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Abstract

In ‘A survey of two-graphs’ [24], J.J. Seidel lays out the connections between
simple graphs, two-graphs, equiangular lines and stronglyregular graph. It is
well known that there is a one-to-one correspondence between regular two-graphs
and equiangular tight frames. This article gives a generalization of two-graphs for
which these connections can be mimicked using roots of unitybeyond±1.

Keywords: equiangular tight frame, two-graph, roots of unity, Seideladjacency
matrix,
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1. Introduction

Two-graphs play a wide and varied role in several areas of mathematics. To
quote J.J. Seidel from his well-known paper, A survey of two-graphs [24], “Two-
graphs provide a good example of combinatorial geometry andgroup theory.”
The study of two-graphs is equivalent to the study of sets of equiangular lines
in Euclidean geometry, sets of equidistant point sets in elliptic geometry, binary
maps of triples with vanishing co-boundary, and double coverings of complete
graphs.

Applications include but are not limited to network theory [1] and coding the-
ory [10]. At the beginning of the21st century, R. Holmes and V. Paulsen in [17]
and T. Strohmer and R. Heath in [28], discovered the work doneby J.J. Seidel
and others regarding two-graphs had found another application. In particular, the
existence and construction of real equiangular tight frames (ETFs) was expedited
by their discovery of the fact that there is a in one-to-one correspondence between
real ETFs andregular two-graphs. This one-to-one correspondence is a well-
known fact in the frame theory community [1, 2, 3, 4, 7, 15, 8, 27, 28, 29, 4, 19,
30]. Indeed extending the already lengthy list of applications of two-graphs to
now include such areas as signal processing and communication theory.
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In this article, we present an alternate yet equivalent definition of a two-graph.
This new definition allows us to generalize the definition of atwo-graphin a nat-
ural and intuitive way to what we refer to as acomplex two-graph. Associated to
eachtwo-graphis a set ofSeidel adjacency matrices, that is, a set of symmetric
matrices whose diagonal entries are all zero and off diagonal entries are±1. Sim-
ilarly, associated to eachcomplex two-graphis a set ofcomplex Seidel adjacency
matrices,that is, a set of self-adjoint matrices whose diagonal entries are all zero
and off diagonal entries aremth roots of unity for a fixedm in N. The fact that the
off diagonal entries of a “real”Seidel adjacency matrixare square roots of unity
is a trivial yet surprisingly useful observation. This observation coupled with our
equivalent definition of atwo-graphis the key to this extension. Furthermore,
many of the results regardingcomplex two-graphsmirror the analogous results
pertaining totwo-graphs.

For example, it is well-known that for a set of equiangular lines inRk to meet
the absolute or relative bounds, the associated two-graph must beregular, i.e., the
associated Seidel adjacency matrix has precisely two distinct eigenvalues. These
results extend naturally toCk. That is,regular complex two-graphsproduce sets of
equiangular lines that meet either the absolute or relativebounds. Consequently,
associated with eachregular complex two-graphis a complex ETF.

This article is organized as follows. In Section 2, the motivation underlying
the definition of a two-graph is presented. Section 3 discusses the relationship
between two-graphs, equiangular lines, and ETFs, comparing the real case to the
complex case. Section 4 presents the reader with a careful introduction tocomplex
two-graphsvia the cube roots of unity. Section 5 extends the definitionsand
results from Section 4 to include themth roots of unity for a fixedm in N.

For the reader familiar with two-graphs this paper is self-contained. For the
reader not as familiar with two-graphs many of the definitions and results in this
article are accompanied by examples intended to motivate said definitions or re-
sults.

2. Motivating the Definition of a Two-Graph

In this section we summarize the first four sections of J.J. Seidel’s, A Sur-
vey of Two-Graphs, [24]. Lemma 2.7 lays the foundation for understanding the
generalization of a two-graph presented in Section 4.

A graphis a pair(Ω, E) whereΩ is a set ofvertices, andE is a set of unordered
pairs of vertices, whose elements are callededges. For the purposes of this paper,
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graphs do not have loops or multiple edges. Acomplete graphonn vertices is a
graph with|Ω| = n andE contains every possible unordered pair of vertices.

Denote byAX andVX the adjacency matrix, and the set of vertices of the
graphX, respectively. We also useIn for then× n identity matrix andJn for the
n× n matrix of all ones.

Definition 2.1. Given a graphX on n vertices, theSeidel adjacency matrixof
X is defined to be then × n matrix SX := (sij) wheresi,j is defined to be−1
wheni andj are adjacent vertices,+1 wheni andj are not adjacent, and 0 when
i = j.

The Seidel adjacency matrix ofX is related to the usual adjacency matrixAX

by
SX = Jn − In − 2AX .

Definition 2.2. LetX be a graph andτ ⊆ VX . Now define the graphXτ to be
the graph arising fromX by changing all of the edges betweenτ andVX − τ to
nonedges and all the nonedges betweenτ andVX − τ to edges. This operation is
calledswitching on the subsetτ , see [10].

The operation of switching is an equivalence relation on thecollection of
graphs onn vertices. This can be seen by observing ifτ ⊆ VX , then switching on
τ is equivalent to conjugatingSX by the diagonal matrixD with Dii = −1 when
i ∈ τ and1 otherwise. Theswitching classof X, denoted[X ], is the collection
of graphs obtained fromX by switching on every subset ofVX .

Example 2.3. The graph in Figure 1 will be denoted asXS. This graph will be
referred to frequently throughout the paper.

1

6

5

4

3

2

Figure 1: Star graph on 6 vertices

The graph in Figure 2 can be obtained by switchingXS on the setτ = {2, 3}.
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Figure 2:XS switched on{2, 3}.

As stated above, switching onτ is equivalent to conjugatingSX by the diago-
nal matrixD with Dii = −1 wheni ∈ τ and1 otherwise. This is demonstrated in
Example 2.4.

Example 2.4.The Seidel matrix forXS is

SXS
=

















0 1 −1 1 −1 1
1 0 1 1 −1 −1

−1 1 0 1 1 −1
1 1 1 0 1 1

−1 −1 1 1 0 1
1 −1 −1 1 1 0

















.

The diagonal matrixD corresponding to switching on the setτ = {2, 3} is

D =

















1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















.

The result of this conjugation is Seidel matrix for the graphin Figure 2.

DSXS
D =

















0 −1 1 1 −1 1
−1 0 1 −1 1 1
1 1 0 −1 −1 1
1 −1 −1 0 1 1

−1 1 −1 1 0 1
1 1 1 1 1 0
















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Definition 2.5. The graphsX andY onn vertices are calledswitching equiva-
lent if Y is isomorphic toXτ for someτ ⊂ VX , see [10].

Switching equivalent defines a second yet coarser equivalence relation on the
collection of graphs onn vertices. Theswitching equivalent classof X, denoted
[[X ]], is the collection of graphs obtained fromX by conjugatingSX by a signed
permutation matrix, i.e. the product of a permutation matrix and a diagonal ma-
trix of ±1′s. Thus, the spectrum of the Seidel adjacency matrices of switching
equivalent graphs are identical. Note that[X ] is a subset of[[X ]] for any graph.
For the complete graph and empty graph onn vertices, their switching classes are
equal to their switching equivalent classes.

Corollary 2.6 (Corollary 3.5 in [24]). Switching does not change the parity of the
number of adjacencies among any3 vertices of a graph.

Proof. On 3 vertices there are4 non-isomorphic graphs,2 distinct switching
classes of graphs, and2 distinct switching equivalent classes of graphs. The
4 non-isomorphic graphsX1, X2, X3, andX4 are given in Figure 3. Clearly,
[X1] = [[X1]] = [X2] and[X3] = [[X3]] = [X4] but [X1] 6= [X3].

X1 X2 X3 X4

Figure 3: Nonisomorphic graphs on3 vertices.

Lemma 2.7 (Lemma 3.8 in [24]). For any graph on4 vertices the number of
subgraphs on3 vertices, having an odd number of edges, is even.

Proof. On 4 vertices there are11 non-isomorphic graphs,8 distinct switching
classes of graphs, and3 distinct switching equivalent classes of graphs. The11
non-isomorphic graphs areX1, ..., X6, shown in Figure 4, and their complements
X6, ..., X11. The distinct switching classes are[X1], [X2], [X4], and each1-edge
graph contributes a distinct switching class. The distinctswitching equivalent
classes are[[X1]] the empty graph,[[X2]] the1-edge graph, and[[X4]] the complete
graph.
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X1 X2 X3 X4 X5 X6

Figure 4: Nonisomorphic graphs on4 vertices.

Lemma 2.7 is the motivation behind the definition of atwo-graph. LetΩ be a
finite set and∆ a set of triples of elements fromΩ.

Definition 2.8. A two-graph(Ω,∆) is a pair of a vertex setΩ and a triple set
∆ ⊂ Ω3, such that each set of four element subset fromΩ contains an even number
of triples of∆.

Lemma 2.9 is necessary to prove Theorem 2.10 below which states there
is one-to-one correspondence between two-graphs and the switching classes of
graphs onn vertices.

Lemma 2.9 (Lemma 3.9 in [24]). The graphs(Ω, E) and (Ω, E ′) are switching
equivalent if the parity of the number of edges among each triple of vertices is the
same for both graphs.

Proof. Let v be any vertex inΩ andS the set of vertices inΩ which have different
adjacency withv in (Ω, E) and(Ω, E ′). Switching(Ω, E ′) on the setS gives a new
graph(Ω, E ′′) such that the adjacencies ofv with every other vertex are the same
in (Ω, E) and(Ω, E ′′). Consider a pair of vertices{u, w} fromΩ for which neither
is equal tov. By hypothesis, the triangles{v, u, w} in (Ω, E) and(Ω, E ′) have the
same parity of edges. Switching onS preserves the parity of these triangles, so the
triangles{v, u, w} in (Ω, E) and(Ω, E ′′) have the same parity of edges and the
adjacencies betweenv andu, andv andw are equal. Thus, the adjacency between
u andw must also be the same for(Ω, E) and(Ω, E ′′). Therefor, these two graphs
are isomorphic and the original two are switching equivalent.

Theorem 2.10(Theorem 4.2 in [24]). Givenn, there is a one-to-one correspon-
dence between the two-graphs and the switching classes of graphs onn vertices.

The following is Seidel’s proof and is included for later reference.

Proof. Let (Ω, E) be any graph. Define∆ as the triples ofΩ which correspond
to triangles containing an odd number of edges. By Corollary2.6,∆ is invariant
under switching. Lemma 2.7 proves(Ω,∆) is a two-graph.
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Conversely, let(Ω,∆) be a two-graph, satisfying Definition 2.8. Select anyω
in Ω and partitionΩ \ {ω} into any2 disjoint setsΩ1 andΩ2. LetE consist of the
following pairs:

{ω, ω1}, for all ω1 ∈ Ω1;
{ω1, ω

′
1}, for all ω1, ω

′
1 ∈ Ω1 with {ω, ω1, ω

′
1} ∈ ∆;

{ω2, ω
′
2}, for all ω2, ω

′
2 ∈ Ω2 with {ω, ω2, ω

′
2} ∈ ∆;

{ω1, ω2}, for all ω1 ∈ Ω1, ω2 ∈ Ω2 with {ω, ω1, ω2} /∈ ∆.

Thus, we associate to(Ω,∆) a class of graphs(Ω, E). By construction,∆ is
the set of triangles in(Ω, E) which have an odd number of edges. So, by Lemma
2.9, the class of graphs constructed from(Ω,∆) is a switching class and distinct
switching classes yield distinct two-graphs. This proves the theorem.

Table 1 provides partial data on the number of non-isomorphic graphs, switch-
ing classes (two-graphs), and switching equivalent classes (non-isomorphic two-
graphs) onn vertices up ton = 12 [21]. Indeed forΩ = {1, 2, 3} there are
2 two-graphs which are non-isomorphic. ForΩ = {1, 2, 3, 4} there are 8 two-
graphs but only 3 non-isomorphic two-graphs. Two of the three aforementioned
non-isomorphic two-graphs correspond to the empty and complete graphs on4
vertices and the third non-isomorphic two-graph corresponds to any one of the six
1-edge graphs on4 vertices. This is precisely Lemma 2.7.

n non-isomophic switching classes switching equivalent classes
3 4 2 2
4 11 8 3
5 34 64 7
6 156 1024 16
7 1044 32,768 54
8 12,346 221 243
9 274,668 228 2038
10 12,005,168 236 33,120

n no known formula 2
(n−1)(n−2)

2 See Proposition Appendix A.2

Table 1: Class Sizes
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3. Equiangular Lines in Rk and Ck

This section reviews the process which takes a two-graph to aset of equiangu-
lar lines and vice versa. This process provides both the insight and the underlying
motivation for our generalization of the definition of a Seidel matrix to allowmth-
roots of unity in the off diagonal entries as well as our generalization of the defi-
nition of a two-graph.

3.1. Equiangular Lines inRk to a Two-Graph

Given a setΓ = {x1, ..., xn} of vectors inRk, letU be thek × n matrix with
the elements ofΓ as its columns. Then

G := UTU

is the Gram matrix of the vectors inΓ.
If Γ is set of unit vectors representing a set of equiangular lines in R

k with
xT
i xj = ±α, then then× n Gram matrix associated withΓ has the form

G = I + αS

whereS is ann × n Seidel adjacency matrix. LetX be the graph associated to
the matrixS. If Ω := {1, 2, 3, ..., n} and∆ is the set of all triples of vertices ofX
whose induced subgraph on three vertices has either1 or 3 edges, the ordered pair
(Ω,∆) is a two-graph by Lemma 2.7.

Thus, every set ofn-equiangular lines inRk yields a two-graph using the previ-
ously described process. It is worth noting there are2n−1 distinct Seidel adjacency
matrices associated with a given set ofn-equiangular lines. However, this set of
Seidel adjacency matrices belong to the same switching class.

3.2. A Two-Graph to Equiangular Lines inRk

Constructing a graph(Ω, E) from a two-graph(Ω,∆) is not a well-defined
process. Indeed there is a one to many correspondence. Fortunately the many are
in the same switching class. The proof of Theorem 2.10 includes a process of how
to build a graph(Ω, E) given a two-graph(Ω,∆). We review this process below
as well as include an example.

Pickv in Ω and a subsetΩ1 of Ω \ {v}. DefineΩ2 as the complement ofΩ1 in
Ω \ {v}.

• Start withE = {}.
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• For eachω in Ω1, add{v, ω} intoE.

• For each pair{ω, ω′} of elements inΩ1, if {v, ω, ω′} is in ∆, add{ω, ω′}
intoE.

• For each pair{ω, ω′} with ω in Ω1 andω′ in Ω2, if {v, ω, ω′} is not in∆,
add{ω, ω′} intoE.

• For each pair{ω, ω′} of elements inΩ2, if {v, ω, ω′} is in ∆, add{ω, ω′}
intoE.

The resulting setE is the edge set for a graph(Ω, E). Example 3.1 illustrates this
process.

Example 3.1.Consider the two-graph

({1, 2, 3, 4, 5, 6}, {{1, 2, 3}, {1, 2, 6}, {1, 3, 4}, {1, 4, 5}, {1, 5, 6},

{2, 3, 5}, {2, 4, 5}, {2, 4, 6}, {3, 4, 6}, {3, 5, 6}}).

Letv = 2 andΩ1 = {5, 6}, soΩ2 = {1, 3, 4}.

• Start withE = {}.

• Add{2, 5} and{2, 6} intoE.

• Since{1, 2, 5} and{2, 3, 6} are not in∆, we include{1, 5} and{3, 6} in
E.

• Since{1, 2, 3} is in∆, we include{1, 3} in E.

The resulting graph is

({1, 2, 3, 4, 5, 6}, {{2, 5}, {2, 6}, {1, 5}, {3, 6}, {1, 3}}),

or as in Figure 5.
One should notice the choice ofv, Ω1 andΩ2 will possibly result in different

graphs, but they will be in the same switching class. Applying a permutation from
S|Ω| to the labels in the triple sets of∆ will result in a graph switching equivalent
toXS .
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Figure 5: Graph resulting from two-graph construction,XS .

Given a two-graph(Ω,∆) construct a graph, sayX, onn vertices using this
process. Again any graph constructed using this process must be in the same
switching class as any other graph constructed via the giventwo-graph(Ω,∆).
Consequently, the spectrum of the associated Seidel matrixdenoted,SX , of any
such graphX, remains constant. SincetrSX = 0 andSX 6= 0, the least eigenvalue
of SX is negative. It follows that

G := I +
1

α
SX

is a positive semi-definite matrix where−α denotes the least eigenvalue ofSX .
Thus if theG has rankk, then there is ak × n matrix U such thatG = UTU ,
where then columns of this matrixU are the vectors inΓ which generate the
n-equiangular lines inRk. Once againG is the Gram matrix associated withΓ.

3.3. Equiangular Lines inCk and Complex Seidel Adjacency Matrices

Now consider a set of equiangular lines inCk. If Λ = {z1, ..., zn} is a set of
vectors representing this set of equiangular lines inC

k with |z∗i zj | = α, then the
n× n Gram matrix associated withΛ has the form

G = I + αQ

whereQ is a Hermitian matrix with all diagonal entries zero and all off-diagonal
entries have modulus1. In [17], Holmes and Paulsen call such a matrixQ a
signature matrix. However, some authors refer to this matrix as aSeidel matrix
due to the connection to two-graphs. For the remainder of this paper we define a
complex Seidel adjacency matrixas follows.

Definition 3.2. Ann × n Hermitian matrixS such thatsii = 0 and |sij| = 1 for
all i 6= j is called acomplex Seidel adjacency matrix.

10



Thus, there is a one-to-one correspondence between sets ofn-equiangular
lines inCk and complex Seidel adjacency matrices. In Sections4 and5 we prove
a given complex Seidel adjacency matrix which has only rootsof unity for its
nonzero entries gives a natural way to generalize the definition of a two-graph
to what we refer to as acomplex two-graph. Moreover, we showcomplex reg-
ular two-graphsare precisely thecomplex two-graphsfor which therelative or
absolutebounds are met for the associated set of equiangular lines.

3.4. Relative, Absolute, and Welch Bounds
The maximal number of equiangular lines in eitherRk andCk occurs precisely

when the associated Seidel adjacency matrix has exactly twodistinct eigenvalues,
e.g., [17, 10, 24]. In addition, the vectors associated withthe maximal set of
equiangular lines span the ambient space. This is a particularly valuable fact in
frame theory since it guarantees this set of vectors, with a slight modification to
their length, will be an ETF in eitherRk orCk.

It is well known that the maximal number of equiangular linesis k(k+1)
2

in Rk

andk2 in Ck. One way to prove this inRk is to show the projections corresponding
to the equiangular lines form a linearly independent set inside the vector space of
symmetrick × k matrices which has dimensionk(k+1)

2
. One difference in the

complex setting is that the Hermitiank × k matrices do not form a vector space
overC. However, the Hermitiank × k matrices do form a vector space overR

with dimension equal tok2. In Proposition 3.3, we derive the known upper bound,
k2, for the number of equiangular lines inCk using this idea.

We begin by noting ifz is a unit vector inCk, thenZ = zz∗ is a Hermitian
k × k matrix andZ2 = Z. It is also worth noting replacingz by eiθz does not
change the matrixZ. To compare with the real case, for a line through the origin
in Rk there are two distinct unit vectors which can be used to represent the given
line. However, in the complex case, for a line through the origin in Ck there are
infinitely many unit vectors one can choose to represent the given line.

Now if W is also a unit vector inCk andW = ww∗, then

ZW = zz∗ww∗ = (z∗w)zw∗,

and so
tr(ZW ) = |〈z, w〉|2.

Proposition 3.3 and it’s proof closely resemble Theorem 11.2.1 in [10]. For the re-
mainder of this sectionΓ = {z1, ..., zn} will denote a set of unit vectors associated
with a set of equiangular lines inCk, andZ1, ..., Zn will denote the projections
onto this set of equiangular lines, i.e.,Zi = ziz

∗
i for eachi = 1, ..., n.
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Proposition 3.3. (The Absolute Bound) LetZ1, ..., Zn be the projections onto a set
of equiangular lines inCk. Then these matrices form a linearly independent set
in the vector space of Hermitian matrices over theR, and consequentlyn ≤ k2.

Proof. Let α = |〈zi, zj〉| for i 6= j, the cosine of the smaller angle between the

lines. IfW =
n
∑

i=1

ciZi, then

tr(W 2) =
∑

i,j

cicjtr(ZiZj)

=
∑

i

c2i +
∑

i,j:i 6=j

cicjα
2

= α2

(

∑

i

ci

)2

+ (1− α2)
∑

i

c2i .

It follows that thetr(W 2) = 0 if and only if ci = 0 for all i. So, theZi are linearly
independent. The space of Hermitiank × k matrices overR has dimensionk2,
and the result follows.

The following two propositions are Lemmas 11.3.1 and 11.4.1in [10]. The
proofs of these propositions are not included since they areidentical to the proofs
given in [10] and the idea is similar to the proof of Proposition 3.3.

Proposition 3.4. (Lemma 11.3.1 [10]) SupposeZ1, ..., Zn are the projections onto
a set of equiangular lines inCk and |〈zi, zj〉| = α. If I =

∑

i ciZi, thenci = k/n
for all i and

n =
d− dα2

1− dα2
.

The Seidel matrix determined by any set ofn unit vectors spanning these lines has
eigenvalues

−
1

α
,

n− k

kα
with multiplicitiesn− k andk, respectively.

Proposition 3.5. (Lemma 11.4.1 [10]) Suppose{z1, ..., zn} is a set ofn equian-
gular lines inCk and|〈zi, zj〉| = α. If α−2 > k, then

n ≤
k − kα2

1− kα2
.

12



If Z1, ..., Zn are the projections onto these lines, then equality holds ifand only if
∑

i Zi = (k/n)I.

Corollary 3.6. (Welch bound) Given a set{z1, ..., zn} ofn vectors inCk or Rk set

α := max
i 6=j

|〈zi, zj〉|.

Then

α ≥

(

n− k

k(n− 1)

)
1
2

.

To summarize, given a set of equiangular lines in eitherCk or Rk this set of
lines spans the given space if and only if equality holds in Proposition 3.5. In
addition, this set of equiangular lines is maximal in the space. The Welch bound
plays an equivalent role in frame theory, that is, a given setof frame vectors it is
necessary for equality to hold in the Welch bound for the frame vectors to be an
equiangular tight frame.

4. Cube Root Two-Graphs

In [3], to simplify the search for complex ETFs the authors restrict the off
diagonal entries of a Seidel adjacency matrix to the cube roots of unity. The fact
that the Seidel adjacency matrix must have two distinct eigenvalues coupled with
this restriction to the cube roots of unity introduced new constraints that must be
satisfied for the frame associated with the Seidel adjacencymatrix to be an ETF.
These new constraints along with the fact that these “cube root Seidel adjacency
matrices” corresponded to strongly regular graphs allowedthe authors to discover
new complex ETFs.

Like the authors in [3], J.A. Tropp in [30] simplifies the search for complex
ETFs but this time by restricting the entries of the frame vectors tomth roots
of unity. D. Kalra developed a technique in [19] which similarly restricts the
entries in the frame vectors. Neither Tropp’s nor Kalra’s techniques lead to Seidel
matrices whose nonzero entries are all roots of unity. Troppposes several open
questions at the end of [30], one of which is “Are complex ETFsequivalent to
some type of graph or combinatorial object?”.

In this section, we use the techniques from [3] to extend the definition of a
two-graph and answer the above question posed in [30].

Recall that associated to each Seidel adjacency matrix there is a two-graph and
to each two-graph there is an associated switching class of Seidel matrices. In this

13



section, all nonzero entries of the “Seidel adjacency matrix” will be restricted to
the cube roots of unity. That is,ω := e2π/3, ω2 := e4π/3, and1. Such a matrix will
be called acube root Seidel matrix. The graph associated with ann × n cube
root Seidel matrix will be a complete graph onn vertices with edges weighted by
1, ω, andω2. Such graphs will be referred to ascube root edge weighted graphs
or CREW graphs. Figure 6 gives an example of such a graph.

1

3 2

ω

ω2

1

Figure 6: CREW graph on3 vertices

Unlike the real-case, there is a choice as to which matrix will correspond to
the graph given in Figure 6. For the purposes of this article,the weight of the edge
{i, j} with i < j will be the (i, j)th entry in the corresponding cube root Seidel
matrix, which means the(j, i)th entry will be the complex conjugate of the(i, j)th

entry. The cube root Seidel matrix corresponding to Figure 6is




0 1 ω
1 0 ω2

ω2 ω 0



 .

Recall from Section 2, switching a graphX on a subsetτ ⊆ VX is equivalent
to conjugatingSX by the diagonal matrixD with Dii = −1 wheni ∈ τ and1
otherwise.

Definition 4.1. LetX be a CREW graph and define

D3 := {D is a diagonal matrix: Dii is a cube root of unity}.

GivenD in D3, the graph associated with the cube root Seidel matrixD∗SXD is
called aswitch onD. Theswitching classof X, denoted[X ], is the collection of
graphs obtained by switchingX by every element ofD3.

The following is an example of a switch on the graph in Figure 6with the
resulting graph.

14







1 0 0
0 ω2 0
0 0 ω









0 1 ω
1 0 ω2

ω2 ω 0









1 0 0
0 ω 0
0 0 ω2



 =





0 ω 1
ω2 0 1
1 1 0





1

3 2

1

1

ω

Figure 7: A switch of Figure 6.

In the real case, we switched on a vertex or a set of vertices ofa graph. Work-
ing with weighted graphs changes this approach. In this case, we say switching the
ith vertex by weightω is the result of conjugating by the diagonal matrix which
has1′s on the diagonal with the exception thatω is in the ith position. Careful
consideration of the example above suggests Proposition 4.2.

Proposition 4.2. LetG be a CREW graph. SwitchingG on vertexvi byω results
in a graphG′ where edges not incident tovi are not effected and edges incident to
vi have their weight multiplied byω if there other vertex isvj with i < j and their
weight is multiplied byω whenj < i.

Proof. LetS be the Seidel matrix forG andD the diagonal matrix corresponding
to this switch. The resulting matrixG′ has Seidel matrixDSD−1. Since we
weight our graphs using the upper half of the Seidel matrix, we see the entries in
DSD−1 above the diagonal in theith row (i < j) are multiplied byω and in the
ith column(j < i) are multiplied byω.

The proof of Proposition 4.2 does not rely on cube roots of unity and extends
to all complex numbers of modulus1.

A Seidel matrix whose nonzero entries in the first row and column are all
1′s is said to be instandard form. Each Seidel matrix, with real or complex
entries, can be switched to be in standard form. The three graphs in Figure 8 are
representatives for distinct switching classes of CREW graphs on3 vertices.

Proposition 4.3. There are three distinct switching classes for the CREW graphs
with 3 vertices. In fact, the three graphs in Figure 8 are the uniquerepresentatives
in standard form from each switching class.
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1

3 2

1

1

1
1

3 2

1

ω

1

1

3 2

1

ω2

1

Figure 8: Representatives for switching classes.

Proof. Given any CREW graph on3 vertices the associated Seidel adjacency ma-
trix in standard form must be associated with one of the threegraphs in Figure
8. Now suppose there is a switch from one of the representatives in Figure 8 to
another. This means there is aD in D3 such that





a 0 0
0 b 0
0 0 c









0 1 1
1 0 ω1

1 ω1 0









a 0 0

0 b 0
0 0 c



 =





0 1 1
1 0 ω2

1 ω2 0





whereω1, ω2, a, b, andc are cube roots of unity. This forcesa = b = c = 1 which
in return forcesω1 = ω2.

Thus far, switching on a CREW graph,X, has been accomplished by conju-
gating the associated cube root Seidel adjacency matrix,SX , by a diagonal matrix
D in D3. Proposition 4.4 extends switching on CREW graphs in a manner similar
to Definition 2.2.

Proposition 4.4. Let G be a CREW graph with vertices labeled{1, 2, ..., n}.
Switching vertexi of G by weightω will change the weight of edges{i, j} by
a factor ofω2 if i < j and by a factor ofω if j < i. Edge weights for edges not
incident toi will not change.

Proof. Let S be the Seidel matrix corresponding toG. Switching the vertexi by
ω on the matrix becomes multiplying theith row byω and theith column byω2.
Considering the graph corresponding to this new matrix gives the desired result
since the edge weights come from the upper half of the matrix.

Proposition 4.5. Let S be ann × n cube root Seidel matrix. There are3n−1

elements in the switching class ofS. Furthermore, there are3
(n−1)(n−2)

2 switching
classes ofn× n cube root Seidel matrices.

Proof. Let S be an × n cube root Seidel matrix. Switches ofS are the result of
conjugatingS by diagonal matricesD in D3. If ω is a cube root of unity, then

16



(ωD)S(ωD)−1 = DSD−1. Thus, there are3n−1 elements in the switching class
of S. To count the number of classes, divide the number ofn×n cube root Seidel
matrices, which is3

n(n−1)
2 , by the number of elements in each class. This yields

the stated result.

As in the real case, when classifying CREW graphs up to isomorphism and
switching, some switching classes collapse together. Allowing for both switching
and isomorphism, the new classes are calledswitching equivalent classes. LetX
be a CREW graph, then conjugating the associated cube root Seidel adjacency
matrix,SX , by the product of a diagonal matrixD in D3 and a permutation matrix
P results in a cube root Seidel matrix,PDSX(PD)−1, which isswitching equiv-
alent to X. Theswitching equivalent classof X, denoted[[X ]], is the collection
of all such conjugations.

While Proposition 4.5 gives the number of switching classesof CREW graphs,
there is not a known formula for the number of switching equivalent classes. The
sequence2, 4, 14, 120, 3222 does not occur in the Online Encyclopedia of Inte-
ger Sequences, see [23], so the number of switching equivalence classes of CREW
graphs does not match with any known sequence. However, [12]contains a for-
mula for the number of non-isomorphic CREW graphs onn vertices which is
repeated in Appendix A.4. To compare with the real case, recall that Mallows
and Sloan, [22], provide a formula for the number of switching equivalent classes
but the number of non-isomorphic graphs is the ever elusive graph isomorphism
problem. Table 2 summarizes the data we have collected thus far.

n non-isomorphic switching switching equivalent
CREW graphs classes classes

3 7 3 2
4 42 27 4
5 582 729 14
6 21,480 59,049 120
7 2,142,288 14,348,907 3222

n See Appendix A.4 3
(n−1)(n−2)

2 by Prop. 4.5 no known formula

Table 2: Cube Root Class Sizes

Recall in the real case, on four vertices there are11 non-isomorphic graphs,
8 switching classes (or equivalently8 two-graphs),3 switching equivalent classes
(or equivalently3 non-isomorphic two-graphs). Using Table 2 and terminologyin
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Section 4.3 we have on four vertices there are42 non-isomorphic CREW graphs,
27 cube root two-graphs, and4 non-isomorphic cube root two-graphs.

4.1. Complex Two-Graphs with Cube Roots of Unity

Before defining a complex two-graph with cube roots of unity afurther ex-
ploration of two-graphs (in the real setting) will be useful. The following “new”
yet equivalent definition of a two-graph plays a crucial rolein adapting the defini-
tion of a two-graph to include not only CREW graphs butpth root edge weighted
graphs as well.

Definition 4.6. A two-graph(Ω,∆1,∆2) is a triple of a vertex setΩ and triple
sets∆1 and∆2 such that∆1 ∪ ∆2 = Ω3 and each set of four elements fromΩ
contains an even number of elements of∆1 and∆2 as subsets.

Comparing Definitions 4.6 and 2.8 leads to the following proposition.

Proposition 4.7. Definitions 2.8 and 4.6 are equivalent.

Proof. Let (Ω,∆) be a two-graph according to Definition 2.8. Clearly(Ω,∆, ∆̄)
satisfies Definition 4.6.

Let (Ω,∆1,∆2) be a two-graph according to Definition 4.6. By Lemma 2.7,
(Ω,∆1) satisfies Definition 2.8.

Example 4.8 gives the two graph for Figure 1 following Definitions 2.8 and
4.6.

Example 4.8. Recall the star graph from Example 2.3, repeated in Figure 9.If
Ω = {1, 2, 3, 4, 5, 6} and let∆ be the set of triples of vertices of this graph whose
induced subgraph on three vertices has either1 or 3 edges. By Lemma 2.7,(Ω,∆)
is a two-graph where

∆ = {{1, 2, 3}, {1, 2, 6}, {1, 3, 4}, {1, 4, 5}, {1, 5, 6}, {2, 3, 5},

{2, 4, 5}, {2, 4, 6}, {3, 4, 6}, {3, 5, 6}}.

Using Definition 4.6,(Ω,∆1,∆2) is a two-graph where∆1 = ∆ and

∆2 = {{1, 2, 4}, {1, 2, 5}, {1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 3, 4},

{2, 3, 6}, {2, 5, 6}, {3, 4, 5}, {4, 5, 6}}.
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Figure 9: Star graph on 6 vertices

Theorem 2.10 connected two-graphs and switching classes ofsimple graphs.
Restating Theorem 2.10 using Definition 4.6 requires replacing simple graphs
with complete graphs whose edges are weighted by±1, i.e., square root edge
weighted graphs. This trivial replacement is the key to understanding the exten-
sion of the definition of a two-graph to include cube roots of unity in this section
and themth roots of unity in Section 5.

Theorem 4.9 (Theorem 2.10 restated using Definition 4.6). Given n, there is
a one-to-one correspondence between the two-graphs (Definition 4.6) and the
switching classes of±1 edge weighted complete graphs onn vertices.

Proof. Let (Ω, E) be a complete graph onn vertices with the edges inE weighted
by −1 and the rest of the edges weighted by1. Define∆1 as the set of triangles
containing an odd number of edges weighted by−1, i.e., the switching class of
the triangle with three−1 weighted edges, and∆2 the rest of the triangles, i.e.,
the switching class of the triangle with three1 weighted edges. Since∆1 and∆2

are invariant under switching, Lemma 2.7 proves(Ω,∆1,∆2) is a two-graph.
Conversely, let(Ω,∆1,∆2) be a two-graph, satisfying Definition 4.6. Select

anyω in Ω and partitionΩ \ {ω} into any2 disjoint setsΩ1 andΩ2. DefineE1

andE−1 as the edges weighted by1 and−1 respectively. For allω1 ∈ Ω1, the
pair {ω, ω1} is in E−1 and for allω1 ∈ Ω2, the pair{ω, ω2} is in E1. Lastly, if
{ω, ω1, ω2} is in∆1, then{ω1, ω2} is in E1, otherwise{ω1, ω2} is in E−1.

Thus, we associate to(Ω,∆1,∆2) a class of±1 complete graphs(Ω, E1, E−1).
By construction,∆1 is the set of triangles in(Ω, E1, E−1) which have an odd num-
ber of edges weighted by−1. So, by Lemma 2.9, the class of graphs constructed
from (Ω,∆1,∆2) is a switching class and distinct switching classes yield distinct
two-graphs. This proves the theorem.

The existence, and hence the definition, of two-graphs comesfrom Lemma
3.8 in [24]. Before defining cube root two-graphs, we extend this lemma.
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Lemma 4.10(Extension of Lemma 3.8 in [24]). For any CREW graph on4 ver-
tices the number of induced CREW subgraphs on3 vertices, having an odd num-
ber of edges weightedw ∈ {1, ω, ω2}, is even.

Proof. Let G be a CREW graph on4 vertices and letG′ be the graph obtained
from G by removing edges with weight notw. By Lemma 2.7, there are an even
number of induced subgraphs ofG′ on three vertices with an odd number of edges.
These subgraphs correspond to the induced subgraphs ofG which have an odd
number of edges weighted withw.

Using Definition 4.6 as a model, we now define cube root two-graphs.

Definition 4.11. A cube root two-graph(Ω,∆1,∆2,∆3) is a quadruple of a vertex
setΩ and triple sets∆1, ∆2 and∆3 such that∆1 ∪ ∆2 ∪ ∆3 = Ω3 and each set
of four element subset ofΩ contains an even number of triples of∆1, ∆2, or ∆3.

Proving a version of Theorem 2.10 for cube root two-graphs requires extend-
ing Lemma 2.9. The idea behind the proof for Lemma 2.9 works equally as well
in the cube root case, but some rewriting needs to be done since the parity of edges
no longer makes sense.

Lemma 4.12(Extension of Lemma 3.9 in [24]). The CREW graphs(Ω, E) and
(Ω, E ′) are switching equivalent if the parity of the number of edgesweighted by
w among each triple of vertices is the same for both graphs withw ∈ {1, ω, ω2}.

Proof. Letv be any vertex inΩ. DefineS1 as the set of verticesu inΩ such that the
edge weight of{v, u} in (Ω, E ′) is ω times the edge weight in(Ω, E). Similarly,
defineS2 as the set of verticesu in Ω such that the edge weight of{v, u} in (Ω, E ′)
isω2 times the edge weight in(Ω, E). Switching(Ω, E ′) byω on the setS1 and by
ω2 onS2 results in a new graph(Ω, E ′′) such that the adjacencies ofv with every
other vertex are the same in(Ω, E) and(Ω, E ′′). Consider a pair of vertices{u, w}
from Ω for which neither is equal tov. By hypothesis, the triangles{v, u, w} in
(Ω, E) and(Ω, E ′) have the same parity of each possible edge weight. Switching
on S preserves the parity of these triangles, so the triangles{v, u, w} in (Ω, E)
and(Ω, E ′′) have the same parity of edge weights and the weights of the edges
{v, u}, and{v, w} are equal. Thus, the edge weight of{u, w} must also be the
same for(Ω, E) and(Ω, E ′′). Therefor, these two graphs are isomorphic and the
original two are switching equivalent.

Theorem 4.13(Extension of Theorem 2.10). Givenn, there is a one-to-one corre-
spondence between the cube root two-graphs and the switching classes of CREW
graphs onn vertices.
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Proof. Let (Ω, E) be a complete graph onn vertices with the edges weighted
by cube roots of unity. Define∆1, ∆2 and∆3 to be the sets of triples of vertices
whose induced subgraphs are in the switching classes of the corresponding graphs
given in Figure 8. Since∆1, ∆2, and∆3 are invariant under switching, Lemma
4.10 proves(Ω,∆1,∆2,∆3) is a cube root two-graph.

Conversely, let(Ω,∆1,∆2,∆3) be a cube root two-graph. Select anyv in Ω
and partitionΩ \ {v} into any 3 disjoint setsΩ1, Ω2, andΩ3. For simplicity,
we assumeΩ = {1, ..., n}, v = 1 and for eachi ∈ Ω1, j ∈ Ω2 andk ∈ Ω3,
i < j < k. Changing any choices ofv andΩ1, Ω2, andΩ3 to fit this description
is a permutation ofΩ which simplifies the following construction but does not
restrict the generality of the proof.

From the partition, build a CREW graphG as follows:
LetE1, E2 andE3 be a partition of the edges ofG such that an edge inEi has

weightωi. As an abuse of notation, we consider indices forEi to be modulo3, so
E1 = E4 andE2 = E5.

• For everyu in Ωi, put{v, u} in Ei.

• For every pairu andw in Ωi, if {1, u, w} is in∆j , put{u, w} in Ej .

• For everyu in Ω1 andw in Ω2, if {1, u, w} is in ∆j, put{u, w} in Ej+1.

• For everyu in Ω2 andw in Ω3, if {1, u, w} is in ∆j, put{u, w} in Ej+1.

• For everyu in Ω1 andw in Ω3, if {1, u, w} is in ∆j, put{u, w} in Ej+2.

Thus, associated to(Ω,∆1,∆2,∆3) is a class of CREW graphs of the form
(Ω, E1, E2, E3). By construction,∆i is the set of triangles in(Ω, E1, E2, E3)
which have an odd number of edges weighted byωi. So, by Lemma 4.12, the
class of graphs constructed from(Ω,∆1,∆2,∆3) is a switching class and distinct
switching classes yield distinct two-graphs. This proves the theorem.

The use of a permutation in the proof of Theorem 4.13 is justified since to get
around this complicates the decision process for putting edges into theEi. For
example, if we don’t assumev = 1 and theΩi’s are ordered, we get for everyu in
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Ω1 andw in Ω2, put{u, w} in Ek where

k =







































j + 1 if v < u < w and{v, u, w} ∈ ∆j

j + 2 if v < w < u and{v, u, w} ∈ ∆j

2j if u < v < w and{v, u, w} ∈ ∆j

j + 2 if u < w < v and{v, u, w} ∈ ∆j

2j if w < v < u and{v, u, w} ∈ ∆j

j + 1 if w < u < v and{v, u, w} ∈ ∆j

.

Writing out all of the cases in this format will lead to the same result and is not
useful for understanding the proof or constructing CREW graphs from cube root
two-graphs.

The following example describes a cube root two-graph.

Example 4.14.Following the proof of Theorem 4.13, the graph with cube root
Seidel matrix





























0 1 1 1 1 1 1 1 1
1 0 1 ω ω ω ω2 ω2 ω2

1 1 0 ω2 ω2 ω2 ω ω ω
1 ω2 ω 0 ω ω2 1 ω ω2

1 ω2 ω ω2 0 ω ω ω2 1
1 ω2 ω ω ω2 0 ω2 1 ω
1 ω ω2 1 ω2 ω 0 ω2 ω
1 ω ω2 ω2 ω 1 ω 0 ω2

1 ω ω2 ω 1 ω2 ω2 ω 0





























corresponds to the cube root two-graph withΩ = {1, . . . , 8},

∆1 = {{1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 7}, {1, 3, 8}, {1, 3, 9}, {1, 4, 5},

{1, 4, 8}, {1, 5, 6}, {1, 5, 7}, {1, 6, 9}, {1, 7, 9}, {2, 3, 4}, {2, 3, 5},

{2, 3, 6}, {2, 7, 8}, {2, 7, 9}, {2, 8, 9}, {3, 4, 5}, {3, 4, 7}, {3, 5, 7},

{3, 6, 7}, {3, 7, 8}, {4, 7, 8}, {4, 7, 9}, {6, 7, 8}},

∆2 = {{1, 2, 7}, {1, 2, 8}, {1, 2, 9}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 6},

{1, 4, 9}, {1, 5, 8}, {1, 6, 7}, {1, 7, 8}, {1, 8, 9}, {2, 3, 7}, {2, 3, 8},

{2, 3, 9}, {2, 4, 5}, {2, 4, 6}, {2, 5, 6}, {3, 4, 6}, {3, 4, 8}, {3, 5, 6},

{3, 5, 8}, {3, 6, 8}, {3, 7, 9}, {3, 8, 9}, {4, 5, 7}, {4, 5, 8}, {4, 5, 9},

{4, 8, 9}, {5, 6, 7}, {5, 6, 8}, {5, 6, 9}, {5, 7, 8}, {5, 7, 9}, {6, 7, 9}},
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and

∆3 = {{1, 2, 3}, {1, 4, 7}, {1, 5, 9}, {1, 6, 8}, {2, 4, 7}, {2, 4, 8}, {2, 4, 9},

{2, 5, 7}, {2, 5, 8}, {2, 5, 9}, {2, 6, 7}, {2, 6, 8}, {2, 6, 9}, {3, 4, 9},

{3, 5, 9}, {3, 6, 9}, {4, 5, 6}, {4, 6, 7}, {4, 6, 8}, {4, 6, 9}, {5, 8, 9},

{6, 8, 9}, {7, 8, 9}}.

A regular two-graph is a two-graph such that any, and consequently all, of
the associated Seidel adjacency matrices have two distincteigenvalues. There is
an intimate relationship between regular two-graphs and strongly regular graphs
which is captured in Theorem 4.15.

Let Φ be a two-graph andX an associated graph. A vertex ofX can be
isolated by switching and removed, resulting in a graph withone fewer vertex,
called aneighborhoodof Φ.

Theorem 4.15(Theorem11.6.1 in [10]). LetΦ be a nontrivial two-graph onn+1
vertices. Then the following are equivalent:

1. Φ is a regular two-graph.

2. All the neighborhoods ofΦ are regular graphs.

3. All the neighborhoods ofΦ are (n, k, a, c) strongly regular graphs withk =
2c.

4. One neighborhood ofΦ is an(n, k, a, c) strongly regular graph withk = 2c.

Theorem 4.15 explains the motivation behind calling a two-graph with exactly
two-eigenvalues a regular two-graph. Furthermore the strongly regular graphs
have been actively studied and many of these results can be used to build regular
two-graphs. Regular two-graphs are important because theyare the only non-
trivial two-graphs for which the corresponding set of equiangular lines meet the
absolute bound or the relative bound. Thus, the set of vectors determined by
choosing a unit vector to represent each line spans the ambient space. In frame
theory this guarantees this set of vectors with adjusted lengths will form an equian-
gular tight frame.

The proof of Theorem 4.15 uses terminology such asequitableandquotient
matrixwhich are specific to graphs as well as powerful tools. While this terminol-
ogy does not apply directly to the cube root setting, the underlying linear algebra
results do hold, and gives us Theorem 4.16.
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Similar to two-graphs, we call a cube root two-graphregular if any, and hence
all, associated CREW graph has two eigenvalues. In [3], theyshow if a cube root
Seidel adjacency matrix with two eigenvalues,λ1 andλ2, is in standard form, then
all rows after the first have a constant sum. The row sum being constant is the key
to proving Theorem 4.16.

Theorem 4.16.LetΦ be a nontrivial cube root two-graph onn+1 vertices. Then
the following are equivalent:

1. Φ is a regular cube root two-graph.

2. All the neighborhoods ofΦ are CREW graphs with vertex sumsµ and eigen-
valuesµ, λ1, andλ2. The multiplicity ofµ is 1.

3. One neighborhood ofΦ is a CREW graph with vertex sumµ and eigenvalues
µ, λ1, andλ2. The multiplicity ofµ is 1.

Proof. 1 → 2: Let x be a vertex ofΦ andS a Seidel matrix whose first row and
column correspond tox. Without loss of generality, assumeS is in standard form,
which corresponds tox being isolated. By [3],S has two eigenvalues,λ1 andλ2.
LetA be the(n− 1)× (n− 1) matrix obtained fromS by removing the first row
and column. By the interlacing theorem,n − 2 of the eigenvalues ofA areλ1 or
λ2. By [3], the rows ofA have a constant sum equal toµ, so this is an eigenvalue
for A as well.

2 → 3: Obvious.
3 → 1: LetA be a matrix corresponding to a cube root Seidel graph with ver-

tex sumµ and eigenvaluesµ, λ1, andλ2. By the Spectral Theorem, eigenvectors
for λ1 andλ2 can be chosen to be orthogonal to1, the eigenvector corresponding
to µ. LetS be the matrix

(

0 1
t

1 A

)

then the vectors
(

0
v

)

wherev is an eigenvector forA, are eigenvectors forS, corresponding to eigen-
valuesλ1 or λ2.
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Let

P =











1 0
0 1
...

...
0 1











and

B =

(

0 n− 1
1 µ

)

thenSP = PB. If v is an eigenvector forB, thenPv is an eigenvector forS for
the same eigenvalue. The characteristic polynomial forB is x2−µx− (n−1), so
its eigenvalues areλ1 andλ2. Since the first component ofPv is nonzero, these
eigenvectors are not any of the previously known eigenvectors ofS, soS has just
the two eigenvalues. Thus,S is a Seidel matrix which corresponds to a regular
cube root two-graph.

4.2. Constructions for (9,6) ETF
The article [3] contains an example of a(9, 6)-equiangular tight frame or

equivalently9 equiangular lines inC6. Their construction starts with the known
directed strongly regular graph on8 vertices in Figure 10.

Figure 10: Directed strongly regular graph on8 vertices.

A Seidel matrix can be constructed from this graph by lettingthe ijth entry,
with i 6= j, be











ω if there is an edge fromi to j

ω2 if there is an edge fromj to i

1 otherwise
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and setting the diagonal entries to0. Adding a first row and column of ones, with
zero on the diagonal entry, completes the construction. This new Seidel matrix
has two eigenvalues, and will be switching equivalent to thematrix





























0 1 1 1 1 1 1 1 1
1 0 1 ω ω ω ω2 ω2 ω2

1 1 0 ω2 ω2 ω2 ω ω ω
1 ω2 ω 0 ω ω2 1 ω ω2

1 ω2 ω ω2 0 ω ω ω2 1
1 ω2 ω ω ω2 0 ω2 1 ω
1 ω ω2 1 ω2 ω 0 ω2 ω
1 ω ω2 ω2 ω 1 ω 0 ω2

1 ω ω2 ω 1 ω2 ω2 ω 0





























whereω is a primitive cube root of unity. This construction is an application of
proof of Theorem 4.16.

While this construction seems to connect cube root two-graphs to directed
strongly regular graphs with no undirected edges, the development of cube root
two-graphs describe above can be extended tomth roots of unity. Along with
this development, the authors have constructed nontrivialcomplex two-graphs and
regular complex two-graphs for many roots of unity which do not obviously con-
nect with generalizations of strongly regular graphs, see [7, 15].

5. Complex Two-Graphs withmth Roots of Unity

Using the obvious definitions formth root Seidel matrices andmth root edge
weighted graphs, we reconsider the results of Section 4. LetDm be the collection
of diagonal matrices whose nonzero entries aremth roots of unity, then the def-
initions of switching classes and switching equivalent classes make sense. With
these definitions, most of the results from Section 4 are truefor mth roots of unity
without modification because their proofs do not depend on cube roots of unity.

Recall the representatives of switching classes for3 vertices in Figure 8. The
extension is representatives have a single edge weighted by1, ω,..., ωm−1, with
ω a primitivemth root of unity, and the other two edges both weighted by1.
Proposition 4.4 changes as follows, but the proof from Section 4 holds with the
modification of the matrix entries beingmth roots of unity.

Proposition 5.1 (Extension of Proposition 4.4). There arem distinct switching
classes ofmth root edge weighted graphs on three vertices.
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With the goal of definingmth root two-graphs, Lemmas 4.10 and 4.12 re-
quire special attention. Fortunately, the proof of Lemma 4.10 is an application of
Lemma 2.7 and can be extended to any number of weights. The proof of Lemma
4.12 is extended tomth roots of unity by replacingω2 by ω. With these lemmas
in place, we definemth root two-graphs as follows.

Definition 5.2. An mth root two-graph(Ω,∆1, . . . ,∆m) is a m + 1-tuple of a
vertex setΩ and triple sets∆1, ∆2,...,∆m such that

⋃

∆i = Ω3 and each set of
four element subset ofΩ contains an even number of triples of∆i, for 1 ≤ i ≤ m.

As expected, themth root two-graph are in one-to-one correspondence with
the switching classes ofmth root edge weighted graphs.

Theorem 5.3(Extension of Theorem 4.13). Givenn, there is a one-to-one corre-
spondence between themth root two-graphs and the switching classes ofmth root
edge weighted graphs onn vertices.

The proof of this theorem follows from modifying the proof ofTheorem 4.13
to use edge setsE1,...,Em and extending the cases for all possible pairs of vertices.
Fortunately, the edge weights are determined by the∆i’s, and the proof follows.

For regularmth root two-graphs, we need constant row sums in ourmth root
Seidel matrices. While, in [3], the authors focus only on cube roots of unity, their
result that the standard form of a cube root Seidel matrix with two eigenvalues has
constant row sum for every row after the first does not depend on cube roots of
unity, only on the standard form and two eigenvalues, and hence, is true formth

root Seidel matrices. This gives us the Theorem 4.16.

Theorem 5.4(Extension of Theorem 4.16). LetΦ be a nontrivialmth root two-
graph onn+ 1 vertices. Then the following are equivalent:

1. Φ is a regularmth root two-graph.

2. All the neighborhoods ofΦ aremth root edge weighted graphs with vertex
sumsµ and eigenvaluesµ, λ1, andλ2, the multiplicity ofµ is 1.

3. One neighborhood ofΦ is anmth root edge weighted graph with vertex sum
µ and eigenvaluesµ, λ1, andλ2, the multiplicity ofµ is 1.

The proof of Theorem 4.16 does not depend on cube roots of unity, only on
the relationship between the row sums and the eigenvalues ofthe matrices corre-
sponding to the cube root two-graph. So, replacing the cube roots bymth roots
does not effect the proof and the result holds.
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Appendix A. Known Formulas for Counting Switching Equivalence Classes
and Cube Root Edge Weighted Graphs

In Tables 1 and 2, formulas are used which were derived combinatorially. The
techniques and terminology are different enough from the rest of this article that
they deserve attention.

Supposej is a positive integer and(j) denotes a partition ofj. Definejk to be
the number of timesk appears in(j), so

∑j
k=1 k∗jk = j. Several of the following

formulas involve summations over all partitions ofj which will be denoted as
∑

(j)

.

In [22], the following formula for the number of Euler graphsonn vertices is
attributed to R. W. Robinson.

Theorem Appendix A.1 (Eulerian Graphs). The number of Euler graphs onn
vertices is

∑

(j)

2v(j)−λ(j)

∏

i i
jiji!

,

where

v(j) =
∑

i<k

jijk gcd(i, j) +
∑

i

i

(

j2i + j2i+1 +

(

ji
2

))

,

and

λ(j) =
∑

i

ji − sgn

(

∑

i

j2i+1

)

.

The central result of [22] is Appendix A.2. Seidel had provedAppendix A.2
for oddn by finding Euler graphs as representatives of switching equivalent classes.
Mallows and Sloan proved the even case without making an obvious connection
between Euler graphs and switching equivalent classes or two-graphs.

Proposition Appendix A.2 (Theorem1 in [22]). The number of two-graphs on
n vertices is equal to the number of Euler graphs onn vertices.

We do not include the proof of Appendix A.2 as it is most of [22]. However,
it is a nice arguement and we recommend any interested personshould read it.

Harary and Palmer define a complete directed graph as a directed graph such
that for any pair of vertices there is either a directed edge or two directed edges
connecting them. With this definition comes the question of how many such
graphs are there onn vertices. In [12], this question is answered and [13] contains
a refinement of the formula. We include the refined formula.
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Theorem Appendix A.3 (Page 133 of [13]). The number of complete directed
graphs onn vertices is

cn =
1

n!

∑

(n)

n!
∏

knknk!
3a(n)

where

a(n) =
n
∑

k=1

(⌊

k − 1

2

⌋

nk + k

(

nk

2

))

+
∑

1≤r<s≤n

gcd(r, s)nrns.

Appendix A.3 holds interest for this article because of Appendix A.4.

Proposition Appendix A.4. There is a one to one correspondence between cube
root edge weighted graphs onn vertices and complete directed graphs onn ver-
tices.

Proof. Given a complete directed graphG, label the vertices from1 to n and
defineCRG to be a complete graph onn vertices. For any pair of verticesv and
u, if two edges connect them inG, then weight the edge{v, u} of CRG with a1.
For any pair{v, u} with a single directed edge going fromv to u, weight it byω
if v < u andω2 if u < v. The graph withCRG with these weights is a cube root
edge weighted graph. The choice of labeling does not effect the outcome of the
weights, so this assignment is one to one and clearly invertible.
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