
ar
X

iv
:1

40
8.

12
58

v2
 [

cs
.F

L
]

 3
 J

an
 2

01
5

On Practical Regular Expressions

(Preliminary Report)

Holger Petersen

Reinsburgstr. 75

70197 Stuttgart

Germany

January 6, 2015

Abstract

We report on simulation, hierarchy, and decidability results for
Practical Regular Expressions (PRE), which may include back refer-
ences in addition to the standard operations union, concatenation, and
star.

The following results are obtained:

• PRE can be simulated by the classical model of nondeterminis-
tic finite automata with sensing one-way heads. The number of
heads depends on the number of different variables in the expres-
sions.

• A space bound O(n logm) for matching a text of length m with
a PRE with n variables based on the previous simulation. This
improves the bound O(nm) from (Câmpeanu and Santean 2009).

• PRE cannot be simulated by deterministic finite automata with
at most three sensing one-way heads or deterministic finite au-
tomata with any number of non-sensing one-way heads.

• PRE with a bounded number of occurrences of variables in any
match can be simulated by nondeterministic finite automata with
one-way heads.

• There is a tight hierarchy of PRE with a growing number of
non-nested variables over a fixed alphabet. A previously known
hierarchy was based on nested variables and growing alphabets
(Larsen 1998).

• Matching of PRE without star over a single-letter alphabet is
NP-complete. This strengthens the corresponding result for ex-
pressions over larger alphabets and with star (Aho 1990).

• Inequivalence of PRE without closure operators is ΣP

2
-complete.

• The decidability of universality of PRE over a single letter alpha-
bet is linked to the existence of Fermat Primes.

• Greibach’s Theorem applies to languages characterized by PRE.

1

http://arxiv.org/abs/1408.1258v2

1 Introduction

Regular expressions have evolved from a tool for the analysis of nerve nets
[12] into an important domain-specific language for describing patterns. The
original set of operations (union, concatenation, and closure operator star)
of what will be called “Classical Regular Expressions” (CRE) here has been
enhanced in several different ways. A natural additional operation is com-
plementation, leading to Extended Regular Expressions (ERE). On the lan-
guage level complementation does not add power to regular expressions,
since any regular expression can be converted into an equivalent finite finite
automaton, which in turn can be complemented via the power-set construc-
tion. The matching problem however becomes harder [11, 17] (under the
assumption that the corresponding complexity classes are different, see the
table below) and an equivalence test certainly becomes infeasible (its mem-
ory requirement grows faster than any exponential function, [19, 6]). An
operation that leads to a less complex equivalence problem is intersection
(complete in exponential space, [9, 18]). Expressions based on the opera-
tions union, concatenation, star, and intersection are called Semi-Extended
Regular Expressions (SERE).

Practical Regular Expressions (PRE) including several extensions have
been implemented in operating system commands, data base query lan-
guages, and text editors. PRE include many syntactical enhancements like
notations for sets of symbols (wildcards, ranges, enumerations of symbols
etc.), optional subexpressions or bounded repetition of subexpressions. The
latter operation has been investigated for the special case of squaring in [16],
where completeness in exponential space was shown. An extension of PRE
that goes beyond regular languages in expressive power is the use of back
references. The k-th subexpression put into parentheses (counting opening
parentheses from left to right) can be referenced by \k, which matches the
same string that is matched by the subexpression. An expression is invalid if
the source string contains less than k subexpressions preceding the \k. This
is the notation employed in many implementations, while the definition of
[2] admits variable names. Also the exact semantics of the expressions vary.
In [13] several syntactical criteria are imposed on PRE such that no variable
can be used before it is defined (this can happen when a variable is defined
inside of an alternation or Kleene closure that is not part of the matching).
In contrast [3] allows for such a situation and assigns the empty set to the
variable. We will adopt the latter definition here that will prevent a match
with an uninstantiated variable but does not require a syntactical analysis
of variable assignments. This definition is also found in several implemen-
tations of PRE.

As an example of a non-regular (and not even context-free) language
consider the expression

((a|b)∗)\1

2

characterizing the language Ld = {ww | w ∈ {a, b}∗} of “double-words”.
Many regular languages can be defined more succinctly by PRE than by
CRE, like

(a|b| . . .) ∗ (a|b| . . .)(a|b| . . .) ∗ \2(a|b| . . .)∗

which characterizes all strings over Σ = {a, b, . . .} with (at least) one re-
peated occurrence of a symbol. This expression has a size linear in |Σ|,
while a CRE requires size Ω(|Σ|2).

The increase in expressive power of PRE has an impact on the complexity
of decision problems. A central problem is the Matching-Problem:

Matching-Problem: Given a PRE α and a string s, does a string in the
language described by α occur as a substring of s?

The Matching-Problem easily reduces to membership by tranforming the
expression into Σ∗αΣ∗, where Σ is the underlying alphabet. Conversely,
membership can be reduced to the Matching-Problem by embedding both α
and s into special marker symbols or marker strings not occurring otherwise.
This technique requires at least a binary alphabet. The Matching-Problem
is known to be NP-complete [2] and equivalence is even undecidable [5].

Some results and references are summarized in the following table:

PRE ERE CRE

matching, NP-complete P-complete NL-complete
member [2, Thm. 6.2] [17, Thm.1], [11, Thm. 2.2]

equivalence undecidable NSPACE






2
2.
..2

}

g(n)






PSPACE-compl.

[5, Thm. 9] g(n) = n [19] (u.b.) [16, Lem. 2.3]
g(n) = c·n

(log∗ n)2
[6] (l.b.)

non- ∈ALOGTIME ∈ALOGTIME
emptiness see equivalence

(see CRE) [17, Intr.]

2 Simulation Results

The following simulations will be carried out by finite automata that are
equipped with several read-only heads that scan the input. If the automata
can detect coincidence of heads, they are called “sensing”.

Theorem 1 Every PRE with k different variables can be simulated by a
nondeterministic finite automaton with 2k + 2 sensing one-way heads.

Proof. The simulating NFA M stores the PRE α of length n in its finite
control with one of the n+ 1 positions marked (initially the position before

3

the PRE). The heads form pairs ℓi, ri for 1 ≤ i ≤ k + 1, where pair i ≤ k
corresponds to variable vi. All heads move in parallel along the input string
whileM parses α moving the marked position until an opening parenthesis is
encountered. In this case head ℓ1 remains stationary while the other heads
advance. When the matching closing parenthesis is encountered, head r1
remains at the current position. In this way the value of v1 is stored and
similarly for each of the variables a sub-string of the input is marked. If
vi occurs in α, M leaves head ℓk+1 at the current position and advances ℓi
comparing the symbols read with the input using head rk+1. Notice that at
least this head is available for the comparison. When ℓi and ri meet, the
value of vi has been compared to the input and a copy of vi is marked by
ℓk+1 and rk+1. Now M advances ℓi to the position of ℓk+1 and then ℓk+1

and ri to the position of rk+1. In this way the value of vi is again marked.
If in this way M is able to scan all of its input, it accepts. If a mismatch

is detected, M rejects. ✷

Theorem 2 The class of languages accepted by nondeterministic finite au-
tomata with sensing one-way heads properly includes those characterized by
PRE.

Proof. Inclusion follows from Theorem 1.
The language

S = {aibai+1bak | k = i(i+ 1)k′ for some k′ > 0, i > 0}

is shown not to be generated by any PRE in [4]. A deterministic finite
automaton with 3 sensing one-way heads can check divisibility of the length
of the trailing block of as by i or i+1 respectively (move heads with distance
i or i+1 over the block marking the last position with the third head). Since
languages accepted by these finite automata are closed under intersection,
the claim follows. ✷

Finite multi-head automata can be simulated in nondeterministic loga-
rithmic space. We obtain the following improvement of [3, Corollary 7]:

Corollary 1 The uniform membership problem for PRE has nondetermin-
istic space complexity O(n logm) where n is the number of pairs of paren-
theses in the PRE and m is the length of text.

It is natural to ask whether a simpler model of computation than nonde-
terministic finite automata with sensing heads can simulate PRE. The next
results provide partial answers.

Theorem 3 Languages characterized by PRE with one variable cannot in
general be accepted by deterministic finite automata with at most three sens-
ing one-way heads or any number of non-sensing one-way heads.

4

Proof. Consider the language

M = {p#t1pt2 | p, t1, t2 ∈ {0, 1}∗}

formalizing the string-matching problem of deciding whether pattern p oc-
curs in a given text t. Notice that answers for more realistic problems like
reporting the first or even every position of p in t would also solve the mem-
bership problem of M .

A PRE specifying M is

((0|1)∗)#(0|1) ∗ \1(0|1) ∗ .

By the result in [7] string-matching cannot be done with three sensing heads
and by the result in [10] string-matching cannot be done with any number
of non-sensing one-way heads by deterministic finite automata. ✷

The above result shows that even very simple PRE cannot be simulated
by deterministic finite automata with non-sensing one-way heads. This is not
true for nondeterministic automata. We first define a notion of complexity
of PRE depending on the number of variables occurring in a match of an
expression. Let c be the following function from PRE to IN ∪ {ω} (where ω
is greater than any element of IN):

c(\n) = 1 for n ∈ IN

c(a) = 0 for a ∈ Σ

c(α|β) = max(c(α), c(β))

c(αβ) = c(α) + c(β)

c(α∗) =
ω if c(α) ≥ 1
0 if c(α) = 0

Theorem 4 Every PRE α with k < ω occurrences of variables (c(α) = k)
can be simulated by a nondeterministic finite automaton with 2k + 1 (non-
sensing) one-way heads.

Proof. One head of the simulator A is used for matching the regular ex-
pression with the input. The definition of the i-th variable is marked on the
input by a pair of heads for every occurrence of \i. When a \i occurs, then
the trailing head of the pair simulating this occurrence is moved along the
input comparing the segments of the input until A guesses coincidence of
the two heads. Then A moves both heads in parallel until at least one of
them reaches the right end-marker. If they do not reach the end-marker at
the same time, then A rejects. ✷

5

3 Hierarchy Results

In [13] languages defined by PRE with a growing number of variables are
investigated. The complexity of these languages depends on two features of
the construction:

• The cardinality of alphabets increases with the number of variables.

• Variables are nested.

Using the simulation from the proof of Theorem 2 we can establish:

Theorem 5 The class of languages characterized by PRE forms an infinite
hierarchy with respect to the number of variables, even when restricting PRE
to a fixed alphabet and non-nested variables.

Proof. It is immediate from the definition that languages characterized by
PRE with k variables form a subset of those characterized by PRE with
k′ ≥ k variables.

The language

Lb = {w1#w2# · · ·#wb#wb# · · ·w2#w1 | ∀1 ≤ i ≤ b : wi ∈ {0, 1}∗}

can be defined by

((0|1)∗)#((0|1)∗) · · · ((0|1)∗)#\2b − 1#\2b − 3 · · · \3#\1

with b subexpression ((0|1)∗). In [20] it is shown that nondeterministic finite
automata with h one-way heads cannot accept Lb for b >

(h
2

)

. The main
result of [20] also holds for sensing heads, see the remark on p. 337.

Every language characterized by a PRE with k variables can be ac-
cepted by a nondeterministic finite automaton with h = 2k + 2 sensing
one-way heads according to Theorem 2. Let b =

(h
2

)

+ 1 =
(2k+2

2

)

+ 1. Now
Lb is a language characterized by a PRE with b variables that cannot be
characterized with the help of at most k variables. ✷

We now improve the coarse separation of the previous hierarchy result
using the concept of Kolmogorov complexity. The argument is again based
on the languages Lb, but we will show that Lb requires b variables.

Theorem 6 The class of languages characterized by PRE with b non-nested
variables properly includes those characterized by PRE with b − 1 variables
for every b > 0.

First we prove the following Non-Matching Lemma for an input x ∈ Lb

that is based on an incompressible string w, see [14] for definitions. Let
w ∈ {0, 1}∗ be an incompressible string of length n sufficient large with n a

6

multiple of b resulting in integer valued formulas in the following definitions.
Split w into blocks of equal length w = w1 · · ·wb. Form a word

x = w1#w2# · · ·#wb#wb# · · ·w2#w1 ∈ Lb

with |wi| = n/b for all 1 ≤ i ≤ b.

Lemma 1 (Non-Matching Lemma) Suppose that variable v is instanti-
ated to a substring of length at least n/b+2+18 log n when matching string
x ∈ Lb as defined above. Then v cannot match any other substring of x.

Proof. For a contradiction suppose that v matches another substring of x.
We will identify v and the value assigned to it in the following discussion.
Since v includes at least two symbols #, the structure of v is w′#wi#w′′ for
some 1 ≤ i ≤ b and w′, w′′ ∈ {0, 1,#}∗. We will show how to compress w by
copying a substring of w from position p1 through p2 to a position p3 in x.

The first case we consider is that the portion #wi# of v matches a
substring #wj# for j 6= i (in the left or right half of x). Then we can take
p1 and p2 as the positions of the first and the last symbol of wi and p3 as
the position of the first symbol of wj .

The other case is that v matches the corresponding w′#wi#w′′ from
the other half of x. By the length condition on v, at least one of |w′|, |w′′|
is not less than 9 log n. Suppose |w′| ≥ 9 log n and i = b. Then w′ is a
suffix of w1#w2# · · ·#wb as well as of w1#w2# · · ·#wb−1 and we can take
p1 = n−n/b− 9 log n, p2 = n−n/b, and p3 = n− 9 log n. If i < b then w′ is
a suffix of w1#w2# · · ·#wi−1 as well as of w1#w2# · · ·#wb#wb · · ·#wi+1.
We take p1 = (i − 1)n/b − 9 log n, p2 = (i − 1)n/b, and p3 = (i + 1)n/b −
9 log n. Now consider the case |w′′| ≥ 9 log n. If i = b then w′′ is a prefix of
wb · · ·# · · ·w2#w1 and of wb−1 · · ·# · · ·w2#w1. We take p1 = (b−2)n/b+1,
p2 = (b − 2)n/b + 9 log n and p3 = (b − 1)n/b + 1. If i < b then w′′ is a
prefix of wi+1 · · ·# · · ·w2#w1 as well as of wi−1 · · ·# · · ·w2#w1. We take
p1 = (i− 2)n/b+ 1, p2 = (i− 2)n/b+ 9 log n and p3 = in/b+ 1.

The string w can be reconstructed from the following information:

• A formalization of this description including the recovery algorithm
below (O(1) bits).

• The values of n, p1, p2, and p3 in self-delimiting binary form (8 log n
bits).

• w1w2 · · ·wb with the portion of length p2 − p1 + 1 starting at position
p3 deleted (at most n− 9 log n bits).

The string w = w1w2 · · ·wb can be reconstructed by copying p2 − p1 + 1
symbols starting at position p1 inserting them at position p3. For n suffi-
ciently large a compression by log n − O(1) bits is obtained, contradicting
the choice of w. ✷

7

We now continue the proof of Theorem 6. Let α be a PRE with at most
b − 1 variables characterizing Lb. Fix a matching of α and x by record-
ing the corresponding alphabet symbols of α and x. The string w can be
reconstructed from the following information:

• A formalization of this description including the recovery algorithm
below (O(1) bits).

• The value of n (O(log n) bits).

• PRE α (O(1) bits).

• The occurrence of # in α matching the center of x (O(1) bits).

• For every variable vi its state when the center has just been matched:

1. vi is instantiated and |vi| ≥ n/b+ 2 + 18 log n.

2. vi is instantiated and |vi| < n/b+ 2 + 18 log n.

3. vi is partially instantiated and |vi| ≥ n/b+ 2 + 18 log n.

4. vi is partially instantiated and |vi| < n/b+ 2 + 18 log n.

5. vi has not been instantiated.

(O(1) bits).

• For every (partially) instantiated variable with |vi| < n/b+2+18 log n
its current value when the center has just been matched ((b−1)(n/b+
2 + 18 log n) bits).

For recovering the string w try to determine a matching of α and every
wb# · · ·w2#w1 with wi ∈ {0, 1}n/b by backtracking. The matching is based
on the recorded values of the variables, where partially instantiated variables
are extended until the corresponding closing parenthesis is encountered. The
matching starts at the recorded occurrence of # in α. If a variable v is
encountered in α and v is of type 1, 3, 4 or 5 and in the latter two cases the
current matching extends the value to a length at least n/b + 2 + 18 log n,
then the matching fails due to the Non-Matching Lemma. If a variable
occurs that has not been instantiated, the matching fails as well. If for
wb# · · ·w2#w1 a matching has been determined, the string w = w1w2 · · ·wb

has been reconstructed.
The description of w has length (b−1)n/b+O(log n) = n−n/b+O(logn)

leading to a compression for n sufficiently large and thus contradicting the
choice of w. ✷

8

4 Decidability Results

Theorem 7 The Matching-Problem for PRE without closure operators over
a single-letter alphabet is log-complete for NP. The same statement holds for
membership.

Proof. The upper bound is shown as in the proof of Theorem 6.2 in [2],
with the additional possibility of an empty variable.

For hardness we reduce the well-known NP-complete problem 3SAT to
the Matching-Problem. Let F be a boolean formula in CNF with n vari-
ables and m clauses. We introduce a subexpression ui = ((0)|(0)) for every
variable xi with 1 ≤ i ≤ n and a subexpression vj = (\k1j |\k

2
j |\k

3
j) for clause

cj = (y1j ∨ y2j ∨ y3j) with

kpj =
3i− 1 if ypj = xi,

3i if ypj = ¬xi.

Expression α is defined as α = u1 · · · unv1 · · · vm. Finally we let s = 0n+m.
Suppose F has a satisfying assignment. A matching can be obtained

by choosing the first subexpression of ((0)|(0)) for every boolean variable
assigned the value ‘true’ and the second subexpression otherwise. The
v1, . . . , vm are matched by choosing a satisfied literal for every clause, to
which an instantiated variable of the PRE corresponds. Conversely a match-
ing can be otained only if at least one variable of the PRE is instantiated
for every vj , which induces a partial assignment to the boolean variables.
Variables not involved in the matching can be set to an arbitrary value.

Notice that by construction α generates at most the string s = 0n+m,
such that the reduction works for membership as well. ✷

Greibach’s Theorem [8] states that any nontrivial property P of a class
C of formal languages over an alphabet Σ ∪ {#} is undecidable, provided
that the following conditions are satisfied:

1. The languages in C have finite descriptions.

2. C contains every regular language over Σ ∪ {#}.

3. For descriptions of languages L1, L2 ∈ C and regular language R ∈ C,
descriptions of L1R, RL1, and L1 ∪ L2 can be computed effectively.

4. Universality (L = Σ∗?) is undecidable for L ∈ C with L ⊆ Σ∗.

5. P is closed under quotient by each symbol in Σ ∪ {#}.

Let C be the class of languages characterized by PRE. The finite descip-
tions are PRE (Property 1), regular languages are characterized by PRE
without variables (Property 2), PRE can be composed (Property 3) and

9

Freydenberger [5] has shown universality to be undecidable (Property 4).
For quotient (Property 5) we make use of the closure of PRE under inter-
section with regular sets [3]. After forming the intersection with a(Σ∪{#})∗

for a symbol a, for every variable k including the initial a each occurrence
\k is replaced by a\k and then the initial a is removed. Freydenberger’s re-
sults of undecidability of regularity and cofiniteness follow from Greibach’s
Theorem. We can extend this list by context-freeness.

Theorem 8 Inequivalence of PRE without closure operators over a single
letter alphabet is log-complete for ΣP

2 .

Proof. We notice that due to the lack of the closure operator the sets
characterized by the PRE of the considered form are finite and an occurrence
of a variable can at most double the length of the longest string characterized
by an expression. Membership of the inequivalence problem in ΣP

2 can be
shown with an NP-machine M that has access to an oracle that for a PRE
β and a string 0n (where n is encoded in binary) solves the membership
problem. Let α1, α2 be the PRE in the input of M . Machine M guesses a
string 0n in the symmetric difference of the languages defined by α1 and α2,
where n ≤ 2max(|α1|,|α2|), and in turn passes n in binary and α1 resp. α2 to
the oracle. The input is accepted if exactly one of the answers returned by
the oracle is positive.

For ΣP
2 -hardness we describe a log-space reduction from the inequiva-

lence problem for integer expressions denoted by N-INEQ to the inequiva-
lence of PRE. It is known that N-INEQ is log-space complete for ΣP

2 [19,
Theorem 5.2]. Integer expressions are expressions defining sets of nonnega-
tive integers. The binary operations are + (pairwise addition) and ∪ (union),
a singleton set is defined by the corresponding integer in binary notation
without leading zeroes. The problem N-INEQ is defined as follows: Given
two integer expressions γ1, γ2, determine whether they define different sets
of numbers. The reduction will transfom an integer expression γ into a PRE
α such that

n is in the set defined by γ ⇔ 0n ∈ L(α).

Addition of integers corresponds to concatenation of strings and union is an
operation available in PRE. It remains to describe how to concisely encode
a string 0n. The encoding of 1 is the string 0. Suppose u is the encoding
of ⌊n/2⌋. If n is even, then (u′)\1 encodes 0n, if n is even, then (u′)\10
encodes 0n, where u is u with all references incremented by one (because
of the additional pair of parentheses). Clearly the length of the encoding is
O(log n). ✷

The upper bound of the previous theorem can be extended to PRE over
larger alphabets as follows. The separating string is communicated to the
oracle in compressed form as a straight-line program (SLP). An SLP is a

10

context-free grammar that generates exactly one string. Such an SLP can
be generated from a PRE starting with the innermost parentheses. Each
definition of a variable is nondeterminstically converted into a context-free
production with a fresh nonterminal symbol that generates a string described
by the subexpression in parentheses. Then each orrurrence of the variable
is replaced with the non-terminal symbol. When all variables have been re-
placed, the alternatives are eliminated and the resulting string is taken as the
right-hand side of the initial nonterminal. The oracle uses the same method
for encoding a word described by the PRE in its input. Several methods for
comparing SLP-compressed strings are known, see [15, Section 5].

Proposition 1 Inequivalence of PRE without closure operators is in ΣP
2 .

For general PRE over a single letter alphabet we do not have a positive
or negative decidability result for equivalence, but we can provide evidence
that a decision procedure will not be obvious by linking it to Fermat Primes
(primes of the form 22

n

+ 1) [1, Sequence A019434].

Theorem 9 If for PRE over a single letter alphabet equivalence is effec-
tively decidable, we can solve the open problem whether 3, 5, 17, 257 and
65537 are the only prime Fermat numbers.

Proof. The PRE α1 describes all strings of length greater than two except
those with a length of the form 2n + 1 for n ≥ 1:

α1 = ((aa) + a)\1 ∗ a.

Expression α2 describes all nonempty strings having a length with a proper
divisor, thus omitting all primes and one:

α2 = (a+ a)\1 + .

We combine the expressions α1 and α2 with strings of length 3, 5, 17, 257
and 65537 (the known Fermat primes) and add 0, 1, and 2:

α3 = ((aa) + a)\1 ∗ a|(a+ a)\3 + |a0|a1|a2|a3|a5|a17|a257|a65537.

Now α3 is equivalent to a∗ if and only if no additional Fermat prime exists.
✷

5 Discussion

We have established connections between PRE and classical models of com-
putation within NSPACE(log n). The hierarchy of PRE with a growing
number of variables has been strengthened to expressions without nested

11

variables and a fixed alphabet. The NP-hardness result for the Matching-
Problem has been strengthened to a single letter alphabet making use of
uninstantiated variables. It is open whether a similar result is possible un-
der the syntactic restrictions of [13]. The complexity of equivalence of PRE
without star over a single letter alphabet has been characteriized and we
cojecture that equivalence for general PRE over a single letter alphabet is
undecidable.

Acknowledgement

I am very grateful to Jeff Shallit for a correction concerning an earlier version
of this paper.

References

[1] The On-Line Encyclopedia of Integer Sequences. https://oeis.org/
(download August 5, 2014).

[2] A. V. Aho. Algorithms for finding patterns in strings. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science: Vol-
ume A, Algorithms and Complexity, pages 255–300. MIT Press, Cam-
bridge, MA, 1990.

[3] C. Câmpeanu and N. Santean. On the intersection of regex languages
with regular languages. TCS, 410:2336–2344, 2009.

[4] B. Carle and P. Narendran. On extended regular expressions. In Proc.
LATA 2009, number 5457 in Lecture Notes in Computer Science, pages
279–289. Springer, 2009.

[5] D. D. Freydenberger. Extended regular expressions: Succinctness and
decidability. In T. Schwentick and C. Dürr, editors, Proceedings of
the 28th Annual Symposium on Theoretical Aspects of Computer Sci-
ence (STACS11), Leibniz International Proceedings in Informatics,
pages 507–518, Schloss Dagstuhl, 2011. Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany.

[6] M. Fürer. Nicht-elementare untere Schranken in der Automaten-
Theorie. PhD thesis, ETH Zürich, 1978.

[7] M. Geréb-Graus and M. Li. Three one-way heads cannot do string
matching. Journal of Computer and System Sciences, 48:1–8, 1994.

[8] S. Greibach. A note on undecidable properties of formal languages.
Mathematical Systems Theory, 2:1–6, 1968.

12

[9] H. B. Hunt III. The equivalence problem for regular expressions with
intersection is not polynomial in tape. Report TR 73-161, Department
of Computer Science, Cornell University, 1973.

[10] T. Jiang and M. Li. k one-way heads cannot do string-matching. Jour-
nal of Computer and System Sciences, 53:513–524, 1996.

[11] T. Jiang and B. Ravikumar. A note on the space complexity of some
decision problems for finite automata. Information Processing Letters,
40:25–31, 1991.

[12] S. C. Kleene. Representation of events in nerve nets and finite au-
tomata. In C. E. Shannon and J. McCarthy, editors, Automata Studies,
pages 3–41. Princeton University Press, 1956.

[13] K. S. Larsen. Regular expressions with nested levels of back referencing
form a hierarchy. Information Processing Letters, 65:169–172, 1998.

[14] M. Li and P. M. B. Vitányi. Kolmogorov complexity and its applica-
tions. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science: Volume A, Algorithms and Complexity, pages 187–254. MIT
Press, Cambridge, MA, 1990.

[15] M. Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups
Complexity Cryptology, 4:241–299, 2012.

[16] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Proceedings of
the 13th Annual IEEE Symposium on Switching and Automata Theory,
College Park (Maryland), pages 125–129, 1972.

[17] H. Petersen. Decision problems for generalized regular expressions. In
Proceedings of the 2nd International Workshop on Descriptional Com-
plexity of Automata, Grammars and Related Structures, London (On-
tario), pages 22–29, 2000.

[18] J. M. Robson. The emptiness of complement problem for semi extended
regular expressions requires cn space. Information Processing Letters,
9:220–222, 1979.

[19] L. J. Stockmeyer and A. R. Meyer. Word problems requiring expo-
nential time. In Proceedings of the 5th ACM Symposium on Theory of
Computing (STOC’73), Austin (Texas), pages 1–9, 1973.

[20] A. C. Yao and R. L. Rivest. k + 1 heads are better than k. Journal of
the Association for Computing Machinery, 25:337–340, 1978.

13

	1 Introduction
	2 Simulation Results
	3 Hierarchy Results
	4 Decidability Results
	5 Discussion

