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LIE AND JORDAN PRODUCTS IN INTERCHANGE ALGEBRAS

MURRAY BREMNER AND SARA MADARIAGA

ABSTRACT. We study Lie brackets and Jordan products derived from associative opera-

tions ◦,• satisfying the interchange identity (w •x)◦(y •z) ≡ (w ◦y)•(x ◦z). We use com-

putational linear algebra, based on the representation theory of the symmetric group,

to determine all polynomial identities of degree ≤ 7 relating (i) the two Lie brackets,

(ii) one Lie bracket and one Jordan product, and (iii) the two Jordan products. For the

Lie-Lie case, there are two new identities in degree 6 and another two in degree 7. For

the Lie-Jordan case, there are no new identities in degree ≤ 6 and a complex set of new

identities in degree 7. For the Jordan-Jordan case, there is one new identity in degree 4,

two in degree 5, and complex sets of new identities in degrees 6 and 7.

1. INTRODUCTION

Associative, Lie, and Jordan algebras. An associative algebra is a vector space A over

a field F with a bilinear product A × A → A denoted (a,b) 7→ ab satisfying associativ-

ity (ab)c ≡ a(bc) where the symbol ≡ means that the equation holds for all values of

the indeterminates a,b,c. If we replace the associative product ab by the Lie bracket

[a,b] = ab − ba, or the Jordan product {a,b} = ab + ba, then we obtain a Lie alge-

bra A−, or a (special) Jordan algebra A+. Every polynomial identity satisfied by the

Lie bracket in every associative algebra follows from anticommutativity and the Jacobi

identity [a, [b,c]]+[b, [c, a]]+[c, [a,b]] ≡ 0. However, there are ‘special’ identities, occur-

ring first in degree 8, satisfied by the Jordan product in every associative algebra which

do not follow from commutativity and the Jordan identity {a, {b, {a, a}}} ≡ {{a,b}, {a, a}}.

Two associative products. Loday [31] describes of a number of algebraic structures

with two associative products ◦, • related by various polynomial identities:

(1) 2-associative algebras, in which the products satisfy no identities other than as-

sociativity; in this paper we use the name AA algebras.

(2) Dual 2-associative algebras, which satisfy these identities:

a ◦ (b •c) ≡ 0, a • (b ◦c) ≡ 0, (a ◦b)•c ≡ 0, (a •b)◦c ≡ 0.

(3) Duplicial algebras (or L-algebras), which satisfy (a ◦b)•c ≡ a ◦ (b •c).

(4) Dual duplicial algebras, which satisfy these identities:

a ◦ (b •c) ≡ (a ◦b)•c, a • (b ◦c) ≡ 0, (a •b)◦c ≡ 0.

(5) As(2)-algebras, which satisfy (a ∗b)∗′ c ≡ a ∗ (b ∗′ c) for all ∗,∗′ ∈ {◦,•}; the cor-

responding nonsymmetric operad is self-dual.
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(6) 2-compatible algebras (or As[2]-algebras) in which any linear combination of

the products is associative; this condition is equivalent to this identity:

a ◦ (b •c)+a • (b ◦c) ≡ (a ◦b)•c + (a •b)◦c.

(7) Dual 2-compatible algebras, which satisfy the identities of items (5) and (6).

(8) Diassociative algebras (or associative dialgebras), which satisfy the identity of

duplicial algebras (3) together with

a • (b ◦c) ≡ a • (b •c), (a ◦b)◦c ≡ (a •b)◦c.

The nonsymmetric operad dual to the operad for diassociative algebras corre-

sponds to dendriform algebras which do not have associative products.

(9) Associative interchange algebras (see Definition 1.1 below) which are the main

topic of this paper. The corresponding symmetric operad is generated by two

binary operations which satisfy two quadratic relations (associativity) and one

cubic relation (the interchange identity).

Diassociative algebras, which arise as universal enveloping algebras of Leibniz algebras,

have been studied by many authors; see Loday [20]. Otherwise, little work has been

done on these structures: for 2-compatible algebras, see Dotsenko et al. [12, 25, 28, 29];

for duplicial algebras, see Bokut et al. [1, 19].

Interchange identity. The interchange identity has its origin in category theory and

algebraic topology, related to the characterization of natural transformations; see Mac

Lane [22, §XII.3]. It plays a crucial role in the proof that the higher homotopy groups of

a topological space are abelian, through the Eckmann-Hilton argument [13].

Definition 1.1. Loday and Vallette, [21, §13.10.4]. Let ◦,• be binary operations on a set.

The following multilinear polynomial identity is called the interchange identity:

(⊞) (a ◦b)• (c ◦d) ≡ (a •c)◦ (b •d).

An interchange algebra is a vector space with bilinear operations ◦,• satisfying the in-

terchange identity. An associative interchange algebra is an interchange algebra in

which the operations are associative.

If we regard ◦ and • as horizontal and vertical compositions respectively, then (⊞)

expresses the equivalence of two decompositions of a 2×2 array:

(a ◦b)• (c ◦d) ≡

a b

c d
≡

a b

c d
≡

a b

c d
≡ (a •c)◦ (b •d).

Kock [18] found that associativity of the products in combination with the interchange

identity produces unexpected commutativity phenomena in higher degrees: in degree

16, he gave an example of two equal monomials that have the same placement of paren-

theses and choice of operations but different permutations of the variables. The present

authors [4] recently used computer algebra to prove that 9 is the lowest degree in which

such commutativity phenomena appear. For related work, see DeWolf et al. [11, 14, 26].

Polarization and depolarization. A bilinear operation a ∗b without symmetry (that is,

neither commutative nor anti-commutative) can be polarized: decomposed into the

sum of commutative and anti-commutative products {a,b} and [−,−]:

(1) {a,b} = a ∗b +b ∗a, [a,b] = a ∗b −b ∗a.
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The process can be reversed: depolarization combines commutative and anti-com-

mutative products to produce a new operation without symmetry:

(2) a ∗b =
1
2

(
{a,b}+ [a,b]

)
.

This change of perspective allows us to study products without symmetry in terms of

products with symmetry. In particular, an associative operation can be decomposed

into the corresponding Lie bracket and Jordan product. Associativity of the original op-

eration is equivalent to the following identities relating the polarized products:

[a, {b,c}] ≡ {[a,b],c}+ {b, [a,c]}, [b, [a,c]] ≡ {{a,b},c}− {a, {b,c}}.

These identities state that the Lie bracket is a derivation of the Jordan product, and that

the (permuted) Lie triple product is the Jordan associator. For further examples of po-

larization and depolarization, see Markl and Remm [24].

Two associative products produce two Lie brackets and two Jordan products. Hence

we can study algebras with two associative products by finding the polynomial identities

relating these Lie and Jordan structures. To go beyond the classical theory of Lie and

Jordan algebras, we consider two Lie brackets, or two Jordan products, or one of each.

Outline of the paper. We study multilinear polynomial identities relating the Lie and

Jordan products obtained from polarization of the associative products in the free in-

terchange algebra. Our main computational tools are the Maple packages for rational

and modular linear algebra: LinearAlgebra and LinearAlgebra[Modular]. Our main the-

oretical tool is the representation theory of the symmetric group.

Section 2 recalls basic definitions and constructions related to free associative and

nonassociative algebras, introduces the notion of the expansion map which allows us

to express polynomial identities as the kernel of a linear transformation, and summa-

rizes what we require from the representation theory of the symmetric group. In partic-

ular, we call a homogeneous polynomial identity of degree n irreducible if its complete

linearization generates a simple Sn-module.

Section 3 considers one Lie bracket and one Jordan product. There are no new iden-

tities in degrees ≤ 6: all such identities follow from anticommutativity and the Jacobi

identity for the Lie bracket, and commutativity and the Jordan identity for the Jordan

product. There are 20 new irreducible identities in degree 7; we present explicitly the

smallest 14 of these identities in a compact nonlinear form.

Section 4 considers two Lie brackets. There are no new identities in degrees ≤ 5, but

there are two new irreducible identities in degree 6, and another two new irreducible

identities in degree 7. We present all these identities explicitly.

Sections 5 considers two Jordan products. There is a new irreducible identity in de-

gree 4 which is a Jordan analogue of the interchange identity, two new irreducible iden-

tities in degree 5, and 14 new irreducible identities in degree 6. We present all these

identities explicitly in a compact nonlinear form. There are 94 new irreducible identi-

ties in degree 7; we present explicitly the smallest 7 of these.

Section 6 contains further details of computational methods used to obtain the re-

sults on polynomial identities in degree 7 for two Jordan products.

Remark. The results are quite different in the three cases. For two Lie brackets, the

identities are simple enough to fit easily into the space restrictions of a journal article.

For one Lie bracket and one Jordan product, most but not all of the identities are simple

enough to be publishable. For two Jordan products, only a few of the identities in degree

7 are simple enough to be publishable, even in a compact nonlinear form. The identities
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that we discovered in the Lie-Jordan and Jordan-Jordan cases, including those which do

not appear explicitly in this paper, are available in ancillary files to the arXiv version; see

[3] for details.

Open problem. The question we address in this paper can equally well be asked of any

class of two-associative algebras. In particular, it would be of interest to determine the

polynomial identities of degree ≤ 7 satisfied by the Lie brackets and Jordan products in

the free algebras in the above-mentioned classes (1)–(8).

Base field. Unless otherwise noted, the base field F has characteristic 0. In particular,

this implies that the group algebra FSn of the symmetric group Sn (the left regular mod-

ule) is semisimple for all n ≥ 1, and that every homogeneous polynomial identity of

degree n is equivalent to a finite set of multilinear identities [30, Ch. 1].

2. PRELIMINARIES

Free Ω-algebras. Let X = {x1, x2, . . . , xn , . . . } be a countable set of indeterminates, and

let Ω = {ω1,ω2, . . . ,ωn , . . . } be a countable set of operation symbols together with an ar-

ity function α : Ω→ N = {1,2, . . . ,n, . . . } indicating that ωi represents an operation with

αi =α(ωi ) arguments. We write Ω(X ) for the set of monomials generated by X using the

operation Ω; thus Ω(X ) is defined inductively by the conditions:

(1) X ⊂Ω(X ).

(2) If ωi ∈Ω and m1, . . . ,mαi
∈Ω(X ) then ωi (m1, . . . ,mαi

) ∈Ω(X ).

Clearly Ω(X ) is closed under the operations in Ω.

We write F{Ω, X } for the vector space over F with basis Ω(X ); if the operations are

defined on basis monomials as in Ω(X ) and extended bilinearly then this is the free Ω-

algebra generated by X . By an Ω-algebra over F we mean a vector space A endowed with

multilinear operations ωi : Aαi → A for each ωi ∈Ω of arity αi ∈N; using ωi for both the

operation symbol and the multilinear operation should not cause confusion. If A is an

Ω-algebra over F then an element f ∈ F{Ω, X } is called a polynomial identity satisfied by

A if any substitution of elements of A for the indeterminates in f produces 0 when f is

evaluated by substituting the multilinear operations in A for the corresponding opera-

tion symbols in f . We write f (x1, . . . , xn ) ≡ 0 to indicate that the equation holds for all

substitutions x1 = a1, . . . , xn = an of values a1, . . . , an ∈ A.

Each term of a polynomial f ∈ F{Ω, X } consists of a coefficient and a monomial, and

each monomial consists of an association type, which is a valid placement of operation

symbols, together with an underlying sequence of indeterminates. Since F has character-

istic 0, every polynomial identity is equivalent to a finite set of (homogeneous) multilin-

ear identities. A multilinear identity has a degree n such that each monomial contains

each of the n indeterminates exactly once: the underlying sequence is a permutation of

x1, . . . , xn . We collect the terms of f by their association types: if f has t different types,

then f = f (1) +·· ·+ f (t ) where f (i) includes the terms with association type i . Each f (i)

may be identified with an element of the group algebra FSn since the monomials in f (i)

differ only by a permutation of x1, . . . , xn .

We thus restrict our attention to multilinear identities, except when nonlinear (but

still homogeneous) identities allow us to write multilinear identities more compactly.

For a fixed degree n, we assume X = {x1, . . . , xn }; then the symmetric group Sn acts on

multilinear polynomials by ignoring the association types and permuting the subscripts

(not the positions) of the indeterminates in each monomial:

(3) (σ · f )(x1, . . . , xn )= f (xσ(1), . . . , xσ(n)).
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This allows us to apply the representation theory of the symmetric group to the study of

polynomial identities; for a detailed survey of this topic, see [5].

Free 2-associative algebras. We will be concerned throughout with two bilinear asso-

ciative products, Ω = {◦,•}. The association types for these products can be identified

with the elements of Ω(X ) where X = {x} has one element which we use as a placeholder

for an argument to the operations. The elements of Ω(X ) are called AA types; the num-

ber of AA types with n operations (corresponding to monomials of degree n+1) is the

large Schröder number, which is known to have this formula:

(4) aa(n) =
1

n

n∑

k=1

2k

(
n

k

)(
n

k−1

)
.

See sequence A006318 in the OEIS: 1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, . . . .

Our normal form for AA types is obtained by inserting parentheses around every op-

eration and re-associating to the right where possible: (−◦−) ◦− becomes −◦ (−◦−),

and similarly for •. We need this convention to guarantee unique factorization in the

presence of associativity. Since operation ◦ is associative (and similarly for •), we clearly

have the non-unique factorization (a ◦b) ◦ c = a ◦ (b ◦ c). However, our convention ex-

cludes (a ◦b)◦c and rewrites this monomial as a ◦ (b ◦c).

Every normal AA form t in degree n has the unique factorization t = t1 ∗ t2 into the

product of normal forms t1, t2 of degrees < n where ∗∈ {◦,•}. We assume that ◦ ≺ •, and

define the deglex total order on AA types as follows: We say t ≺ t ′ if and only if either

(1) deg(t)< deg(t ′), or

(2) deg(t)= deg(t ′) and either

(a) t1 ≺ t ′1 or (b) t1 = t ′1 and ∗≺∗′ or (c) t1 = t ′1 and ∗=∗′ and t2 ≺ t ′2.

Since the associative operations ◦,• have no symmetry, a multilinear AA monomial in

degree n is uniquely determined by an AA type and a permutation of the indeterminates

x1, . . . , xn . We order these multilinear AA monomials first by AA type then by lex order

of the underlying permutation of the indeterminates. Hence dimAA(n) = aa(n−1) n!

where AA(n) is the Sn-module in the AA operad: the multilinear subspace in degree n of

the free AA algebra on n generators.

A multilinear polynomial identity f (x1, . . . , xn ) ≡ 0 of degree n has n+2 consequences

in degree n+1 for each operation ∗ ∈ {◦,•}, obtained by substituting the operation into

the n arguments of f and substituting f into the two arguments of the operation:

(5)

{
f (x1 ∗ xn+1, . . . , xn ), . . . , f (x1, . . . , xi ∗ xn+1, . . . , xn ), . . . , f (x1, . . . , xn ∗ xn+1),

f (x1, . . . , xi , . . . , xn )∗ xn+1, xn+1 ∗ f (x1, . . . , xi , . . . , xn ).

The monomials in these consequences may not be in AA normal form, and hence may

require rewriting. Iteration produces consequences of f in all higher degrees.

Every consequence of the interchange identity (⊞) in all degrees can be written as

a difference of multilinear monomials ι(t)−π(t ′) where ι(t) has type t and the identity

permutation of the indeterminates, and π(t ′) has type t ′ and permutation π. This allows

us to reduce significantly the number of consequences in higher degrees. We write II(n)

for the Sn-submodule of AA(n) generated by the consequences of (⊞). The quotient

module AA(n)/I I(n) is the Sn-module in the associative interchange operad.

Symmetric and skew-symmetric products. We use the terms LJ types (for one commu-

tative and one anti-commutative operation), LL types (for two anti-commutative oper-

ations), JJ types (for two commutative operations). In every degree n the number l j (n)
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of LJ/LL/JJ types is the same, and is sequence A226909 in the OEIS: 1, 2, 4, 14, 44, 164,

616, 2450, 9908, 41116, 173144, . . . . In a general discussion we use LJ types.

We identify the LJ types with the elements of the subset LJ ⊂Ω(X ) defined as follows

where X = {x} and Ω= {∗1,∗2} contains two (anti-)commutative operations:

(1) x ∈ LJ, and

(2) if v, w ∈ LJ with v ¹ w then v ∗1 w ∈ LJ and v ∗2 w ∈ LJ where we use the deglex

total order analogous to that on AA types with ∗1 ≺∗2.

We write LJ(n) for the Sn-module in the LJ operad. We have dimLJ(n) < l j (n) n! for n ≥ 2

since the (skew-)symmetries of the operations imply that two monomials with the same

LJ type but different permutations of the indeterminates can be equal up to a sign.

For anyΩ-algebra, the vector space consisting of all multilinear polynomial identities

of degree n satisfied by a given algebra (or given operations) is an Sn-module, which we

call the module of all identities. Some of these multilinear identities in degree n are

consequences of those of lower degree, and hence do not provide any information; we

call this the submodule of old identities. In each degree n, we are interested only in

the identities which cannot be expressed in terms of known identities of lower degree.

These new identities are elements of the quotient module of all by old identities.

For an algebra with two (skew-)symmetric products, a multilinear identity in degree

n generates only n+1 consequences in degree n+1 for each product, since the last two

consequences in (5) are equal up to a sign. In what follows, this process begins with the

Jacobi and Jordan identities satisfied by the Lie and Jordan products.

Expansion map. The expansion map En : LJ(n) →AA(n) is defined on basis monomials

by replacing each of the (skew-)symmetric product symbols in the LJ monomials by the

Lie bracket or Jordan product for the corresponding associative operation. We write

Ẽn =π◦En for the composition of the expansion map with the natural surjection π:

(6) Ẽn : LJ(n)
En

−−−−−→ AA(n)
π

−−−−→AA(n)/I I(n).

The multilinear identities in degree n satisfied by the (skew-)symmetric products in

the free associative interchange algebra are the nonzero elements of the kernel of Ẽn .

Clearly Ẽn is an Sn-module morphism; we denote its kernel by All(n).

We compute a basis for All(n) as follows. Given ordered monomial bases of AA(n)

and LJ(n), we construct a block matrix called the expansion matrix:

(7) Bn =

[
Ξ O

X I

]

The entries of the expansion matrix are determined as follows:

• The rows of X contain the (coefficient vectors of the) expansions of the LJ mono-

mials into the free AA algebra so that rowspace(X ) = image(En).

• The rows of Ξ contain the consequences of (⊞) so that rowspace(Ξ) = I I(n).

• O and I are zero and identity matrices of the appropriate sizes.

We compute RCF(Bn) and identify the lower right block Kn consisting of the nonzero

rows whose leading 1s occur in columns j > dimAA(n); we have rowspace(Kn) = All(n).

The consequences in degree n of the known LJ identities of degree < n generate a sub-

module Old(n) ⊆ All(n); the new identities are New(n) = All(n)/Old(n).

The entries of Bn belong to the set {0,±1}. We prefer to compute the RCF over Q,

but this can be difficult if the matrix is large. We often work over a finite field Fp where

p > n; this guarantees that every finite-dimensional Sn-module is completely reducible
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and hence the structure constants {0,±1} of the group algebra are formally the same as

in characteristic 0 if we use symmetric representatives modulo p.

If the matrix is small enough, we can compute over Z. We find the Hermite normal

form (HNF) instead of the RCF and identify the lower right block as before. We then

apply the LLL algorithm for lattice basis reduction to compute a short integer basis for

All(n), where ‘short’ refers to the Euclidean lengths of the rows; see [6] for details.

Representation theory. As the degree of the identities increases, the numbers of AA and

LJ monomials grow exponentially, and hence so does the matrix Bn of equation (7). The

representation theory of Sn allows us to replace Bn with significantly smaller matrices.

The application of representation theory to the study of polynomial identities was

initiated independently by Malcev [23] and Specht [27] in 1950. The computational im-

plementation of these methods was pioneered by Hentzel [15, 16, 17] in the 1970s. Im-

portant contributions were made by Clifton [10] and Bondari [2]. For summaries of the

theory with applications to polynomial identities, see [8, 9].

We recall the decomposition of the group algebra FSn into a direct sum of simple

two-sided ideals isomorphic to full matrix algebras. The sum is over all partitions λ of

n, and d(λ) is the number of standard tableaux for the Young diagram of λ:

(8) R : FSn −→
⊕

λ

Md(λ)(F).

Using representation theory we consider the partitions λ one at a time. To compute

the projections Rλ we used our own Maple implementation of Clifton’s algorithm [10].

Theoretical and algorithmic details on computing the projections Rλ : FSn ։ Md(λ)(F)

and the inverse inclusions Md(λ)(F) ,→ FSn are given in [5].

We write a multilinear polynomial f ∈ LJ(n) as the sum of l j (n) components corre-

sponding to the LJ types; in each component, the terms differ only by the permutation

of the indeterminates. Hence f is an element of the direct sum of l j (n) copies of FSn .

We fix a partition λ; to each component of f we apply the surjective map Rλ whose

image is the corresponding matrix algebra in (8). We combine horizontally the l j (n)

matrices of size d(λ)×d(λ) to obtain a matrix Rλ( f ) of size d(λ)× l j (n)d(λ): this is the

representation matrix of f for partition λ. Each row of RCF(Rλ( f )) generates a submod-

ule of (FSn)l j (n) isomorphic to [λ], the irreducible Sn-module for partition λ. Hence

rank Rλ( f ) is the multiplicity of [λ] in the submodule of (FSn)l j (n) generated by f . In

this way we compute generating sets for Allλ(n), Oldλ(n), Newλ(n): these are the iso-

typic components for λ of the Sn-modules All(n), Old(n), New(n).

Once we have identified the partitions which have new identities (Newλ(n) 6= {0})

we use nonlinear monomials to find compact forms of the identities. For the partition

n = n1 + ·· · +nk where n ≥ n1 ≥ ·· · ≥ 1, we take ni copies of the indeterminate ai for

1 ≤ i ≤ k. The number of permutations of the indeterminates is no longer n! but the

much smaller multinomial coefficient
( n

n1,...,nk

)
. If the partition has a tail of length t ≥ 2,

meaning nk+1−i = 1 for 1 ≤ i ≤ t , then representation theory allows us to assume that

every identity f is an alternating function of the last t indeterminates.

The following sections, and in particular section 6, give further explanation of the

application of representation theory to polynomial identities
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3. LIE BRACKET AND JORDAN PRODUCT

In this section we study the multilinear identities relating the Lie bracket of the hori-

zontal operation ◦ and the Jordan product of the vertical operation •:

(9) [a,b] = a ◦b −b ◦a, {a,b} = a •b +b •a.

Proposition 3.1. Every multilinear identity in degree ≤ 6 satisfied by the Lie bracket and

Jordan product (9) in the free associative interchange algebra is a consequence of anti-

commutativity and the Jacobi identity for the Lie bracket [a,b] and commutativity and

the (linearized) Jordan identity for the Jordan product {a,b}.

Proof. It suffices to prove that there are no new identities in degree 6, since existence of

new identities in degree n implies existence in degree n+1. In degree 6, there are 394

AA types and 98 normalized consequences of the interchange identity; there are 164

LJ types and 810 consequences of the Jacobi and Jordan identities. For every partition

λ of 6 we construct the expansion matrix (7), compute its RCF, and extract the lower

right block whose row space is the isotypic component for representation [λ] of the S6-

module of multilinear identities relating the LJ monomials. We also construct the matrix

representing the consequences of the Jacobi and Jordan identities for partition λ, and

compute its RCF. We find that for every partition λ of 6, the two RCFs are equal. �

Lemma 3.2. For every partition λ of 7, the multiplicity of the simple S7-module [λ] in

the modules All(7), Old(7), New(7) appears in Figure 1. Summing the multiplicities gives

20 new irreducible multilinear identities in degree 7, relating the Lie bracket and Jordan

product (9) in the free associative interchange algebra, which are not consequences of the

identities of lower degree (Proposition 3.1).

Proof. The methods are the same as in the proof of Proposition 3.1 although the matri-

ces are much larger. The module Old(7) is always a submodule of All(7), but for some

partitions λ it is a proper submodule, and this indicates the existence of new identities.

Since we have the isomorphism of S7-modules New(7) ∼= All(7)/Old(7), the multiplicity

of [λ] in New(7) is the difference between its multiplicities in All(7) and Old(7). �

λ 7 61 52 512 43 421 413

all 536 3234 7525 8140 7521 18957 10953

old 536 3231 7523 8136 7518 18956 10952

new 0 3 2 4 3 1 1

321 322 3212 314 231 2213 215 17

11378 11399 19160 8314 7677 7766 3375 574

11375 11399 19159 8314 7677 7765 3375 573

3 0 1 0 0 1 0 1

FIGURE 1. Multiplicities of new Lie-Jordan identities in degree 7

Theorem 3.3. Every multilinear identity in degree 7 satisfied by the Lie bracket and Jor-

dan product (9) in the free associative interchange algebra is a consequence of:

(i) anti-commutativity and the Jacobi identity for the Lie bracket [a,b];

(ii) commutativity and the (linearized) Jordan identity for the Jordan product {a,b};

(iii) the linearizations of the identities of Figure 3 which are nonlinear forms of 14 of

the 20 new irreducible identities identified by Lemma 3.2;

(iv) the multilinear alternating sum identity of equation (10);
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(v) the linearizations of the remaining 5 nonlinear identities which are available in

an ancillary file for the arXiv version of this paper; see [3] for details.

Proof. Let λ be one of the 10 partitions for which Newλ(7) 6= {0}. Let all(λ) and old(λ)

be the matrices in RCF whose row spaces are Allλ(7) and Oldλ(7) respectively. Let A (λ)

and O(λ) be the sets of column indices corresponding to the leading 1s in all(λ) and

old(λ). A row of all(λ) whose leading 1 belongs to column j ∈ A (λ) \ O(λ) represents

a new identity. For such a row, let T be the set of LJ types t for which the row has a

nonzero entry in block t . In many cases, T is a very small subset of the LJ types. This

allows us to construct new identities without using representation theory. For each type

in T we replace the positions of the indeterminates by all permutations of the multiset

corresponding to λ and normalize each monomial using the (skew-)symmetries of the

LJ products. For example, for λ = 61 we have only 7 permutations of the multiset a6b

rather than 7! permutations of abcde f g . The new identities for partition λ are linear

combinations of this relatively small set of nonlinear monomials.

λ 61 52 512 43 421 413 321 3212 2213

new 3 2 4 3 1 1 3 1 1

terms 3,6,12 8,12 8,10,15,18 9,20,44 20 12 15,24,40 21 24

FIGURE 2. Number of terms in new Lie-Jordan identities in degree 7

We found new nonlinear identities for every λ with Newλ(7) 6= {0}. Figure 2 displays

the number of terms in each new identity for each λ 6= 17. Figure 3 displays the new

identities which have at most 20 terms: the 9 partitions in Figure 2 have respectively

3, 2, 4, 2, 1, 1, 1, 0, 0 identities satisfying this condition. We use power associativity of

the Jordan product to write the monomials more compactly: {aa} = a2, {a{aa}} = a3,

{{aa}{aa}} = a4. Partition λ = 17 is a special case: the multilinear identities are linear

combinations of alternating sums over all 7 variables in the LJ types. The new identity

for that last partition is a single alternating sum:

(10)
∑

σ∈S7

ǫ(σ)[{aσ, [bσ,cσ]}, {[dσ,eσ], [ f σ, gσ]}] ≡ 0.

Using skew-symmetry of the Lie bracket and symmetry of the Jordan product we can

normalize the LJ monomials in this identity and collect terms with the same permuta-

tion of the variables to reduce the identity to a sum of only 7!/24 = 315 terms. �

Remark. In the rest of this paper, we omit proofs when they are based on computations

very similar to those already described.

4. TWO LIE BRACKETS

In this section we study the multilinear identities relating the two Lie brackets:

(11) [a,b]◦ = a ◦b −b ◦a, [a,b]• = a •b −b •a.

Proposition 4.1. In degree ≤ 5, every multilinear identity relating the Lie brackets (11)

in the free associative interchange algebra is a consequence of anticommutativity and the

Jacobi identity for the two Lie brackets.

Lemma 4.2. For every partition λ of 6, the multiplicity of the simple S6-module [λ] in

the modules All(6), Old(6), New(6) appears in Figure 4. There are two new irreducible

multilinear identities in degree 6, relating the two Lie brackets (11) in the free associative



10 MURRAY BREMNER AND SARA MADARIAGA

61 {[ab][a2a3]}− {[aa2][ba3]}+ {[ba2][aa3]}

{[ab][aa4]}+2{[aa2][a{a{ab}}]}− {[aa2][a{ba2}]}−2{[a{ab}][aa3 ]}+ {[ba2][aa3]}

+2{[aa2][a2{ab}]}

[a2{a{b[aa2]}}]− [a2{b{a[aa2]}}]+ [a2{a[ba3]}]+ [a2{b[aa3]}]−2[{ab}{a[aa3]}]

−[a2{a2[ba2]}]− [a2{{ab}[aa2]}]+2[{ab}{a2 [aa2]}]− [a3{a[ba2]}]− [a3{b[aa2]}]

+2[{ba2}{a[aa2]}]− [a3{[ab]a2}]

52 {[ab][ba4]}+2{[ab][a2{a{ab}}]}− {[ab][a2 {ba2}]}−2{[a{ab}][ba3 ]}

+2{[ba2][a{a{ab}}]}− {[ba2 ][a{ba2}]}+ {[ba2][ba3]}+2{[ba2][a2{ab}]}

[a2{a{b[ba2]}}]− [a2{b{a[ba2]}}]+ [a2{b[ba3]}]− [b2{a[aa3]}]− [a2{{ab}[ba2 ]}]

+[b2{a2[aa2]}]+ [a3{a{b[ab]}}]− [a3 {b{a[ab]}}]− [a3 {b[ba2]}]− [{ab2}{a[aa2]}]

+2[{b{ab}}{a[aa2 ]}]− [a3{[ab]{ab}}]

512 {[ac][ba4]}+2{[ab][a2{a{ac}}]}− {[ab][a2 {ca2}]}−2{[a{ac}][ba3 ]}

+2{[ba2][a{a{ac}}]}− {[ba2 ][a{ca2}]}+ {[ca2][ba3]}+2{[ba2 ][a2{ac}]}

2[a3{a{a[bc]}}]−4[{a{ab}}{a{a[ac]}}]+4[{a{ac}}{a{a[ab]}}]+2[{ba2 }{a{a[ac]}}]

−2[{ca2}{a{a[ab]}}]− [a3{[bc]a2}]+2[{a{ab}}{[ac]a2 }]−2[{a{ac}}{[ab]a2 }]

−[{ba2}{[ac]a2}]+ [{ca2}{[ab]a2}]

{[ac][ba4]}− {[bc][aa4]}−2{[ab][a2{ca2}]}−2{[ac][{ab}a3 ]}+ {[bc][a2 a3]}

+2{[aa2][b{ca2}]}+2{[aa2][c{a{ab}}]}− {[aa2 ][c{ba2}]}−2{[ba2 ][a{ca2}]}

+{[ca2][ba3]}−2{[c{ab}][aa3 ]}−4{[aa2][{ab}{ac}]}+4{[a{ab}][a2 {ac}]}

−4{[a{ac}][a2{ab}]}+2{[ca2 ][a2{ab}]}

[{ab}{a{c[aa2 ]}}]− [{ab}{c{a[aa2 ]}}]− [{ac}{a{b[aa2 ]}}]+ [{ac}{b{a[aa2 ]}}]

+[{ab}{a[ca3 ]}]+ [{ab}{c[aa3 ]}]− [{ac}{a[ba3]}]− [{ac}{b[aa3 ]}]− [{ab}{a2[ca2]}]

−[{ab}{{ac}[aa2 ]}]+ [{ac}{a2[ba2]}]+ [{ac}{{ab}[aa2 ]}]− [{ba2}{a[ca2]}]

−[{ba2}{c[aa2]}]+ [{ca2}{a[ba2]}]+ [{ca2}{b[aa2]}]− [{ba2}{[ac]a2}]+ [{ca2}{[ab]a2}]

43 2{[ab][a{a2b2}]}−2{[ab][a2 {ab2}]}− {[ab][b2 a3]}+2{[aa2][b{ab2}]}

−2{[ab2][a{ba2}]}+ {[ab2][ba3]}− {[bb2 ][aa3]}+2{[aa2][{ab}b2 ]}+2{[ab2][a2{ab}]}

2[{ab}{a{b[ba2 ]}}]−2[{ab}{b{a[ba2 ]}}]− [b2{a{b[aa2]}}]+ [b2{b{a[aa2]}}]

+2[{ab}{b[ba3 ]}]− [b2{a[ba3]}]− [b2{b[aa3]}]−2[{ab}{{ab}[ba2 ]}]+ [b2{a2[ba2]}]

+[b2{{ab}[aa2]}]+2[{ba2}{a{b[ab]}}]−2[{ba2 }{b{a[ab]}}]− [{ab2 }{a[ba2]}]

−[{ab2}{b[aa2]}]−2[{ba2}{b[ba2 ]}]+2[{b{ab}}{a[ba2 ]}]+2[{b{ab}}{b[aa2 ]}]

−[{ab2}{[ab]a2}]−2[{ba2}{[ab]{ab}}]+2[{b{ab}}{[ab]a2 }]

421 2[{ac}{a{b[ba2 ]}}]−2[{ac}{b{a[ba2 ]}}]− [b2{a{c[aa2]}}]+ [b2{c{a[aa2]}}]

+2[{ac}{b[ba3 ]}]− [b2{a[ca3]}]− [b2{c[aa3]}]−2[{ac}{{ab}[ba2 ]}]+ [b2{a2[ca2]}]

+[b2{{ac}[aa2]}]+2[{ca2}{a{b[ab]}}]−2[{ca2 }{b{a[ab]}}]− [{ab2 }{a[ca2]}]

−[{ab2}{c[aa2]}]+2[{b{ab}}{a[ca2 ]}]+2[{b{ab}}{c[aa2 ]}]−2[{ca2}{b[ba2]}]

−[{ab2}{[ac]a2}]+2[{b{ab}}{[ac]a2 }]−2[{ca2}{[ab]{ab}}]

413 4[{a{ab}}{a{a[cd]}}]−4[{a{ac}}{a{a[bd ]}}]+4[{a{ad}}{a{a[bc]}}]−2[{ba2 }{a{a[cd]}}]

+2[{ca2}{a{a[bd]}}]−2[{da2 }{a{a[bc]}}]−2[{a{ab}}{[cd]a2 }]+2[{a{ac}}{[bd]a2 }]

−2[{a{ad}}{[bc]a2 }]+ [{ba2}{[cd]a2}]− [{ca2}{[bd]a2}]+ [{da2}{[bc]a2}]

321 [{ab2}{a{b[ac]}}]+ [{ab2 }{b{a[ac]}}]− [{a{bc}}{a{b[ab]}}]− [{a{bc}}{b{a[ab]}}]

−[{ba2}{a{b[bc]}}]− [{ba2 }{b{a[bc]}}]− [{b{ac}}{a{b[ab]}}]− [{b{ac}}{b{a[ab]}}]

+[{c{ab}}{a{b[ab]}}]+ [{c{ab}}{b{a[ab]}}]− [{ab2 }{[ac]{ab}}]+ [{a{bc}}{[ab]{ab}}]

+[{ba2}{[bc]{ab}}]+ [{b{ac}}{[ab]{ab}}]− [{c{ab}}{[ab]{ab}}]

FIGURE 3. 14 of the 20 new nonlinear Lie-Jordan identities in degree 7
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interchange algebra, which are not consequences of the identities of lower degree (Propo-

sition 4.1). Both of these new identities occur for partition λ= 214.

λ 6 51 42 412 33 321 313 23 2212 214 16

all 164 788 1364 1496 734 2308 1422 704 1236 676 130

old 164 788 1364 1496 734 2308 1422 704 1236 674 130

new 0 0 0 0 0 0 0 0 0 2 0

FIGURE 4. Multiplicities of new Lie-Lie identities in degree 6

Theorem 4.3. Every multilinear identity in degree 6 satisfied by the two Lie brackets (11)

in the free associative interchange algebra is a consequence of:

(i) anti-commutativity and the Jacobi identity for each Lie bracket;

(ii) the following identity which is an alternating sum over all permutations σ of

{b,c,d ,e} where ǫ(σ) is the sign:

(12)





∑
σ ǫ(σ)

{
2[[abσ]◦[a[cσ[dσeσ]◦]•]◦]•−2[[abσ]◦[cσ[a[dσeσ]◦]•]◦]•

+2[[abσ]◦[cσ[dσ[aeσ]◦]•]◦]•− [[bσcσ]◦[a[dσ[aeσ]◦]•]◦]•

+[[bσcσ]◦[dσ[a[aeσ]◦]•]◦]•+ [[abσ]◦[[acσ]◦[dσeσ]•]◦]•

+2[[abσ]◦[[cσdσ]◦[aeσ]•]◦]•+ [[bσcσ]◦[[adσ]◦[aeσ]•]◦]•

+[[a[abσ]◦]◦[cσ[dσeσ]•]◦]•− [[a[bσcσ]◦]◦[dσ[aeσ]•]◦]•

+[[bσ[acσ]◦]◦[a[dσeσ]•]◦]•

}
≡ 0;

(ii) the identity obtained from equation (12) by interchanging ◦ and •.

Lemma 4.4. For every partition λ of 7, the multiplicity of the simple S7-module [λ] in

the modules All(7), Old(7), New(7) appears in Figure 5. There are two new irreducible

multilinear identities in degree 7, relating the two Lie brackets in the free associative in-

terchange algebra, which are not consequences of the identities of lower degree (Theorem

4.3). These new identities occur for the last two partitions, λ= 215 and λ= 17.

λ 7 61 52 512 43 421 413

all 616 3632 8284 8844 8128 20140 11416

old 616 3632 8284 8844 8128 20140 11416

new 0 0 0 0 0 0 0

321 322 3212 314 231 2213 215 17

11906 11804 19550 8276 7672 7602 3211 525

11906 11804 19550 8276 7672 7602 3210 524

0 0 0 0 0 0 1 1

FIGURE 5. Multiplicities of new Lie-Lie identities in degree 7

Theorem 4.5. Every multilinear identity in degree 7 satisfied by the two Lie brackets (11)

in the free associative interchange algebra is a consequence of:

(i) anti-commutativity and the Jacobi identity for each Lie bracket;

(ii) the identity of equation (12) and its image under the interchange of ◦ and •;

(iii) the new nonlinear identity for λ= 215 in Figure 6 which has 56 terms;
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(iv) the following new identity for λ= 17 which is an alternating sum over all permu-

tations σ of {a,b,c,d ,e, f , g } where ǫ(σ) is the sign:

(13)





∑
σ ǫ(σ)

{
[[aσbσ]◦[[cσdσ]•[eσ[ f σgσ]◦]•]◦]•

+[[aσbσ]◦[[cσdσ]•[eσ[ f σgσ]•]◦]◦]•

−[[aσbσ]•[[cσdσ]◦[eσ[ f σgσ]◦]•]•]◦

−[[aσbσ]•[[cσdσ]◦[eσ[ f σgσ]•]◦]•]◦

}
≡ 0.

2[[ab]◦[a[[cd]◦[e f ]•]•]◦]•+2[[bc]◦[a[[ad]◦[e f ]•]•]◦]•+2[[bc]◦[a[[de]◦[a f ]•]•]◦]•

+4[[ab]◦[[ac]•[d[e f ]◦]•]◦]•−4[[ab]◦[[cd]•[e[a f ]◦]•]◦]•−2[[bc]◦[[ad]•[a[e f ]◦]•]◦]•

−2[[bc]◦[[de]•[a[a f ]◦]•]◦]•+2[[ab]◦[[ac]•[d[e f ]•]◦]◦]•+2[[ab]◦[[cd]•[a[e f ]•]◦]◦]•

−2[[ab]◦[[cd]•[e[a f ]•]◦]◦]•+ [[bc]◦[[ad]•[a[e f ]•]◦]◦]•+ [[bc]◦[[de]•[a[a f ]•]◦]◦]•

+2[[ab]•[a[[cd]◦[e f ]•]◦]•]◦+2[[bc]•[a[[ad]◦[e f ]•]◦]•]◦+2[[bc]•[a[[de]◦[a f ]•]◦]•]◦

−2[[ab]•[[ac]◦[d[e f ]◦]•]•]◦−2[[ab]•[[cd]◦[a[e f ]◦]•]•]◦+2[[ab]•[[cd]◦[e[a f ]◦]•]•]◦

− [[bc]•[[ad]◦[a[e f ]◦]•]•]◦− [[bc]•[[de]◦[a[a f ]◦]•]•]◦−4[[ab]•[[ac]◦[d[e f ]•]◦]•]◦

+4[[ab]•[[cd]◦[e[a f ]•]◦]•]◦+2[[bc]•[[ad]◦[a[e f ]•]◦]•]◦+2[[bc]•[[de]◦[a[a f ]•]◦]•]◦

+ [[a[bc]◦]•[a[d[e f ]◦]•]•]◦+ [[a[bc]◦]•[d[a[e f ]◦]•]•]◦−3[[b[ac]◦]•[a[d[e f ]◦]•]•]◦

− [[b[ac]◦]•[d[a[e f ]◦]•]•]◦−2[[b[cd]◦]•[a[a[e f ]◦]•]•]◦+3[[b[cd]◦]•[a[e[a f ]◦]•]•]◦

+ [[b[cd]◦]•[e[a[a f ]◦]•]•]◦−4[[a[ab]◦]•[c[d[e f ]•]◦]•]◦−2[[a[bc]◦]•[a[d[e f ]•]◦]•]◦

+2[[a[bc]◦]•[d[a[e f ]•]◦]•]◦−4[[a[bc]◦]•[d[e[a f ]•]◦]•]◦+2[[a[ab]◦]•[[cd]◦[e f ]•]•]◦

+2[[a[bc]◦]•[[ad]◦[e f ]•]•]◦+ [[a[bc]◦]•[[de]◦[a f ]•]•]◦+ [[b[ac]◦]•[[de]◦[a f ]•]•]◦

+ [[b[cd]◦]•[[ae]◦[a f ]•]•]◦+4[[a[ab]•]◦[c[d[e f ]◦]•]◦]•+2[[a[bc]•]◦[a[d[e f ]◦]•]◦]•

−2[[a[bc]•]◦[d[a[e f ]◦]•]◦]•+4[[a[bc]•]◦[d[e[a f ]◦]•]◦]•− [[a[bc]•]◦[a[d[e f ]•]◦]◦]•

− [[a[bc]•]◦[d[a[e f ]•]◦]◦]•+3[[b[ac]•]◦[a[d[e f ]•]◦]◦]•+ [[b[ac]•]◦[d[a[e f ]•]◦]◦]•

+2[[b[cd]•]◦[a[a[e f ]•]◦]◦]•−3[[b[cd]•]◦[a[e[a f ]•]◦]◦]•− [[b[cd]•]◦[e[a[a f ]•]◦]◦]•

+2[[a[ab]•]◦[[cd]◦[e f ]•]◦]•+ [[a[bc]•]◦[[ad]◦[e f ]•]◦]•+2[[a[bc]•]◦[[de]◦[a f ]•]◦]•

+ [[b[ac]•]◦[[ad]◦[e f ]•]◦]•− [[b[cd]•]◦[[ae]◦[a f ]•]◦]•

FIGURE 6. New nonlinear Lie-Lie identity in degree 7 for λ= 215

5. TWO JORDAN PRODUCTS

In this section we study the multilinear identities relating the two Jordan products:

(14) {a,b}◦ = a ◦b +b ◦a, {a,b}• = a •b +b •a.

Proposition 5.1. Every multilinear identity in degree 4 satisfied by the Jordan products

(14) in the free associative interchange algebra is a consequence of the following identities:

(i) commutativity and the (linearized) Jordan identity for each Jordan product;

(ii) the linearization of the following new identity relating the two Jordan products:

(15) {{a, a}◦, {a, a}◦}•− {{a, a}•, {a, a}•}◦ ≡ 0.

Proof. Computations using the representation theory of S4 show that the matrices all(λ)

and old(λ) are equal for all partitions except the first, λ= 4. In this case we have

all(λ) =




1 . . . . . . . −1 . . . . .
. . . . . . . 1 . . . . . −1
. . . . . . . . . 1 . . −1 0


 ,
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and old(λ) consists of the first two rows of all(λ). Hence the third row of all(λ) represents

a new multilinear identity I , which is the difference of the symmetric sums over all per-

mutations of the variables in JJ types 10 and 13 (the positions of the nonzero entries in

row 3). These are the JJ types in the nonlinear identity (15): in characteristic 0 or p > 4

this nonlinear identity is equivalent to the multilinear identity I .

Identity (15) is a Jordan analogue of the interchange identity (⊞): it states the equal-

ity of two monomials with the same association types as the interchange identity, but

using Jordan products instead. However, (15) involves only one variable whereas (⊞) is

multilinear in four variables; we can make (15) multilinear by replacing each monomial

by the symmetric sum over all permutations of {a,b,c,d}. �

Proposition 5.2. Every multilinear identity in degree 5 satisfied by the Jordan products

(14) in the free associative interchange algebra is a consequence of the following identities:

(i) commutativity and the (linearized) Jordan identity for each Jordan product;

(ii) the linearization of identity (15) of Proposition 5.1;

(iii) the linearizations of these two new identities relating the Jordan products:

{{a,b}◦, {a, {a, a}◦}◦}•− {{a, a}•, {b, {a, a}◦}•}◦ ≡ 0,(16)

{{a, a}◦, {b, {a, a}•}◦}•− {{a,b}•, {a, {a, a}•}•}◦ ≡ 0.(17)

Proof. In degree 5, our computations show that all(λ) = old(λ) for all partitions except

the second, λ = 41. In this case, rank(old(λ)) = 102 and rank(all(λ)) = 104, so we expect

two new independent identities which are equivalent (in characteristic 0 or p > 5) to

nonlinear identities which are linear combinations of JJ monomials whose underlying

variables are permutations of a4b. Rows 73 and 83 of all(λ) represent these new iden-

tities: these are the rows whose leading 1s occur in columns for which old(λ) has no

leading 1. Each of these rows of all(λ) has only two nonzero entries:

(18)

{
row 73: all(λ)73,119 = 1, all(λ)73,155 = 2,

row 83: all(λ)83,135 = 1, all(λ)83,171 =
1
2 .

In degree 5, there are 44 JJ types, and dim[λ] = 4, so each row of all(λ) has 176 entries

in 44 segments of length 4. For t = 1, . . . ,44 columns 4t−3 ≤ j ≤ 4t form the segment

corresponding to the representation matrix units (8) with JJ type t . The entries (18)

occur in position 3 of segments 30, 39, 34, 43 respectively.

By the representation theory of S5, the matrix unit in position (1,3) of the 4×4 matrix

for partition λ= 41 corresponds under the isomorphism R of equation (8) to the follow-

ing element of QS5, in which all permutations σ are written in the form aσbσcσdσeσ:

(19) 1
6

( ∑

σ∈S4

aσbσcσdσe
)(

abcde −ebcd a
)

abecd .

This is the result of applying R−1 to the 4×4 matrix unit E13 in the simple two-sided ideal

for partition λ = 41. Each entry (18) represents a scalar multiple of the corresponding

JJ type applied to (19). Hence the two new multilinear identities each have 96 terms;

commutativity of the Jordan products reduces this to 24.

We can find simpler nonlinear identities as follows. We apply each of the JJ types

30, 39, 34, 43 to the 5 permutations of a4b and use Jordan commutativity to get three

nonlinear monomials for each JJ type. We expand these 12 JJ monomials into the free

associative interchange algebra and identify the 12 AA types which occur in the terms

of the expansions. We determine the union of the equivalence classes containing these

12 AA types. (The equivalence relation on AA types is generated by the consequences of

the interchange identity [4]: it is the reflexive transitive closure of the relation defined
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by t ∼ t ′ if and only if there is a consequence of (⊞) whose two terms have AA types t

and t ′.) Only 8 of the 12 consequences of the interchange identity in degree 5 involve

these 12 AA types. The rest of the calculation is similar to the multilinear case. �

Lemma 5.3. For every partition λ of 6, the multiplicity of the simple S6-module [λ] in the

modules All(6), Old(6), New(6) appears in Figure 7. Summing the multiplicities gives 14

new irreducible multilinear identities in degree 6, relating the two Jordan products (14)

in the free associative interchange algebra, which are not consequences of the identities of

lower degree (Proposition 5.2). These new identities occur for the first 5 partitions.

λ 6 51 42 412 32 321 313 23 2212 214 16

all 75 541 1031 1286 615 2088 1446 653 1302 788 164

old 73 536 1027 1285 613 2088 1446 653 1302 788 164

new 2 5 4 1 2 0 0 0 0 0 0

FIGURE 7. Multiplicities of new Jordan-Jordan identities in degree 6

Theorem 5.4. Every multilinear identity in degree 6 satisfied by the Jordan products (14)

in the free associative interchange algebra is a consequence of the following identities:

(i) commutativity and the (linearized) Jordan identity for each Jordan product;

(ii) the linearization of identity (15) of Proposition 5.1;

(iii) the linearization of identities (16) and (17) of Lemma 5.2;

(iv) the linearizations of the identities of Figure 8 which are compact nonlinear forms

of the 14 new irreducible identities identified by Lemma 5.3.

Lemma 5.5. For every partition λ of 7, the multiplicity of the simple S7-module [λ] in the

modules All(7), Old(7), New(7) appears in Figure 9. Summing the multiplicities gives 94

new irreducible multilinear identities in degree 7, relating the two Jordan products in the

free associative interchange algebra, which are not consequences of the identities of lower

degree (Theorem 5.4). These new identities occur for partitions 1–6 and 8.

Theorem 5.6. Every multilinear identity in degree 7 satisfied by the two Jordan products

(14) in the free associative interchange algebra is a consequence of:

(i) commutativity and the (linearized) Jordan identity for each Jordan product;

(ii) the linearization of identity (15) of Proposition 5.1;

(iii) the linearization of identities (16) and (17) of Proposition 5.2;

(iv) the linearizations of the identities of Figure 8 from Theorem 5.4;

(v) the linearizations of the identities of Figure 10 which are nonlinear forms of 7 of

the 94 new irreducible identities established by Lemma 5.5 (we display only the

simplest identity for each partition 1–6 and 8);

(vi) the linearizations of the remaining 89 nonlinear identities which are available in

an ancillary file for the arXiv version of this paper; see [3] for details.

Proof. From Lemma 5.5 we see that only seven partitions of 7 provide new JJ identities.

For each of these partitions λ, Figure 11 contains:

• The number of new independent identities for partition λ (from Figure 9).

• The number of nonzero entries in the row of the representation matrix corre-

sponding to each new identity.

In order to find explicit new nonlinear identities in degree 7, we use the computational

methods introduced for one Lie bracket and one Jordan product: see the proofs of The-

orem 3.3 and Proposition 5.2. The remaining details of this proof require further expla-

nation of our computational methods and are presented in section 6. �
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6 {{aa}◦{a{a{aa}•}◦}•}•− {{a{aa}◦}•{a{aa}•}◦}•

{{aa}•{a{a{aa}◦}•}◦}◦− {{a{aa}◦}•{a{aa}•}◦}◦

51 {{aa}◦{b{a{aa}•}◦}•}•− {{b{aa}◦}•{a{aa}•}◦}•

{{aa}•{b{a{aa}◦}•}◦}◦− {{a{aa}◦}•{b{aa}•}◦}◦

{{a{aa}◦}◦{b{aa}•}◦}•− {{b{aa}◦}•{a{aa}•}•}◦

{{aa}•{a{b{aa}◦}•}•}◦− {{aa}•{b{a{aa}◦}•}•}◦+ {{a{aa}◦}◦{a{ab}•}◦}•
−2{{a{aa}◦}•{a{ab}•}•}◦+ {{a{aa}◦}•{b{aa}•}•}◦

2{{aa}•{a{b{aa}•}◦}•}◦+2{{aa}•{b{a{aa}•}◦}•}◦−4{{ab}•{a{a{aa}•}◦}•}◦
−2{{a{ab}◦ }◦{a{aa}•}◦}•+3{{b{aa}◦}◦{a{aa}•}◦}•−2{{a{aa}◦}•{b{aa}•}•}◦
+{{b{aa}◦}•{a{aa}•}•}◦

42 2{{aa}◦{{ab}◦{ab}◦}•}•− {{a{aa}•}•{a{bb}• }•}◦−2{{a{ab}• }•{b{aa}•}•}◦
+{{b{aa}•}•{b{aa}•}•}◦

{{bb}• {{aa}◦{aa}•}•}◦+2{{a{ab}◦ }◦{b{aa}•}◦}•− {{b{aa}◦}◦{b{aa}•}◦}•
−2{{b{ab}◦ }•{a{aa}•}•}◦

2{{aa}•{{ab}•{ab}•}◦}◦− {{a{aa}◦}◦{a{bb}◦ }◦}•−2{{a{ab}◦ }◦{b{aa}◦}◦}•
+{{b{aa}◦}◦{b{aa}◦}◦}•

2{{aa}•{a{b{ab}◦}•}•}◦−2{{aa}•{b{a{ab}◦}•}•}◦+2{{aa}•{b{b{aa}•}◦}•}◦
−2{{bb}• {a{a{aa}•}◦}•}◦−2{{aa}•{{ab}◦{ab}•}•}◦+ {{bb}• {{aa}◦{aa}•}•}◦
−{{a{aa}◦}•{a{bb}• }•}◦+2{{a{aa}◦}•{b{ab}• }•}◦

412 ∑
σ∈S2

ǫ(σ)
[
{{aa}◦{bσ{cσ{aa}•}◦}◦}•+ {{aa}◦{bσ{a{acσ}•}◦}◦}•

+{{aa}•{bσ{cσ{aa}◦}•}•}◦+ {{aa}•{bσ{a{acσ}◦}•}•}◦
−{{aa}•{a{bσ{acσ}◦}•}•}◦− {{aa}•{a{bσ{acσ}•}◦}•}◦
−2{{bσ{acσ}◦}◦{a{aa}•}◦}•+2{{a{abσ }◦}◦{a{acσ}•}◦}•
−2{{a{abσ }◦}•{a{acσ}•}•}◦−2{{a{aa}◦}•{bσ{acσ}•}•}◦

]

32 2{{ab}•{{bb}◦{aa}•}•}◦−2{{a{bb}◦ }◦{b{aa}•}◦}•− {{b{bb}◦ }◦{a{aa}•}◦}•
+{{b{bb}◦ }•{a{aa}•}•}◦

{{bb}• {a{b{aa}◦}•}•}◦− {{bb}• {b{a{aa}◦}•}•}◦−2{{ab}•{b{b{aa}• }◦}•}◦
+{{bb}• {a{b{aa}•}◦}•}◦+ {{bb}• {b{a{aa}•}◦}•}◦− {{ab}•{{bb}◦ {aa}•}•}◦
−{{bb}• {{aa}◦{ab}•}•}◦− {{bb}• {{ab}◦{aa}•}•}◦+ {{a{bb}◦ }•{b{aa}•}•}◦
+2{{b{ab}◦ }•{b{aa}•}•}◦

FIGURE 8. 14 new nonlinear Jordan-Jordan identities in degree 6

6. TWO JORDAN PRODUCTS: NONLINEAR IDENTITIES IN DEGREE 7

In this final section we explain in more detail our computational methods based on

the expansion map (6) and the representation theory of the symmetric group (8). We

focus on the problem of finding explicit nonlinear forms of the 94 new irreducible mul-

tilinear identities in degree 7 for two Jordan products in the free associative interchange

algebra (Lemma 5.5). Our main example will be partition λ = 421 which has 20 new

identities (Figure 9). Together with its conjugate λ
∗ = 3212, these two partitions corre-

spond to the largest (35-dimensional) irreducible representations of S7.

Combining the expansion matrix with representation theory. We use the block ma-

trix Bn of equation (7) to find all new identities in degree n = 7 for two Jordan products.
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λ 7 61 52 512 43 421 413

all 349 2618 6510 7444 6740 17752 10842

old 347 2609 6493 7424 6725 17732 10842

new 2 9 17 20 15 20 0

321 322 3212 314 231 2213 215 17

10839 10922 19088 8692 7666 8116 3632 616

10828 10922 19088 8692 7666 8116 3632 616

11 0 0 0 0 0 0 0

FIGURE 9. Multiplicities of new Jordan-Jordan identities in degree 7

7 {[aa]{a[[aa]{aa}]}}+ {[a[aa]]{a[a{aa}]}}− {{a[aa]}[[aa]{aa}]}− {[a{aa}]{a[a[aa]]}}

61 {[aa]{b[[aa]{aa}]}}+ {[a[aa]]{b[a{aa}]}}− {{b[aa]}[[aa]{aa}]}− {[a{aa}]{b[a[aa]]}}

52 [{aa}[b{b[a[aa]]}]]− [{ab}[b[{aa}{aa}]]]−2[{a[aa]}[b{b[aa]}]]+2[{b[aa]}[b{a[aa]}]]

−[[b{aa}]{b[a[aa]]}]+ [[b{ab}][{aa}{aa}]]

512 [{b{aa}}{a{c[aa]}}]+ [{b{aa}}{c{a[aa]}}]− [{c{aa}}{a{b[aa]}}]− [{c{aa}}{b{a[aa]}}]

−[{b{aa}}{[aa]{ac}}]+ [{c{aa}}{[aa]{ab}}]

43 {[a[bb]][[ab]{aa}]}+2{[b[ab]][[ab]{aa}]}−2[{b{aa}}{[ab][ab]}]− [{a{aa}}[{ab}{bb}]]

421 [{a{bb}}{a{c[aa]}}]+ [{a{bb}}{c{a[aa]}}]−2[{b{ab}}{a{c[aa]}}]−2[{b{ab}}{c{a[aa]}}]

+2[{c{aa}}{b{b[aa]}}]− [{a{bb}}{[aa]{ac}}]+2[{b{ab}}{[aa]{ac}}]− [{c{aa}}{[aa]{bb}}]

321 [{a{bb}}{b{c[aa]}}]+ [{a{bb}}{c{b[aa]}}]−2[{a{bc}}{b{b[aa]}}]−2[{b{ab}}{b{c[aa]}}]

−2[{b{ab}}{c{b[aa]}}]+2[{b{ac}}{b{b[aa]}}]+2[{c{ab}}{b{b[aa]}}]− [{a{bb}}{[aa]{bc}}]

+[{a{bc}}{[aa]{bb}}]+2[{b{ab}}{[aa]{bc}}]− [{b{ac}}{[aa]{bb}}]− [{c{ab}}{[aa]{bb}}]

FIGURE 10. The simplest new Jordan-Jordan identities in degree 7

λ new number of nonzero entries in coefficient vector for each new identity

7 2 4,4

61 9 3,6,6,11,12,14,14,16,17

52 17 8,18,18,19,19,21,30,30,32,32,32,33,33,34,38,43,44

512 20 6,7,13,13,14,20,20,20,22,24,26,26,27,28,29,30,38,41,45,51

43 15 9,10,16,16,20,21,21,23,27,28,34,35,41,43,45

421 20 15,27,31,33,35,41,42,48,51,51,72,90,102,104,119,121,124,128,128,129

321 11 9,10,13,13,36,36,40,48,59,71,73

FIGURE 11. Nonzero matrix entries for new JJ identities in degree 7

However, we are no longer using all multilinear monomials obtained from all permuta-

tions of the variables in the AA and JJ types, but rather the AA and JJ types together with

the representation theory of the symmetric group. There are 5040 permutations but

only 35 standard tableaux for λ= 421, and so the matrices we use will be 5040/35 = 144

times smaller than if we were using all multilinear monomials. (This ratio is even greater

for the smaller representations.)

In degree 7 there are 1806 AA types, 688 consequences of (⊞), 616 JJ types, and the

S7-module [421] has dimension 35. Therefore, in the expansion matrix for λ= 421:
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• The upper left block Ξ, which contains the consequences of the interchange

identity, has 688 ·35 = 24080 rows and 1806 ·35 = 63210 columns.

• The lower left block X , which contains the expansions of the JJ monomials, has

616 ·35 = 21560 rows and 1806 ·35 = 63210 columns.

• The lower right identity matrix has 616 ·35 = 21560 rows and columns.

• The upper right zero matrix has 688 ·35 = 24080 rows, 616 ·35 = 21560 columns.

Altogether, this expansion matrix has 45640 rows and 84770 columns.

To compute efficiently with a matrix of this size (3868902800 entries, almost 4 giga-

bytes at one byte per entry) we cannot use rational arithmetic, so we must use modular

arithmetic followed by rational reconstruction. Fortunately, we were able to complete

these calculations using only single primes, p = 101 and p = 1000003; we did not need

the Chinese remainder theorem.

We compute the RCF of the expansion matrix and determine the rows whose leading

1s lie in the right side of the matrix, columns j > 63210. There are 17752 such rows (“all”

in Figure 9), which form a block of size 11752×21560, ignoring the zeros in the left side

of the matrix ( j ≤ 63210). The rows of this block represent all multilinear identities in

partition 421 for two Jordan products in degree 7.

To determine which rows of the block represent new identities in degree 7, we com-

pute the RCF of the matrix representing the consequences of the known identities in de-

gree ≤ 6. There are 1520 symmetries of the JJ types in degree 7: multilinear identities of

the form m−m′ ≡ 0, where m is a JJ type with the identity permutation of the variables,

and m′ is the same JJ type with a permutation of order 2: these are the consequences of

commutativity of the Jordan products. There are 2676 consequences in degree 7 of (the

linearizations of) the two Jordan identities in degree 4, and 2212 consequences of the

new JJ identities from degrees 4–6. All these identities are linear combinations of the JJ

types with various permutations of the variables, and so their components for λ = 421

can be represented by a matrix with 616·35 = 21560 columns. The total number of these

old identities is 6408, and so we would require 6408×35 = 224280 rows to process them

together. But the rank can never be greater than the number of columns, so we save

memory by creating a matrix with 21560+ 3500 = 25060 rows, and processing the old

identities 100 at a time in 65 groups. At the end of this iteration, we have a matrix in RCF

with rank 17732 (“old” in Figure 9); discarding zero rows gives size 17732×21560.

Comparing the results so far, we see that there are 17752−17732 = 20 new JJ identities

in degree 7 (“new” in Figure 9). The row space of the second matrix (old identities) is

a subspace of the row space of the first matrix (all identities). The new identities are

represented by the rows of the first matrix whose leading 1s occur in columns for which

the second matrix has no leading 1.

For λ = 421 the simplest of the rows representing new identities has 15 nonzero en-

tries (see Figure 11). Each column index j can be written as j = 35(t −1)+ℓ where t is

the JJ type and ℓ is the column index in the corresponding 35×35 representation ma-

trix. For each of the 15 nonzero entries, Figure 12 displays the indices j , t , ℓ and the

entry c (modulo 101); only two JJ types occur, t = 595 and t = 611. In this case, rational

reconstruction is very easy: we use symmetric representatives modulo 101 to replace

{100,99,97} by {−1,−2,−4} respectively, and interpret the resulting coefficients as inte-

gers. According to the decomposition of the group algebra FSn in equation (8), each

nonzero matrix entry represents a scalar multiple of an element R−1(Ekℓ) in the group

algebra where Ekℓ is a 35×35 matrix unit. The elements R−1(Ekℓ) are defined, in terms

of the standard tableaux for λ, to be the product of two factors: the sum over all row
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permutations and the alternating sum over all column permutations. For λ = 421 with

λ
∗ = 3212 , each of the elements R−1(Ekℓ) has 4!2!3!2! = 576 terms. So this very sparse

matrix row represents a multilinear identity with 15 · 576 = 8640 terms. But this mul-

tilinear identity has symmetries determined by the partition λ = 421, and we can use

these symmetries to find an equivalent but much smaller nonlinear identity.

j 20792 20794 20797 20798 20815 20816 20819 20820 20821 20822

t 595 595 595 595 595 595 595 595 595 595

ℓ 2 4 7 8 25 26 29 30 31 32

c 1 1 99 1 2 97 2 97 1 1

j 21354 21357 21372 21379 21380

t 611 611 611 611 611

ℓ 4 7 22 29 30

c 100 1 100 4 99

FIGURE 12. Matrix row representing simplest new identity for λ= 421

Combining the expansion matrix with nonlinear identities. The nonzero matrix en-

tries in the rows representing the 20 new JJ identities for λ= 421 belong to columns cor-

responding to only 67 JJ types (out of the total of 616); we call these the JJ subtypes. The

expansions of the JJ monomials for the JJ subtypes contain terms which involve only

374 AA types (out of the total of 1806). However, to this subset of AA types t we must

add those AA types t ′ for which some consequence of the interchange identity involves

both t and t ′. This closure process converges after two iterations, leaving us with 530

AA types which must be included in our computations; we call these the AA subtypes.

There are 416 interchange consequences (out of the total of 688) in which both terms

belong to the AA subtypes.

To find the new nonlinear identities, we use the expansion matrix with monomials;

we are no longer using representation theory. To obtain a basis of the domain of the

expansion map, we apply each of the 67 JJ subtypes to all 105 permutations of the non-

linear monomial m = a4b2c corresponding to λ = 421. We normalize the resulting JJ

monomials using commutativity of the Jordan products, and obtain a set of 2417 non-

linear JJ monomials. Similarly, we apply the 530 AA subtypes to the permutations of

m to obtain a basis of the codomain of the expansion map, and convert the 416 in-

terchange consequences to a nonlinear form. The resulting expansion matrix E has

416 ·105+2417 = 46097 rows and 530 ·105+2417 = 58067 columns, and the same block

structure as equation (7).

We compute R = RCF(E ) using a large prime p = 1000003 to facilitate rational recon-

struction. The matrix R has rank 43577; the first 42787 rows have leading 1s in the left

side (columns j ≤ 55650), and the remaining 790 rows have leading 1s in the right side:

those columns are labeled by the 2417 nonlinear JJ monomials. We extract the lower

right block of size 790×2417 whose rows represent all the JJ identities in degree 7 which

have a permutation of m as the underlying variables in each term. We find that this

block contains only 685 distinct residues modulo p (a very small subset).

To do rational reconstruction, we consider all denominators d = 2i 3 j 5k 7ℓ with prime

factors ≤ 7 (the degree of the identities); each exponent i , j ,k,ℓ has lower bound 0 and

a suitable upper bound (we used 9, 3, 1, 1 respectively). The theoretical justification

is that in the explicit form of isomorphism (8), all the denominators are divisors of n!.

For each value of d , we multiply the 685 residues by d and reduce again using symmet-

ric representatives modulo p, obtaining a subset of integers contained in the interval
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[−L,U ] where −L and U are the min and max of the representatives. The smallest inter-

val (minimum of L +U ) is obtained for d = 26 ·3 = 192; in this case the representatives

have absolute value ≤ 6528 (which is most likely the smallest possible).

At this point, we assume that we have found the correct integer values of the coef-

ficients of the nonlinear JJ identities. If we have made a mistake here by choosing an

incorrect value of d then we expect that obvious errors will appear when we attempt

to confirm the identities independently using representation theory. To say the same

thing another way: we assume that if we were able to perform this computation using

rational arithmetic, then d = 192 would be the LCM of the denominators of the entries

of RCF(E ).

If the number of integer vectors is not too large, roughly < 500, then at this point

we can apply the LLL algorithm for lattice basis reduction [6] to reduce the size of the

coefficients. In any case, we then sort the integer vectors first by increasing number

of nonzero components, then by increasing Euclidean norm, and finally by increasing

maximum nonzero component (in absolute value).

The final step is to process these identities using representation theory, and for this

there are two options: (i) linearize the identities, which increases the number of terms

by a factor of 4!2! = 48, or (ii) use the linearization operator [7] which reduces the lin-

earization of each monomial to a single matrix multiplication. In either case, we use

representation theory as before to determine which of the 790 identities in the sorted

list are new, where as usual “new” means not a consequence of the known identities of

lower degree, but now also not a consequence of the previous identities in the list.

Figure 10 displays the first new nonlinear JJ identity for each of the 7 partitions in

degree 7 for which the module of new identities is non-trivial; to save space we omit

“≡ 0” in these identities. The other new nonlinear identities are available in an ancillary

file attached to the arXiv version of this paper; see [3] for details.
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