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Abstract

In ‘A survey of two-graphs’([24], J.J. Seidel lays out the neantions between
simple graphs, two-graphs, equiangular lines and stroregiylar graph. It is
well known that there is a one-to-one correspondence betveggilar two-graphs
and equiangular tight frames. This article gives a gereatadin of two-graphs for
which these connections can be mimicked using roots of ln@ypnad+1.
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1. Introduction

Two-graphs play a wide and varied role in several areas ofhemaatics. To
guote J.J. Seidel from his well-known paper, A survey of yvaphs|[24], “Two-
graphs provide a good example of combinatorial geometrygrodp theory.”
The study of two-graphs is equivalent to the study of setsgofangular lines
in Euclidean geometry, sets of equidistant point sets iptellgeometry, binary
maps of triples with vanishing co-boundary, and double dags of complete
graphs.

Applications include but are not limited to network theoty &nd coding the-
ory [10]. At the beginning of th&1* century, R. Holmes and V. Paulsen in|[17]
and T. Strohmer and R. Heath in [28], discovered the work dpnéd.J. Seidel
and others regarding two-graphs had found another apiplican particular, the
existence and construction of real equiangular tight (B Fs) was expedited
by their discovery of the fact that there is a in one-to-oneaespondence between
real ETFs andegular two-graphs This one-to-one correspondence is a well-
known fact in the frame theory community |1, 2,3, 4, 7,115, 8,28, 29, 4, 19,
30]. Indeed extending the already lengthy list of applmasi of two-graphs to
now include such areas as signal processing and commuamd¢hgory.
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In this article, we present an alternate yet equivalent diefimof a two-graph.
This new definition allows us to generalize the definition diva-graphin a nat-
ural and intuitive way to what we refer to acamplex two-graphAssociated to
eachtwo-graphis a set ofSeidel adjacency matricethat is, a set of symmetric
matrices whose diagonal entries are all zero and off didgondes aret1. Sim-
ilarly, associated to eaatomplex two-grapls a set ocomplex Seidel adjacency
matricesthat is, a set of self-adjoint matrices whose diagonalienare all zero
and off diagonal entries are'" roots of unity for a fixedn in N. The fact that the
off diagonal entries of a “realSeidel adjacency matriare square roots of unity
is a trivial yet surprisingly useful observation. This ob&dion coupled with our
equivalent definition of @awo-graphis the key to this extension. Furthermore,
many of the results regardingbmplex two-graphsirror the analogous results
pertaining tawo-graphs

For example, it is well-known that for a set of equiangulae$ inR* to meet
the absolute or relative bounds, the associated two-grajst Ioeregular, i.e., the
associated Seidel adjacency matrix has precisely twandistigenvalues. These
results extend naturally t6*. That is,regular complex two-graphsroduce sets of
equiangular lines that meet either the absolute or rel@tbtends. Consequently,
associated with eaalegular complex two-grapls a complex ETF.

This article is organized as follows. In Section 2, the nmetion underlying
the definition of a two-graph is presented. Section 3 dissuise relationship
between two-graphs, equiangular lines, and ETFs, congpé#mmreal case to the
complex case. Section 4 presents the reader with a caré&fdiuction tocomplex
two-graphsvia the cube roots of unity. Section 5 extends the definitiand
results from Section 4 to include the&” roots of unity for a fixedn in N.

For the reader familiar with two-graphs this paper is selitained. For the
reader not as familiar with two-graphs many of the defingiand results in this
article are accompanied by examples intended to motivadedgdinitions or re-
sults.

2. Motivating the Definition of a Two-Graph

In this section we summarize the first four sections of J.lebs, A Sur-
vey of Two-Graphs, [24]. Lemm{a 2.7 lays the foundation fodenstanding the
generalization of a two-graph presented in Section 4.

A graphis a pair(2, £') wheref) is a set oivertices andF is a set of unordered
pairs of vertices, whose elements are caiddes For the purposes of this paper,



graphs do not have loops or multiple edgescaplete graplonn vertices is a

graph with|2| = n and £’ contains every possible unordered pair of vertices.
Denote byAx andVy the adjacency matrix, and the set of vertices of the

graphX, respectively. We also udg for then x n identity matrix andJ,, for the

n x n matrix of all ones.

Definition 2.1. Given a graphX onn vertices, theSeidel adjacency matrixof
X is defined to be the x n matrix Sx := (s;;) wheres; ; is defined to be-1
wheni andj are adjacent verticesi-1 when; and;j are not adjacent, and O when
i=j.

The Seidel adjacency matrix &f is related to the usual adjacency matsix

by
SX = Jn _In - 2AX

Definition 2.2. Let X be a graph and- C Vx. Now define the grapiX™ to be
the graph arising fromX by changing all of the edges betweeandVy — 7 to
nonedges and all the nonedges betweamd 'y — 7 to edges. This operation is
calledswitching on the subset, see [10].

The operation of switching is an equivalence relation ondblection of
graphs om vertices. This can be seen by observing if V, then switching on
7 is equivalent to conjugatingx by the diagonal matrix© with D;; = —1 when
i € 7 and1 otherwise. Theswitching classof X, denoted X], is the collection
of graphs obtained fronX by switching on every subset of.

Example 2.3. The graph in Figuré 1l will be denoted @§s. This graph will be
referred to frequently throughout the paper.

Figure 1: Star graph on 6 vertices

The graph in Figuré2 can be obtained by switchikig on the set- = {2, 3}.



Figure 2: X s switched on{2, 3}.

As stated above, switching onis equivalent to conjugatingy by the diago-
nal matrixD with D,;; = —1 when: € 7 and1 otherwise. This is demonstrated in
Exampld 2.4.

Example 2.4. The Seidel matrix foX s is

0 1 -1 1 -1 1
1 0 11 -1 -1
o |71 1 01 1 -1
Xs 1 1 10 1 1
-1 -1 11 0 1

1 -1 -11 1 0

The diagonal matrixD corresponding to switching on the set= {2, 3} is

SO OO o
SO = OO O
O = O O OO
_ o O O o O

The result of this conjugation is Seidel matrix for the grapigure(2.

0 -1 1 1 —-1 1
-1 0 1 -1 11
1 1 0 -1 -1 1
DSxsD = 1 -1 -1 0 11
-1 1 -1 1 01
1 1 1 1 10



Definition 2.5. The graphsX andY onn vertices are calledwitching equiva-
lentif Y is isomorphic taX ™ for somer C Vy, see [10].

Switching equivalent defines a second yet coarser equs@letation on the
collection of graphs on vertices. Theswitching equivalent classof X, denoted
[[X]], is the collection of graphs obtained frakh by conjugatingSy by a signed
permutation matrix, i.e. the product of a permutation mxadnd a diagonal ma-
trix of +£1’s. Thus, the spectrum of the Seidel adjacency matrices otkimiy
equivalent graphs are identical. Note th&{ is a subset of[ X ] for any graph.
For the complete graph and empty graphorertices, their switching classes are
equal to their switching equivalent classes.

Corollary 2.6 (Corollary 3.5 in[24]) Switching does not change the parity of the
number of adjacencies among ahyertices of a graph.

Proof. On 3 vertices there ard non-isomorphic graphs} distinct switching
classes of graphs, artldistinct switching equivalent classes of graphs. The
4 non-isomorphic graph&(;, X,, X3, and X, are given in Figuré]3. Clearly,

[Xa] = [[X0]] = [X5] and[X3] = [[X5]] = [Xa] but[Xy] # [X5]. 0
Xl X2 X3 X4

Figure 3: Nonisomorphic graphs @rvertices.

Lemma 2.7 (Lemma 3.8 ini[24]) For any graph on4 vertices the number of
subgraphs o3 vertices, having an odd number of edges, is even.

Proof. On 4 vertices there ar@1 non-isomorphic graphs§ distinct switching
classes of graphs, addistinct switching equivalent classes of graphs. The
non-isomorphic graphs arg,, ..., X, shown in Figuré 4, and their complements
X, ..., X11. The distinct switching classes di&, |, [X], [X,4], and each -edge
graph contributes a distinct switching class. The distswitching equivalent
classes arg X, |] the empty graph].X,]] thel-edge graph, anidX,]] the complete
graph. O



X1 X2 X3 X4 X5 X6

Figure 4: Nonisomorphic graphs drvertices.

Lemmd 2.7 is the motivation behind the definition dfxa-graph Let() be a
finite set andA a set of triples of elements frof.

Definition 2.8. A two-graph(£2, A) is a pair of a vertex sef2 and a triple set
A c Q3, such that each set of four element subset fibcontains an even number
of triples of A.

Lemmal2.9 is necessary to prove Theoilem]2.10 below whiclkessthere
is one-to-one correspondence between two-graphs and fkehsw classes of
graphs om vertices.

Lemma 2.9(Lemma 3.9 in[[24]) The graphg2, £') and ({2, E’) are switching
equivalent if the parity of the number of edges among eapletaf vertices is the
same for both graphs.

Proof. Letv be any vertex if2 andS the set of vertices if which have different
adjacency withv in (2, E') and(€2, E”). Switching(€2, £’) on the sef gives a new
graph(£2, E”) such that the adjacencieswofvith every other vertex are the same
in (©2, E) and(2, £”). Consider a pair of vertices:, w} from Q2 for which neither

is equal tov. By hypothesis, the trianglds), u, w} in (2, E') and(€2, E’) have the
same parity of edges. Switching Spreserves the parity of these triangles, so the
triangles{v, u, w} in (Q, E) and (2, E”) have the same parity of edges and the
adjacencies betweenandu, andv andw are equal. Thus, the adjacency between
uwandw must also be the same e, ) and(2, E”). Therefor, these two graphs
are isomorphic and the original two are switching equivalen 0J

Theorem 2.10(Theorem 4.2 in.[24]) Givenn, there is a one-to-one correspon-
dence between the two-graphs and the switching classeaplfigion: vertices.

The following is Seidel’s proof and is included for latereednce.

Proof. Let (2, E') be any graph. Definé as the triples of2 which correspond
to triangles containing an odd number of edges. By Corolay A is invariant
under switching. Lemma 2.7 prové], A) is a two-graph.
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Conversely, lefQ2, A) be a two-graph, satisfying Definition 2.8. Select any
in 2 and partitior(2 \ {w} into any2 disjoint sets?2; and(2,. Let £’ consist of the
following pairs:

{w,wi}, forall
{wi,wi}, forall
{ws,wh}, for all
{wi,ws}, forall

w1 EQl;

wl,wi € Q; with {w,wl,wi} SAW
wg,wé € )y with {w,wg,wé} € A,
wy € Oy, ws € Ny with {w,wl,wg} ¢ A.

Thus, we associate {62, A) a class of graph&?, E). By constructionA is
the set of triangles 2, £') which have an odd number of edges. So, by Lemma
[2.9, the class of graphs constructed fr@m A) is a switching class and distinct

switching classes yield distinct two-graphs. This provestheorem.

O

Table[1 provides partial data on the number of non-isomargtaphs, switch-
ing classes (two-graphs), and switching equivalent ctagsen-isomorphic two-

graphs) om vertices up ton

12 [21]. Indeed for = {1,2,3} there are

2 two-graphs which are non-isomorphic. Fer= {1,2,3,4} there are 8 two-
graphs but only 3 non-isomorphic two-graphs. Two of thedharementioned
non-isomorphic two-graphs correspond to the empty and temgraphs ont

vertices and the third non-isomorphic two-graph corregigda any one of the six
1-edge graphs ofvertices. This is precisely Lemrha P.7.

n non-isomophic | switching classes switching equivalent classes
3 4 2 2

4 11 8 3

5 34 64 7

6 156 1024 16

7 1044 32,768 54

8 12,346 221 243

9 274,668 228 2038

10 12,005,168 236 33,120

n | no known formula| =t See Proposition Appendix A.

N

Table 1: Class Sizes



3. Equiangular Lines in R* and C*

This section reviews the process which takes a two-graplséd af equiangu-
lar lines and vice versa. This process provides both thglmsind the underlying
motivation for our generalization of the definition of a Saichatrix to allowm!"-
roots of unity in the off diagonal entries as well as our gaheation of the defi-
nition of a two-graph.

3.1. Equiangular Lines ifR* to a Two-Graph

Given asel’ = {z,,...,z,,} of vectors inR*, let U be thek x n matrix with
the elements of as its columns. Then

G:=U"U

is the Gram matrix of the vectors in
If T is set of unit vectors representing a set of equiangulaslindR* with
zl'z; = +a, then then x n Gram matrix associated with has the form

G=I1+aS

whereS is ann x n Seidel adjacency matrix. Let be the graph associated to
the matrixS. If Q := {1,2,3,...,n} andA is the set of all triples of vertices of
whose induced subgraph on three vertices has €ithes edges, the ordered pair
(2, A) is a two-graph by Lemma 2.7.

Thus, every set af-equiangular lines iiR* yields a two-graph using the previ-
ously described process. It is worth noting there24re distinct Seidel adjacency
matrices associated with a given seteéquiangular lines. However, this set of
Seidel adjacency matrices belong to the same switching.clas

3.2. A Two-Graph to Equiangular Lines R

Constructing a graplX?, E) from a two-graph({2, A) is not a well-defined
process. Indeed there is a one to many correspondencen&taiyithe many are
in the same switching class. The proof of TheofemI2.10 iredwdprocess of how
to build a graph {2, F) given a two-graph2, A). We review this process below
as well as include an example.

Pickv in Q and a subse®, of 2\ {v}. Define(2, as the complement 6t; in

Q\ {v}.
e Start withE = {}.



e Foreachwin , add{v,w} into E.

e For each paifw,w’} of elements in,, if {v,w,w'} isin A, add{w,w'}
into .

e For each paifw,w’} with w in ; andw’ in Q, if {v,w,w'} IS NOtINA,
add{w,w'} into E.

e For each paifw,w’} of elements iy, if {v,w,w'} isin A, add{w,w'}
into E.

The resulting seE is the edge set for a gragk, F). Exampld 3.1l illustrates this
process.

Example 3.1. Consider the two-graph
({1,2,3,4,5,6},{{1,2,3},{1,2,6},{1,3,4},{1,4,5},{1, 5,6},
{2,3,5},{2,4,5},{2,4,6},{3,4,6},{3,5,6}}).
Letv = 2andQ); = {5,6}, 00, = {1,3,4}.
e StartwithE = {}.
e Add{2,5} and{2,6} into E.

e Since{l1,2,5} and{2,3,6} are not inA, we include{1,5} and{3,6} in
E.

e Since{1,2,3}isin A, we include{1, 3} in E.

The resulting graph is

({]‘7 27 37 47 57 6}7 {{27 5}7 {27 6}7 {17 5}7 {37 6}7 {]‘7 3}})7

or as in Figure 5.

One should notice the choice of 2; and 2, will possibly result in different
graphs, but they will be in the same switching class. Apglgipermutation from
Sio to the labels in the triple sets df will result in a graph switching equivalent
to Xs.



Figure 5: Graph resulting from two-graph constructiaf;.

Given a two-graph(2, A) construct a graph, sa¥, onn vertices using this
process. Again any graph constructed using this process Imeus the same
switching class as any other graph constructed via the divergraph((2, A).
Consequently, the spectrum of the associated Seidel nmogngted,Sy, of any
such graphX, remains constant. Sin¢eSy = 0 andSy # 0, the least eigenvalue
of Sx is negative. It follows that

G::I—O—ESX
o

is a positive semi-definite matrix wheren: denotes the least eigenvalue %f.
Thus if theG has rankk, then there is & x n matrix U such thatG = UTU,
where then columns of this matrixJ are the vectors in® which generate the
n-equiangular lines ifR*. Once agairt; is the Gram matrix associated with

3.3. Equiangular Lines if©* and Complex Seidel Adjacency Matrices

Now consider a set of equiangular linesGA. If A = {zy,..., z,} is a set of
vectors representing this set of equiangular line€irwith |z;z;| = «, then the
n x n Gram matrix associated with has the form

G=1+aQ

where( is a Hermitian matrix with all diagonal entries zero and &fHdiagonal
entries have modulus. In [17], Holmes and Paulsen call such a matfjxa
signature matrix However, some authors refer to this matrix aSeadel matrix
due to the connection to two-graphs. For the remainder sfghper we define a
complex Seidel adjacency matex follows.

Definition 3.2. Ann x n Hermitian matrixS such thats;; = 0 and|s;;| = 1 for
all 7 # j is called acomplex Seidel adjacency matrix
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Thus, there is a one-to-one correspondence between seteaifiangular
lines inC* and complex Seidel adjacency matrices. In Sectibasd5 we prove
a given complex Seidel adjacency matrix which has only robtsnity for its
nonzero entries gives a natural way to generalize the defindf a two-graph
to what we refer to as aomplex two-graph Moreover, we shovcomplex reg-
ular two-graphsare precisely theomplex two-graph$or which therelative or
absolutebounds are met for the associated set of equiangular lines.

3.4. Relative, Absolute, and Welch Bounds

The maximal number of equiangular lines in eitférandC* occurs precisely
when the associated Seidel adjacency matrix has exactlgistiact eigenvalues,
e.g., [17,0.10] 24]. In addition, the vectors associated whth maximal set of
equiangular lines span the ambient space. This is a paatigwlaluable fact in
frame theory since it guarantees this set of vectors, witligatsmodification to
their length, will be an ETF in eithék* or C*.

It is well known that the maximal number of equiangular liie&%H in R*
andk? in C*. One way to prove this iR* is to show the projections corresponding
to the equiangular lines form a linearly independent setlenthe vector space of
symmetrick x k matrices which has dimensidﬁ’?—l). One difference in the
complex setting is that the Hermitidgnx k& matrices do not form a vector space
overC. However, the Hermitiark x k£ matrices do form a vector space over
with dimension equal t&?. In Propositioi 3.3, we derive the known upper bound,
k2, for the number of equiangular lines@f using this idea.

We begin by noting if: is a unit vector inC*, thenZ = zz* is a Hermitian
k x k matrix andZ? = Z. Itis also worth noting replacing by e~ does not
change the matri¥. To compare with the real case, for a line through the origin
in R* there are two distinct unit vectors which can be used to sgmiethe given
line. However, in the complex case, for a line through thgiorin C* there are
infinitely many unit vectors one can choose to representitrendine.

Now if W is also a unit vector it andWW = ww*, then

ZW = zz"ww* = (2"w)zw”,

and so
tr(ZW) = [{z, w)|?.

Propositiorn 3.8 and it's proof closely resemble Theorer@ 1lin [10]. For the re-
mainder of this sectioh = {z, ..., z,, } will denote a set of unit vectors associated
with a set of equiangular lines i@6*, and 7, ..., Z,, will denote the projections
onto this set of equiangular lines, i.&;, = 2,z foreachi =1, ..., n.

11



Proposition 3.3. (The Absolute Bound) L&t ..., Z, be the projections onto a set
of equiangular lines inC*. Then these matrices form a linearly independent set
in the vector space of Hermitian matrices over theand consequently < k2.
Proof. Let o = |(2;, 2;)| for i # j, the cosine of the smaller angle between the

n

lines. If W = ZCZZZ" then

1=1

tr(Wz) = Z CiCth'(ZZ'Zj)
2

:E c + E cz-cja2
i

i\j:i]

= a? (ZCZ) + (1 —a?) Zcf

It follows that thetr(WW?) = 0 if and only if ¢; = 0 for all i. So, theZ; are linearly
independent. The space of Hermitiank k& matrices ovelR has dimensior?,
and the result follows. O

The following two propositions are Lemmas 11.3.1 and 11i4.[L0]. The
proofs of these propositions are not included since theyderical to the proofs
given in [10] and the idea is similar to the proof of PropasiiB.3.

Proposition 3.4.(Lemma 11.3.1[10]) Supposg, ..., Z, are the projections onto
a set of equiangular lines i6* and |(z;, z;)| = . If [ = Y, ¢;Z;, thene; = k/n
for all : and
_d— do?
"= 1 —da?’
The Seidel matrix determined by any set oinit vectors spanning these lines has

eigenvalues
1 n—k
a ko
with multiplicitiesn — k& andk, respectively.

Proposition 3.5. (Lemma 11.4.1[10]) Suppode, ..., z,} is a set ofn equian-
gular lines inC* and|(z;, z;)| = . If ™2 > k, then
k — ka?

"= 1—ka?

12



If Z, ..., Z, are the projections onto these lines, then equality holdsdf only if
> Zi=(k/n)l.

Corollary 3.6. (Welch bound) Given a séty, ..., z,} of n vectors inC* or R* set

o = max (2, 2;)|.
i#]

To summarize, given a set of equiangular lines in eitbeor R* this set of
lines spans the given space if and only if equality holds iopBsition[3.5. In
addition, this set of equiangular lines is maximal in thecgpal’he Welch bound
plays an equivalent role in frame theory, that is, a giverofftame vectors it is
necessary for equality to hold in the Welch bound for the #aractors to be an
equiangular tight frame.

Then

4. Cube Root Two-Graphs

In [3], to simplify the search for complex ETFs the authorstriet the off
diagonal entries of a Seidel adjacency matrix to the cubtsrafounity. The fact
that the Seidel adjacency matrix must have two distinctreigkeies coupled with
this restriction to the cube roots of unity introduced newstaaints that must be
satisfied for the frame associated with the Seidel adjaceratyix to be an ETF.
These new constraints along with the fact that these “cubteSeidel adjacency
matrices” corresponded to strongly regular graphs allatveduthors to discover
new complex ETFs.

Like the authors inl[3], J.A. Tropp in_[30] simplifies the selafor complex
ETFs but this time by restricting the entries of the frametoectom' roots
of unity. D. Kalra developed a technique in [19] which siniarestricts the
entries in the frame vectors. Neither Tropp’s nor Kalraghta@ques lead to Seidel
matrices whose nonzero entries are all roots of unity. Tiopges several open
guestions at the end af [30], one of which is “Are complex EEgsiivalent to
some type of graph or combinatorial object?”.

In this section, we use the techniques from [3] to extend &fenidion of a
two-graph and answer the above question posed in [30].

Recall that associated to each Seidel adjacency matri@ ihartwo-graph and
to each two-graph there is an associated switching classidéBnatrices. In this

13



section, all nonzero entries of the “Seidel adjacency xiatvill be restricted to
the cube roots of unity. That i, := €?>7/3, w? := ¢*/3, and1. Such a matrix will
be called acube root Seidel matrix The graph associated with anx n cube
root Seidel matrix will be a complete graph arvertices with edges weighted by
1, w, andw?. Such graphs will be referred to asbe root edge weighted graphs
or CREW graphs. Figurel6 gives an example of such a graph.

1

AN

Figure 6: CREW graph o8 vertices

Unlike the real-case, there is a choice as to which matriksgifrespond to
the graph given in Figui€ 6. For the purposes of this artthieweight of the edge
{i,7} with i < j will be the (4, )" entry in the corresponding cube root Seidel
matrix, which means thgj, 7)™ entry will be the complex conjugate of tiig ;)"
entry. The cube root Seidel matrix corresponding to Figlise 6

0 1 w
1 0 w?
w2 w 0

Recall from Sectiofl2, switching a graphon a subset C Vy is equivalent
to conjugatingSx by the diagonal matrib» with D;; = —1 wheni € 7 and1
otherwise.

Definition 4.1. Let X be a CREW graph and define
D .= {D is adiagonal matrix D;; is a cube root of unity.

GivenD in D3, the graph associated with the cube root Seidel mathx D is
called aswitch on D. Theswitching classof X, denoted.X], is the collection of
graphs obtained by switching by every element @p;.

The following is an example of a switch on the graph in Figureith the
resulting graph.

14



1 0 O 0 1 w 0 O 0 w 1
0 w? 0 1 0 w? w 0]l=1w? 0 1
0 0 w w2 w 0 0 w? 1 10

—_
HI>H
E o O =

Figure 7: A switch of Figurgl6.

In the real case, we switched on a vertex or a set of verticageodph. Work-
ing with weighted graphs changes this approach. In this gassay switching the
it" vertex by weighto is the result of conjugating by the diagonal matrix which
has1’s on the diagonal with the exception thatis in thei* position. Careful
consideration of the example above suggests Propokithn 4.

Proposition 4.2. Let G be a CREW graph. Switchin@ on vertexy; by w results

in a graphG’ where edges not incident tg are not effected and edges incident to
v; have their weight multiplied by if there other vertex is; withi < j and their
weight is multiplied byo when; < i.

Proof. Let S be the Seidel matrix fofr and D the diagonal matrix corresponding
to this switch. The resulting matrig’ has Seidel matrixDSD~!. Since we
weight our graphs using the upper half of the Seidel matrexsee the entries in
DSD~! above the diagonal in th&" row (i < j) are multiplied byw and in the
i" column(j < 4) are multiplied by. O

The proof of Proposition 412 does not rely on cube roots ofyemd extends
to all complex numbers of modulds

A Seidel matrix whose nonzero entries in the first row and rwolware all
1’s is said to be instandard form. Each Seidel matrix, with real or complex
entries, can be switched to be in standard form. The thrgghgrm Figuré B are
representatives for distinct switching classes of CREVplgsaon3 vertices.

Proposition 4.3. There are three distinct switching classes for the CREW lggap
with 3 vertices. In fact, the three graphs in Figlife 8 are the uniggesentatives
in standard form from each switching class.
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Figure 8: Representatives for switching classes.

Proof. Given any CREW graph oBivertices the associated Seidel adjacency ma-
trix in standard form must be associated with one of the tigrephs in Figure

8. Now suppose there is a switch from one of the represeasativFiguré B to
another. This means there idain D5 such that

a 0 0 0 1 1 a 00 0 1 1
0 b 0 10w1050:1£w2
00 ¢/ \1 @ O 00 ¢ 1 w2 0

wherew;, w», a, b, andc are cube roots of unity. This forces= b = ¢ = 1 which
in return forcesv; = wo. O

Thus far, switching on a CREW graph;,, has been accomplished by conju-
gating the associated cube root Seidel adjacency matyixby a diagonal matrix
D in D3. Proposition 4.4 extends switching on CREW graphs in a masinglar
to Definition[2.2.

Proposition 4.4. Let G be a CREW graph with vertices labeléd, 2, ..., n}.
Switching vertex of G by weightw will change the weight of edg€s, j} by

a factor ofw? if i < j and by a factor ofv if j < i. Edge weights for edges not
incident to: will not change.

Proof. Let S be the Seidel matrix corresponding@ Switching the vertex by
w on the matrix becomes multiplying th# row by w and thei*” column byw?.
Considering the graph corresponding to this new matrixgthe desired result
since the edge weights come from the upper half of the matrix. O

Proposition 4.5. Let S be ann x n cube root Seidel matrix. There ag#—!
(n=1)(n-2)

elements in the switching class.®f Furthermore, there ar8 2 switching
classes ofi x n cube root Seidel matrices.

Proof. Let S be an x n cube root Seidel matrix. Switches Sfare the result of
conjugatingS by diagonal matrice® in Ds. If w is a cube root of unity, then
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(wD)S(wD)™' = DSD~1. Thus, there ar8"~! elements in the switching class
of S. To count the number of classes, divide the number ofn cube root Seidel
matrices, which i$““", by the number of elements in each class. This yields
the stated result. O

As in the real case, when classifying CREW graphs up to ispimsm and
switching, some switching classes collapse togetherwAtig for both switching
and isomorphism, the new classes are calle@idching equivalent classeket X
be a CREW graph, then conjugating the associated cube raael Zeljacency
matrix, Sy, by the product of a diagonal matrix in D3 and a permutation matrix
P results in a cube root Seidel matri® DSy (P D)™, which isswitching equiv-
alentto X. Theswitching equivalent classf X, denoted[X]], is the collection
of all such conjugations.

While Propositio 4.5 gives the number of switching clasg&3REW graphs,
there is not a known formula for the number of switching egléat classes. The
sequence, 4, 14, 120, 3222 does not occur in the Online Encyclopedia of Inte-
ger Sequences, see|[23], so the number of switching eqosatdasses of CREW
graphs does not match with any known sequence. Howevercfifthins a for-
mula for the number of non-isomorphic CREW graphsromertices which is
repeated in Appendix Al4. To compare with the real casellrdta Mallows
and Sloan, [22], provide a formula for the number of switgheguivalent classes
but the number of non-isomorphic graphs is the ever elusigplgisomorphism
problem. Tablé2 summarizes the data we have collected &nus f

n | non-isomorphic switching switching equivalent
CREW graphs classes classes

3 7 3 2

4 42 27 4

5 582 729 14

6 21,480 59,049 120

7 2,142,288 14,348,907 3222

n | See Appendix A/ R — by Prop[4.5| no known formula

Table 2: Cube Root Class Sizes

Recall in the real case, on four vertices there Hr&on-isomorphic graphs,
8 switching classes (or equivalengytwo-graphs)3 switching equivalent classes
(or equivalently3 non-isomorphic two-graphs). Using Table 2 and terminoliogy
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Section 4.3 we have on four vertices there gt@on-isomorphic CREW graphs,
27 cube root two-graphs, andnon-isomorphic cube root two-graphs.

4.1. Complex Two-Graphs with Cube Roots of Unity

Before defining a complex two-graph with cube roots of unitiyher ex-
ploration of two-graphs (in the real setting) will be useflihe following “new”
yet equivalent definition of a two-graph plays a crucial ialedapting the defini-
tion of a two-graph to include not only CREW graphs ptitroot edge weighted
graphs as well.

Definition 4.6. A two-graph(©2, A;, A,) is a triple of a vertex sef2 and triple
sets/A; and A, such that\; U A, = Q2 and each set of four elements frdin
contains an even number of elementd\gfand A, as subsets.

Comparing Definitions 416 arid 2.8 leads to the following sipon.
Proposition 4.7. Definitiond 2.8 an{ 416 are equivalent.

Proof. Let (2, A) be a two-graph according to Definitibn 2.8. Cleaify, A, A)
satisfies Definition 4]6.

Let (2, Ay, Ay) be a two-graph according to Definitibn 4.6. By Lemimd 2.7,
(92, A) satisfies Definition 218. O

Example[4.B gives the two graph for Figlide 1 following Defons[2.8 and
14.6.

Example 4.8. Recall the star graph from Examgle 2.3, repeated in Figurdf9.
Q=1{1,2,3,4,5,6} and letA be the set of triples of vertices of this graph whose
induced subgraph on three vertices has either 3 edges. By Lemnia 2.[2, A)
is a two-graph where
A={{1,2,3},{1,2,6},{1,3,4},{1,4,5},{1,5,6},{2, 3,5},
{2,4,5},{2,4,6},{3,4,6},{3,5,6}}.

Using Definitio 4.6(Q, A, A,) is a two-graph where\; = A and

Ay ={{1,2,4},{1,2,5},{1,3,5},{1,3,6},{1,4,6},{2, 3,4},
{2,3,6},{2,5,6},{3,4,5},{4,5,6}}.
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Figure 9: Star graph on 6 vertices

Theoren Z.10 connected two-graphs and switching classasple graphs.
Restating Theorem _2.110 using Definitibn]4.6 requires répiasimple graphs
with complete graphs whose edges are weighted:-lbyi.e., square root edge
weighted graphsThis trivial replacement is the key to understanding themex
sion of the definition of a two-graph to include cube roots wityin this section
and them!” roots of unity in Section 5.

Theorem 4.9 (Theorem 2,10 restated using Definition]4.6iven n, there is
a one-to-one correspondence between the two-graphs (Dafil.6) and the
switching classes af1 edge weighted complete graphsorertices.

Proof. Let (€2, F') be a complete graph onvertices with the edges i weighted
by —1 and the rest of the edges weightedlbyDefine A, as the set of triangles
containing an odd number of edges weighted-Hy i.e., the switching class of
the triangle with three-1 weighted edges, and, the rest of the triangles, i.e.,
the switching class of the triangle with thréeveighted edges. Sinca&; andA,
are invariant under switching, Lemmal.7 prov@sA,, A,) is a two-graph.

Conversely, le{Q2, A1, A,) be a two-graph, satisfying Definition 4.6. Select
anyw in 2 and partitionQ2 \ {w} into any2 disjoint sets2; and(2,. Define E;
and £_; as the edges weighted hyand —1 respectively. For all; € €4, the
pair {w,w;} is in E_; and for allw; € s, the pair{w,ws} is in E;. Lastly, if
{w, w1, we}isin Ay, then{ws,w,} isin E;, otherwise{w;, wy} isin E_;.

Thus, we associate {62, A, A,) a class of:1 complete graph&?, £y, E_1).
By constructionA; is the set of triangles i(f2, £, £_;) which have an odd num-
ber of edges weighted by1. So, by Lemm& 2]9, the class of graphs constructed
from (©2, A, Ay) is a switching class and distinct switching classes yiedtimiit
two-graphs. This proves the theorem. 0J

The existence, and hence the definition, of two-graphs cdroes Lemma
3.8 in [24]. Before defining cube root two-graphs, we extdns lemma.
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Lemma 4.10(Extension of Lemma 3.8 in [24])For any CREW graph on ver-
tices the number of induced CREW subgraph8 gartices, having an odd num-
ber of edges weighted € {1,w, w?}, is even.

Proof. Let G be a CREW graph on vertices and let’ be the graph obtained
from G by removing edges with weight nat. By Lemmd 2.7, there are an even
number of induced subgraphs@fon three vertices with an odd number of edges.
These subgraphs correspond to the induced subgrapfisndfich have an odd
number of edges weighted with O

Using Definition[ 4.6 as a model, we now define cube root twigsa

Definition 4.11. A cube root two-grapli2, A;, A, A3) is a quadruple of a vertex
set(2 and triple sets\;, A, and A; such thatA; U A, U Az = Q3 and each set
of four element subset ©f contains an even number of triplesAf, A,, or As.

Proving a version of Theorem 2]10 for cube root two-graphsires extend-
ing LemmdZ2.D. The idea behind the proof for Lenima 2.9 workstyg as well
in the cube root case, but some rewriting needs to be done gia@arity of edges
no longer makes sense.

Lemma 4.12(Extension of Lemma 3.9 in [24])The CREW graph&?, £') and
(Q, E') are switching equivalent if the parity of the number of edgegghted by
w among each triple of vertices is the same for both graphs with {1, w, w?}.

Proof. Letwv be any vertex ). DefineS; as the set of verticasin (2 such that the
edge weight of v, u} in (2, E’) is w times the edge weight i({2, £). Similarly,
defineS, as the set of verticesin 2 such that the edge weight &6, «.} in (2, E")

isw? times the edge weight iff2, E). Switching(Q2, E’) by w on the sefS; and by

w? on S, results in a new grapf2, E”) such that the adjacenciesofvith every
other vertex are the same(ifl, £') and((2, E”). Consider a pair of verticgg:, w}
from Q for which neither is equal te. By hypothesis, the triangles), v, w} in

(Q, E) and(£2, E’) have the same parity of each possible edge weight. Switching
on S preserves the parity of these triangles, so the triangtes, w} in (2, E)

and (2, E”) have the same parity of edge weights and the weights of thesedg
{v,u}, and{v,w} are equal. Thus, the edge weight{ef, w} must also be the
same for(Q2, E) and(Q2, E”). Therefor, these two graphs are isomorphic and the
original two are switching equivalent. O

Theorem 4.13(Extension of Theorein 2.10%ivenn, there is a one-to-one corre-
spondence between the cube root two-graphs and the svgtclaases of CREW
graphs om vertices.
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Proof. Let (€2, E) be a complete graph om vertices with the edges weighted
by cube roots of unity. Defind,, A, and A3 to be the sets of triples of vertices
whose induced subgraphs are in the switching classes obthesponding graphs
given in Figurd 8. Sincé\;, A,, andA; are invariant under switching, Lemma
4.10 proves), Aq, Ay, Ag) is a cube root two-graph.

Conversely, le{(2, Ay, Ay, A3) be a cube root two-graph. Select anin )
and partition) \ {v} into any3 disjoint sets(2;, 2, and 3. For simplicity,
we assumé) = {1,...,n}, v = 1 and for each € Qy, j € Oy, andk € Q3,

i < j < k. Changing any choices afand(2;, {2, and{2s to fit this description
is a permutation of2 which simplifies the following construction but does not
restrict the generality of the proof.

From the partition, build a CREW graygh as follows:

Let £y, E5 and E3 be a partition of the edges 6f such that an edge if; has
weightw. As an abuse of notation, we consider indicesfpto be moduld, so
E,=FE, andE2 = Fi.

For everyu in Q;, put{v, u} in E;.

For every pair andw in €, if {1, u, w}isinAj, put{u,w} in Ej.

For everyu in Q; andw in Qy, if {1, u,w}isinAj, put{u,w}in E;;.

For everyu in Q, andw in Qs, if {1,u,w}isin A, put{u,w}in E,.,.

e Foreveryuin ©; andw in Qg, if {1,u,w}isinA;, put{u, w} in E;;,.

Thus, associated t@2, A, Ay, A3) is a class of CREW graphs of the form
(Q, By, Ey, E5). By construction,A; is the set of triangles in<), F, E,, E3)
which have an odd number of edges weightedddy So, by Lemm& 4.12, the
class of graphs constructed frqf2, A;, Ay, Az) is a switching class and distinct
switching classes yield distinct two-graphs. This provestheorem. O

The use of a permutation in the proof of Theofem ¥.13 is jestifince to get
around this complicates the decision process for puttilgegdnto theF;. For
example, if we don’t assume= 1 and the);’s are ordered, we get for evenyin

21



Qy andw in y, put{u, w} in E; where

(j+1 ifv<u<wand{v,u,w} € A
j+2 ifv<w<uvand{v,u,w} e A;

b 2j if u<v<wand{v,u,w} € A,
)i+ 2 ifu<w<vand{v,u,w}€A;’
2j if w<v<uwand{v,u,w} e A,

lJ+1 ifw<u<vand{v,u,w} e A,

Writing out all of the cases in this format will lead to the samesult and is not
useful for understanding the proof or constructing CREWphsafrom cube root
two-graphs.

The following example describes a cube root two-graph.

Example 4.14. Following the proof of Theorem 4.113, the graph with cube root
Seidel matrix

0 1 1 1 1 1 1 1 1
1 0 1 w w w w w W
1 1 0 w? w? W w w w
1 w? w 0 w w1 w w?
1 w? w w? 0 w w w 1
1 w? w w w 0 w 1 w
1 w w1 w w 0 W w
1 w w? W w 1 w 0 w?
1 w w? w 1 w? w w 0

corresponds to the cube root two-graph with= {1, ...,8},

Ar = {{1,2,4},{1,2,5},{1,2,6},{1,3,7},{1,3,8},{1,3,9},{1,4,5},
{1,4,8},{1,5,6},{1,5,7},{1,6,9},{1,7,9}, {2,3,4}, {2, 3,5},
{2,3,6},{2,7,8},{2,7,9},{2,8,9}, {3,4,5}, {3,4,7}, {3,5, 7},

{3,6,7},{3,7,8},{4,7,8},{4,7,9},{6,7,8}},

Ay = {{1,2,7},{1,2,8},{1,2,9},{1,3,4},{1,3,5}, {1,3,6}, {1,4, 6},
{1,4,9},{1,5,8},{1,6,7},{1,7,8},{1,8,9},{2,3,7},{2,3,8},
{2,3,9},{2,4,5},{2,4,6},{2,5,6}, {3,4,6}, {3,4,8}, {3,5,6},
{3,5,8},{3,6,8},{3,7,9},{3,8,9}, {4,5,7}, {4, 5,8}, {4,5,9},

{4,8,9},{5,6,7},{5,6,8},{5,6,9},{5,7,8}, {5, 7,9}, {6,7,9}},
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and

As = {{1,2,3},{1,4,7},{1,5,9},{1,6,8},{2,4,7},{2,4,8},{2,4,9},
{2,5,7},{2,5,8},{2,5,9},{2,6,7},{2,6,8},{2,6,9}, {3, 4,9},
{3,5,9},{3,6,9},{4,5,6},{4,6,7},{4,6,8},{4,6,9}, {5,8,9},

{6,8,9},{7,8,9}}.

A regular two-graph is a two-graph such that any, and consequently all, of
the associated Seidel adjacency matrices have two digligetvalues. There is
an intimate relationship between regular two-graphs arahgty regular graphs
which is captured in Theoreim 4]15.

Let & be a two-graph and an associated graph. A vertex &f can be
isolated by switching and removed, resulting in a graph witke fewer vertex,
called aneighborhoodf o.

Theorem 4.15(Theoreml1.6.1 in [1Q]). Let® be a nontrivial two-graph on+ 1
vertices. Then the following are equivalent:

1. ®is aregular two-graph.
2. All the neighborhoods @b are regular graphs.

3. Allthe neighborhoods d@f are (n, k, a, ¢) strongly regular graphs with =
2c.

4. One neighborhood dfis an(n, k, a, ¢) strongly regular graph wittk = 2c.

Theoreni 4.15 explains the motivation behind calling a twapd with exactly
two-eigenvalues a regular two-graph. Furthermore thengtyoregular graphs
have been actively studied and many of these results candoketaiduild regular
two-graphs. Regular two-graphs are important because dheyhe only non-
trivial two-graphs for which the corresponding set of eqgjalar lines meet the
absolute bound or the relative bound. Thus, the set of veaetermined by
choosing a unit vector to represent each line spans the atdpace. In frame
theory this guarantees this set of vectors with adjustegtheswill form an equian-
gular tight frame.

The proof of Theorerh 4.15 uses terminology suclegsitableand quotient
matrixwhich are specific to graphs as well as powerful tools. Whiig terminol-
ogy does not apply directly to the cube root setting, the tyihg linear algebra
results do hold, and gives us Theorlem #.16.
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Similar to two-graphs, we call a cube root two-grapgular if any, and hence
all, associated CREW graph has two eigenvalues.| In [3], sheyv if a cube root
Seidel adjacency matrix with two eigenvalugsand ), is in standard form, then
all rows after the first have a constant sum. The row sum baingtant is the key
to proving Theorerh 4.16.

Theorem 4.16.Let ® be a nontrivial cube root two-graph an+ 1 vertices. Then
the following are equivalent:

1. ®is aregular cube root two-graph.

2. Allthe neighborhoods d@f are CREW graphs with vertex sumsand eigen-
valuesu, A1, and ;. The multiplicity ofu is 1.

3. One neighborhood d@f is a CREW graph with vertex symand eigenvalues
14, A1, @and Ay. The multiplicity ofu is 1.

Proof. [l =[2: Letx be a vertex ofb and.S a Seidel matrix whose first row and
column correspond to. Without loss of generality, assunsas in standard form,
which corresponds to being isolated. Byl |3]S has two eigenvalues,; and\,.
Let A be the(n — 1) x (n — 1) matrix obtained fromt' by removing the first row
and column. By the interlacing theorem— 2 of the eigenvalues oft are \; or
2. By [3], the rows ofA have a constant sum equalitpso this is an eigenvalue
for A as well.

2 —3: Obvious.

Bl —[1: Let A be a matrix corresponding to a cube root Seidel graph with ver
tex sumy and eigenvalueg, \;, and)\,. By the Spectral Theorem, eigenvectors
for A; and )\, can be chosen to be orthogonalitathe eigenvector corresponding
to uu. Let S be the matrix

0 1
(& 3)

0

v
wherev is an eigenvector foA, are eigenvectors fa$, corresponding to eigen-
values); or \,.

then the vectors
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Let

o~
R

and
0 n—1
o= (1 p )
thenSP = PB. If vis an eigenvector foB, then Pv is an eigenvector fof for
the same eigenvalue. The characteristic polynomiabfis 22 — yxz — (n — 1), so
its eigenvalues arg; and \,. Since the first component @fv is nonzero, these
eigenvectors are not any of the previously known eigenveahS, so.S has just

the two eigenvalues. Thus, is a Seidel matrix which corresponds to a regular
cube root two-graph. O

4.2. Constructions for (9,6) ETF

The article [3] contains an example of (8, 6)-equiangular tight frame or
equivalently9 equiangular lines it€®. Their construction starts with the known
directed strongly regular graph énvertices in Figuré_10.

Figure 10: Directed strongly regular graph ®wmertices.

A Seidel matrix can be constructed from this graph by lettimgyi;*" entry,
with i # j, be

w ifthere is an edge fromto j
w? ifthere is an edge fromito ;
1 otherwise
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and setting the diagonal entries®toAdding a first row and column of ones, with
zero on the diagonal entry, completes the constructions mbaw Seidel matrix
has two eigenvalues, and will be switching equivalent tontiarix

0 1 1 1 1 1 1 1 1
1 0 1 w w w w w W
1 1 0 w? w? W w w w
1 w? w 0 w w1 w w?
1 w? w w? 0 w w w1
1 w? w w w 0 w 1 w
1 w w1 W w 0 W w
1 w w? W w 1 w 0 w?
1 w w? w 1 w? w w 0

wherew is a primitive cube root of unity. This construction is an bgtion of
proof of Theoreni 4.16.

While this construction seems to connect cube root twotgap directed
strongly regular graphs with no undirected edges, the dpwe¢nt of cube root
two-graphs describe above can be extendedforoots of unity. Along with
this development, the authors have constructed nontdeialbplex two-graphs and
regular complex two-graphs for many roots of unity which @b ebviously con-
nect with generalizations of strongly regular graphs, 3eé5].

5. Complex Two-Graphs withm!* Roots of Unity

Using the obvious definitions fon!" root Seidel matrices ana" root edge
weighted graphs, we reconsider the results of Settion 4Dl.dbe the collection
of diagonal matrices whose nonzero entriessafe roots of unity, then the def-
initions of switching classes and switching equivalenssés make sense. With
these definitions, most of the results from Secfibn 4 areftue:'” roots of unity
without modification because their proofs do not depend die caots of unity.

Recall the representatives of switching classes feertices in Figurél8. The
extension is representatives have a single edge weighteddby.., w™ !, with
w a primitive m'* root of unity, and the other two edges both weightedlby
Propositiorl 4.4 changes as follows, but the proof from 8adi holds with the
modification of the matrix entries being'” roots of unity.

Proposition 5.1 (Extension of Proposition_4.4)There arem distinct switching
classes ofn'" root edge weighted graphs on three vertices.
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With the goal of definingn' root two-graphs, Lemmds 4]10 ahd 4.12 re-
quire special attention. Fortunately, the proof of Lenimidl4s an application of
Lemmd 2.7 and can be extended to any number of weights. Tioé grbemma
[4.12 is extended te'" roots of unity by replacing,? by . With these lemmas
in place, we definen'" root two-graphs as follows.

Definition 5.2. An m!* root two-graph(2, A,...,A,,) is am + 1-tuple of a
vertex set) and triple sets\, A,,....A,, such that JA; = Q% and each set of
four element subset 6f contains an even number of triplesAf, for 1 < i < m.

As expected, then!" root two-graph are in one-to-one correspondence with
the switching classes ofi’* root edge weighted graphs.

Theorem 5.3(Extension of Theorem 4.1.3fGivenn, there is a one-to-one corre-
spondence between theé" root two-graphs and the switching classes:of root
edge weighted graphs onvertices.

The proof of this theorem follows from modifying the proofifieoreni 4.13
to use edge sefs,,...,E,, and extending the cases for all possible pairs of vertices.
Fortunately, the edge weights are determined by\lig, and the proof follows.

For regularm' root two-graphs, we need constant row sums insatir root
Seidel matrices. While, in[3], the authors focus only oneuiots of unity, their
result that the standard form of a cube root Seidel matrik Wb eigenvalues has
constant row sum for every row after the first does not dependube roots of
unity, only on the standard form and two eigenvalues, anddeis true form!”
root Seidel matrices. This gives us the Theorem|4.16.

Theorem 5.4(Extension of Theoref 4.16) et ® be a nontrivialm' root two-
graph onn + 1 vertices. Then the following are equivalent:

1. ® is a regularm!” root two-graph.

2. All the neighborhoods @b are m™ root edge weighted graphs with vertex
sumsu and eigenvalueg, A;, and\,, the multiplicity ofu is 1.

3. One neighborhood @ is anm®™ root edge weighted graph with vertex sum
1 and eigenvalueg, A\{, and\,, the multiplicity ofu is 1.

The proof of Theorerh 4.16 does not depend on cube roots of, umty on
the relationship between the row sums and the eigenvalube ohatrices corre-
sponding to the cube root two-graph. So, replacing the cabts bym' roots
does not effect the proof and the result holds.
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Appendix A. Known Formulas for Counting Switching Equivalence Classes
and Cube Root Edge Weighted Graphs

In Tables 1 and]2, formulas are used which were derived caatduiially. The
techniques and terminology are different enough from tseatthis article that
they deserve attention.

Supposg is a positive integer an@) denotes a partition of. Definejj, to be
the number of times appears irj), so>_;_, kxj, = j. Several of the following
formulas involve summations over all partitionsjof’hich will be denoted ag.

In [22], the following formula for the number of Euler grapbisn vertice(zjs) is
attributed to R. W. Robinson.

Theorem Appendix A.1 (Eulerian Graphs)The number of Euler graphs on

vertices is
9v()—A(5)

()

v(i) = dijkged(i, j) + ) i (Jéi + Jais1 + (92)) :

i<k %

AJ) = ij' —sgn (Zj%—i—l) ~

The central result of [22] is Appendix A.2. Seidel had prodgmbendix A.2
for oddn by finding Euler graphs as representatives of switchingvadgt classes.
Mallows and Sloan proved the even case without making anookvionnection
between Euler graphs and switching equivalent classesmgtaphs.

where

and

Proposition Appendix A.2 (Theoreml in [22]). The number of two-graphs on
n vertices is equal to the number of Euler graphsovertices.

We do not include the proof ¢f Appendix A.2 as it is mostiof [2Bpwever,
it is a nice arguement and we recommend any interested peheaihd read it.

Harary and Palmer define a complete directed graph as aetirgcaph such
that for any pair of vertices there is either a directed edyg®vo directed edges
connecting them. With this definition comes the question @k many such
graphs are there onvertices. In[[12], this question is answered and [13] corgai
a refinement of the formula. We include the refined formula.
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Theorem Appendix A.3 (Page 133 of [13]) The number of complete directed
graphs omn vertices is

a(n)

1 n!
Cn = (Z): 71_[ k:“knk!g

where

a(n) = ; Qk S 1J e + k("Q’“)) + 3 ged(r, s)nen,.

1<r<s<n

[Appendix A.3 holds interest for this article becausg of Apgig A.4.

Proposition Appendix A.4. There is a one to one correspondence between cube
root edge weighted graphs anvertices and complete directed graphs.oner-
tices.

Proof. Given a complete directed gragh, label the vertices from to n and
defineC RG to be a complete graph onvertices. For any pair of verticesand
u, if two edges connect them @, then weight the edgév, u} of C RG with a 1.
For any pair{v, v} with a single directed edge going fromto «, weight it byw

if v < w andw? if u < v. The graph withC' RG with these weights is a cube root
edge weighted graph. The choice of labeling does not effecbtitcome of the
weights, so this assignment is one to one and clearly irterti O
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