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A PROBLEM OF RANKIN ON SETS WITHOUT GEOMETRIC

PROGRESSIONS

MELVYN B. NATHANSON AND KEVIN O’BRYANT

Abstract. A geometric progression of length k and integer ratio is a set of
numbers of the form {a, ar, . . . , ark−1} for some positive real number a and
integer r ≥ 2. For each integer k ≥ 3, a greedy algorithm is used to construct
a strictly decreasing sequence (ai)

∞

i=1 of positive real numbers with a1 = 1
such that the set

G(k) =
∞⋃

i=1

(a2i, a2i−1]

contains no geometric progression of length k and integer ratio. Moreover,
G(k) is a maximal subset of (0, 1] that contains no geometric progression of
length k and integer ratio. It is also proved that there is a strictly increasing
sequence (Ai)

∞

i=1 of positive integers with A1 = 1 such that ai = 1/Ai for all
i = 1, 2, 3, . . ..

The set G(k) gives a new lower bound for the maximum cardinality of a
subset of the set of integers {1, 2, . . . , n} that contains no geometric progression
of length k and integer ratio.

1. Real and integral geometric progressions

Let R denote the real numbers. For t ∈ R, let R>t denote the set of all real
numbers x > t. Let [x] denote the integer part of the real number x. For real
numbers u < v, we define the intervals

(u, v] = {x ∈ R : u < x ≤ v} and [u, v) = {x ∈ R : u ≤ x < v}.

Let X be a set of positive real numbers, and let u, v ∈ R>0 with u < v. The
dilation of the set X by q ∈ R>0 is the set

q ∗X = {qx : x ∈ X}.

The reciprocal of the set X is the set

X−1 =
{

x−1 : x ∈ X
}

.

For example, q ∗ (u, v] = (qu, qv] and (1/v, 1/u]
−1

= [u, v).
If A = (a0, a1, . . . , ak−1) is a finite sequence of positive real numbers, then the

dilation of the sequence A by q is the sequence q ∗ A = (qa0, qa1, . . . , qak−1) and
the reciprocal of A is the sequence A−1 = (1/a0, 1/a1, . . . , 1/ak−1).

Let N denote the set of positive integers, and let N♯ = N \ {1} denote the set of
all integers r > 1. Let k ∈ N and let r, a ∈ R>0. A geometric progression of length

k and ratio r with first term a is a sequence of the form

(a, ar, ar2, . . . , ark−1) = a ∗ (1, r, r2, . . . , rk−1).
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This is an integer geometric progression of length k if arj ∈ N for all j ∈ {0, 1, . . . , k−
1}. If (a, ar, ar2, . . . , ark−1) is an integer geometric progression, then the ratio r
must be a rational number. For example, (8, 12, 18, 27) is an integer geometric
progression of length 4 with ratio 3/2.

Note that the dilation by a positive real number q of the geometric progression
(a, ar, ar2, . . . , ark−1) of length k, ratio r, and first term a is the geometric progres-
sion (qa, qar, qar2, . . . , qark−1) of length k, ratio r, and first term qa. The reciprocal
of the geometric progression (a, ar, ar2, . . . , ark−1) is the geometric progression
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1

a

(

1

r

)

,
1

a

(

1

r
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, . . . ,
1

a

(

1

r

)k−1
)

of length k, ratio 1/r, and first term 1/a.
The reverse of the sequence (a1, a2, . . . , ak−1, ak) is the sequence (ak, ak−1, . . . , a2, a1).

The reverse of the reciprocal of the geometric progression (a, ar, ar2, . . . , ark−1) is
the geometric progression (b, br, br2, . . . , brk−1), where b = 1/

(

ark−1
)

.
Thus, a set G of real numbers contains no geometric progression of length k if

and only if the dilation q∗G contains no geometric progression of length k for every
positive real number q. Moreover, if a set G contains no geometric progression of
length k, then no subset of G contains a geometric progression of length k. It
follows that if a set G contains no geometric progression of length k, then, for
every positive real number q, the set (q ∗ G) ∩N is a set of positive integers that
contains no geometric progression of length k. Similarly, if G contains no geometric
progression of length k, then the set of G−1 ∩N is a set of positive integers that
contains no geometric progression of length k.

A geometric progression of length k with integer ratio is a geometric progression
of length k with ratio r ∈ N

♯. An integer geometric progression of length k with

integer ratio is a geometric progression of the form (a, ar, ar2, . . . , ark−1) with a ∈ N

and r ∈ N
♯.

For positive integers k and n, let gk(n) denote the cardinality of the largest
subset of the set {1, 2, 3, . . . , n} that contains no integer geometric progression of
length k with integer ratio, and let ĝk(n) denote the cardinality of the largest subset
of the set {1, 2, 3, . . . , n} that contains no integer geometric progression of length k
with rational ratio.

We have g1(n) = ĝ1(n) = 0 for all n ∈ N, and gk(n) = ĝk(n) = n if n < k.
Moreover, ĝ2(n) = 1 for n ≥ 2. We compute g2(n) in the next section. In this
paper we obtain new lower bounds for the function gk(n) for k ≥ 3.

For every integer k ≥ 3, there are four basic unsolved problems:

(1) Determine the cardinality and the structure of the maximal subsets of
{1, 2, . . . , n} that contain no geometric progression of length k with integer
ratio. In particular, what is the maximum cardinality gk(n)?

(2) Determine the cardinality and the structure of the maximal subsets of
{1, 2, . . . , n} that contain no geometric progression of length k with rational
ratio. What is the maximum cardinality ĝk(n)?

(3) Determine the density and structure of maximal infinite sets of positive
integers that contain no geometric progression of length k with integer
ratio. What is the least upper bound of the densities of such sets? Is this
least upper bound achieved?
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(4) Determine the density and structure of maximal infinite sets of positive
integers that contain no geometric progression of length k with rational
ratio. What is the least upper bound of the densities of such sets? Is this
least upper bound achieved?

Very little is known about these problems. The literature consists mostly of lower
bounds for the maximum cardinalities in Problems 1 and 2, and for the densities in
Problems 3 and 4. In this paper we improve the lower bounds in Problem 1. Our
method is to use a greedy algorithm to construct, for every integer k ≥ 3, a unique
maximal subset of the unit interval (0, 1] that contains no geometric progression of
length k with integer ratio, and to use the measure of this set to obtain new lower
bounds for the finite sets considered in Problem 1.

The earliest discussion of sets with no k-term geometric progression is in a paper
of Rankin [6] in 1960 that was concerned with sets of integers containing no k-term
arithmetic progression.

2. Integral geometric progressions of length 2

We can quickly solve the problem of integer geometric progressions of length
2 with integer ratio. Every set {a, b} of positive real numbers with a < b is a
geometric progression of length 2 with ratio r = b/a. In particular, every set {a, b}
of positive integers with a < b is a geometric progression of length 2 with rational
ratio r = b/a. The set {a, b} is an integer geometric progression of length 2 with
integer ratio if and only if a, b ∈ N and a divides b. Thus, a set S of positive
integers contains no 2-term geometric progression if and only if S is primitive in
the sense that no element of S divides another element of S.

The following is a classical result in combinatorial number theory.

Theorem 1. Let g2(n) denote the cardinality of the largest primitive subset of

{1, 2, . . . , n}, that is, the largest subset of {1, 2, . . . , n} that contains no integer

geometric progression of length 2 with integer ratio. Then g2(n) =
[

n+1
2

]

.

Proof. For every positive integer n, the interval

(1) S =
([n

2

]

, n
]

=
{[n

2

]

+ 1,
[n

2

]

+ 2, . . . , n− 1, n
}

is primitive because 2
([

n
2

]

+ 1
)

≥ n+ 1 > n. The cardinality of this set is
[

n+1
2

]

,

and so g2(n) ≥
[

n+1
2

]

.
Let S be any primitive subset of {1, 2, . . . , n}. Each element s ∈ S can be written

uniquely in the form s = 2k(s)a(s), where k(s) is a nonnegative integer and a(s) is
an odd integer in {1, 2, . . . , n}. If a(s1) = a(s2) for integers s1, s2 ∈ S with s1 < s2,
then s1 divides s2. It follows that the cardinality of the primitive set S is at most
the number of odd integers in {1, 2, . . . , n}, and so g2(n) ≤

[

n+1
2

]

. This completes
the proof. �

3. Good set, bad set

Let k be an integer, k ≥ 3. A k-good set is a set of positive real numbers that
contains no geometric progression of length k with integer ratio. For example, the
set

G
(k)
1 =

(

1

2k−1
, 1

]
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is k-good because, if x ∈ G
(k)
1 and r ∈ N

♯, then xrk−1 ≥ x2k−1 > 1 and so

{x, xr, xr2, . . . , xrk−1} is not a subset of G
(k)
1 .

Let G be a k-good subset of (0, 1], and let x ∈ (0, 1] \G. The real number x is
k-bad with respect to G if there exists an integer r ∈ N

♯ such that G∪{x} contains
the k-term geometric progression (x, xr, xr2, . . . , xrk−1). Thus, if x is k-bad with
respect to G, then the set G ∪ {x} is not k-good.

For example, the number 1/2k is k-bad with respect to the k-good set G
(k)
1

because (1/2k, 1/2k−1, 1/2k−2, . . . , 1/2, 1) is a k-term geometric progression with

ratio r = 2 contained in G
(k)
1 ∪ {1/2k}.

The number 3/16 is 3-bad with respect to the 3-good set G
(3)
1 = (1/4, 1] because,

with r = 2,
{

3

16
r,

3

16
r2
}

=

{

3

8
,
3

4

}

⊆

(

1

4
, 1

]

= G
(3)
1

and so the setG
(3)
1 ∪{3/16} contains the 3-term geometric progression (3/16, 3/8, 3/4).

Similarly, 1/10 is 3-bad with respect to G
(3)
1 because, with r = 3,

{

1

10
,
1

10
r,

1

10
r2
}

=

{

1

10
,
3

10
,
9

10

}

⊆ G
(3)
1 ∪

{

1

10

}

.

Note that if G is a k-good subset of (0, 1] and if x ∈ (0, 1] \ G is k-bad with
respect to G, then x is also k-bad with respect to the good set G ∩ (x, 1], because
x < rjx for all r ∈ N

♯ and j ∈ {1, . . . , k − 1}.
The real number x ∈ (0, 1] \ G is k-good with respect to G if x is not k-bad

with respect to G. Thus, x is k-good with respect to G if and only if, for every
r ∈ N

♯, there exists j ∈ {1, 2, . . . , k − 1} such that xrj /∈ G. Because G ⊆ (0, 1]
and xrk−1 /∈ G if r > (1/x)1/(k−1), it follows that x ∈ [0, 1) \ G is k-good with
respect to G if and only if, for every integer r with 2 ≤ r ≤ (1/x)1/(k−1), there
exists j ∈ {1, 2, . . . , k − 1} with xrj /∈ G.

For every k-good set G ⊆ (0, 1], we define

Bad(G) = {x ∈ (0, 1] \G : x is k-bad with respect to G}.

Thus, G ∪ {x} is k-good for all x ∈ (0, 1] \ (G ∪ Bad(G)). If G and G′ are k-good
sets with G ⊆ G′, then Bad(G) ⊆ Bad(G′).

For fixed k, we usually write “good” instead of “k-good” and “bad” instead of
“k-bad.”

4. Construction of a good set of real numbers

Fix the integer k ≥ 3. We shall use a greedy algorithm to construct a large good
set contained in the interval (0, 1]. We begin with some simple observations about
good and bad sets.

Lemma 1. Let k ≥ 3, let 0 < a < 1, and let δk(a) = a(k−1)/(k−2).

(i) For every δ > 0, the interval (0, δ] is not good.

(ii) Every number in the interval (0, a2] is good with respect to the interval (a, 1].
(iii) Let x ∈ (0, 1]. If xrj ∈ (a, 1] for some r ∈ N

♯ and all j ∈ {1, . . . , k − 1},
then x > δk(a).

(iv) If G is a good set with G ⊆ (a, 1], then (0, δk(a)] ∩ Bad(G) = ∅.

Note that 0 < δk(a) < a.
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Proof. (i) We have 0 < 21−kδ < δ. For every x ∈ (0, 21−kδ], we have

0 < x < 2x < · · · < 2k−1x ≤ 2k−121−kδ = δ

and so (0, δ] contains the k-term geometric progression {x, 2x, . . . , 2k−1x}. Thus,
the interval (0, δ] is not good.

(ii) If x ∈ (0, a2], r ∈ N
♯ and xr ∈ (a, 1], then xr > a and r > a/x. It follows

that

xrk−1 ≥ xr2 > x
(a

x

)2

=
a2

x
> 1

and so x is good with respect to (a, 1].
x is bad with respect to (a, 1], then there exists r ∈ N

♯ such that xri ∈ (a, 1]
(iii) If r ∈ N

♯ and

a < rx < · · · < rk−1x ≤ 1

then
a

r
< x ≤

1

rk−1

and so 1/r > a1/(k−2). Therefore,

x >
a

r
> aa1/(k−2) = a(k−1)/(k−2) = δk(a).

(iv) This follows immediately from (iii). �

Lemma 2. Let (ai)
2n
i=1 be a strictly decreasing sequence of positive real numbers

with a1 ≤ 1 such that

Gn =
n
⋃

i=1

(a2i, a2i−1]

is a good set. If x ∈ Bad(Gn), then there exists δ > 0 such that (x−δ, x] ⊆ Bad(Gn).

Proof. We have Gn ⊆ (0, 1]. If x ∈ Bad(Gn), then there exists r ∈ N
♯ such that

xrj ∈ Gn for all j ∈ {1, . . . , k−1}. It follows that, for each j ∈ {1, . . . , k−1}, there
exists ij ∈ {1, . . . , n} such that

xrj ∈ (a2ij , a2ij−1]

or, equivalently,
a2ij
rj

< x ≤
a2ij−1

rj
.

Choose δ > 0 such that
a2ij
rj

< x− δ < x ≤
a2ij−1

rj

for all j ∈ {1, . . . , k − 1}. If y ∈ (x − δ, x], then

a2ij < (x − δ)rj < yrj ≤ xrj ≤ a2ij−1

and so yrj ∈ (a2ij , a2ij−1] ⊆ Gn for all j ∈ {1, . . . , k − 1}. Thus, (x − δ, x] ⊆
Bad(Gn). �

Lemma 3. Let (ai)
2n+1
i=1 be a strictly decreasing sequence of positive real numbers

with a1 ≤ 1 such that

Gn =

n
⋃

i=1

(a2i, a2i−1]
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is a good set, and
n
⋃

i=1

(a2i+1, a2i] ⊆ Bad(Gn).

If x ∈ (a2n+1/2, a2n+1] is good with respect to Gn, then there exists δ > 0 such that

(x− δ, x] ∪Gn is good.

Proof. Let x ∈ (a2n+1/2, a2n+1] be good with respect to Gn. For each r ∈ N
♯ there

exists jr ∈ {1, . . . , k − 1} such that xrjr /∈ Gn. Let r0 be the smallest integer such

that r0 ≥ 2 and xrk−1
0 > a1. Then x > a1/r

k−1
0 , and there exists δ0 > 0 such that

x− δ0 > a1/r
k−1
0 . If y ∈ (x− δ0, x] and r ≥ r0, then

yrk−1 > (x − δ0)r
k−1
0 > a1

and so yrk−1 /∈ Gn.
For each integer r such that 2 ≤ r < r0, we have

a2n+1 < 2x ≤ xrjr ≤ xrk−1 ≤ a1

and so there exists ir ∈ {1, . . . , n} such that

a2ir+1 < xrjr ≤ a2ir .

Equivalently,
a2ir+1

rjr
< x ≤

a2ir
rjr

.

Choose 0 < δ1 < x/2 such that
a2ir+1

rjr
< x− δ1 < x ≤

a2ir
rjr

for all r ∈ N
♯ with r < r0. If y ∈ (x− δ1, x] and r < r0, then

a2ir+1 < (x− δ1)r
jr < yrjr ≤ xrjr ≤ a2ir

and so yrjr /∈ Gn. Let δ = min(δ0, δ1). It follows that if y ∈ (x − δ, x], then y is
good with respect to Gn. This completes the proof. �

Theorem 2. Let k ≥ 3. There exists a unique strictly decreasing sequence (ai)
∞

i=1

of positive real numbers with a1 = 1 such that

G =

∞
⋃

i=1

(a2i, a2i−1]

is a good set, and

Bad(G) =
∞
⋃

i=1

(a2i+1, a2i].

Proof. We construct the sequence (ai)
∞

i=1 by induction.
Let a1 = 1. If x > 21−k, then for all r ∈ N

♯ we have

rk−1x > 2k−121−k = 1

and so (21−k, 1] is a good set. Therefore,

a2 = inf{x ∈ (0, 1] : (x, a1] is good} ≤ 21−k.

We observe that [21−k, 1] is not a good set because, with y = 21−k, we have
{y, y2, . . . , y2k−1} ⊆ [21−k, 1]. Therefore,

a2 =
1

2k−1
∈ Bad(G1)
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where

G1 = (a2, a1] =

(

1

2k−1
, 1

]

.

We define

a3 = inf{x ∈ (0, 1] : (x, a2] ⊆ Bad(G1)}.

It follows from Lemmas 1 and 2 that 0 < δk(a2) ≤ a3 < a2 and a3 /∈ Bad(G1).
Let n ≥ 1, and assume that there is a unique strictly decreasing sequence (ai)

2n+1
i=1

of positive real numbers with a1 = 1 such that

Gn =

n
⋃

i=1

(a2i, a2i−1]

is a good set,
n
⋃

i=1

(a2i+1, a2i] ⊆ Bad(Gn).

and

a2n+1 = inf{x ∈ (0, 1] : (x, a2n] ⊆ Bad(Gn)}.

By Lemma 2, the number a2n+1 is good with respect to Gn. Let

a2n+2 = inf{x ∈ (0, a2n+1] : (x, a2n+1] is good with respect to Gn}.

Let

Gn+1 = Gn ∪ (a2n+2, a2n+1].

Lemmas 1 and 3 imply that 0 < a2n+2 < a2n+1, and that a2n+2 ∈ Bad(Gn+1). We
define

a2n+3 = inf{x ∈ (0, 1] : (x, a2n+2] ⊆ Bad(Gn)}.

This completes the induction. �

Theorem 3. Let (ai)
2n
i=1 be a strictly decreasing sequence of positive real numbers

such that

Gn =

n
⋃

i=1

(a2i, a2i−1]

is a good set, and
n−1
⋃

i=1

(a2i+1, a2i] ⊆ Bad(Gn).

If A1 and A2 are positive integers such that a1 = 1/A1 and a2 = 1/A2, then there

is a strictly increasing sequence (Ai)
2n
i=1 of positive integers such that

ai =
1

Ai

for i = 1, . . . , 2n.

Proof. The proof is by induction on i. Let 2 ≤ i ≤ n and assume that there are
positive integers A1 < · · · < A2i−2 such that aj = 1/Aj for j = 1, . . . , 2i − 2. We
shall prove that there are positive integers A2i−1 and A2i such that a2i−1 = 1/A2i−1

and a2i = 1/A2i.
Consider the good number a2i−1. If h ∈ N and h ≥ (a2i−2 − a2i−1)

−1, then

a2i−1 +
1

h
∈ (a2i−1, a2i−2] ⊆ Bad(Gn)
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and so there exists rh ∈ N
♯ such that, for all j ∈ {1, 2, . . . , k − 1},

(

a2i−1 +
1

h

)

rjh ∈ Gn

and

a2i−1 < a2i−1rh ≤ a2i−1r
j
h <

(

a2i−1 +
1

h

)

rk−1
h ≤ a1.

Therefore,

2 ≤ rh <
a1

a2i−1
.

Because a2i−1 ∈ Gn, there exists jh ∈ {1, 2, . . . , k − 1} such that

a2i−1r
jh
h /∈ Gn.

There are only finitely many choices for rh and jh. By the pigeonhole principle,
there are integers r ∈ N

♯ and j ∈ {1, 2, . . . , k− 1} and there is a strictly increasing
infinite sequence (hℓ)ℓ∈N of positive integers such that

rhℓ
= r and jhℓ

= j

for all ℓ ∈ N. Because a2i−1r
j /∈ Gn and a2i−1 < a2i−1r

j < a1, there is a unique
positive integer t ≤ i such that a2i−1r

j ∈ (a2t−1, a2t−2]. Because (a2i−1 + 1/hℓ) r
j ∈

Gn, it follows that

a2i−1r
j ≤ a2t−2 <

(

a2i−1 +
1

hℓ

)

rj

or, equivalently,
a2t−2

rj
−

1

hℓ
< a2i−1 ≤

a2t−2

rj
.

By the induction hypothesis, there is a positive integer A2h−2 such that a2t−2 =
1/A2t−2. Letting ℓ → ∞, we obtain

a2i−1 =
a2t−2

rj
=

1

rjA2t−2
=

1

A2i−1

with A2i−1 = rjA2t−2.
Next we consider the bad number a2i. There exists r ∈ N

♯ such that a2ir
j ∈ Gn

for all j ∈ {1, 2, . . . , k − 1}. If h ≥ (a2i−1 − a2i)
−1, then

a2i +
1

h
∈ (a2i, a2i−1] ⊆ Gn

and so there exists jh ∈ {1, 2, . . . , k − 1} such that
(

a2i +
1

h

)

rjh /∈ Gn.

By the pigeonhole principle, there is an integer j ∈ {1, 2, . . . , k − 1} and there is a
strictly increasing infinite sequence (hℓ)ℓ∈N of positive integers such that jhℓ

= j
for all ℓ ∈ N. Because a2ir

j ∈ Gn, there is a unique positive integer t ≤ i such that
a2ir

j ∈ (a2t, a2t−1]. Because (a2i + 1/hℓ) r
j /∈ Gn, it follows that, for all ℓ ∈ N, we

have

a2ir
j ≤ a2t−1 <

(

a2i +
1

hℓ

)

rj

or, equivalently,
a2t−1

rj
−

1

hℓ
< a2i ≤

a2t−1

rj
.
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By the induction hypothesis, there is a positive integer A2t−1 such that a2t−1 =
1/A2t−1. Letting ℓ → ∞, we obtain

a2i =
a2t−1

rj
=

1

rjA2t−1
=

1

A2i

with A2i = rjA2t−1. This completes the proof. �

Theorem 4. Let (ai)i∈N be a strictly decreasing infinite sequence of positive real

numbers such that

G =

∞
⋃

i=1

(a2i, a2i−1]

is a good set, and

Bad(G) =

∞
⋃

i=1

(a2i+1, a2i].

If A1 and A2 are positive integers such that a1 = 1/A1 and a2 = 1/A2, then there

is a strictly increasing infinite sequence (Ai)i∈N of positive integers such that

ai =
1

Ai

for all i ∈ N. Moreover,

lim
i→∞

ai = 0.

Proof. Apply Theorem 3 to the good set Gn =
⋃n

i=1(a2i, a2i−1].
Because there is a strict increasing sequence (Ai)

∞

i=1 of positive integers such
that ai = 1/Ai, it follows that

lim
i→∞

ai = lim
i→∞

1

Ai
= 0.

This completes the proof. �

Theorem 5. Let k ≥ 3. There exists a unique strictly increasing sequence
(

A
(k)
i

)∞

i=1

of positive integers with A
(k)
1 = 1 such that

(2) G(k) =

∞
⋃

i=1

(

1

A
(k)
2i

,
1

A
(k)
2i−1

]

is a k-good set and

Bad
(

G(k)
)

=

∞
⋃

i=1

(

1

A
(k)
2i+1

,
1

A
(k)
2i

]

.

Proof. The existence and uniqueness of the sequence
(

A
(k)
i

)∞

i=1
follows immediately

from Theorems 2 and 4. �

Note that

inf G(k) = inf Bad
(

G(k)
)

= 0

because limi→∞ A
(k)
i = ∞.
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We have already proved that A
(k)
2 = 2k−1. We can also determine the integers

A
(k)
3 and A

(k)
4 . The proofs use a simple arithmetic inequality: If k ≥ 3, then

3k−1

2k
=

1

2

(

3

2

)k−1

≥
1

2

(

3

2

)2

=
9

8
> 1

and so 2k < 3k−1. Note that between two consecutive integral powers of 2 there is
at most one integral power of 3.

Theorem 6. If k ≥ 3, then

A
(k)
3 = 2k−1.

Proof. Let G
(k)
1 = (1/2k−1, 1]. If

1

2k
< x ≤

1

2k−1

then
1

2k−1
=

2

2k
< 2x < 22x < · · · < 2k−1x ≤

2k−1

2k−1
= 1

and so {2ix : i = 1, 2, . . . , k − 1} ⊆ G
(k)
1 , that is, x is k-bad with respect to G

(k)
1 .

If x = 1/2k, then 2x = 1/2k−1 /∈ G
(k)
1 . If r ≥ 3, then

rk−1x ≥
3k−1

2k
> 1

and so rk−1x /∈ G
(k)
1 . Therefore, 1/2k is k-good with respect to G

(k)
1 , and A

(k)
3 =

2k. �

Theorem 7. Let k ≥ 3. If there is no integral power of 3 between 2k−1 and 2k,
then

A
(k)
4 = 3k−1.

If there is an integral power of 3 between 2k−1 and 2k, and if ℓ is the positive integer

such that

(3) 2k−1 < 3ℓ < 2k

then 2 ≤ ℓ ≤ k − 2 and

A
(k)
4 = 2k3k−1−ℓ = 3k−1

(

2k

3ℓ

)

.

Inequality (3) is equivalent to 1 < 2k/3ℓ < 2.
For positive integers k, the following are equivalent:

(i) There is an integral power of 3 between 2k−1 and 2k.
(ii) The fractional part of k log3 2 is less than log3 2.

(iii) k is in the set {[ℓ log2 3] + 1 : ℓ = 1, 2, . . .}. Thus, the formula for A
(k)
4

depends on diophantine properties of logarithms.

Proof. We have A
(k)
3 = 1/2k by Theorem 6. Let

1

4k−1
< x ≤

1

2k
.

For r ≥ 4 we have

xrk−1 ≥ x4k−1 >
4k−1

4k−1
= 1
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and so {xri : i = 1, 2, . . . , k − 1} 6⊆ G
(k)
1 .

With r = 2 we have

x2k−1 >
2k−1

4k−1
=

1

2k−1
.

Let j be the smallest integer such that x2j > 1/2k−1. Then j ≤ k − 1. Because
2x ≤ 2/2k = 1/2k−1, it follows that j ≥ 2. If

x2j−1 ≤
1

2k

then

x2j ≤
1

2k−1
< x2j

which is absurd. Therefore,

1

2k
< x2j−1 ≤

1

2k−1

and and so {x2i : i = 1, 2, . . . , k − 1} 6⊆ G
(k)
1 .

The remaining case is the ratio r = 3 and the geometric progression {x3i : i =

1, 2, . . . , k − 1}. If x > 1/3k−1, then x3k−1 > 1 and x is good with respect to G
(k)
1 .

Therefore, A
(k)
4 ≥ 3k−1.

Let x = 1/3k−1. If there exists j ∈ {1, 2, . . . , k − 1} such that

1

2k
< x3j =

3j

3k−1
<

1

2k−1

then
2k−1 < 3k−1−j < 2k.

Thus, if there is no power of 3 between 2k−1 and 2k, then for all i ∈ {1, 2, . . . , k−1},

either x < 3ix < 1/2k or 1/2k−1 < 3ix ≤ 1. Thus, 1/3k−1 is k-bad, and A
(k)
4 =

3k−1.
Suppose that there is a power of 3 between 2k−1 and 2k, and that ℓ is the unique

positive integer that satisfies (3). We observe that k ≥ 4 because there is no power
of 3 between 22 = 4 and 23 = 8, and that 2 ≤ ℓ ≤ k − 2 because 23 < 32 ≤ 3ℓ and
2k−1 < 3ℓ ≤ 3k−2. Let

j = k − 1− ℓ.

Then 1 ≤ j ≤ k − 3. For k ≥ 4 we have
(

4

3

)k−1

≥

(

4

3

)3

> 2

and so
(

2

3

)k−1

>
1

2k−2
.

Let

x0 =
1

2k3j
=

3ℓ

2k3k−1
>

2k−1

2k3k−1
=

1

2k

(

2

3

)k−1

>
1

4k−1
.

If

x0 < x ≤
1

3k−1

then
1

2k
= x03

j < x3j ≤
3j

3k−1
=

1

3ℓ
<

1

2k−1
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and so x is good with respect to G
(k)
1 .

It remains only to prove that x0 is bad. If 1 ≤ i ≤ j, then

x0 < x03
i ≤ x03

j =
1

2k
.

If j + 1 ≤ i ≤ k − 1, then

1

2k−1
<

3

2k
= 3j+1x0 ≤ 3ix0 ≤ 3k−1x0 =

3ℓ

2k
< 1.

Thus, x0 = 1/(2k3j) is bad and A
(k)
4 = 2k3j. This completes the proof. �

5. Integer sequences with no k-term geometric progression

If a and b are real numbers with a ≤ b, then the number of integers in the interval
(a, b] is b− a+ θ with |θ| < 1.

Recall that, for positive integers k and n, the arithmetic function gk(n) denotes
the cardinality of the largest subset of the set {1, 2, 3, . . . , n} that contains no integer
geometric progression of length k with integer ratio.

Theorem 8. Let k ≥ 3, and let
(

A
(k)
i

)∞

i=1
be the strictly increasing sequence of

positive integers constructed in Theorem 5. Then

γk = lim inf
n→∞

gk(n)

n
≥

∞
∑

i=1

(

1

A
(k)
2i−1

−
1

A
(k)
2i

)

.

In particular,

γk ≥ 1−
1

2k
−

1

3k
.

Proof. For every positive integer h, the set

G
(k)
h =

h
⋃

i=1

(

1

A
(k)
2i

,
1

A
(k)
2i−1

]

is a k-good subset of (0, 1]. For every positive integer n, the dilated set

n ∗G
(k)
h = n ∗

h
⋃

i=1

(

1

A2i
,

1

A2i−1

]

=
h
⋃

i=1

(

n

A2i
,

n

A2i−1

]

is a disjoint union of intervals, and so

∣

∣

∣
(n ∗G

(k)
h ) ∩N

∣

∣

∣
=

h
∑

i=1

∣

∣

∣

∣

(

n

A2i
,

n

A2i−1

]

∩N

∣

∣

∣

∣

= n

h
∑

i=1

(

1

A2i−1
−

1

A2i

)

+ θh

with |θh| < h. Because the dilation of a k-good set is k-good, and a subset of

a k-good set is k-good, it follows that (n ∗ G
(k)
h ) ∩ N is a k-good set of positive

integers. Moreover, A1 = 1 implies that (n ∗G
(k)
h ) ∩N is a subset of {1, 2, . . . , n}.

Therefore,
∣

∣

∣
(n ∗G

(k)
h ) ∩N

∣

∣

∣
≤ gk(n)
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and so

(4)
h
∑

i=1

(

1

A2i−1
−

1

A2i

)

= lim
n→∞

∣

∣

∣
(n ∗G

(k)
h ) ∩N

∣

∣

∣

n
≤ lim inf

n→∞

gk(n)

n
.

This inequality holds for all h ∈ N, and so

∞
∑

i=1

(

1

A2i−1
−

1

A2i

)

≤ lim inf
n→∞

gk(n)

n
= γk.

Applying inequality (4) with h = 2 and the values for A
(k)
3 and A

(k)
4 computed in

Theorems 6 and 7, we obtain

γk ≥

(

1−
1

2k−1

)

+

(

1

2k
−

1

3k

)

= 1−
1

2k
−

1

3k
.

This completes the proof. �

It is a finite calculation to determine explicit values of the integers A
(k)
i for

small values of i and k. Table 1 contains all values of A
(k)
i for 3 ≤ k ≤ 9 with

A
(k)
i < 106. Applying inequality (4) in Theorem 8, we can use these values to

get lower bounds for γk that improve results obtained previously by Rankin [6] and
Riddell [7]. For k = 3, McNew [3] has the current best lower bound. Related results
have been obtained by Brown and Gordon [2], Beiglböck, Bergelson, Hindman, and
Strauss [1], and Nathanson and O’Bryant [4, 5].

The following table records upper and lower bounds for γk.

Lower bounds on γk Upper bounds on γk
k Rankin Riddell This paper McNew k McNew From rk Riddell

3 0.719 745 0.815 870 0.818 410 3 0.819222 0.846 376 0.857 143
4 0.862 601 0.895 283 0.919 818 4 0.928 874 0.933 334
5 0.931 652 0.958 056 0.963 737 5 0.967 742 0.967 742
6 0.966 324 0.980 371 0.982 877 6 0.983 871 0.984 126
7 0.983 438 0.991 159 0.991 805 7 0.992 126
8 0.991 841 0.995 717 0.995 913 8 0.996 079
9 0.995 969 0.997 939 0.998 012 9 0.998 044
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[1] M. Beiglböck, V. Bergelson, N. Hindman, and D. Strauss, Multiplicative structures in addi-

tively large sets, J. Combin. Theory Ser. A 113 (2006), no. 7, 1219–1242.
[2] B. E. Brown and D. M. Gordon, On sequences without geometric progressions, Math. Comp.

65 (1996), no. 216, 1749–1754.
[3] N. McNew, On sets of integers which contain no three terms in geometric progression, arXiv:

1310.2277, 2013.
[4] M. B. Nathanson and K. O’Bryant, On sequences without geometric progressions, Integers 13

(2013), #A73, 1–5.
[5] , Irrational numbers associated to sequences without geometric progressions, Integers

14 (2014).

[6] R. A. Rankin, Sets of integers containing not more than a given number of terms in arith-

metical progression, Proc. Roy. Soc. Edinburgh Sect. A 65 (1960/1961), 332–344 (1960/61).
[7] J. Riddell, Sets of integers containing no n terms in geometric progression, Glasgow Math. J.

10 (1969), 137–146.



14 MELVYN B. NATHANSON AND KEVIN O’BRYANT

k
i 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1
2 4 8 16 32 64 128 256
3 8 16 32 64 128 256 512
4 9 48 96 243 1152 2304 6561
5 12 200 144 288 1728 3456 6912
6 24 216 576 576 8192 16384 13824
7 27 288 4032 729 28800 32768 19683

8 32 1200 4096 1152 172800 163840 131072
9 36 1296 4608 2048 248832 288000 221184
10 40 1400 32256 3645 307328 331776 492075
11 45 1512 32768 4000 395136 497664 655360
12 48 1600 36288 10240 884736
13 2208 1728 36864 20736 995328
14 2209 1800 40320 21952
15 2256 1944 40960 92160
16 8832 2000 41472 100000
17 8836 62400 129600 102400
18 9024 63936 131072 207360
19 17664 73800 147456 219520
20 17672 74088 157216 518400
21 18048 75600 166464 548800
22 19872 79704 921600
23 19881 80688
24 20304 81648
25 26496 88000
26 26508 499200
27 27072 511488
28 52992 590400
29 53016 592704
30 54144 604800
31 59616 637632
32 59643 645504
33 60912 653184
34 70656 704000
35 70688 998400
36 72192
37 79488
38 79524
39 81216
40 88320
41 88360
42 90240
43 99360
44 99405
45 101520
46 103776
47 103823
48 105984
49 106032
50 108192
51 108241
52 108288

Table 1. For 3 ≤ k ≤ 9, the table contains all integers A
(k)
i

satisfying Theorem 5 that are less than 106. These numbers are
sequences A235054-60 in the OEIS.
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