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In this paper based on a sort of linear function, a deterministic and 

simple algorithm with an algebraic structure is presented for 

calculating all (and only) k-almost primes (where ∃n∊ℕ, 1 ≤  k ≤ n) in 

certain intervals. A theorem has been proven showing a new 

deterministic property of the category of the k-almost primes. Through 

a linear function that we obtain, an equivalent redefinition of the k-

almost primes with an algebraic characteristic is identified.  Moreover, 

as an outcome of our function’s property some relations which contain 

new information about the k-almost primes (including primes) are 

presented. 

 

 

 

1.  Introduction 
 

    Let at first review a short and general summary regarding importance and huge scientific applications 

of the k-almost primes (in particular primes as their base). Indeed, today there are many applications for 

primes in many scientific fields such as physics, computer science, engineering, security science and 

chemistry, etc. [6-24, 27, 31-33]. 

 

    The Quantum mechanical potential is one of the most central concepts in modern quantum 

deterministic theories. Several studies have shown the relation of algebraic theories, and also primes to 

the quantum  potential [21, 41]. Nowadays, there is interesting speculation that the zeros of the Riemann 

Zeta function are connected to the energy levels of complex quantum systems [34]. Physicists have 

reinterpreted the Riemann Zeta function as a (thermodynamic) partition function by defining an abstract 

numerical 'gas' using the prime numbers [10]; in addition as a result of studying nonlinear dynamics and 

chaos, they also have discovered at least two instances of fractality within the distribution of prime 

numbers [6-8].  

 

     Complexity theory is a field in theoretical computer science, which attempts to quantify the difficulty 

of computational tasks and tends to aim at generality while doing so. "Complexity" is measured by 

various natural computing resources, such as the amount of memory needed, communication bandwidth, 

time of execution, etc.  By analyzing several candidate algorithms for a problem, a most efficient one can 

be easily identified; for the problem of determining the primality of an integer, the resource that could be 

examined, is the time of execution [13]. In addition, there are dozens of algorithms in computer science 

that depend heavily on prime numbers- hashing schemes, sorting schemes, and so on. 

 

     Because of these comprehensive facts regarding importance of primes, it seems that any new research 

and work about them might find remarkable applications in different scientific fields. 
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    The category of k-almost prime numbers is the classified category of both prime and composite 

numbers. A k-almost prime number is a number that has exactly k prime factors, where the factors need 

not be distinct, hence powers of primes are also included [1]. Some recent literatures have proposed 

calling these numbers primes, biprimes, triprimes, and so on [35]. In this paper we prove the following 

theorem as a new algebraic property of the category of k-almost prime numbers (the initial preprints 

relating to this paper have been presented in [36]): 

 

Theorem 1. Suppose 1321 ,,...,,, rr ppppp
  

are given prime numbers where ip  is the i
th

  prime number, 

and let ix and it   are some integer solution of linear equation:
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where i = 2, 3, 4, …, r , then the linear function ),( ir htZ : 
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redefines all k-almost prime numbers (and only k-almost prime numbers) in interval:   
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where t  
is an integer variable: t ℤ, },1,...,4,3,2,1{  ii ph ∃n∊ℕ: 1 ≤  k ≤ n,

 
and r  3,4,5, ...;  

for  r = 1, 2 we may have 

 

                                   
12),(1  thtZ i ,

  
346),( 22  hthtZ i                                      (A-4) 

 

 

(A-4) is obtained from the same way  that formula (A-2) is obtained. We will show that in fact function 

),( ir htZ  defines all integer numbers which are not divisible by rppp ,...,, 21 . ix  in formula (A-2) 

doesn’t have unique values (because equation (A-1) has infinite integer solutions), hence function 

),( ir htZ can be written with different coefficients. Using above algebraic property of function ),( ir htZ , 

it is clear that we may also construct a deterministic algorithm for calculating the k-almost prime numbers 

in interval (A-3) and the next proceeding intervals. In fact because the greatest common divisor of ip and 






1

1

i

k

kp is 1, the linear equation (1) has infinite integer solutions. Equation (1) could be solved not only in 

a polynomial time algorithm, but also in strongly polynomial time algorithm [37, 38]. In addition, (A-3) 

also as a linear inequality could be solved in a polynomial time algorithm [39]. 
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In a particular case when n = 1, function  ),( ir htZ  redefines primes in interval: 
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   In the next section we prove Theorem 1, and then as some outcome of ),( ir htZ property, some 

equalities which contain new information about the k-almost prime numbers (including primes), are 

presented. 

 

 

2.  Proof of Theorem 1 
 

    It follows from the definition of primes that in interval ),[ 1

11





n

r

n

r pp any number that is not divisible by 

any of rppp ,...,, 21  
is a k-almost prime number (where ∃n∊ℕ, 1 ≤  k ≤ n) and vice versa. Let rH

 
be a 

set of natural numbers ℕ that are not divisible by rppp ,...,, 21 ; that is, 

 

 

                 
  rrr ZZH |  and Zr is not divisible by any of rppp ,...,, 21         (1) 

 

Let iE
 
be the set of natural numbers ℕ excluding the set of all multipliers of the i

th
 prime number ip ; we 

define sets )1(21 ,...,, ipiii EEE : 

 

 11 ii mE   11  iii xpm , ix , 
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which it is equivalent to 
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where  .1,...,4,3,2,1  ii ph  From the definitions above it follows that for any set ikE  
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and and any set 
ilE   ( lk  ): 
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where ri ,...,2,1  and 1,...2,1,  iplk . It follows from (1), (3) and (4) that 
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Now the following system of linear equations, obtained from (1), (4) and (6) and taking into account 

relation (5), can define function rZ  in natural numbers: 

 

                                  rrrr hxphxphxphxpZ  ....333222111           (7) 

 

The linear equations in (7) can be re-written as 
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where  1,...,4,3,2,1  ii ph  and ri ,...,2,1 . Before solving (8), let consider a basic general linear 

equation in integer numbers ℤ 

                                                                  cbyax                                   (9) 

 

where x and y are unknown integer values and a, b, and  c are some known integers, and 

GCD ,1),( ba  0,0  ba . With these conditions, equation (9) has infinite number of integer solutions 

(positive and negative) and in general  

 

                                                        btxcx  ˆ ,   atycy  ˆ             (10) 

 

 

where xˆ , yˆ are some given solution of  equation 1 ybxa  (these given solutions always exist) and t  

is a free integer parameter t  ℤ [2, 30]. We solve system of equations (8) step by step. Using formula 

(10) for the first equation in (8) we get  
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                                                     12121122  hhhxpxp ,  

 

 

with the general solution 

 

 

                                         ,ˆ)1( 11222 tpxhx       12121
ˆ)1( tpxhx                  (11) 

 

 

where 1x̂  and 2x̂  are some given solution of equation 11122  xpxp  and 1t  is a free integer parameter. 

Using formulas (11) and the second equation of (8) we get 

 

                                                  1ˆ)1( 311212133  hxphtppxp                       (12) 

 

with the general solution of 

 

                                                 ,ˆ]1ˆ)1([ 221311233 tppxxphhx   

                                                  23111231
ˆ]1ˆ)1([ tptxphht                            (13) 

 

where 3x̂  and 1̂t  are some given solution of 112133  tppxp  and 2t is any integer value. Using (11), 

(13) and the third equation of (8) we obtain 

 

                            ]ˆˆ)1(ˆ)1()1[( 3311212134232144 xpxphtpphhtpppxp               (14) 

 

The general solution of (14) is 
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Continuing this procedure for the proceeding equations, the following general forms of the solutions are 

obtained: 
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where ix̂  and 2
ˆ


it  are some given solution of 

 

                                                         




 
1

1

2 1
i

k

kiii ptxp                         (19) 

 

and 2,...,4,3,2  ij , ri ,...,6,5,4  and supposing 10
ˆˆ xt  . It is clear that the given solutions ix̂  and 

2
ˆ


it  always exist, as equation (19) is a special case of equation (9). Note that in (17) and (18), 1rt  

is a 

final free integer parameter. Using (17) and (18) the value it can be re-written in term of 1rt . Moreover, 

using (16) the variable ix  can be re-written in terms of 1rt  and the general solutions of (19) and ih  and

ip . Thus 1x  can be obtained as: 
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Using (20), (19) and (7), linear function ),( 1 jrr htZ   (as the general functional form of set rH ) can be 

obtained as: 
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Equation (19) and formula (21) are equivalent to formulas (A-1) and (A-2), thus proof of Theorem 1 is 

completed █. 

 

 

3. Some Corollaries and Remarks 
 

Remark 1. ),( ir htZ  algebraically defines all integer numbers which are not  divisible by primes:

rppp ,...,, 21 .  

     

    We just recall that all terms in formula (A-2) are only made up of presupposed prime numbers 

rpppp ,...,,, 321  
(values of ix  are depended on them), and integer variables t and hi. Furthermore, ix  in 

formula (A-2) doesn’t have unique value (because in principle, equation (A-1) has infinite integer 

solutions), hence function ),( ir htZ

 

can be written in different but equivalent forms.  
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Corollary 1. Suppose rqqq ,...,, 21   
are some given co-prime numbers, and let ix and it   are some integer  

solution of linear equation: 
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where i = 2, 3, 4, …, r , then the linear function ),( ir htW : 
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defines all (and only) integer numbers which are not  divisible by co-primes: rqqq ,...,, 21 ; where t  

is an integer variable: t ℤ and }1,...,4,3,2,1{  ii qh  and r  3,4,5, ...; for  r = 1, 2 we have 
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Corollary 2.  Using some theorems such as Bertrand's postulate (that states for every n > 1, there is 

always at least one prime p such that n < p < 2n), the action range of (A-3) can be expanded for larger 

intervals. Here by Bertrand's postulate, it is easy to show that all (and only) k-almost prime numbers 

(where ∃n∊ℕ, 1 ≤  k ≤ n)
 
can be redefined by ),,( ir htZ  in interval ),[ 1
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where  s 1,  ji 1, 2, 3, …, s  and j 1, 2, 3, …, n. 

 

 

Corollary 3.  Comparing function ),( ir htZ

 

with function )(1
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in [40], we get the following 

new relations for prime numbers rpppp ,...,,, 321  ( 1,...,4,3,2  re ), 

∃ rxxx  ,...,, 32  (where ix  is some integer solution of equation (A-1): 
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These relations could be simplified, too. 

 

 

 

Corollary 4. The number of primes in interval ),1( 2

1rp , using function ),( ir htZ . As function ),( ir htZ

is linear, from formula (A-1), the number of the members of set rH  (formula (1)) in intervals ) ,1(
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and so on, is: 
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Now using (27), approximately, the number of primes in interval ),1( 2

1rp is: 
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Remark 2. The values of
 

),( ir htZ . Using formula (A-2) or (25) and (26), we may easily write (in an 

unique way here) the values of function ),( ir htZ  for r  1, 2, 3, 4, 5, ..., in certain forms: 

 

12),(1  thtZ i  

346),( 22  hthtZ i  

1510630),( 233  hhthtZ i  

10570126120210),( 2344  hhhthtZ i  

1155154013863302102310),( 23455  hhhhthtZ i  

150152002060062574016380693030030),( 234566  hhhhhthtZ i  

25525517017030630614586046410157080450450510510),( 2345677  hhhhhhthtZ i

 456788 831402061725303730650912912091891809699690),( hhhhhthtZ i

 
                 

48498453232303879876 23  hh
 

…                                                                                                                                      

                                                                                                                                                 (29) 

                                                                                                                                                             

Recently, some standard integer sequences (sequence A240673 in The On-Line Encyclopedia of Integer 

Sequences® [42]) are constructed based on the coefficients of function ),( ir htZ . 
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