

X̄
def
= X1X2X3X4X5 and, Z̄

def
= Z1Z2Z3Z4Z5. (A40)

We observe that the codespace of the [[5, 1, 3]] code can be equally well-described by the following set of orthonormal
codewords,

|0′L〉
def
=
|0L〉+ |1L〉√

2
and, |1′L〉

def
=
|0L〉 − |1L〉√

2
, (A41)

with unchanged stabilizer and new logical operations given by,

Z̄ ′ = X̄
def
= X1X2X3X4X5 and, X̄ ′ = Z̄

def
= Z1Z2Z3Z4Z5. (A42)

The codeword stabilizer SCWS of the CWS code that realizes the five-qubit code spanned by the codewords |0′L〉 and
|1′L〉 reads,

SCWS
def
=
〈
g1, g2, g3, g4, Z̄ ′

〉
=
〈
X1Z2Z3X4, X2Z3Z4X5, X1X3Z4Z5, Z1X2X4Z5, X1X2X3X4X5

〉
. (A43)



25

0

1

23

4

5

FIG. 3: Graph for a quantum code that is locally Clifford equivalent to the perfect [[5,1,3]]-code.

The codeword stabilizer matrix HSCWS
associated with SCWS is given by,

HSCWS

def
= (Z |X ) =


0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
0 0 0 0 0

∣∣∣∣∣∣∣∣∣
1 0 0 1 0
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
1 1 1 1 1

 . (A44)

We observe detX 6= 0. Thus, using the VdN-work, the 5× 5 adjacency matrix Γ becomes,

Γ
def
= ZT ·

(
XT
)−1

=


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 . (A45)

Therefore, applying now the S-work, the 6 × 6 symmetric coincidence matrix Ξ[[5,1,3]] characterizing the graph with
both input and output vertices is given by,

Ξ[[5,1,3]]
def
=


0 1 1 1 1 1
1 0 1 0 0 1
1 1 0 1 0 0
1 0 1 0 1 0
1 0 0 1 0 1
1 1 0 0 1 0

 . (A46)

In order to show that the pentagon graph with five output vertices and one input vertex with coincidence matrix
Ξ[[5,1,3]] realizes a 1-error correcting code, it is required to apply the graph-theoretic error detection (correction)

conditions of the SW-work to
(

5
2

)
= 10 two-error configurations Ek with k ∈ {1,..., 10}. These two-error configurations

read,

E1
def
= {0, 1, 2} , E2

def
= {0, 1, 3} , E3

def
= {0, 1, 4} , E4

def
= {0, 1, 5} , E5

def
= {0, 2, 3} ,

E6
def
= {0, 2, 4} , E7

def
= {0, 2, 5} , E8

def
= {0, 3, 4} , E9

def
= {0, 3, 5} , E10

def
= {0, 4, 5} . (A47)

For instance, the application of the SW-theorem to the error configuration E1 = {0, 1, 2} leads to the following set
of relations,

d0 + d2 = 0, d0 = 0 and, d0 + d1 = 0. (A48)
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Solving this set of equations, we arrive at d0 = d1 = d2 = 0. According to the SW-theorem, this implies that the
the error configuration E1 = {0, 1, 2} is a detectable error-configuration. In other words, the detectability of E1 is
linked to the non-singularity of the following 3× 3 submatrix of the 6× 6 coincidence matrix,

E1
def
= {0, 1, 2} ↔

 d0 + d2 = 0
d0 = 0

d0 + d1 = 0
↔ det

 1 0 1
1 0 0
1 1 0

 6= 0. (A49)

Following this line of reasoning, it turns out that the remaining nine error configurations in Eq. (A47) are detectable
as well. The detectability of arbitrary error configurations with two nontrivial error operators leads to the conclusion
that the graph realizes a 1-error correcting code.

4. The [[6, 1, 3]] stabilizer codes

Calderbank et al. discovered two distinct six-qubit quantum degenerate codes which encode one logical qubit into
six physical qubits [20]. The first of these codes was discovered by trivially extending the perfect five-qubit code and
the other one through an exhaustive search of the encoding space.

a. Trivial case

The first (trivial) degenerate six-qubit code that we consider can be obtained from the [[5, 1, 3]] code by appending
an ancilla qubit to the five-qubit code. Thus, we add a new qubit and a new stabilizer generator which is X for the
new qubit [22]. The other four stabilizer generators from the five-qubit code are tensored with the identity on the
new qubit to form the generators of the new code. To be explicit, the codespace of this six-qubit code is spanned by
the following two orthonormal codewords,

|0′L〉
def
= |0L〉 ⊗ |+〉6 and, |1′L〉

def
= |1L〉 ⊗ |+〉6 , (A50)

where |0L〉 and |1L〉 are defined in Eqs. (A37) and (A38), respectively. Following the point of view adopted for the
five-qubit code, let us choose a codespace for the six-qubit code spanned by the new orthonormal codewords given by,∣∣∣0′′L〉 def

=
|0′L〉+ |1′L〉√

2
and,

∣∣∣1′′L〉 def
=
|0′L〉 − |1′L〉√

2
. (A51)

The five stabilizer generators of the code with codespace spanned by
∣∣∣0′′L〉 and

∣∣∣1′′L〉 read,

g1
def
= X1Z2Z3X4, g2

def
= X2Z3Z4X5, g3

def
= X1X3Z4Z5, g4

def
= Z1X2X4Z5 and, g5

def
= X6. (A52)

A suitable choice of logical operations on
∣∣∣0′′L〉 and

∣∣∣1′′L〉 is provided by,

X̄
def
= Z1Z2Z3Z4Z5 and, Z̄

def
= X1X2X3X4X5. (A53)

We remark that X̄ and Z̄ anticommute, and that each commutes with all the five stabilizer generators in Eq. (A52).

The codeword stabilizer SCWS of the CWS code that realizes the six-qubit code spanned by the codewords
∣∣∣0′′L〉 and∣∣∣1′′L〉 reads,

SCWS
def
=
〈
g1, g2, g3, g4, g5, Z̄

〉
=
〈
X1Z2Z3X4, X2Z3Z4X5, X1X3Z4Z5, Z1X2X4Z5, X6, X1X2X3X4X5

〉
.

(A54)
The codeword stabilizer matrix HSCWS associated with SCWS is given by,

HSCWS

def
= (Z |X ) =


0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 1 0 0
0 1 0 0 1 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 0 1
1 1 1 1 1 0

 . (A55)
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FIG. 4: Graph for a quantum code that is locally Clifford equivalent to the trivial [[6,1,3]]-code.

We observe detX 6= 0. Thus, using the VdN-work, the 6× 6 adjacency matrix Γ becomes,

Γ
def
= ZT ·

(
XT
)−1

=


0 1 0 0 1 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
1 0 0 1 0 0
0 0 0 0 0 0

 . (A56)

Therefore, applying now the S-work, the 7 × 7 symmetric coincidence matrix Ξtrivial
[[6,1,3]] characterizing the graph with

both input and output vertices reads,

Ξtrivial
[[6,1,3]]

def
=



0 1 1 1 1 1 1
1 0 1 0 0 1 0
1 1 0 1 0 0 0
1 0 1 0 1 0 0
1 0 0 1 0 1 0
1 1 0 0 1 0 0
1 0 0 0 0 0 0


. (A57)

In order to show that the graph with six output vertices and one input vertex with coincidence matrix Ξtrivial
[[6,1,3]] realizes

a 1-error correcting degenerate code, we have to apply the graph-theoretic error detection (correction) conditions of
the SW-work to

(
6
2

)
= 15 error configurations Ek with k ∈ {1,..., 15}. It can be verified that any of the ten

error configurations Ek
def
= {0, e, e′} with e, e′ 6= 6 satisfy the strong version of the graph-theoretic error detection

conditions. In addition, the five two-error configurations Ek with an error e = 6 only satisfy the weak form of the
graph-theoretic error detection conditions. This fact is consistent with the finding that concerns degenerate codes
presented in the SW-work.

b. Nontrivial case

The second example of a six-qubit degenerate code provided by Calderbank et al. is a nontrivial six-qubit code
[20], which, according to Calderbank et al., in unique up to equivalence. The example that we consider was indeed
introduced by Bilal et al. in [52]. They state that since their example is not reducible to the trivial six-qubit code
because every one of its qubits is entangled with the others, their code is equivalent to the (second) nontrivial six-qubit
code according to the arguments of Calderbank et al. The codespace of this nontrivial six-qubit code is spanned by
the codewords |0L〉 and |1L〉 defined as [52],

|0L〉
def
=

1√
8

[|000000〉 − |100111〉+ |001111〉 − |101000〉 − |010010〉+ |110101〉+ |011101〉 − |111010〉] , (A58)

and,

|1L〉
def
=

1√
8

[|001010〉+ |101101〉+ |000101〉+ |1000010〉 − |011000〉 − |111111〉+ |010111〉+ |110000〉] , (A59)
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respectively. The five stabilizer generators for this code are given by,

g1
def
= Y 1Z3X4X5Y 6, g2

def
= Z1X2X5Z6, g3

def
= Z2X3X4X5X6, g4

def
= Z4Z6, g5

def
= Z1Z2Z3Z5. (A60)

A suitable choice for the logical operations reads,

X̄
def
= Z1X3X5 and, Z̄

def
= Z2Z5Z6. (A61)

In what follows, we shall consider the codespace spanned by the orthonormal codewords

|0′L〉
def
=
|0L〉+ |1L〉√

2
and, |1′L〉

def
=
|0L〉 − |1L〉√

2
. (A62)

This way, the codeword stabilizer SCWS of the CWS code that realizes the six-qubit code with a codespace spanned
by |0′L〉 and |1′L〉 is given by,

SCWS
def
=
〈
g1, g2, g3, g4, g5, Z̄ ′

〉
, (A63)

with Z̄ ′ ≡ X̄ def
= Z1X3X5. Therefore, SCWS becomes,

SCWS
def
=
〈
Y 1Z3X4X5Y 6, Z1X2X5Z6, Z2X3X4X5X6, Z4Z6, Z1Z2Z3Z5, Z1X3X5

〉
. (A64)

Observe that SCWS is locally Clifford equivalent to S ′CWS with S ′CWS
def
= USCWSU

† and U
def
= H1H4. Therefore, we

obtain,

S ′CWS =
〈
Y 1Z3Z4X5Y 6, X1X2X5Z6, Z2X3Z4X5X6, X4Z6, X1Z2Z3Z5, X1X3X5

〉
. (A65)

The codeword stabilizer matrix HS′CWS
associated with S ′CWS reads,

HS′CWS

def
= (Z ′ |X ′ ) =


1 0 1 1 0 1
0 0 0 0 0 1
0 1 0 1 0 0
0 0 0 0 0 1
0 1 1 0 1 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 1 1
1 1 0 0 1 0
0 0 1 0 1 1
0 0 0 1 0 0
1 0 0 0 0 0
1 0 1 0 1 0

 . (A66)

We observe that detX ′T 6= 0 and, applying the VdN-work, the symmetric adjacency matrix Γ becomes,

Γ
def
= Z ′T ·

(
X ′T

)−1
=


0 1 1 0 1 0
1 0 0 0 1 0
1 0 0 0 1 1
0 0 0 0 0 1
1 1 1 0 0 1
0 0 1 1 1 0

 . (A67)

Therefore, applying now the S-work, the 7× 7 symmetric coincidence matrix Ξnontrivial
[[6,1,3]] characterizing the graph with

both input and output vertices is given by,

Ξnontrivial
[[6,1,3]]

def
=



0 1 0 1 0 1 0
1 0 1 1 0 1 0
0 1 0 0 0 1 0
1 1 0 0 0 1 1
0 0 0 0 0 0 1
1 1 1 1 0 0 1
0 0 0 1 1 1 0


. (A68)

In order to show that the graph with six output vertices and one input vertex with coincidence matrix Ξnontrivial
[[6,1,3]]

realizes a 1-error correcting (degenerate) code, we have to apply the graph-theoretic error detection (correction)
conditions of the SW-work to

(
6
2

)
= 15 two-error configurations Ek with k ∈ {1,..., 15}. It can be checked that the

only problematic error configuration is Ek
def
= {0, e, e′} with e = 4, e′ = 6. The only undetectable nontrivial error

is represented by X4Z6. However, this error operator belongs to the stabilizer of the code and therefore it will have
no impact on the encoded quantum state. Thus, the code considered has indeed distance d = 3. Furthermore, since
a quantum stabilizer code with distance d is a degenerate code if and only if its stabilizer has an element of weight
less than d (excluding the identity element), our code with d = 3 and a stabilizer element of weight-2 is indeed a
degenerate code.
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FIG. 5: Graph for a quantum code that is locally Clifford equivalent to the nontrivial [[6,1,3]]-code.

5. The CSS [[7, 1, 3]] stabilizer code

The codespace of the CSS seven-qubit stabilizer code is spanned by the following codewords [53, 54],

|0L〉
def
=

1(√
2
)3
 |0000000〉+ |0110011〉+ |1010101〉+ |1100110〉+

+ |0001111〉+ |0111100〉+ |1011010〉+ |1101001〉

 , (A69)

and,

|1L〉
def
=

1(√
2
)3
 |1111111〉+ |1001100〉+ |0101010〉+ |0011001〉+

+ |1110000〉+ |1000011〉+ |0100101〉+ |0010110〉

 . (A70)

Furthermore, the six stabilizer generators of the code are given by

g1
def
= X4X5X6X7, g2

def
= X2X3X6X7, g3

def
= X1X3X5X7, g4

def
= Z4Z5Z6Z7, g5

def
= Z2Z3Z6Z7, g6

def
= Z1Z3Z5Z7.

(A71)
A suitable choice of logical operations reads,

X̄
def
= X1X2X3 and, Z̄

def
= Z1Z2Z3. (A72)

We observe that the codespace of the CSS code can be equally well-described by the following set of orthonormal
codewords,

|0′L〉
def
=
|0L〉+ |1L〉√

2
and, |1′L〉

def
=
|0L〉 − |1L〉√

2
, (A73)

with unchanged stabilizer and new logical operations given by,

Z̄ ′ = X̄
def
= X1X2X3 and, X̄ ′ = Z̄

def
= Z1Z2Z3. (A74)

The codeword stabilizer SCWS of the CWS code that realizes the seven-qubit code spanned by the codewords |0′L〉
and |1′L〉 reads,

SCWS
def
=
〈
g1, g2, g3, g4, g5, g6, Z̄ ′

〉
, (A75)

that is,

SCWS =
〈
X4X5X6X7, X2X3X6X7, X1X3X5X7, Z4Z5Z6Z7, Z2Z3Z6Z7, Z1Z3Z5Z7, X1X2X3

〉
. (A76)

Observe that SCWS is local Clifford equivalent to S ′CWS with S ′CWS
def
= USCWSU

† and U
def
= H1H2H4. Therefore,

S ′CWS is given by,

S ′CWS =
〈
Z4X5X6X7, Z2X3X6X7, Z1X3X5X7, X4Z5Z6Z7, X2Z3Z6Z7, X1Z3Z5Z7, Z1Z2X3

〉
. (A77)
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FIG. 6: Graph for a quantum code that is locally Clifford equivalent to the CSS [[7,1,3]]-code.

The codeword stabilizer matrix HS′CWS
associated with S ′CWS reads,

HS′CWS

def
= (Z ′ |X ′ ) =



0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 1 1
0 0 1 0 0 1 1
0 0 1 0 1 0 1
1 1 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 1 1 1
0 0 1 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0


. (A78)

We observe detX ′ 6= 0. Thus, using the VdN-work, the 7× 7 adjacency matrix Γ reads,

Γ
def
= Z ′T ·

(
X ′T

)−1
=



0 0 1 0 1 0 1
0 0 1 0 0 1 1
1 1 0 0 0 0 0
0 0 0 0 1 1 1
1 0 0 1 0 0 0
0 1 0 1 0 0 0
1 1 0 1 0 0 0


. (A79)

Therefore, applying now the S-work, the 8 × 8 symmetric coincidence matrix ΞCSS-[[7,13]] characterizing the graph
with both input and output vertices becomes,

ΞCSS-[[7,13]]
def
=



0 0 0 1 0 1 1 0
0 0 0 1 0 1 0 1
0 0 0 1 0 0 1 1
1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1
1 1 0 0 1 0 0 0
1 0 1 0 1 0 0 0
0 1 1 0 1 0 0 0


. (A80)

It is straightforward to show that the cube graph with seven output vertices and one input vertex with coincidence
matrix ΞCSS-[[7,13]] realizes a 1-error correcting code. Namely, all the

(
7
2

)
= 21 two-error configurations Ek with

k ∈ {1,..., 21},

E1
def
= {0, 1, 2} , E2

def
= {0, 1, 3} , E3

def
= {0, 1, 4} , E4

def
= {0, 1, 5} , E5

def
= {0, 1, 6} , E6

def
= {0, 1, 7} ,

E7
def
= {0, 2, 3} , E8

def
= {0, 2, 4} , E9

def
= {0, 2, 5} , E10

def
= {0, 2, 6} , E11

def
= {0, 2, 7} , E12

def
= {0, 3, 4} ,

E13
def
= {0, 3, 5} , E14

def
= {0, 3, 6} , E15

def
= {0, 3, 7} , E16

def
= {0, 4, 5} , E17

def
= {0, 4, 6} ,

E18
def
= {0, 4, 7} , E19

def
= {0, 5, 6} , E20

def
= {0, 5, 7} , E21

def
= {0, 6, 7} , (A81)
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satisfy the strong version of the graph-theoretic error detection (correction) conditions of the SW-work in agreement
with the fact that the code is nondegenerate.

6. The Shor [[9, 1, 3]] stabilizer code

a. First case

When realized as a CWS quantum code, the Shor nine-qubit code [55] is characterized by the codeword stabilizer
SCWS given by,

SCWS
def
=
〈
g1, g2, g3, g4, g5, g6, g7, g8, Z̄

〉
, (A82)

with codeword stabilizer generators given by,

g1
def
= Z1Z2, g2

def
= Z1Z3, g3

def
= Z4Z5, g4

def
= Z4Z6, g5

def
= Z7Z8, g6

def
= Z7Z9,

g7
def
= X1X2X3X4X5X6, g8

def
= X1X2X3X7X8X9, Z̄

def
= X1X2X3X4X5X6X7X8X9. (A83)

What is the graph that realizes the Shor code? The codeword stabilizer matrix HSCWS corresponding to SCWS in Eq.
(A82) can be formally written as,

HSCWS

def
= (Z |X ) =



1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1


. (A84)

Since XT is not invertible, the algorithmic procedure introduced in the VdN-work cannot be applied. However, we
notice that the codeword stabilizer SCWS in Eq. (A82) is locally Clifford equivalent to S ′CWS defined by,

S ′CWS
def
= USCWSU

† with, U
def
= I1 ⊗H2 ⊗H3 ⊗ I4 ⊗H5 ⊗H6 ⊗ I7 ⊗H8 ⊗H9. (A85)

Using Eqs. (A82) and (A85), it follows that

S ′CWS
def
=
〈
g′1, g′2, g′3, g′4, g′5, g′6, g′7, g′8, Z̄ ′

〉
, (A86)

with,

g′1
def
= Z1X2, g′2

def
= Z1X3, g′3

def
= Z4X5, g′4

def
= Z4X6, g′5

def
= Z7X8, g′6

def
= Z7X9,

g′7
def
= X1Z2Z3X4Z5Z6, g′8

def
= X1Z2Z3X7Z8Z9, Z̄ ′

def
= X1Z2Z3X4Z5Z6X7Z8Z9. (A87)

We observe that the the codeword stabilizer matrix HS′CWS
corresponding to S ′CWS becomes,

HS′CWS

def
= (Z ′ |X ′ ) =



1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 1 1 0 1 1 0 0 0
0 1 1 0 0 0 0 1 1
0 1 1 0 1 1 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0


. (A88)
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FIG. 7: First example of a graph for a quantum code that is locally Clifford equivalent to the Shor [[9,1,3]]-code.

Omitting further details and applying the VdN-work, the symmetric 9 × 9 adjacency matrix Γ for the Shor code
becomes,

Γ
def
= Z ′T ·

(
X ′T

)−1
=



0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0


. (A89)

Finally, applying the S-work, the 10 × 10 symmetric coincidence matrix Ξ[[9,1,3]] characterizing the graph with both
input and output vertices reads,

Ξ[[9,1,3]]
def
=



0 0 1 1 0 1 1 0 1 1
0 0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0


. (A90)

In what follows, we shall consider an alternative path leading to a graph for the nine-qubit stabilizer code. Finally,
we shall discuss the error-correcting capability of the code in graph-theoretic terms as originally advocated in the
SW-work.

b. Second case

Being within the CWS framework, consider a graph with nine vertices characterized by the following canonical
codeword stabilizer,

SCWS
def
= 〈g1, g2, g3, g4, g5, g6, g7, g8, g9〉 , (A91)
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with,

g1
def
= X1Z2Z3Z4Z5, g2

def
= Z1X2, g3

def
= Z1X3, g4

def
= Z1X4Z5Z6Z7, g5

def
= Z4X5, g6

def
= Z4X6,

g7
def
= Z1Z4X7Z8Z9, g8

def
= Z7X8, g9 ≡ Z̄

def
= Z7X9. (A92)

The 9× 9 adjacency matrix Γ for this graph is given by,

Γ
def
=



0 1 1 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0


. (A93)

Applying the S-work, the 10×10 symmetric coincidence matrix Ξ′[[9,1,3]] characterizing the graph with both input and

output vertices becomes,

Ξ′[[9,1,3]]
def
=



0 0 1 1 0 1 1 0 1 1
0 0 1 1 1 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 1 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 1 1
1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0


. (A94)

Does the graph associated with the adjacency matrix in Eq. (A93) realize the Shor nine-qubit code? If we show
that SCWS in Eq. (A91) is locally Clifford equivalent to a new stabilizer S ′CWS from which we can construct a graph
that realizes the Shor code, then we can reply with an affirmative answer. Observe that SCWS in Eq. (A91) is locally
Clifford equivalent to S ′CWS defined as,

S ′CWS
def
= USCWSU

† with, U
def
= P 1 ⊗H2 ⊗H3 ⊗ P 4 ⊗H5 ⊗H6 ⊗ P 7 ⊗H8 ⊗H9. (A95)

Using Eqs. (A91) and (A95), it follows that

S ′CWS
def
=
〈
g′1, g′2, g′3, g′4, g′5, g′6, g′7, g′8, Z̄ ′

〉
, (A96)

with,

g′1
def
= Z1X2, g′2

def
= Z1X3, g′3

def
= Z4X5, g′4

def
= Z4X6, g′5

def
= Z7X8, g′6

def
= Z7X9,

g′7
def
= Y 1Z2Z3Y 4Z5Z6, g′8

def
= Y 1Z2Z3Y 7Z8Z9, Z̄ ′

def
= Y 1Z2Z3Y 4Z5Z6Y 7Z8Z9. (A97)

We observe that the the codeword stabilizer matrix HS′CWS
corresponding to S ′CWS becomes,

HS′CWS

def
=



1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 1 0 0 1 0 0


. (A98)
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FIG. 8: Second example of a graph for a quantum code that is locally Clifford equivalent to the Shor [[9,1,3]]-code.

Omitting further details and applying the VdN-work, the 9 × 9 symmetric adjacency matrix Γ associated with the
new graph reads,

Γ
def
=



0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0


. (A99)

Since the adjacency matrices in Eqs. (A89) and (A99) represent essentially the same graphs, we conclude that the
graph with canonical stabilizer (A91) realizes the Shor code as well. In addition, we point out that among all the
possible 36 two-element error configurations, 27 configurations satisfy the strong error correction condition, 3 satisfy
the weak error correction condition and 6 do not satisfy neither of them but they are harmless as we shall show. The
strongly correctable 27 configurations are given by,

{0, 1, 4} , {0, 1, 5} , {0, 1, 6} , {0, 1, 7} , {0, 1, 8} , {0, 1, 9} , {0, 2, 4} , {0, 2, 5} , {0, 2, 6} , {0, 2, 7} ,

{0, 2, 8} , {0, 2, 9} , {0, 3, 4} , {0, 3, 5} , {0, 3, 6} , {0, 3, 7} , {0, 3, 8} , {0, 3, 9} , {0, 4, 7} , {0, 4, 8} ,

{0, 4, 9} , {0, 5, 7} , {0, 5, 8} , {0, 5, 9} , {0, 6, 7} , {0, 6, 8} , {0, 6, 9} , (A100)

while the weakly correctable 3 configurations read,

{0, 2, 3} , {0, 5, 6} , {0, 8, 9} . (A101)

Finally, the potentially dangerous 6 error configurations are,

{0, 1, 2} , {0, 1, 3} , {0, 4, 5} , {0, 4, 6} , {0, 7, 8} , {0, 7, 9} . (A102)

Each of the 6 two-error configurations in Eq. (A102) generates 9 weight-2 error operators for a total of 54 errors. It
turns out that in each set of errors of cardinality 9, there is 1 weight-2 nondetectable nontrivial error. However, this
single error operator belongs to the stabilizer Sstabilizer of the code and therefore it will have no impact on the encoded
quantum state. Thus, the code considered has indeed distance d = 3. To be explicit, consider the set {0, 1, 2}. This
sets generates the following 9 weight-2 error operators,

X1X2, X1Y 2, X1Z2, Y 1X2, Y 1Y 2, Y 1Z2, Z1X2, Z1Y 2, Z1Z2. (A103)

The only nontrivial error with vanishing error syndrome is Z1Z2 which, however, belongs to the stabilizer.



35

7. The [[11, 1, 5]] stabilizer code

The smallest possible code protecting against two arbitrary errors maps one logical qubit into eleven physical qubits.
The existence of such a code was proven in [20] while its stabilizer structure was constructed in [22]. When realized
as a CWS code, the eleven-qubit quantum stabilizer code is characterized by the codeword stabilizer,

SCWS
def
=
〈
g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, Z̄

〉
, (A104)

with [22],

g1
def
= Z1Z2Z3Z4Z5Z6, g2

def
= X1X2X3X4X5X6, g3

def
= Z4X5Y 6Y 7Y 8Y 9X10Z11, g4

def
= X4Y 5Z6Z7Z8Z9Y 10X11,

g5
def
= Z1Y 2X3Z7Y 8X9, g6

def
= X1Z2Y 3X7Z8Y 9, g7

def
= Z4Y 5X6X7Y 8Z9, g8

def
= X4Z5Y 6Z7X8Y 9,

g9
def
= Z1X2Y 3Z7Z8Z9X10Y 11, g10

def
= Y 1Z2X3Y 7Y 8Y 9Z10X11, Z̄

def
= Z7Z8Z9Z10Z11. (A105)

What is the graph that realizes such eleven-qubit code? The codeword stabilizer matrix HSCWS
corresponding to

SCWS in Eq. (A104) can be formally written as,

HSCWS

def
= (Z |X ) =



1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1 1 0 1
0 0 0 0 1 1 1 1 1 1 0
1 1 0 0 0 0 1 1 0 0 0
0 1 1 0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 1 1 1 0 1 0 0
1 0 1 0 0 0 1 1 1 0 1
1 1 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 0
0 0 0 1 1 0 0 0 0 1 1
0 1 1 0 0 0 0 1 1 0 0
1 0 1 0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0
0 0 0 1 0 1 0 1 1 0 0
0 1 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0


. (A106)

Since XT is not invertible, the algorithmic procedure introduced in the VdN-work cannot be applied. However, we
notice that the stabilizer SCWS in Eq. (A104) is locally Clifford equivalent to S ′CWS defined by,

S ′CWS
def
= USCWSU

†, (A107)

where the unitary operator U is defined as,

U
def
=
(
H1P 1H1

)
⊗H2 ⊗H3 ⊗H4 ⊗H5 ⊗H6 ⊗H7 ⊗H8 ⊗H9 ⊗H10 ⊗

(
H11P 11H11

)
. (A108)

The operator U can be regarded as the composition of three unitary operators U
def
= U3 ◦ U2 ◦ U1 with,

U1
def
= H1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5 ⊗ I6 ⊗ I7 ⊗ I8 ⊗ I9 ⊗ I10 ⊗H11,

U2
def
= P 1 ⊗ I2 ⊗ I3 ⊗ I4 ⊗ I5 ⊗ I6 ⊗ I7 ⊗ I8 ⊗ I9 ⊗ I10 ⊗ P 11,

U3
def
= H1 ⊗H2 ⊗H3 ⊗H4 ⊗H5 ⊗H6 ⊗H7 ⊗H8 ⊗H9 ⊗H10 ⊗H11. (A109)

Using Eqs. (A104) and (A108), it follows that

S ′CWS
def
=
〈
g′1, g′2, g′3, g′4, g′5, g′6, g′7, g′8, g′9, g′10, Z̄ ′

〉
, (A110)



36

0

1

2

3

4

5

6

7

8

9

10

11

FIG. 9: Graph for a quantum code that is locally Clifford equivalent to the Gottesman [[11,1,5]]-code.

with,

g′1
def
= Y 1X2X3X4X5X6, g′2

def
= X1Z2Z3Z4Z5Z6, g′3

def
= X4Z5Y 6Y 7Y 8Y 9Z10Y 11, g′4

def
= Z4Y 5X6X7X8X9Y 10X11,

g′5
def
= Y 1Y 2Z3X7Y 8Z9, g′6

def
= X1X2Y 3Z7X8Y 9, g′7

def
= X4Y 5Z6Z7Y 8X9, g′8

def
= Z4X5Y 6X7Z8Y 9,

g′9
def
= Y 1Z2Y 3X7X8X9Z10Z11, g′10

def
= Z1X2Z3Y 7Y 8Y 9X10X11, Z̄ ′

def
= X7X8X9X10Y 11. (A111)

We observe that the codeword stabilizer matrix HS′CWS
corresponding to S ′CWS becomes,

HS′CWS

def
= (X ′ |Z ′ ) =



1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1
0 0 0 1 1 0 0 0 0 1 0
1 1 1 0 0 0 0 1 1 0 0
0 0 1 0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0
0 0 0 1 0 1 0 1 1 0 0
1 1 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1 1 0 1
0 0 0 0 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1 0 0 0
1 1 1 0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 1 1 1 0 1 0 0
1 0 1 0 0 0 1 1 1 0 0
0 1 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1


. (A112)

Omitting further details and applying the VdN-work, the 11×11 symmetric adjacency matrix Γ for the eleven-qubit
code becomes,

Γ
def
=



0 1 1 1 1 1 0 0 0 0 0
1 0 1 0 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 1 0 0 1
1 0 1 1 0 1 0 1 1 1 1
1 0 1 0 1 0 0 1 1 0 0
0 1 1 0 0 0 0 1 0 1 0
0 1 0 1 1 1 1 0 0 1 1
0 1 1 0 1 1 0 0 0 0 1
0 0 1 0 1 0 1 1 0 0 1
0 1 1 1 1 0 0 1 1 1 0


. (A113)
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Employing the S-work, the 12× 12 symmetric coincidence matrix Ξ[[11,1,5]] can be written as,

Ξ[[11,1,5]]
def
=



0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

a1 0 1 1 1 1 1 0 0 0 0 0
a2 1 0 1 0 0 0 1 1 1 0 1
a3 1 1 0 0 1 1 1 0 1 1 1
a4 1 0 0 0 1 0 0 1 0 0 1
a5 1 0 1 1 0 1 0 1 1 1 1
a6 1 0 1 0 1 0 0 1 1 0 0
a7 0 1 1 0 0 0 0 1 0 1 0
a8 0 1 0 1 1 1 1 0 0 1 1
a9 0 1 1 0 1 1 0 0 0 0 1
a10 0 0 1 0 1 0 1 1 0 0 1
a11 0 1 1 1 1 0 0 1 1 1 0



, (A114)

where the eleven matrix coefficients ak with k ∈ {1,..., 11} satisfy the following eleven constraints,

a2 + a3 + a4 + a5 + a6 = 0,

a1 + a3 + a7 + a8 + a9 + a11 = 0,

a1 + a2 + a5 + a6 + a7 + a9 + a10 + a11 = 0,

a1 + a5 + a8 + a11 = 0,

a1 + a3 + a4 + a6 + a8 + a9 + a10 + a11 = 0,

a1 + a3 + a5 + a8 + a9 = 0,

a2 + a3 + a8 + a10 = 0,

a2 + a4 + a5 + a6 + a7 + a10 + a11 = 0,

a2 + a3 + a5 + a6 + a11 = 0,

a3 + a5 + a7 + a8 + a11 = 0,

a2 + a3 + a4 + a5 + a8 + a9 + a10 = 0. (A115)

It turns out that a suitable solution of the system of equations in (A115) reads,

a = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11) = (1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1) . (A116)

Finally, the coincidence matrix Ξ[[11,1,5]] for a graph associated with the eleven-qubit code reads,

Ξ[[11,1,5]]
def
=



0 1 0 1 1 1 1 0 1 0 0 1
1 0 1 1 1 1 1 0 0 0 0 0
0 1 0 1 0 0 0 1 1 1 0 1
1 1 1 0 0 1 1 1 0 1 1 1
1 1 0 0 0 1 0 0 1 0 0 1
1 1 0 1 1 0 1 0 1 1 1 1
1 1 0 1 0 1 0 0 1 1 0 0
0 0 1 1 0 0 0 0 1 0 1 0
1 0 1 0 1 1 1 1 0 0 1 1
0 0 1 1 0 1 1 0 0 0 0 1
0 0 0 1 0 1 0 1 1 0 0 1
1 0 1 1 1 1 0 0 1 1 1 0



. (A117)

It is straightforward, though tedious, to check that all the
(

11
2

)
= 330 four-error configurations satisfy the graph-

theoretic error detection conditions in their strong version in agreement with the SW-work for nondegenerate codes.
However, we also remark that checking out 330 graphical error detection conditions is always better that checking out
529 Knill-Laflamme error correction conditions,

30

(
11

0

)
+ 31

(
11

1

)
+ 32

(
11

2

)
= 529 > 330. (A118)

In the next section, we shall consider few graphical constructions of stabilizer codes characterized by multi-qubit
encoding operators.
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Appendix B: Multi-qubit encoding

1. The [[4, 2, 2]] stabilizer code

In what follows, we shall consider the graphical construction of two non-equivalent quantum stabilizer codes encoding
two logical qubits into four physical qubits.

a. First case

The [[4, 2, 2]] code is the simplest example of a class of [[n− 1, k + 1, d− 1]] codes that are derivable from pure (or,
nondegenerate) codes [[n, k, d]] with n ≥ 2 (for more details, we refer to [20]) and is an explicit example of multi-qubit
encoding. It is derivable from the perfect five-qubit code and can detect a single qubit error. The stabilizer generators
of the code are defined by [21],

g1
def
= X1Z2Z3X4 and, g2

def
= Y 1X2X3Y 4. (B1)

Each encoded qubit i with i ∈ {1, 2} has its own of logical operations X̄i and Z̄i. A convenient choice is,

X̄1
def
= X1Y 3Y 4, X̄2

def
= X1X3Z4, Z̄1

def
= Y 1Z2Y 3 and, Z̄2

def
= X2Z3Z4. (B2)

The codeword stabilizer SCWS associated with the CWS code that realizes this stabilizer code reads,

SCWS
def
=
〈
g1, g2, Z̄1, Z̄2

〉
=
〈
X1Z2Z3X4, Y 1X2X3Y 4, Y 1Z2Y 3, X2Z3Z4

〉
. (B3)

The codeword stabilizer matrix HSCWS
associated with SCWS reads,

HSCWS

def
= (Z |X ) =

 0 1 1 0
1 0 0 1
1 1 1 0
0 0 1 1

∣∣∣∣∣∣∣
1 0 0 1
1 1 1 1
1 0 1 0
0 1 0 0

 . (B4)

We observe detX 6= 0. Thus, using the VdN-work, the 4× 4 adjacency matrix Γ becomes,

Γ
def
=

 0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

 . (B5)

We remark that the graph with symmetric adjacency matrix Γ in Eq. (B5) is in the local unitary equivalence class of
the square graph (see Figure 7 in [9]). Therefore, an alternative graph (with only output vertices) for our stabilizer
code can be characterized by the alternative 4× 4 symmetric adjacency matrix Γ′,

Γ′
def
=

 0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 . (B6)

Finally, applying the S-work and considering Γ′, the 6 × 6 symmetric coincidence matrix ΞBeigi
[[4,2,2]] characterizing the

graph with both input and output vertices is given by,

ΞBeigi
[[4,2,2]]

def
=


0 0 1 0 0 1
0 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0

 . (B7)

Using the SW-work, it is simple to verify that any graphical single-error configuration {0, 0′, e} with e ∈ {1, 2, 3, 4} is
detectable. Thus, the code detects any single-qubit error. As a final remark, we emphasize that the graph associated

with ΞBeigi
[[4,2,2]] is identical to the one appeared in [15].
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FIG. 10: Graph for a quantum code that is locally Clifford equivalent to the Beigi et al. [[4,2,2]]-code.

b. Second case

Let us consider a different [[4, 2, 2]] stabilizer code with stabilizer generators defined by [21],

g1
def
= X1X2X3X4 and, g2

def
= Z1Z2Z3Z4. (B8)

Each encoded qubit i with i ∈ {1, 2} has its own of logical operations X̄i and Z̄i. A convenient choice is,

X̄1
def
= X1X2, X̄2

def
= X1X3, Z̄1

def
= Z2Z4 and, Z̄2

def
= Z3Z4. (B9)

The codeword stabilizer SCWS associated with the CWS code that realizes this stabilizer code reads,

SCWS
def
=
〈
g1, g2, Z̄1, Z̄2

〉
=
〈
X1X2X3X4, Z1Z2Z3Z4, Z2Z4, Z3Z4

〉
. (B10)

The codeword stabilizer matrix HSCWS associated with SCWS reads,

HSCWS

def
= (Z |X ) =

 0 0 0 0
1 1 1 1
0 1 0 1
0 0 1 1

∣∣∣∣∣∣∣
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 . (B11)

We observe detX = 0 and the VdN-work cannot be applied. However, we also notice that SCWS is locally Clifford

equivalent to S ′CWS with S ′CWS = USCWSU
† and U

def
= H2H3H4. Thus, S ′CWS becomes,

S ′CWS
def
=
〈
g′1, g′2, Z̄ ′1, Z̄ ′2

〉
=
〈
X1Z2Z3Z4, Z1X2X3X4, X2X4, X3X4

〉
. (B12)

The codeword stabilizer matrix HS′CWS
associated with S ′CWS is given by,

HS′CWS

def
= (Z ′ |X ′ ) =

 0 1 1 1
1 0 0 0
0 0 0 0
0 0 0 0

∣∣∣∣∣∣∣
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1

 . (B13)

We now have detX ′ 6= 0. Therefore, using the VdN-work, the 4× 4 adjacency matrix Γ becomes,

Γ
def
=

 0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 . (B14)

Finally, applying the S-work and considering Γ in Eq. (B14), the 6 × 6 symmetric coincidence matrix ΞSchlingemann
[[4,2,2]]

characterizing the graph with both input and output vertices reads,

ΞSchlingemann
[[4,2,2]]

def
=


0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 1 1 1
1 0 1 0 0 0
1 1 1 0 0 0
0 1 1 0 0 0

 . (B15)
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FIG. 11: Graph for a quantum code that is locally Clifford equivalent to the Schlingemann [[4,2,2]]-code.

Applying the SW-work, it is simple to verify that any graphical single-error configuration {0, 0′, e} with e ∈ {1, 2, 3, 4}
is detectable. Therefore, the code detects any single-qubit error. As a final remark, we emphasize that the graph

associated with ΞSchlingemann
[[4,2,2]] is identical to the one appeared in [6].

We stress that the stabilizer generated by the stabilizers in Eq. (B1) for the first code can be obtained from the
stabilizer generated by the stabilizers in Eq. (B8) for the second code by applying a local unitary transformation

U
def
= Q1H2H3Q4 where Q

def
= PHP . However, the codeword stabilizer in Eq. (B3) cannot be obtained from the

codeword stabilizer in Eq. (B10) via a local unitary transformation. This feature is consistent with the fact that
graphs associated with adjacency matrices in Eqs. (B5) and (B14) are inequivalent. In other words, these two matrices
characterize graphs that belong to different orbits [9].

2. The [[8, 3, 3]] stabilizer code

The [[8, 3, 3]] code is a special case of a class of
[[

2j , 2j − j − 2, 3
]]

codes [56]. It encodes three logical qubits into
eight physical qubits and corrects all single-qubit errors. The five stabilizer generators are given by [21],

g1
def
= X1X2X3X4X5X6X7X8, g2

def
= Z1Z2Z3Z4Z5Z6Z7Z8, g3

def
= X2X4Y 5Z6Y 7Z8,

g4
def
= X2Z3Y 4X6Z7Y 8, g5

def
= Y 2X3Z4X5Z6Y 8, (B16)

and a suitable choice for the logical operations X̄i and Z̄i with i ∈ {1, 2, 3} reads,

X̄1
def
= X1X2Z6Z8, X̄2

def
= X1X3Z4Z7, X̄3

def
= X1Z4X5Z6, Z̄1

def
= Z2Z4Z6Z8, Z̄2

def
= Z3Z4Z7Z8, Z̄3

def
= Z5Z6Z7Z8.

(B17)
The codeword stabilizer SCWS of the CWS code that realizes this stabilizer code is given by,

SCWS
def
=
〈
g1, g2, g3, g4, g5, Z̄1, Z̄2, Z̄3

〉
. (B18)

We observe that SCWS is locally Clifford equivalent to S ′CWS
def
= USCWSU

† with U
def
= H1H2H3H5. Therefore, S ′CWS

reads,

S ′CWS
def
=
〈
g′1, g′2, g′3, g′4, g′5, Z̄ ′1, Z̄ ′2, Z̄ ′3

〉
, (B19)

with,

g′1
def
= Z1Z2Z3X4Z5X6X7X8, g′2

def
= X1X2X3Z4X5Z6Z7Z8, g′3

def
= Z2X4Y 5Z6Y 7Z8,

g′4
def
= Z2X3Y 4X6Z7Y 8, g′5

def
= Y 2Z3Z4Z5Z6Y 8, (B20)

and,

Z̄ ′1
def
= X2Z4Z6Z8, Z̄ ′2

def
= X3Z4Z7Z8, Z̄ ′3

def
= X5Z6Z7Z8. (B21)
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FIG. 12: Graph for a quantum code that is locally Clifford equivalent to the Gottesman [[8,3,3]]-code.

The codeword stabilizer matrix HS′CWS
associated with S ′CWS is given by,

HS′CWS

def
= (Z ′ |X ′ ) =



1 1 1 0 1 0 0 0
0 0 0 1 0 1 1 1
0 1 0 0 1 1 1 1
0 1 0 1 0 0 1 1
0 1 1 1 1 1 0 1
0 0 0 1 0 1 0 1
0 0 0 1 0 0 1 1
0 0 0 0 0 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 1 0 1 1 1
1 1 1 0 1 0 0 0
0 0 0 1 1 0 1 0
0 0 1 1 0 1 0 1
0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0


. (B22)

Since detX ′ 6= 0, we can use the VdN-work and the 8× 8 adjacency matrix Γ becomes,

Γ
def
= Z ′T ·

(
X ′T

)−1
=



0 0 0 1 0 1 1 0
0 0 0 1 0 1 0 1
0 0 0 1 0 0 1 1
1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1
1 1 0 0 1 0 0 0
1 0 1 0 1 0 0 0
0 1 1 0 1 0 0 0


. (B23)

We observe that the graph associated with the adjacency matrix Γ (with det Γ 6= 0) in Eq. (B23) is the cube. Acting
with a local complementation with respect to the vertex 1, Γ becomes Γ′ (with det Γ′ = 0).

Γ′
def
=



0 0 0 1 0 1 1 0
0 0 1 0 1 0 1 0
0 1 0 0 1 1 0 0
1 0 0 0 1 1 1 1
0 1 1 1 0 0 0 0
1 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1
0 0 0 1 0 1 1 0


(B24)

Finally, applying the S-work and considering Γ′ in Eq. (B24), the 11 × 11 symmetric coincidence matrix Ξ[[8,3,3]]
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associated with the graph with both input and output vertices becomes,

Ξ[[8,3,3]]
def
=



0 0 0 1 1 1 0 0 1 1 1
0 0 0 0 1 0 1 1 0 1 0
0 0 0 0 0 1 1 1 1 0 0
1 0 0 0 0 0 1 0 1 1 0
1 1 0 0 0 1 0 1 0 1 0
1 0 1 0 1 0 0 1 1 0 0
0 1 1 1 0 0 0 1 1 1 1
0 1 1 0 1 1 1 0 0 0 0
1 0 1 1 0 1 1 0 0 1 1
1 1 0 1 1 0 1 0 1 0 1
1 0 0 0 0 0 1 0 1 1 0


. (B25)

Using the SW-work, it can be finally verified that any of the
(

8
2

)
graphical two-error configuration {0, 0′, 0′′, e1, e2}

with e1,2 ∈ {1,..., 8} is detectable. Thus, the code corrects any single-qubit error.
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