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COMBINATORIAL REALIZATION OF THE

HOPF ALGEBRA OF SASHES

SHIRLEY LAW

Abstract. A general lattice theoretic construction of Reading constructs Hopf
subalgebras of the Malvenuto-Reutenauer Hopf algebra (MR) of permutations.
The products and coproducts of these Hopf subalgebras are defined extrinsi-
cally in terms of the embedding in MR. The goal of this paper is to find an
intrinsic combinatorial description of a particular one of these Hopf subalge-
bras. This Hopf algebra has a natural basis given by permutations that we call
Pell permutations. The Pell permutations are in bijection with combinatorial
objects that we call sashes, that is, tilings of a 1 by n rectangle with three
types of tiles: black 1 by 1 squares, white 1 by 1 squares, and white 1 by
2 rectangles. The bijection induces a Hopf algebra structure on sashes. We
describe the product and coproduct in terms of sashes, and the natural partial
order on sashes. We also describe the dual coproduct and dual product of the
dual Hopf algebra of sashes.

1. Introduction

The focus of this research is on combinatorial Hopf algebras: Hopf algebras such
that the basis elements of the underlying vector space are indexed by a family of
combinatorial objects. For each n ≥ 0, let On be a finite set of “combinatorial
objects”. We define a graded vector space over a field K, such that for each grade
n the basis vectors of the vector space are indexed by the elements of On. That
is, the graded vector space is: K[O∞] = ⊕n≥0K[On]. For simplicity, we refer to a
basis element of this vector space by the combinatorial object indexing it. There is
a more sophisticated approach for defining combinatorial Hopf algebras. For more
information see [1].

Let Sn be the group of permutations of the set of the first n integers [n] =
{1,2, . . . , n}. Also define [n,n′] = {n,n + 1, . . . , n′} for n′ ≥ n. For x = x1x2⋯xn ∈
Sn, an inversion of x is a pair (xi, xj) where i < j and xi > xj , and the inversion
set of x is the set of all such inversions. The weak order is the partial order on Sn

with x ≤ x′ if and only if the inversion set of x is contained in the inversion set of
x′. The weak order is a lattice. The inverse x−1 of a permutation x ∈ Sn is the
permutation x−1 = y = y1⋯yn ∈ Sn such that yi = j when xj = i.

Let T be a set consisting of integers t1 < t2 < ⋯ < tn. Given a permutation x ∈ Sn,
the notation (x)T stands for the permutation of T whose one-line notation has tj
in the ith position when xi = j. On the other hand, given a permutation x of T ,
the standardization, st(x), is the unique permutation y ∈ Sn such that (y)T = x.

Now let T be a subset of [n]. For x ∈ Sn, the permutation x∣T is the permutation
of T obtained by removing from the one-line notation for x all entries that are not
elements of T .
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Example 1.1. Let x = 31254, T1 = {2,3,6,8,9}, and T2 = {2,3,5}. Then, (x)T1
=

62398 and thus st(62398) = 31254. Also, x∣T2
= 325.

The Malvenuto-Reutenauer Hopf algebra MR is a graded Hopf Algebra denoted
by (K[S∞], ●,∆). Let K[S∞] = ⊕n≥0K[Sn] be a graded vector space. Let x =
x1x2⋯xp ∈ Sp and y = y1y2⋯yq ∈ Sq. Define y′ = y′1⋯y

′
q to be (y)[p+1,p+q] so that

y′i = yi + p. A shifted shuffle of x and y′ is a permutation z ∈ Sn where n = p + q,
z∣[p] = x and z∣[p+1,n] = y′. The product of x and y in MR is the sum of all the
shifted shuffles of x and y. Equivalently,

(1) x ● y = ∑[x ⋅ y′, y′ ⋅ x]
where x ⋅ y′ is the concatenation of the permutations x and y′, and ∑[x ⋅ y′, y′ ⋅ x]
denotes the sum of all the elements in the weak order interval [x ⋅y′, y′ ⋅x]. A paper
by Loday and Ronco [5] introduces the representation of Hopf algebra operations
in terms of sums over weak order intervals. The coproduct in MR is:

(2) ∆(x) =
p

∑
i=0

st(x1⋯xi)⊗ st(xi+1⋯xp)

where st(x1⋯x0) and st(xp+1⋯xp) are both interpreted as the empty permutation
∅.

Define the map Inv ∶ Sn → Sn by Inv(x) = x−1 and extend the map linearly to a
map Inv ∶ KS∞ → KS∞. MR is known to be self dual [6] and specifically Inv is an
isomorphism from (K[S∞], ●,∆) to the graded dual Hopf algebra (K[S∞],∆∗,m∗).
Let x ∈ Sp, y ∈ Sq, and z ∈ Sn, where p + q = n. Given a subset T of p elements of
[n], TC denotes the complement of T in [n]. The dual product is given by:

(3) ∆∗(x⊗ y) = Inv(x−1 ● y−1) = ∑
T⊆[n],
∣T ∣=p

(x)T ⋅ (y)TC ,

and the dual coproduct is:

(4) m∗(z) = (Inv⊗ Inv)(∆(z−1)) =
n

∑
i=0

z∣[i] ⊗ st(z∣[i+1,n])

where z∣[0] and z∣[n+1,n] are both interpreted as the empty permutation ∅.
Now that we have explicitly described both the Hopf algebra of permutations and

the dual Hopf algebra of permutations, we will present a family of Hopf subalgebras
that are defined by a particular pattern-avoidance condition. This family of Hopf
algebras is defined by Reading [7].

For some k ≥ 2, let V ⊆ [2, k−1] such that ∣V ∣ = j and let V C be the complement
of V in [2, k − 1]. A permutation x ∈ Sn avoids the pattern V (k1)V C if for every
subsequence xi1xi2⋯xik of x with ij+2 = ij+1+1, the standardization st(xi1xi2⋯xik)
is not of the form v(k1)v′ for any permutation v of the set V and any permutation v′

of V C . In the notation of Babson and Steingrimsson [2] avoiding V (k1)V C means
avoiding all patterns of the form v1 −⋯− vj − k1− v

′
1 −⋯− v

′
k−j−2, where v1⋯vj is a

permutation of V and v′1⋯v
′
k−j−2 is a permutation of V C .

Let U be a set of patterns of the form V (k1)V C , where ∣V ∣ and k can vary.
Define Avn to be the set of permutations in Sn that avoid all of the patterns in U .
We define a graded Hopf algebra (K[Av∞], ●Av,∆Av) as a graded Hopf subalgebra
of MR. Let K[Avn] be a vector space, over a field K, with basis vectors indexed
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by the elements of Avn, and let K[Av∞] be the graded vector space ⊕n≥0K[Avn].
The product and coproduct on K[Av∞] are described below.

We define a map π↓ ∶ Sn → Avn recursively. If x ∈ Avn then define π↓(x) = x.
If x ∈ Sn, but x ∉ Avn, then x contains an instance of a pattern V (k1)V C in U .
That is, there exists some subsequence xi1xi2⋯xik of x, where ij+2 = ij+1 + 1 and
j = ∣V ∣, such that st(xi1xi2⋯xik) = vk1v′ for some permutations v and v′ of V

and V C . Exchange xij+1 and xij+2 in x to create a new permutation x′, calculate
π↓(x′) recursively and set π↓(x) = π↓(x′). The recursion must terminate because an
inversion of x is destroyed at every step, and because the identity permutation is
in Avn. The map π↓ is well-defined as explained in [7, Remark 9.5]. We emphasize
that the definition of π↓ is dependent on U .

The map π↓ defines an equivalence relation with permutations x,x′ ∈ Sn equiv-
alent if and only if π↓(x) = π↓(x′). The set Avn is a set of representatives of these
equivalence classes. This equivalence relation is a lattice congruence on the weak
order. Therefore the poset induced on Avn by the weak order is a lattice (also
denoted by Avn) and the map π↓ is a lattice homomorphism from the weak order
to Avn. The congruence classes defined by π↓ are intervals, and π↓ maps an element
to the minimal element of its congruence class. Let π↑ be the map that takes an
element to the maximal element of its congruence class.

The following proposition is a special case of [7, Proposition 2.2]. The congruence
on Sn defined by π↓ is denoted by Θ. For x ∈ Sn, the congruence class of x mod Θ
is denoted by [x]Θ.
Proposition 1.2. Given Sn a finite lattice, Θ a congruence on Sn, and x ∈ Sn,
the map y → [y]Θ restricts to a one-to-one correspondence between elements of Sn

covered by π↓(x) and elements of Avn covered by [x]Θ.
Both π↓ and π↑ are order preserving and π↑ ○ π↓ = π↑ and π↓ ○ π

↑ = π↓. A π↓-
move is the result of switching two adjacent entries of a permutation in the manner
described above. That is, it changes ⋯k1⋯ to ⋯1k⋯ for some pattern in U . A
π↑-move is the result of switching two adjacent entries of a permutation in a way
such that a π↑-move undoes a π↓-move. That is, it changes ⋯1k⋯ to ⋯k1⋯.

We define a map r ∶ K[S∞] → K[Av∞] that identifies the representative of a
congruence class. Given x ∈ Sn,

r(x) =
⎧⎪⎪⎨⎪⎪⎩
x if x ∈ Avn
0 otherwise.

Similarly, we define a map c ∶ K[Av∞] → K[S∞] that takes an avoider to the
sum of its congruence class:

c(x) = ∑
y such that
π↓(y)=x

y.

We now describe the product and coproduct in (K[Av∞], ●Av,∆Av). Let x ∈ Avp,
and let y ∈ Avq. Then:
(5) mAv(x⊗ y) = x ●Av y = r(x ● y).

Just as the product in MR is ∑[x ⋅ y′, y′ ⋅ x], we can view this product as:

(6) x ●Av y =∑[x ⋅ y′, π↓(y′ ⋅ x)],
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where [x ⋅ y′, π↓(y′ ⋅ x)] is an interval on the lattice Avn.
The coproduct is:

(7) ∆Av(z) = (r ⊗ r)(∆(c(z))).
We now describe the Hopf algebra denoted by (K[Av∞],∆∗Av, ●

∗
Av) that is dual

to (K[Av∞], ●Av,∆Av). We extend the map π↓ linearly, so π↓ is a map from K[S∞]
to K[Av∞]. The map that is dual to the map c is c∗ ∶ K[S∞] → K[Av∞], where
c∗(x) = π↓(x) for x ∈ K[S∞]. The map that is dual to the map r is r∗ ∶ K[Av∞]→
K[S∞], where r∗(x) = x for x ∈ K[Av∞].

Let z ∈ Avn, where n = p + q. The dual coproduct is given by dualizing Equa-
tion (5), so that:

(8) m∗Av(z) =m∗(z).
The dual product ∆∗Av is given by dualizing Equation (7):

(9) ∆∗Av(x⊗ y) = π↓∆∗(x⊗ y).
Combining Equation (9) with Equation (3), we have:

(10) ∆∗Av(x⊗ y) = ∑
T⊆[n]
∣T ∣=p

π↓((x)T ⋅ (y)TC)

Equation (10) leads to the following order theoretic description of the coproduct
∆Av, which was worked out jointly with Nathan Reading.

Given z ∈ Avn, a subset T ⊆ [n] is good with respect to z if there exists a
permutation z′ = z′1⋯z

′
n with π↓(z′) = z such that T = {z′1, . . . , z′∣T ∣}. Suppose T

is good with respect to z, let p = ∣T ∣ and let q = n − p. Let zmin be minimal,
in the weak order on Sn, among permutations equivalent to z and whose first p

entries are the elements of T . Let zmax be maximal, in the weak order, among
such permutations. Define IT to be the sum over the elements in the interval
[st(zmin∣T ), π↓ st(zmax∣T )] in Avp and define JT to be the sum over the elements in
the interval [st(zmin∣TC ), π↓ st(zmax∣TC )] in Avq.

Theorem 1.3. Let z ∈ Avn. Then

∆Av(z) = ∑
T is good

IT ⊗ JT

where IT = ∑[st(zmin∣T ), π↓ st(zmax∣T )], JT = ∑[st(zmin∣TC ), π↓ st(zmax∣TC )].
To prove Theorem 1.3, we first need several lemmas.

Lemma 1.4. The elements in the interval [zmin, zmax] are equivalent to z and their
first p entries are the elements of T .

Proof. All of the elements in the interval [zmin, zmax] are equivalent to z because
equivalence classes are intervals in the weak order. To prove the rest of the lemma,
suppose for the sake of contradiction that there is an element z′ ∈ [zmin, zmax] whose
first p entries are not the elements of T . That is, z′ has some y ∈ TC before some
x ∈ T . If x < y, then (y, x) ∈ Inv(z′), but (y, x) ∉ Inv(zmax), so z′ ∉ [zmin, zmax]. If
y < x, then (x, y) ∈ Inv(zmin), but (x, y) ∉ Inv(z′), so z′ ∉ [zmin, zmax]. Therefore
the first p entries of elements in the interval [zmin, zmax] are the elements of T . �

Lemma 1.5. Suppose T ⊆ [n] with ∣T ∣ = p. Let q = n − p. Suppose also that
x1 ≤ x2 ≤ x3 in Avp, and that y1 ≤ y2 ≤ y3 in Avq. If π↓((x1)T ⋅ (y1)TC ) =
π↓((x3)T ⋅ (y3)TC) = z, then π↓((x2)T ⋅ (y2)TC) = z.
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Proof. If x1 ≤ x2 ≤ x3, and y1 ≤ y2 ≤ y3, then (x1)T ⋅ (y1)TC ≤ (x2)T ⋅ (y2)TC ≤
(x3)T ⋅(y3)TC . Since π↓ is an order preserving map, π↓((x1)T ⋅(y1)TC) ≤ π↓((x2)T ⋅
(y2)TC ) ≤ π↓((x3)T ⋅ (y3)TC ). The assertion of the lemma follows. �

Lemma 1.6. Suppose x1, x2 ∈ Sp and y1, y2 ∈ Sq. Suppose T ⊆ [n], where n = p+ q,
and with ∣T ∣ = p. The following identities hold:

(x1)T ⋅ (y1)TC ∨ (x2)T ⋅ (y2)TC = (x1 ∨ x2)T ⋅ (y1 ∨ y2)TC

(x1)T ⋅ (y1)TC ∧ (x2)T ⋅ (y2)TC = (x1 ∧ x2)T ⋅ (y1 ∧ y2)TC

Proof. First we consider the identity with joins. There are three different kinds of
inversions in (x1)T ⋅ (y1)TC : inversions within x1, inversions within y1, and inver-
sions between T and TC . The inversion set of the permutation on the left hand
side of the equation is the union of: inversions within x1 in terms of T , inversions
within y1 in terms of TC , inversions within x2 in terms of T , inversions within y2 in
terms of TC , and inversions between T and TC . Similarly, the inversion set of the
permutation on the right hand side of the equation is the union of: inversions within
x1 or x2 in terms of T , inversions within y1 or y2 in terms of TC , and inversions
between T and TC . Therefore the permutation on the left hand of the equation
and the permutation on the right hand of the equation have identical inversion sets
and are thus the same.

The proof for the identity with meets is identical except for examining intersec-
tions of the inversion sets instead of unions. �

Proof of Theorem 1.3. In light of Equation (10), ∆Av(z) is the sum, over T ⊆ [n], of
terms x⊗y ∈ Avp⊗Avq such that π↓((x)T ⋅(y)TC) = z. Some terms x⊗y may appear
in ∆Av(z) with coefficient greater than 1, but for each T , a term x ⊗ y occurs at
most once. Let terms(z, T ) be the set {x⊗y ∶ π↓((x)T ⋅(y)TC ) = z}. It is immediate
that when terms(z, T ) is nonempty, T is good with respect to z. On the other hand,
if T is good with respect to z, then let z′ have π↓(z′) = z and {z′1, z′2, . . . , z′∣T ∣} = T .
Let x ∈ Sp and y ∈ Sq be such that z′ = (x)T ⋅ (y)TC . Then π↓(x) ∈ Avp and
π↓(y) ∈ Avq. Since π↓(x) is obtained from x by a sequence of π↓-moves, and π↓(y)
is obtained similarly from y, we see that (π↓(x))T ⋅ (π↓(y))TC is obtained from z′ =
(x)T ⋅(y)TC by a sequence of π↓-moves. Thus, π↓((π↓(x))T ⋅(π↓(y))TC) = π↓(z′) = z,
so π↓(x)⊗ π↓(y) ∈ terms(z, t) and in particular terms(z, T ) is nonempty.

Next, we need to show that, for each good subset T , the set terms(z, T ) is of the
form IT ⊗ JT . For convenience, we consider each x⊗ y as an element of Avp ×Avq
without rewriting x⊗ y as (x, y).

Suppose x1 ⊗ y1 and x2 ⊗ y2 are in terms(z, T ). Then by Lemma 1.6,

π↓((x1 ∨ x2)T ⋅ (y1 ∨ y2)TC) = π↓((x1)T ⋅ (y1)TC ∨ (x2)T ⋅ (y2)TC).
Since π↓ is a lattice homomorphisim, the latter is

π↓((x1)T ⋅ (y1)TC ) ∨ π↓((x2)T ⋅ (y2)TC) = z ∨ z = z.
Thus (x1 ∨ x2)⊗ (y1 ∨ y2) is in terms(z, T ). The same argument holds for meets,
so terms(z, T ) is closed under meets and joins in the product order Avp ×Avq.
Lemma 1.5 implies that terms(z, T ) is order-convex in Avp ×Avq. An order-convex
subset that is closed under meets and joins is necessarily an interval.

Suppose x⊗ y < st(zmin∣T )⊗ st(zmin∣TC ) in Avp ×Avq. Then (x)T ⋅ (y)TC < zmin

in Sn. Thus π↓((x)T ⋅ (y)TC) ≠ z, by the definition of zmin, and therefore x ⊗ y /∈
terms(z, T ). Thus st(zmin∣T )⊗ st(zmin∣TC ) is the minimal element of terms(z, T ).
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Now suppose x⊗ y > π↓ st(zmax∣T )⊗ π↓ st(zmax∣TC ) in Avp ×Avq. Then since π↑

is order-preserving and π↑ ○ π↓ = π↑, we see that π↑(x) ⊗ π↑(y) > π↑ st(zmax∣T ) ⊗
π↑ st(zmax∣TC ). Thus on the lattice Sn,

(11) (π↑(x))
T
⋅ (π↑(y))

TC
> (π↑ st(zmax∣T ))T ⋅ (π

↑ st(zmax∣TC ))
TC

.

The right side of Equation (11) is obtained from zmax by standardizing the first
part of the permutation, doing some π↑-moves, unstandardizing, and then repeating
for the last part of the permutation. The same result can be obtained by simply
applying the corresponding π↑-moves to zmax, without standardizing and unstan-
dardizing. In particular, the right side of Equation (11) is greater than or equal
to zmax. Now Equation (11) implies that (π↑(x))

T
⋅ (π↑(y))

TC
is strictly greater

than zmax. The definition of zmax says that π↑(x) ⊗ π↑(y) /∈ terms(z, T ). Thus
(π↑(x))

T
⋅ (π↑(y))

TC
is not equivalent to z.

But (π↑(x))
T
⋅(π↑(y))

TC
is obtained from (x)T ⋅(y)TC by standardizing the first

part, doing some π↑-moves, unstandardizing, and then repeating for the last part.
The same result is again obtained by simply applying the the corresponding π↑-
moves to (x)T ⋅(y)TC , without standardizing and unstandardizing. Thus (π↑(x))

T
⋅

(π↑(y))
TC

is equivalent to (x)T ⋅ (y)TC , which is therefore not equivalent to z. We

have shown that x⊗ y /∈ terms(z, T ).
Thus, we have shown that terms(z, T ) equals

[st(zmin∣T )⊗ st(zmin∣TC ), π↓ st(zmax∣T )⊗ π↓ st(zmax∣TC )].
Any interval in Avp ×Avq is the product of an interval in Avp with an interval in
Avq. Thus terms(z, T ) is IT ⊗ JT . �

The proof of Theorem 1.3 also establishes the following more detailed statement.

Proposition 1.7. For some T ⊆ [n], x ⊗ y ∈ terms(z, T ) if and only if x ⊗ y is a
term of IT ⊗ JT in ∆Av(z).
Proof. Since x ⊗ y ∈ terms(z, T ) means that π↓((x)T ⋅ (y)TC) = z, we see from
Equation(10) and Theorem 1.3 that for a fixed set T , x⊗y is a term of the summand
indexed by T in ∆Av(z) if and only if z is the summand indexed by T in ∆∗Av(x⊗
y). �

2. Pell Permutations and Sashes

Given a permutation x = x1x2⋯xn ∈ Sn, for each i ∈ [n − 1], there is a nonzero
integer j such that xi = xi+1 + j. If j > 0, then there is an descent of size j in the
ith position of x. A Pell permutation is a permutation of [n] with no descents of
size larger than 2, and such that for each descent xi = xi+1 + 2, the element xi+1 + 1
is to the right of xi+1. We write Pn for the set of Pell permutations in Sn.

Let us consider how many Pell permutations of length n there are. Given x ∈
Pn−1, we can place n at the end of x or before n − 1. We can also place n before
n − 2, but only if n − 1 is the last entry of x. (If n − 1 is to the right of n − 2 and
there is some entry i to the right of n − 1; then n − 2, n − 1, i form a 231 pattern.)
Therefore ∣Pn∣ = 2∣Pn−1∣ + ∣Pn−2∣. This recursion, with the initial conditions ∣P0∣ = 0
and ∣P1∣ = 1, defines the Pell numbers as defined by [8, Sequence A000129].

Lemma 2.1. Pn = Avn for U = {2(31), (41)23}.
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Figure 1. The elements of Σ3 (left) and Σ4 (right).

Proof. Suppose x ∈ Pn. Since x does not have any descents larger than 2, it avoids
(41)23. For each descent xi = xi+1 + 2 in x, the element xi+1 + 1 is to the right of
xi+1. Thus x also avoids 2(31). Now suppose x ∈ Avn. Suppose x has a descent
xi = xi+1 + j. Because x avoids 2(31), the entries xi+1 + 1, ..., xi+1 + j − 1 are to the
right of the xi+1. Thus, since x avoids (41)23 we see that j ≤ 2 and conclude that
x ∈ Pn. �

The poset induced on Pn by the weak order is a lattice (also denoted by Pn). As
a consequence of Lemma 2.1, there is a Hopf algebra (K[Av∞], ●Av,∆Av) of Pell
permutations. For the rest of this paper we fix U = {2(31), (41)23}.

There is a combinatorial object in bijection with Pell permutations that will allow
us to have a more natural understanding of the Hopf algebra of Pell permutations.

A sash of length n is a tiling of a 1 × n rectangle by black 1 × 1 squares, white
1 × 1 squares, and/or white 1 × 2 rectangles. The set of sashes of length n is called
Σn. There are no sashes of length -1 so Σ−1 = ∅, and there is one sash of length

0, a 1 by 0 rectangle denoted ‖, so ∣Σ0∣ = 1. There are two sashes of length 1:

and . The five sashes of length 2 and the twelve sashes of length 3 are shown in
Figure 1. The poset structure of these sashes will be explained later in this section.

A sash of length n starts with either a black square, a white square, or a rectangle.
Thus ∣Σn∣ = 2∣Σn−1∣+ ∣Σn−2∣. Since ∣Σ−1∣ = 0 and ∣Σ0∣ = 1, there is a bijection between
Pell permutations of length n and sashes of length n−1. We now describe a bijection
that we use to induce a Hopf Algebra structure on sashes.

Definition 2.2. We define a map σ from Sn to Σn−1. Let x ∈ Sn. We build a sash
σ(x) from left to right as we consider the entries in x from 1 to n − 1. For each
value i ∈ [n − 1], if i + 1 is to the right of i, place a black square on the sash, and
if i + 1 is to the left of i, place a white square on the sash. There is one exception:
If i + 1 is to the right of i, and i + 2 is to the left of i (and of i + 1), then place a

rectangle in the ith and (i + 1)st positions of the sash. We also define σ(1) = ‖ and
σ(∅) = ∅.
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From the definition of the map σ we see that σ sometimes involves replacing an
adjacent black square and white square by a rectangle. Later, we will sometimes
break a rectangle into a black square and a white square.

Example 2.3. Here is the procedure for computing σ(421365).
2 is to the left of 1 →

3 is to the right of 2 →

4 is to the left of 3 and also to the left of 2 →

5 is to the right of 4 →

6 is to the left of 5 but to the right of 4 →

Let T be a set of n integers and let x be a permutation of T . We define σ(x) =
σ(st(x)).
Example 2.4. σ(742598) = σ(st(742598)) = σ(421365) =
Definition 2.5. We define a map η ∶ Σn−1 → Pn. To calculate η(A) for a sash
A ∈ Σn−1, we place the numbers 1 through n one at a time. Place the number 1 to
begin and let i run from 1 to n−1. If A has either a black square or the left half of
a rectangle in the ith position, place i+ 1 at the right end of the permutation. If A
has either a white square or the right half of a rectangle in the ith position, place

i + 1 immediately to the left of i or i − 1 respectively. We also define η(‖) = 1 and
η(∅) = ∅.

It is immediate that this construction yields a Pell permutation because the
output has no descents of size larger than 2, and for each descent of size 2, the
value in between the values of the descent is to the right of the descent.

Example 2.6. Here are the steps to calculate η(A) for A = .

→ 1

→ 21

→ 213

→ 4213

→ 42135

→ 421365

Theorem 2.7. The restriction of σ to the Pell permutations is a bijection σ ∶ Pn →

Σn−1 whose inverse is given by η ∶ Σn−1 → Pn.

Proof. Let A ∈ Σn−1. We first show that σ(η(A)) = A. If A has a black square in
position i, then η(A) has i + 1 to the right of i and i + 2 not to the left of i. So
σ(η(A)) also has a black square in the ith position. If A has a white square in
position i, then η(A) has i + 1 immediately to the left of i. So σ(η(A)) also has a
white square in the ith position. If A has a rectangle in positions i and i + 1, then
η(A) has i+1 to the right of i, and i+2 immediately to the left of i. So σ(η(A)) also
has a rectangle in the ith and (i + 1)st positions. We conclude that σ(η(A)) = A.

We have constructed a Pell permutation η(A) that maps to A under σ, there-
fore σ is surjective. Since we know ∣Pn∣ = ∣Σn−1∣, the map σ restricted to Pell
permutations is a bijection. The inverse map of σ is η. �

Proposition 2.8. x, y ∈ Sn are equivalent if and only if σ(x) = σ(y).
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Proof. The permutations x = x1⋯xn and y = y1⋯yn are equivalent if and only if
π↓(x) = π↓(y). Thus to prove the forward direction of the proposition, it is enough
to consider the case where y is obtained from x by a single π↓-move. Consider a
π↓-move switching xi and xi+1 of x. First we suppose that xi ≥ xi+1+3. The relative
position of xi with regard to xi+1 is irrelevant to the map σ, thus σ(x) = σ(y). Now
we suppose that xi = xi+1 + 2. There can only be a π↓-move switching xi and xi+1

of x if xi+1 + 1 is to the left of xi. In this case, both σ(x) and σ(y) have a white
square in the ith position and a black square in the (i + 1)st position. Therefore
σ(x) = σ(y).

To prove the reverse implication suppose that x and y are not equivalent, that is
π↓(x) ≠ π↓(y). Since π↓(x) and π↓(y) are Pell permutations, and σ is a bijec-
tion from Pell permutations to sashes, σ(π↓(x)) ≠ σ(π↓(y)). But by the previous
paragraph, σ(π↓(x)) = σ(x) and σ(π↓(y)) = σ(y). �

The partial order on Σn−1 is such that the map σ ∶ Pn → Σn−1 is an order
isomorphism from the lattice of Pell permutations to Σn−1. We refer to this lattice
as Σn−1.

From Proposition 1.2, the cover relations in Σn−1 are exactly the relations σ(y) Ì

σ(x) where x ∈ Pn and y is covered by x in Sn.

Proposition 2.9. The cover relations on sashes are

(1) A B Ì A B for any sash A and for a sash B whose leftmost tile is not
a white square

(2) A B Ì A B for any sash A and any sash B

(3) A B Ì A B for any sash A and any sash B

Proof. Let x ∈ Pn and let y ∈ Sn such that y is covered by x in the weak order.
That is, x = x1⋯xixi+1⋯xn and y = x1⋯xi+1xi⋯xn ∈ Sn for some xi > xi+1.

Suppose xi = xi+1 + 1 and xi + 1 is not to the left of xi. Let A = σ(x∣[1,xi+1]) =
σ(y∣[1,xi+1]) and let B = σ(x∣[xi,n]) = σ(y∣[xi,n]). Thus, A B = σ(y) Ì σ(x) =
A B, where the leftmost tile of B is not a white square.

Suppose xi = xi+1 + 1 and xi + 1 is to the left of xi. Let A = σ(x∣[1,xi+1]) =
σ(y∣[1,xi+1]) and let B = σ(x∣[xi+1,n]) = σ(y∣[xi+1,n]). Thus, A B = σ(y) Ì

σ(x) = A B.
Suppose xi = xi+1+2. Let A = σ(x∣[1,xi+1]) = σ(y∣[1,xi+1]) and let B = σ(x∣[xi,n]) =

σ(y∣[xi,n]). Thus, A B = σ(y) Ì σ(x) = A B. �

Example 2.10. See Figure 1 for the poset on Σ3 and Σ4.

3. The Hopf Algebra (and Dual Hopf Algebra) of Sashes

The bijection σ allows us to carry the Hopf algebra structure on Pell permu-
tations to a Hopf algebra structure (K[Σ∞], ●S ,∆S) on sashes and a dual Hopf
algebra (K[Σ∞],∆∗S ,m∗S) on sashes, where K[Σ∞] is a vector space, over a field
K, whose basis elements are indexed by sashes. In order to do this, we extend σ

and η to linear maps. For each grade n of the vector space, the basis elements
are represented by the sashes of length n − 1. Recall that the sash of length -1 is

represented by ∅, and the sash of length 0 is represented by ‖. Let A, B, and C be
sashes. Using σ, we define a product, coproduct, dual product, and dual coproduct
of sashes:
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(12) mS(A,B) = A ●S B = σ(η(A) ●Av η(B))

(13) ∆S(C) = (σ ⊗ σ)(∆Av(η(C)))

(14) ∆∗S(A⊗B) = σ(∆∗Av(η(A)⊗ η(B)))

(15) m∗S(C) = (σ ⊗ σ)(m∗Av(η(C)))
These operation definitions are somewhat unsatisfying because they require com-

puting the operation in MR. That is, calculating a product or coproduct in this
way requires mapping sashes to permutations, performing the operations in MR,
throwing out the non-avoiders in the result, and then mapping the remaining per-
mutations back to sashes. In the rest of this chapter we show how to compute these
operations directly in terms of sashes.

3.1. Product.

Proposition 3.1. The empty sash ∅ is the identity for the product ●S. For sashes
A ≠ ∅ and B ≠ ∅, the product A ●S B equals:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑ [A B,A′ B] if A = A′

∑ [A B,A B] if A ≠ A′

where ∑[D,E] is the sum of all the sashes in the interval [D,E] on the lattice of
sashes.

To clarify, here are some more specific cases of the product on sashes. If A = A′ ,
then ∑ [A B,A′ B] equals:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A B +A B′ +A B +A′ B if B = B′

A B +A B +A′ B if B ≠ B′

and if A ≠ A′ , then ∑ [A B,A B] equals:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A B +A B′ +A B if B = B′

A B +A B if B ≠ B′

The case where A = ‖ is an instance of A ≠ A′ , and similarly for B = ‖.

Proof. We begin by computing the product of Pell permutations. We showed in
Section 1 that the product of Pell permutations is the sum over the interval [x ⋅
y′, π↓(y′ ⋅ x)] in the lattice of Pell permutations, where x ∈ Pp, y ∈ Pq, and y′ =
(y)[p+1,n].

To compute the product of sashes we can apply the map σ to the product
of Pell permutations. Let σ(x) = A and σ(y) = B, thus A ●S B = σ(x ●P y) =
∑[σ(x ⋅y′), σ(π↓(y′ ⋅x))] = ∑[σ(x ⋅y′), σ(y′ ⋅x)]. The map σ takes the first p values
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of x ⋅ y′ to A and the last q values to B. Because p+ 1 is to the right of p and since
p + 2 is not to the left of p, σ(x ⋅ y′) = A B. Similarly, σ takes the first p values
of y′ ⋅ x to A and the last q values to B. Since p + 1 is to the left of p, to compute
σ(y′ ⋅ x) we need to consider whether or not p − 1 is before p in x.

Suppose p − 1 is before p in x. Thus, A ends with a black square so σ(y′ ⋅ x)
replaces the last black square of A with a rectangle in positions p − 1 and p. That
is σ(y′ ⋅ x) = A′ B, where A = A′ .

Suppose p − 1 is not before p in x. Thus, A either ends with a white square,
the right half of a rectangle, or p − 1 does not exist. Thus, σ(y′ ⋅ x) places a white

square after A and before B, so σ(y′ ⋅ x) = A B. �

In informal terms, the product of two sashes is the sum of the sashes created by
joining the two sashes with a black square and a white square, and if by so doing
an adjacent black square to the left of a white square is created, then the product
has additional terms with rectangles in the places of the adjacent black square and
white square.

Example 3.2. Let A = and let B = . Notice that for A′ = and

B′ = ‖, both A = A′ and B = B′.

A ●S B = A B + A B′ + A B + A′ B

●S = + + +

3.2. Dual Coproduct. From Equation (8) and Equation (4), it follows that:

(16) m∗S(C) =
n

∑
i=0

σ(η(C)∣[i])⊗ σ(η(C)∣[i+1,n])

Proposition 3.3. The dual coproduct on a sash C ∈ Σn is given by:

m∗S(C) =
n

∑
i=−1

Ci ⊗Cn−i−1

Where Ci ∈ Σi is a sash identical to the first i positions of C (unless C has in

position i, in which case Ci ends with ), and Cn−i−1 ∈ Σn−i−1 is a sash identical

to the last n − i − 1 positions of C (unless C has in position i + 2, in which case

Cn−i−1 begins with ), and we define C0 = C0 = ‖ and C−1 = C−1 = ∅.

Proof. We need to show that C is a term of A ●S B if and only if A⊗B is a term
of m∗S(C).

Suppose that C ∈ Σn is a term of A ●S B, with A ∈ Σp, B ∈ Σq, and p + q = n − 1.
Thus C is one of the following: A B, A B, A′ B, or A B′, for A′ and
B′ as in Proposition 3.1. In any case, m∗S(C) has a term A ⊗B because Cp = A
and Cn−p−1 = B.

Now suppose that for A ∈ Σp and B ∈ Σq, A ⊗ B is a term of m∗S(C), where
C ∈ Σn and p + q = n − 1. Thus Cp = A and Cn−p−1 = Cq = B. If C is A B or

A B, then C is a term of A●SB. If C is A′ B, then A = A′ , and C is a term
of A ●S B. If C is A B′, then B = B′, and C is a term of A ●S B. Therefore
in all cases C is a term of A ●S B and we have shown that the map m∗S is the dual
coproduct on sashes. �
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3.3. Dual Product. From Equation (9), it follows that:

(17) ∆∗S(A⊗B) = ∑
T⊆[n]
∣T ∣=p

σ((η(A))T ⋅ (η(B))TC
)

We now prepare to describe the dual product ∆∗S directly on sashes.

Definition 3.4. Given a set T ⊆ [n] such that ∣T ∣ = p and n = p+q, and given sashes
D ∈ Σp−1 and E ∈ Σq−1, define a sash γT (D⊗E) by the following steps. First, write
D above E. Then, label D with T , by placing the elements of T in increasing order
between each position of D, including the beginning and end. Label E similarly
using the elements of TC .

Example 3.5. Let T = {1,2,4,7,8,9,12,13}, D = , and E =

1 2 4 7 8 9 12 13

3 5 6 10 11 14 15

Next, draw arrows from i to i+ 1 for all i ∈ [n− 1]. Lastly, follow the path of the
arrows placing elements in a new sash based on the following criteria:

Place a rectangle in the ith and (i+1)st positions of the new sash if either of the
following conditions are met:

(1) if the ith arrow is from D to E, the (i + 1)st arrow is from E to D, and

there is a or in D in between i and i + 2
(2) if the ith arrow is from E to E, the (i + 1)st arrow is from E to D, and

there is a or in E in between i and i + 1

If the above criteria are not met, then the following rules apply:

(1) if the ith arrow is from D to D (or from E to E), place whatever is in
between i and i + 1 in D (or in E) in the ith position.

(2) if the ith arrow is from D to E, place a black square in the ith position.
(3) if the ith arrow is from E to D, place a white square in the ith position.

Note that it may be necessary to replace the left half of a rectangle by a black
square or to replace the right half of a rectangle by a white square (as in the first
step of the example below).

Example 3.6. Let T , D, and E be as in Example 3.5. Then we compute γT (D⊗E)
to obtain:
γ{1,2,4,7,8,9,12,13}( ⊗ ) = .

1 2 4 7 8 9 12 13

3 5 6 10 11 14 15

✲
✄
✄
✄✎✁
✁
✁✁✕ ✄
✄
✄✎ ✲ ✄

✄
✄✄✗
✲ ✲

�
�

�✠✲ ✁
✁
✁✁✕

✲
�

�
�✠✲

Ô⇒
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Theorem 3.7. The dual product of sashes D ∈ Σp−1 and E ∈ Σq−1, for p+ q = n, is
given by:

∆∗S(D ⊗E) = ∑
T⊆[n],
∣T ∣=p

γT (D ⊗E)

Proof. For D ∈ Σp−1 and E ∈ Σq−1 such that η(D) = x ∈ Pp and η(E) = y ∈ Pq,
where p + q = n, we consider Equation (17) to define the dual product of sashes.

Let T ⊆ [n] such that ∣T ∣ = p. It is left to show that γT (D⊗E) = σ((x)T ⋅(y)TC).
Case 1: γT (D ⊗E) has a black square in the ith position.

Subcase a: i, i + 1 ∈ T and D has a black square in the position labeled with i.
Subcase b: i ∈ T , i + 1 ∈ TC , and if i + 2 ∈ T then D does not have a white square
or the right half of a rectangle in the position labeled with an i.
Subcase c: i, i+1, i+2 ∈ TC and E has a black square in the position labeled with
i.
For each subcase, the entry i + 1 in (x)T ⋅ (y)TC is to the right of i and i + 2 is not
to the left of i, so the sash σ((x)T ⋅ (y)TC) has a black square in the ith position.

Case 2: γT (D ⊗E) has a white square in the ith position.
Subcase a: i, i + 1 ∈ T and D has a white square in the position labeled with i.
Subcase b: i−1, i+1 ∈ T , i ∈ TC , and D does not have a white square or the right
half of a rectangle in the position labeled with i − 1.
Subcase c: i + 1 ∈ T , i − 1, i ∈ TC , and E does not have a black square or the left
half of a rectangle in the position labeled with i − 1.
Subcase d: i, i + 1 ∈ TC and E has a white square in the position labeled with i.
For each subcase, the entry i + 1 in (x)T ⋅ (y)TC is to the left of i and i − 1 is not
positioned between i + 1 and i, so the sash σ((x)T ⋅ (y)TC) has a white square in
the ith position.

Case 3: γT (D ⊗E) has the left half of a rectangle in the ith position.
Subcase a: i, i + 1, i + 2 ∈ T and D has a rectangle in the positions labeled with i

and i + 1.
Subcase b: i, i + 2 ∈ T , i + 1 ∈ TC , and D has a white square or the right half of a
rectangle in the position labeled with an i.
Subcase c: i + 2 ∈ T , i, i + 1 ∈ TC , and E has a black square or the left half of a
rectangle in the position labeled with an i.
Subcase d: i, i + 1, i + 2 ∈ TC and E has a rectangle in the positions labeled with
i and i + 1.
For each subcase, the entry i+1 in (x)T ⋅(y)TC is to the right of i and i+2 is to the
left of i, so the sash σ((x)T ⋅(y)TC) has the left half of a rectangle in the ith position.

Case 4: γT (D ⊗E) has the right half of a rectangle in the ith position.
Subcase a: i, i + 1 ∈ T and D has the right half of a rectangle in the position
labeled with i.
Subcase b: i − 1, i + 1 ∈ T , i ∈ TC , and D has a white square or the right half of a
rectangle in the position labeled with i − 1.
Subcase c: i + 1 ∈ T , i − 1, i ∈ TC , and E has a black square or the left half of a
rectangle in the position labeled with i − 1.
Subcase d: i, i + 1 ∈ TC and E has the right half of a rectangle in the position
labeled with i.
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Figure 2. The allowable dottings of a sash

For each subcase, the entry i + 1 in (x)T ⋅ (y)TC is to the left of i and i − 1 is
positioned between i + 1 and i, so the sash σ((x)T ⋅ (y)TC) has the right half of a
rectangle in the ith position.

Therefore we have shown that σ((x)T ⋅ (y)TC) and γT (D ⊗ E) have the same
object in every position. �

3.4. Coproduct. We now describe the coproduct in the Hopf algebra of sashes
and we begin with some definitions.

Definition 3.8. For C ∈ Σn−1, a dotting of C is C with a dot in any subset of the
n − 1 positions of C. An allowable dotting of C is a dotting of C that meets all of
the following conditions

(1) has at least one dot
(2) the first dot can be in any position, and dotted positions alternate between

a black square (or the left half of a rectangle) and a white square (or the
right half of a rectangle)

(3) has no instances of or

Figure 2 shows the allowable dottings of the sash .
Consider an allowable dotting d = c1 ●1 c2 ●2 ⋯cj ●j cj+1 of a sash C, where each

ci is a sub sash of C without any dots, and ●i is a single dotted position. If any ●i
is on the right half of a rectangle, then the the left half of the rectangle in the last
position of ci is replaced by a black square. If ●i and ●i+1 are in adjacent positions,

then ci+1 = ‖. (If any ●i is on the left half of a rectangle, then ●i+1 is on the right

half of the same rectangle, so ci+1 = ‖.)
We use C and d to define two objects A and B that are similar to sashes, but

have an additional type of square , which we call a mystery square. If ●1 is on a
black square or the left half of a rectangle, then let A be the concatenation of the
odd ci with a mystery square in between each ci (where i is odd), and let B be the
concatenation of the even ci with a mystery square in between each ci (where i is

even). For example, if ●1 is on a black square and j is even, then A = c1 c3 ⋯

cj+1 and B = c2 c4 ⋯ cj . If ●1 is on a white square or the right half of
a rectangle, then let A be the concatenation of the even ci with a mystery square
in between each ci, and let B be the concatenation of the odd ci with a mystery
square in between each ci.

We use the objects A and B to define four sashes A, A, B, and B.
To compute A, consider each mystery square in A. If the mystery square follows

ci and the ith and (i + 1)st dots of d are on the same rectangle, , then replace
the mystery square after ci with a white square. Otherwise replace the mystery
square with a black square.

To compute A, consider each mystery square in A from left to right. If the
mystery square follows ci and the ith and (i + 1)st dots of d are on an adjacent
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black square and white square, , then we check to see whether or not the
mystery square is followed by a white square. If the mystery square is followed by
a white square (i.e. if ci+2 starts with a white square), then replace the mystery
square and the white square with a rectangle. Otherwise replace the mystery square
with a black square. If the mystery square follows ci and the ith and (i + 1)st dots
of d are not on an adjacent black square and white square, then we check to see
whether or not the mystery square is preceded by a black square. If either ci ends

in a black square or ci = ‖ and the previous mystery square has been changed to a
black square, then replace the mystery square after ci and the black square before
it with a rectangle. Otherwise replace the mystery square after ci with a white
square.

To compute B, replace all mystery squares of B with black squares.
To compute B, replace all mystery squares of B with white squares, unless the

mystery square is preceded by a black square, in which case replace both the black
square and the mystery square with a rectangle.

Example 3.9. If d = , then c1 = , c2 =

c3 = , c4 = c5 = c6 = ‖, c7 = , c8 = , c9 = c10 = c11 = ‖, and ●1 is on a
black square. Thus, A = c1 c3 c5 c7 c9 c11 and B = c2 c4 c6

c8 c10. Using the rules above to compute A, B, and the four sashes A, A, B,
and B, we have:

A = B =

A = B =

A = B =

Given an allowable dotting d of a sash C we define Id = ∑ [A,A] and Jd =
∑ [B,B] for A, A, B, and B computed as above. Thus the notation Id⊗Jd denotes

∑D∈[A,A]

E∈[B,B]

D ⊗E.

Theorem 3.10. Given C ∈ Σn−1:

∆S(C) = ∅⊗C +C ⊗∅ + ∑
allowable
dottings
d of C

Id ⊗ Jd

To prove Theorem 3.10, we need to introduce some more terminology. Given
an allowable dotting d of a sash C and the objects A and B defined above, we
define two more objects Â and B̂. These objects are similar to sashes, but have
three additional types of squares: , , and . We call these squares: black-plus
square, white-plus square, and mystery square respectively. If ●i and ●i+1 are on
an adjacent black square and white square, i.e. , then replace the after ci
on A with a on Â. If ●i and ●i+1 are on a rectangle, i.e. , then replace the

after ci on A with a on Â. The resulting objects are Â and B̂. Note B = B̂.
We say that a sash D is of the form Â if D is identical to Â except for the

following allowable substitutions:

● A black-plus square on Â is replaced by a black square on D.

● A white-plus square on Â is replaced by a white square on D.
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● A mystery square on Â is replaced by a either a black square or a white
square on D.
● A black-plus square or a mystery square on Â, and a white square, a white-
plus square, or a mystery square following it, are replaced by a rectangle
on D.
● A white-plus square or a mystery square on Â, and a black square, a black-
plus square, or a mystery square preceding it, are replaced by a rectangle
on D.

Similarly, a sash E is of the form B̂ if it follows the same rules as above. Since

B̂ does not have any black-plus squares or white-plus squares, E is of the form B̂

if E is identical to B̂ except for the following allowable substitutions:

● A mystery square on B̂ is replaced by a either a black square or a white
square on E.
● A mystery square on B̂, and a white square or a mystery square following
it, are replaced by a rectangle on E.
● A mystery square on B̂, and a black square or a mystery square preceding
it, are replaced by a rectangle on E.

Lemma 3.11. The sash A is minimal with respect to sashes of the form Â.

Proof. The sash A is of the form Â, because every white-plus square on Â is replaced

by a white square on A and every black-plus square and mystery square on Â is
replaced by a black square on A.

Suppose the sash A′ is obtained from A by going down by a cover relation. We

want to show that A′ is not of the form Â.
Case 1: A′ = A1 A2 and A = A1 A2, where the leftmost tile of A2 is not a

white square.
Let ∣A1∣ = i−1, so A′ has a black square in the ith position and A has a white square

in the ith position. Thus, Â either has a white square or a white-plus square in the
ith position. Either way, A′ is not of the form Â.

Case 2: A′ = A1 A2 and A = A1 A2.
Let ∣A1∣ = i − 1, so A′ has a black square and white square in the ith and (i + 1)st
positions and A has a rectangle in the ith and (i + 1)st positions. Thus, Â has a

rectangle in the ith and (i + 1)st positions, and A′ is not of the form Â.

Case 3: A′ = A1 A2 and A = A1 A2.
Let ∣A1∣ = i − 1, so A′ has a rectangle in the ith and (i + 1)st positions and A has a
white square in both the ith and (i + 1)st positions. There are four possibilities of

what occupies the ith and (i + 1)st positions of Â: , , , or . In

any case, A′ is not of the form Â. �

Lemma 3.12. The sash A is maximal with respect to sashes of the form Â.

Proof. The sash A is of the form Â, because black-plus squares followed by white-
plus squares, mystery squares, or white squares on Â are replaced by a rectangle on
A, white-plus squares and mystery squares preceded by black-plus squares or black
squares on Â are replaced by a rectangle on A, all other black-plus squares on Â

are replaced by black squares on A, and all other white-plus squares and mystery

squares on Â are replaced by white squares on A.
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Suppose the sash A′ is obtained from A by going up by a cover relation. We
want to show that A′ is not of the form Â.

Case 1: A = A1 A2 and A′ = A1 A2, where the leftmost tile of A2 is not a
white square.
Let ∣A1∣ = i − 1, so A has a black square in the ith position and A′ has a white

square in the ith position. Thus, Â either has a black square or a black-plus square
in the ith position. Either way, A′ is not of the form Â.

Case 2: A = A1 A2 and A′ = A1 A2.
Let ∣A1∣ = i − 1, so A has a black square and white square in the ith and (i + 1)st
positions and A′ has a rectangle in the ith and (i + 1)st positions. Thus, Â has a
black square and white square in the ith and (i + 1)st positions, and A′ is not of

the form Â.
Case 3: A = A1 A2 and A′ = A1 A2.

Let ∣A1∣ = i − 1, so A has a rectangle in the ith and (i + 1)st positions and A′ has a
white square in both the ith and (i + 1)st positions. There are five possibilities of

what occupies the ith and (i+1)st positions of Â: , , , , or .

In any case, A′ is not of the form Â. �

Lemma 3.13. The sash B is minimal with respect to sashes of the form B̂.

Proof. The sash B is of the form B̂, because every mystery square on B̂ is replaced
by a black square on B.

Suppose the sash B′ is obtained from B by going down by a cover relation. We

want to show that B′ is not of the form B̂.
Case 1: B′ = B1 B2 and B = B1 B2, where the leftmost tile of B2 is not a

white square.
Let ∣B1∣ = i − 1, so B′ has a black square in the ith position and B has a white

square in the ith position. Thus, B̂ has a white square in the ith position, and B′

is not of the form B̂.
Case 2: B′ = B1 B2 and B = B1 B2.

Let ∣B1∣ = i − 1, so B′ has a black square and white square in the ith and (i + 1)st
positions and B has a rectangle in the ith and (i + 1)st positions. Thus, B̂ has a

rectangle in the ith and (i + 1)st positions, and B′ is not of the form B̂.

Case 3: B′ = B1 B2 and B = B1 B2.
Let ∣B1∣ = i − 1, so B′ has a rectangle in the ith and (i + 1)st positions and B has a

white square in both the ith and (i+ 1)st positions. Thus, B̂ has a white square in

both the ith and (i + 1)st positions, and B′ is not of the form B̂. �

Lemma 3.14. The sash B is maximal with respect to sashes of the form B̂.

Proof. The sash B is of the form B̂, because every mystery square on B̂ is replaced
by a black square on B, unless it is preceded by a black square, in which case the
black square and the mystery square are replaced by a rectangle on B.

Suppose the sash B′ is obtained from B by going up by a cover relation. We
want to show that B′ is not of the form B̂.

Case 1: B = B1 B2 and B′ = B1 B2, where the leftmost tile of B2 is not a
white square.
Let ∣B1∣ = i − 1, so B has a black square in the ith position and B′ has a white
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square in the ith position. Thus, B̂ has a black square in the ith position, and B′

is not of the form B̂.
Case 2: B = B1 B2 and B′ = B1 B2.

Let ∣B1∣ = i − 1, so B has a black square and white square in the ith and (i + 1)st
positions and B′ has a rectangle in the ith and (i + 1)st positions. Thus, B̂ has a
black square and white square in the ith and (i + 1)st positions, and B′ is not of

the form B̂.
Case 3: B = B1 B2 and B′ = B1 B2.

Let ∣B1∣ = i − 1, so B has a rectangle in the ith and (i+ 1)st positions and B′ has a

white square in both the ith and (i+ 1)st positions. Thus, B̂ either has a rectangle
or a black square and mystery square in the ith and (i+ 1)st positions. Either way,
B′ is not of the form B̂. �

Proposition 3.15. If a sash D is of the form Â, then D ∈ [A,A].

Proof. Suppose that D is of the form Â and that D ≠ A. We want to show that

there exists a sash D′ such that D′ Ì D and D′ is of the form Â.
Case 1: For some white-plus square of Â, it is not replaced by a white square

on D.
Since D is of the form Â, the white-plus square of Â is preceded by either a black
square, a black-plus square, or a mystery square and is replaced by the right half
of a rectangle on D. Thus D = D1 D2. Let D′ = D1 D2, so that D′ Ì D.
In any case, D′ is of the form Â.

Case 2: For some black-plus square of Â, it is not replaced by a black square
on D.
Since D is of the form Â, the black-plus square of Â is followed by either a white
square, a white-plus square, or a mystery square and is replaced by the left half of
a rectangle on D. Thus D = D1 D2. Let D′ = D1 D2, so that D′ Ì D. In

any case, D′ is of the form Â.
Case 3: For some mystery square of Â, it is not replaced by a black square on

D.
Subcase 3a: The mystery square of Â is replaced by a white square on D. If

D =D1 D2, where the first tile of D2 is not a white square, then let D′ =D1 D2,
so that D′ Ì D. If D =D1 D3, then let D′ =D1 D3, so that D

′
Ì D. Either

way, the sash D′ is of the form Â.
Subcase 3b: The mystery square of Â is replaced by the left half of a rectangle

on D.
Since D is of the form Â, the mystery square of Â is followed by either a white
square, a white-plus square, or another mystery square. Thus D =D1 D2. Let
D′ =D1 D2, so that D′ Ì D. In any case, D′ is of the form Â.

Subcase 3c: The mystery square of Â is replaced by the right half of a rectangle
on D.
Since D is of the form Â, the mystery square of Â is preceded by either a black
square, a black-plus square, or another mystery square. Thus D = D1 D2. Let
D′ =D1 D2, so that D′ Ì D. In any case, D′ is of the form Â.

Now, suppose that D is of the form Â and that D ≠ A. We want to show that
there exists a sash D′ such that D Ì D′ and D′ is of the form Â. Consider a
black-plus square, white-plus square, or mystery square in the ith position of Â.
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Case 1: D =D1 D2 where ∣D1∣ = i − 1, and the (i + 1)st position of D is not a
white square.
Let D′ = D1 D2, so that D Ì D′. If the ith position of Â is a black-plus square,
then D = A. So, the ith position of Â is a mystery square. The sash D′ is of the
form Â.

Case 2: D =D1 D2 where ∣D1∣ = i − 1.
Let D′ = D1 D2, so that D Ì D′. The ith position of Â is either a black-plus
square or a mystery square. The (i + 1)st position of Â is either a white square, a

white-plus square, or a mystery square. Thus, the sash D′ is of the form Â.
Case 3: D =D1 D2 where ∣D1∣ = i − 1.

Let D′ = D1 D2, so that D Ì D′. The ith position of Â is either a black-plus
square or a mystery square. Suppose that the ith position of Â is a black-plus

square. If the (i + 1)st position of Â is either a white square, a white-plus square,

or a mystery square, then D = A. If the (i + 1)st position of Â is any other object,

then D is not of the form Â. Thus, the ith position of Â is a mystery square, and
the (i+1)st position of Â is either a white square, a white-plus square, or a mystery

square. The sash D′ is of the form Â.
Case 4: D =D1 D2 where ∣D1∣ = i − 2.

Let D′ = D1 D2, so that D Ì D′. The ith position of Â is either a white-plus
square or a mystery square. If the (i− 1)st position of Â is either a black square or

a black-plus square, then D = A. So, the (i−1)st position of Â is a mystery square,

and the sash D′ is of the form Â.
Case 5: D = D1 D2 where ∣D1∣ = i − 2, and the (i − 1)st position of Â is a

black square.
Let D′ = D1 D2, so that D Ì D′. The ith position of Â is either a white-plus

square or a mystery square. Thus, the sash D′ is of the form Â. �

Proposition 3.16. If a sash E is of the form B̂, then E ∈ [B,B].
Proof. Suppose that E is of the form B̂ and that E ≠ B. We want to show that

there exists a sash E′ such that E′ Ì E and E′ is of the form B̂. If E ≠ B, then for

some mystery square of B̂, the mystery square is not replaced by a black square on
E.

Case 1: The mystery square in the ith position of B̂ is replaced by a white
square on E.

Subcase 1a: E = E1 E2, where the first tile of E2 is not a white square.
Let E′ = E1 E2, so that E′ Ì E. The sash E′ is of the form B̂.

Subcase 1b: E = E1 E2.
Let E′ = E1 E2, so that E′ Ì E, and where i − 1 = ∣E1∣. The (i + 1)st position
of B̂ is either a white square or a mystery square. Either way, E′ is of the form B̂.

Case 2: The mystery square of B̂ is replaced by the left half of a rectangle on
E.
Thus the mystery square of B̂ is followed by a white square or another mystery
square, and E = E1 E2. Let E

′ = E1 E2, so that E Ì E′. The sash E′ is of
the form B̂.

Case 3: The mystery square of B̂ is replaced by the right half of a rectangle on
E.
Thus the mystery square of B̂ is preceded by a black square or another mystery
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(C){3,4,5} = (C){1,2,3} = (C){1,3,4,5} =
(C){3} = (C){1,2,3,5} = (C){1,3} =
(C){3,5} = (C){1,3,5} =

Figure 3. The allowable sets and allowable dottings of a sash C

square, and E = E1 E2. Let E
′ = E1 E2, so that E Ì E′. The sash E′ is of

the form B̂.
Now, suppose that E is of the form B̂ and that E ≠ B. We want to show that

there exists a sash E′ such that E Ì E′ and E′ is of the form B̂. Consider a mystery
square in the ith position of B̂.

Case 1: E = E1 E2 where ∣E1∣ = i − 1, and the (i + 1)st position of E is not a
white square.
Let E′ = E1 E2, so that E Ì E′. The sash E′ is of the form B̂.

Case 2: E = E1 E2 where ∣E1∣ = i − 1.
Let E′ = E1 E2, so that E Ì E′. The (i + 1)st position of B̂ is either a white

square or a mystery square. Thus, the sash E′ is of the form B̂.
Case 3: E = E1 E2 where ∣E1∣ = i − 1.

Let E′ = E1 E2, so that E Ì E′. The (i + 1)st position of B̂ is either a white

square or a mystery square. Thus, the sash E′ is of the form B̂.
Case 4: E = E1 E2 where ∣E1∣ = i − 2.

Let E′ = E1 E2, so that E Ì E′. If the (i− 1)st position of B̂ is a black square,

then E = B. So, the (i − 1)st position of B̂ is a mystery square. Thus, the sash E′

is of the form B̂.
Case 5: E = E1 E2 where ∣E1∣ = i − 2, and the (i − 1)st position of B̂ is a

black square.

Let E′ = E1 E2, so that E Ì E′. Thus, the sash E′ is of the form B̂. �

Definition 3.17. Consider an allowable dotting d of a sash C ∈ Σn−1. Place the
numbers 1 through n before, after, and in between each of the n − 1 positions of
C. Let T be the set of numbers such that either the nearest dotted square to their
right is a black square (or the left half of a rectangle), or the nearest dotted square
to their left of a white square (or the right half of a rectangle). We say a set T is
an allowable set for C if it arises in this way from an allowable dotting of C.

Example 3.18. For d = , the allowable set for C is T = {1,4,5,6,8}.

1 2 3 4 5 6 7 8

Definition 3.19. For T , an allowable set for C, we define (C)T to be the allowable
dotting d of C such that there is a dot in the ith position of d either if i ∈ T and
i + 1 ∉ T or if i + 1 ∈ T and i ∉ T .
Example 3.20. ( ){1,4,5,6,8} =

Figure 3 shows the allowable set associated with each of the allowable dottings
in Figure 2.

We define a map τ from pairs (C,T ) where C is a sash and T is an allowable set
with respect to C, to permutations. The output is a permutation where the elements
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i i + 1 i + 2

i, i + 1, i + 2 ∈ T
or i, i + 1, i + 2 ∈ TC

i i + 1 i + 2

i + 2 ∈ T
and i, i + 1 ∈ TC

i i + 1 i + 2

i, i + 2 ∈ T
and i + 1 ∈ TC

Figure 4. Possible rectangle dottings of the ith and (i + 1)st po-
sitions of C

of T appear before the elements of TC , and as we will verify in Proposition 3.23,
the map σ takes τ(C,T ) to C. The map τ does not necessarily output a Pell
permutation.

Definition 3.21. Let T be an allowable set for a sash C ∈ Σn−1. First draw a
vertical line. We eventually build a permutation by placing all of the elements of
T on the left of the vertical line, and all of the elements on TC on the right of the
vertical line, and then removing the line. If 1 ∈ T then place a 1 on the left of the
line; otherwise, place the 1 on the right. The guiding principle in defining this map
is to place each number i as far right as possible while still making it possible for
σ(τ(C,T )) to be C and for all entries of T to appear before all entries of TC . Read
the sash from left to right from position 1 to position n − 1.

Suppose C has a black square in the ith position. If i + 1 ∈ T , then place i + 1
immediately to the left of the vertical line. If i+ 1 ∈ TC , then place i+ 1 on the far
right of the permutation.

Suppose C has a white square in the ith position. If i, i + 1 ∈ T or if i, i+ 1 ∈ TC ,
then place i+ 1 immediately to the left of i. If i+ 1 ∈ T and i ∈ TC , then place i+ 1
immediately to the left of the vertical line. The case where i ∈ T and i + 1 ∈ TC

is ruled out because if there were a dot on the ith position of C, which is a white
square, then i ∈ TC and i + 1 ∈ T .

Suppose C has a rectangle in the ith and (i + 1)st positions. All of the possible
dottings of the ith and (i+ 1)st positions of C are shown in Figure 4. If i ∈ T , then
i + 2 ∈ T . Place i + 2 immediately to the left of i. There are two possibilities for
placing i+1. If i+1 ∈ T , then place i+1 immediately to the left of the vertical line,
and if i+1 ∈ TC , then place i+1 at the far right of the permutation. If i ∈ TC , then
i+1 ∈ TC . Place i+1 at the far right of the permutation. There are two possibilities
for placing i + 2. If i + 2 ∈ T , then place i + 2 immediately to the left of the vertical
line, and if i + 2 ∈ TC , then place i + 2 immediately to the left of i.

Now τ(C,T ) is the permutation that results from ignoring the vertical line.

Example 3.22. For C = and T = {1,4,5,6,8}, the following pro-
cedure computes τ(C,T ) = 16548237.
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1 ∈ T → 1 ⋮

→ 1 ⋮ 2

→ 14 ⋮ 23

→ 154 ⋮ 23

→ 1654 ⋮ 23

→ 1654 ⋮ 237

→ 16548 ⋮ 237

Proposition 3.23. If T is an allowable set for C ∈ Σn−1, then σ(τ(C,T )) = C
Proof. Let T be an allowable set for C. Suppose C has a black square in the ith

position. Since T is allowable, we cannot have i ∈ TC and i + 1 ∈ T . If there is a
white square in the (i+1)st position then we cannot have i, i+1 ∈ TC and i+2 ∈ T .
For every situation τ(C,T ) maps i + 1 to the right of i and does not map i + 2 to
the left of i, thus σ(τ(C,T )) also has a black square in the ith position.

Suppose C has a white square in the ith position. Since T is allowable, we cannot
have i ∈ T and i + 1 ∈ TC . If there is a black square in the (i − 1)st position then
we cannot have i − 1, i ∈ TC and i + 1 ∈ T . For every situation τ(C,T ) maps i + 1
to the left of i and, if i − 1 is to the left of i, does not map i + 1 to the left of i − 1,
thus σ(τ(C,T )) also has a white square in the ith position.

Suppose C has a rectangle in the ith and (i + 1)st positions. Considering every
possible dotting arrangement as shown in Figure 4, we see τ(C,T ) maps i + 1 to
the right of i and i + 2 to the left of i, thus σ(τ(C,T )) also has a rectangle in the
ith and (i + 1)st positions. �

Proposition 3.24. T is an allowable set for a sash C ∈ Σn−1, T = [n], or T = ∅
if and only if T is good as described in Section 1. That is, the entries of T are the
first elements of a permutation z′ ∈ Sn where σ(z′) = C.

Proof. Suppose T = [n] or T = ∅, and let z′ = η(C). The entries of T are the first
elements of z′ such that σ(z′) = C. Suppose T is an allowable set for a sash C,
and let z′ = τ(C,T ) ∈ Sn. The entries of T are the first elements of z′ such that
σ(z′) = C.

To prove the reverse implication, suppose z′ ∈ Sn such that σ(z′) = C, and let Tj

be the set containing the first j entries of z′. If j = 0 or j = n, then the proposition
is true. Assume that 0 < j < n. Let d be a dotting of C such that there is a dot in
the ith position of C either if i ∈ Tj and i + 1 ∈ TC

j or if i ∈ TC
j and i + 1 ∈ Tj . We

want to show that Tj is an allowable set for C; that is, we want to verify that d is
an allowable dotting for C.

Since 0 < j < n, there exists some i such that i ∈ Tj and i + 1 ∉ Tj, so d has at
least one dot.

If i ∈ Tj and i+1 ∈ TC
j then d has a dot in the ith position. We know that entries

in TC
j come after entries of Tj in z′, so i + 1 is to the right of i in z′. Thus the ith

dot is on a black square or the left half of a rectangle of C. Similarly, if i ∈ TC
j and

i + 1 ∈ Tj , then the ith dot of d is on a white square or the right half of a rectangle
of C. Thus the first dot of d can be on any object, and dotted positions alternate
between a black square (or the left half of a rectangle) and a white square (or the
right half of a rectangle).
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Suppose that there is a rectangle in the ith and (i+ 1)st positions of C. If i ∈ Tj

and i + 1 ∈ TC
j , then i + 2 is not an element of TC

j because i + 2 is to the left of i in

z′. Thus d has no instances of .
Suppose that there is a black square in the ith position of C and a white square

in the (i + 1)st position of C. If i, i + 1 ∈ TC
j , then i + 2 is not an element of Tj

because i + 2 is to the right of i in z′. Thus d has no instances of .
Therefore we have shown that Tj is an allowable set for C. �

Let z ∈ Pn and let C ∈ Σn−1 such that σ(z) = C. Let IT and JT be as defined in
Section 1. From Theorem 1.3 we have that the coproduct on sashes is given by:

(18) ∆S(C) = ∑
T is allowable,
T=∅, or T=[n]

σ(IT )⊗ σ(JT )

Notice I∅ = ∅, J∅ = z, I[n] = z, and J[n] = ∅, so we have:

(19) ∆S(C) = ∅⊗C +C ⊗∅ + ∑
T is allowable

σ(IT )⊗ σ(JT )

From Proposition 1.7 and our discussion of the relationship between the coprod-
uct and the dual product in Section 1, we see:

(20) ∆S(C) = ∅⊗C +C ⊗∅+ ∑
T is allowable

∑
D and E such that

γT (D⊗E)=C

D ⊗E

Proposition 3.25. Given an allowable set T and a sash C such that (C)T = d,
D ⊗E is a term of Id ⊗ Jd if and only if γT (D ⊗E) = C.

Proof. Recall the notation d = c1 ●1 c2 ●2 ⋯cj ●j cj+1. Assume that j is even and
that ●1 is on a black square or the left side of a rectangle, thus 1 ∈ T . The cases
where j is odd or where ●1 is on a white square or the right side of a rectangle
are identical, other than some adjustments to indices. Let T2i−1 be the ith set of
consecutive integers in T and let T2i be the ith set of consecutive integers in TC .
Thus T = T1 ∪ T3 ∪ ⋅ ⋅ ⋅ ∪ Tj+1 and TC = T2 ∪ T4 ∪ ⋅ ⋅ ⋅ ∪ Tj, where 1 ∈ T1 ⊆ T . Recall

A = c1 c3 ⋯ cj+1 and B = c2 c4 ⋯ cj . Notice that ci = σ(η(C)∣Ti
).

If h,h + 1 ∈ T , then for some index 2i − 1 we have h,h + 1 ∈ T2i−1. Thus, the
hth position of C is in c2i−1 and we refer to that position on A as the position
corresponding to h. Similarly, if h,h+ 1 ∈ T2i ⊆ TC , then the hth position of C is in
c2i and we refer to that position on B as the position corresponding to h.

Suppose that D ⊗E is a term of Id ⊗ Jd, that is D ∈ [A,A] and E ∈ [B,B].
As we compute γT (D ⊗E), we begin by labeling D with the elements of T and

labeling E with the elements of TC . Notice that the hth arrow meets one of the
following conditions:

(1) If h,h + 1 ∈ T , then the hth arrow is in the position of D corresponding to
h.

(2) If h,h+ 1 ∈ TC , then the hth arrow is in the position of E corresponding to
h.

(3) If h ∈ T and h + 1 ∈ TC , then the hth arrow is from D to E.
(4) If h ∈ TC and h + 1 ∈ T , then the hth arrow is from E to D.
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Case 1: h,h + 1, h + 2 ∈ T .
Whatever is in the hth position of C is also in the position of D corresponding to
h. The map γT (D⊗E) places whatever is in the position of D corresponding to h

in the hth position of the output.
Case 2: h,h + 1, h + 2 ∈ TC .

Whatever is in the hth position of C is also in the position of E corresponding to
h. The map γT (D ⊗E) places whatever is in the position of E corresponding to h

in the hth position of the output.
Case 3: h,h + 1 ∈ T and h + 2 ∈ TC .

If C has a rectangle in the hth and (h + 1)st positions, then the dotting d would
have a dot in the (h + 1)st position, which is the right half of a rectangle. The
allowable set associated with such a dotting has h,h+1 ∈ TC and h+2 ∈ T which is
a contradiction, so C does not have a rectangle in the hth and (h + 1)st positions.

If whatever is in the hth position of C is also in the position of D corresponding
to h, then γT (D⊗E) places whatever is in the position of D corresponding to h in
the hth position of the output.

If C has a black square in the hth position, then D may have the left half of a
rectangle in the position corresponding to h. The map γT (D ⊗E) places a black
square in the hth position of the output.

Case 4: h,h + 1 ∈ TC and h + 2 ∈ T .
If C has a black square in the hth position, then the dotting d would have an
instance of , which is a contradiction. Thus, C does not have a black square
in the hth position.

If C has a white square or the right half of a rectangle in the hth position, then
E has the same object in the position corresponding to h. The map γT (D ⊗ E)
places either a white square or the right half of a rectangle respectively in the hth

position of the output and a white square in the (h + 1)st position.
If C has the left half of a rectangle in the hth position, then E either has a

black square or left half of a rectangle in the position corresponding to h. The map
γT (D ⊗E) places a rectangle in the hth and (h + 1)st positions of the output.

Case 5: h ∈ T and h + 1, h + 2 ∈ TC .
If C has a rectangle in the hth and (h+1)st positions, then the dotting d would have

an instance of , which is a contradiction. Thus, C does not have a rectangle in
the hth and (h+ 1)st positions and C does have a black square in the hth position.
The map γT (D ⊗E) places a black square in the hth position of the output.

Case 6: h,h + 2 ∈ T and h + 1 ∈ TC .
If C has a black square in the hth position and a white square in the (h + 1)st
position, then A has a black square in the position between the labels h and h + 2,
and A has either a black square or the left half of a rectangle in the position between
the labels h and h+2. Thus, D has either a black square or the left half of a rectangle
in the position between the labels h and h + 2. The map γT (D⊗E) places a black
square in the hth position and a white square in the (h+1)st position of the output.

If C has a rectangle in the hth and (h+1)st positions, then A has a white square

in the position between the labels h and h + 2, and A has either a white square or
the right half of a rectangle in the position between the labels h and h+2. Thus, D
has either a white square or the left half of a rectangle in the position between the
labels h and h + 2. The map γT (D⊗E) places a rectangle in the hth and (h + 1)st
positions of the output.
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Case 7: h ∈ TC and h + 1, h + 2 ∈ T .
C either has a black square or the left half of a rectangle in the hth position, and
whatever is in the (h+ 1)st position of C is also in the position of D corresponding
to h + 1. We see from cases 4 and 6 that γT (D ⊗ E) places either a black square
or the left half of a rectangle, respectively, in the hth position of the output. Also,
γT (D ⊗ E) places whatever is in the position of D corresponding to h + 1 in the
(h + 1)st position of the output.

Case 8: h,h + 2 ∈ TC and h + 1 ∈ T .
We see from cases 4 and 6 that whatever is in the hth position of C is also in the
hth position of γT (D ⊗E), and we see from cases 5 and 6 that whatever is in the
(h + 1)st position of C is also in the (h + 1)st position of γT (D ⊗E).

Therefore we have shown that γT (D ⊗E) = C.
Now let us suppose γT (D ⊗ E) = C, and we will show that D ⊗ E is a term of

Id ⊗ Jd. It is enough to show that D is of the form Â and that E is of the form B̂

because of Proposition 3.15 and Proposition 3.16. We refer to the position of D or
E that is labeled with the hth arrow as the position of D or E corresponding to h.

Case 1: h,h + 1, h + 2 ∈ T .
The object in the position of D corresponding to h is the same as the object in
the hth position of C, which is also the same as the object in the position of Â
corresponding to h.

Case 2: h,h + 1, h + 2 ∈ TC .
The object in the position of E corresponding to h is the same as the object in
the hth position of C, which is also the same as the object in the position of B̂
corresponding to h.

Case 3: h,h + 1 ∈ T and h + 2 ∈ TC .
As we showed above, C does not have a rectangle in the hth and (h+1)st positions.
If D has the left half of a rectangle in the position corresponding to h, then C has a

black square in the hth position. Thus, the sash Â has a black square in the position
corresponding to h and a mystery square in the following position. If D has any
other object in the position corresponding to h, then C has the same object in the
hth position and the sash Â has the same object as D in the position corresponding
to h.

Case 4: h,h + 1 ∈ TC and h + 2 ∈ T .
As we showed above, C does not have a black square in the hth position. If E has
a white square or the right half of a rectangle in the position corresponding to h,
then C has the same object as E in the hth position and a white square in the
(h+ 1)st position. Thus, B̂ has the same object as E in the position corresponding
to h followed by a mystery square. If E has a black square or the left half of a
rectangle in the position corresponding to h, then C has a rectangle in the hth and
(h + 1)st positions. Thus, B̂ has a black square in the position corresponding to h

followed by a mystery square.
Case 5: h ∈ T and h + 1, h + 2 ∈ TC .

If there is a black square in the position of E corresponding to h + 1, then the
(h + 1)st position of C is either a black square or the left half of a rectangle. If
h+3 ∈ T , then C has a rectangle in the (h+1)st and (h+2)nd positions, and the sash

B̂ has a black square in the position corresponding to h + 1 followed by a mystery
square. If h + 3 ∉ T , then C has a black square in the (h + 1)st position, and the

sash B̂ has a black square in the position corresponding to h + 1.
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If there is the left half of a rectangle in the position of E corresponding to h+ 1,
then the (h + 1)st position of C is the left half of a rectangle. If h + 3 ∈ T , then
the sash B̂ has a black square in the position corresponding to h + 1 followed by a
mystery square. If h + 3 ∉ T , then the sash B̂ has a the left half of a rectangle in
the position corresponding to h + 1.

If there is either a white square or the right half of a rectangle in the position of
E corresponding to h + 1, then the (h + 1)st position of C is a white square. The

sash B̂ has a white square in the position corresponding to h + 1 preceded by a
mystery square.

Case 6: h,h + 2 ∈ T and h + 1 ∈ TC .
If D has a black square in the position between the labels h and h + 2, then C has
a black square in the hth position and a white square in the (h+1)st position. The
sash Â has a black-plus square in the position between the labels h and h + 2.

If D has the left half of a rectangle in the position between the labels h and h+2,
then C has a black square in the hth position and a white square in the (h + 1)st
position. If h + 3 ∈ T , then the sash Â has a black-plus square in the position
between the labels h and h+2 followed by a white square. If h+3 ∉ T , then the sash
Â has a black-plus square in the position between the labels h and h + 2 followed
by either a white square, a white-plus square, or a mystery square.

If D has a white square in the position between the labels h and h + 2, then C

has a rectangle in the hth and (h + 1)st positions. The sash Â has a white-plus
square in the position between the labels h and h + 2.

If D has the right half of a rectangle in the position between the labels h and
h + 2, then C has a rectangle in the hth and (h + 1)st positions. The sash Â has a
white-plus square in the position between the labels h and h+2, preceded by either
a black square, a black-plus square, or a mystery square..

Case 7: h ∈ TC and h + 1 ∈ T .
This case has already been fully considered in cases 4 and 6.

We have shown, by checking every position, that D is of the form Â and that
E is of the form B̂. Therefore, D ∈ [A,A], E ∈ [B,B], and D ⊗ E is a term of
Id ⊗ Jd. �

Theorem 3.10 follows directly from Equation (20) and Proposition 3.25.
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