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Abstract

We have exhaustively enumerated all simple, connected graphs of a finite order and
have computed a selection of invariants over this set. Integer sequences were constructed
from these invariants and checked against the Online Encyclopedia of Integer Sequences
(OEIS). 141 new sequences were added and 6 sequences were appended or corrected.
From the graph database, we were able to programmatically suggest relationships
among the invariants. It will be shown that we can readily visualize any sequence of
graphs with a given criteria. The code has been released as an open-source framework
for further analysis and the database was constructed to be extensible to invariants not
considered in this work.

1 Introduction

There is a long history of public graph databases. Databases originally found only in print,
such as the Atlas of Graphs[1], have rapidly expanded to the electronic medium. These
databases range from those of mathematical and algorithmic interest [2, 3], to those cataloging
structures found in the applied sciences such as ChemSpider[4], RNA topologies[5, 6] or social
databases [7, 8, 9]. Due to the rapid growth in the number of unique isomorphic graphs, the
currently available databases are specialized in the number of graphs considered; a judicious
choice often restricts the study to an interesting and more manageable subset.

We proceed with the assumption however, that a priori all graphs could be interesting
given the right question. This is similar to the GraPHedron project[10], which attempts to
formulate conjectures by searching for graphs bounded by an inequality or constraint. Our
objective is more elementary. We aim to compute a large, comprehensive database of graphs
and their respective invariants. Such a database will allow new forms of discovery, some of
which will be directly explored in this paper. For example, the integer sequences formed by
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the invariants can be systematically explored and compared to those already known. These
sequences, and the set of graphs that belong to them, can be used to explore a basic set of
relations among the invariants. Since the input to GraPHedron consists of a set of invariants,
a larger input set will amplify the predictive power. Additionally, the creation of a large,
centralized database will serve as a useful reference for benchmarking various algorithms.
Finally, a comprehensive database provides pedagogic value, as representative graphs from
any considered sequence can be rapidly visualized.

To this end, we have created the Encyclopedia of Finite Graphs (henceforth Encyclopedia),
a database of invariants[11] and the software to fully populate it[12]. The code and the
database have been released under an open source license. The intention is for new invariants
to be an added to the project as various algorithms become available.

Once built, the Encyclopedia readily yields integer sequences formed by matching the
number of graphs to an invariant constraint at each order. Many such sequences have already
been found and cataloged in another database, the Online Encyclopedia of Integer Sequences
(OEIS)[13]. The OEIS was created by Neil Sloane in 1964 as a graduate student during
his studies of combinatorial problems. Since then, the database has grown to over 250,000
sequences and is highly cited, with over 3,000 citations to date. The sequences are of general
interest, spanning topics such as number theory, combinatorics, and graph theory. A given
sequence may contain any number of terms, ranging from at least four up to as many as
500,000 (in the cases where the sequence admits a readily computable expression). Collecting
and storing integer sequences in one place allows a researcher, who perhaps comes across the
first few values of an unknown sequence, to be able to quickly look up subsequent values. The
OEIS not only provides the numerical values but seeks to function as a true encyclopedia,
with cross references to related sequences, references to other literature, and formulas when
known. One of the primary goals of this paper is to systematically expand the sequences
involving graph invariants known to the OEIS database. Through our exhaustive enumeration
of small graphs, we were able to submit 141 new sequences to the OEIS and extend 6 existing
sequences.

A graph invariant is any property that is preserved under isomorphism. Invariants can be
simple binary properties (planarity), integers (automorphism group size), polynomials (chro-
matic polynomials), rationals (fractional chromatic numbers), complex numbers (adjacency
spectra), sets (dominion sets) or even graphs themselves (subgraph and minor matching). We
are primarily concerned with the sequences produced by graph invariants, i.e. the combinato-
rial problem of how many graphs of a given class satisfy a particular criteria. Let a graph be
defined as the pair G = (V,E), where V is a set of vertices and E is a set of edges. Define C
as a class which forms an isomorphically distinct set of graphs that satisfy a specified criteria.
Group the graphs into non-overlapping subsets such that

C = C1 ∪ C2 ∪ C3 ∪ . . . (1)

where Cn contains only graphs of order n. From here, define an ordered sequence of subsets
of the graph class

Q(f, C) = f(C1), f(C2), f(C3), . . . (2)
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where f is some invariant condition that selects from each set Cn. Since Q selects from the
graphs, we call Q the query.

Let S(f, C) = |f(C1)|, |f(C2)|, |f(C3)|, . . . be the sequence of integers defined by Q(f, C).
For example, if T (g) is the {0, 1} indicator function that determines if the graph is a tree,
and C ′ is the set of all simple unlabeled connected graphs, then

S(T (g) = 1, C ′) = 1, 1, 1, 1, 2, 3, 6, 11, 23, . . . (3)

which is sequence A000055 in the OEIS. This particular sequence is well-known and easily
computable. We have evaluated a range of invariants, from those that are computable in
polynomial time, to some that are known to be #P-complete. While a few sequences were
merely extended, other invariants, such as the independence number, were hitherto unknown
to OEIS and have produced novel sequences (A243781-A243784).

In addition to contributing to the OEIS, a secondary goal is to identify relationships
between graph invariants. Two queries of the same class are subsets of each other Qa(f, C) ⊆
Qb(g, C), if f(Ci) ⊆ g(Ci) for all i ≥ 0. Equality of two queries Qa = Qb, implies Qa ⊆ Qb

and Qb ⊆ Qa. We say that a relation between two invariants conditions is suggestive to
order n, Qa ⊆n Qb, if f(Ci) ⊆ g(Ci) for 0 ≤ i ≤ n. They are exclusive to order n, Qa ∩n Qb,
if f(Ci) ∩ g(Ci) = ∅ for 0 ≤ i ≤ n. We can quickly filter candidate relations by noting
that it is necessary but not sufficient for the same conditions to hold for sequences, e.g.
Sa 6= Sb =⇒ Qa 6= Qb.

We consider a final type of integer sequence, the number of distinct values an invariant
could obtain for a given order. These sequences are not restricted to integer invariants.
As an example, consider the integer sequence defined by the number of unique chromatic
polynomials of graphs of a given order.

In this paper, we restrict the classes examined to those of simple connected graphs. Unless
otherwise stated, any referenced graph is assumed to be simple and connected. Provided
one had a means of enumeration, an extension of this program to other classes would be
straightforward. Exhaustive generation algorithms are known for many specialized classes
such as bipartite graphs, digraphs, multigraphs, regular graphs, cubic graphs, snarks, trees
and maximal triangle-free graphs[14, 15, 16, 17, 18, 19].

2 Methods

Using the geng -c command from nauty [14], we enumerated the the simple connected graphs
up to order n ≤ 10. Our calculations drew upon a large number of open source libraries
and tools. Many of the graph invariant calculations were done with either networkx [20] or
graph-tool [21]. The invariants that were computable with integer or linear programming
were done with PuLP [22]. For each graph we computed a series of invariants, which for
completeness are described in Appendix A. A full table of all sequences submitted to the
OEIS can be found in Appendix B. The relations between the invariants are numerous and
are indexed online[12].
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Since the graphs we consider are loopless and undirected, the edge incidence information
for each graph requires n(n+ 1)/2 bits of storage. The largest we computed is of order 10,
which requires 45 bits. This can be efficiently stored as a 64 bit unsigned integer using a binary
representation. Graphs of order 11 would also be possible to be stored in this representation,
but graphs of order 12 would not (requiring 66 bits). Internally, we used SQLite3 as the
database back end for portability reasons. Most of the invariants were stored as integers and
compressed, the invariant database is about 850 MB. Some non-integer invariants, such as
the Tutte polynomial, were stored in a separate, specialized database.

The creation of the database started with the full enumeration of the graphs themselves.
The calculation of the invariants was an embarrassingly parallel problem, as each graph was
independent. The invariants were stored in a denormalized database with each graph stored
as a row and each column containing the value of a particular invariant for that graph. We
placed an index on each of the invariant columns to allow for fast querying at the expense of
disk space.

Sequences were constructed by first enumerating all the unique values for each invariant
and applying a condition of inequality. For example, the sequence A241454 describes the
graphs whose automorphism group has cardinality equal to two, while the sequence A086216

describes graphs with a vertex connectivity greater than or equal to three. Sequences can
involve more than one invariant condition. A sequence with only a single invariant condition
is called a primary sequence, while a sequence involving two or more invariant conditions is
called a secondary sequence. For a sequence to be considered for submission to the OEIS, it
must have at least four non-zero entries.

The suggestive relations described in the previous section were built in a similar way. For
each pair of invariants conditions, the sets of graphs related to the sequences were compared
for set equality, exclusivity, or as subsets. In addition to providing useful information, some
of these relations provided a check on the accuracy of the algorithms. For example, one of the
equality relations states that: a graph is a tree ⇔ a graph has infinite girth. This obviously
follows from the fact that trees contain no cycles and the girth of a graph is the length of the
shortest cycle (which is defined to be infinite for graphs without cycles). Other examples are
less trivial and hint at classic proofs. For all simple connected graphs of order n ≤ 10, it is
true (and thus suggestive) that: a graph has a girth of five → a graph has chromatic number
three. This eventually breaks down, in fact for a large enough n there exists a graph for any
given minimal girth and chromatic number[23].

The sequences counting distinct invariant values involved the creation of an additional
database to store the non-integer invariants. Each of these special invariants required their
own individualized table. For example, the Tutte polynomial was stored as a denormalized
table of graph identifiers with a row for each term of the polynomial containing the degree
and coefficient. Since this specialized database was much larger than the invariant integer
database, it was not included in the public version.
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3 Discussion

We have computed the Encyclopedia of Finite Graphs, an exhaustive enumeration of all
simple connected graphs and their invariant values for graphs of order ten or less. This
database was utilized to investigate integer sequences among the invariants and supplement
the OEIS. While fully functional, there are several immediate extensions to the project that
we aim to implement in the future.

From a technological standpoint, it is currently possible to extend to database to simple
connected graphs of larger orders. There are 1,006,700,565 and 164,059,830,476 graphs with
11 and 12 vertices respectively, a large but tractable size for local storage. Larger orders would
require prohibitive storage requirements as the number of graphs grows quickly (sequence
A001349). We choose a cutoff of order ten as a reasonable compromise between database size,
distribution options and computational cost.

There are many other classes of graphs to consider. As mentioned earlier, not only are
there other enumeration algorithms, but other projects have enumerated graphs of larger
order with particular characteristics, such as bipartite, Eulerian, cubic, or certain regular
graphs[24, 25, 26]. An extension of the Encyclopedia could incorporate graphs that others
have already determined along with a computation of their respective invariants.

In addition to expanding the volume of graphs considered, we can extend the number
of computed invariants. Since the Encyclopedia code is openly available[12], programs to
compute additional invariants can be added by anyone. Large collections of graph invariants
have been compiled (though not computed) under the Global Constraint Catalog, which
also extensively details the relations among invariants[27]. As previously mentioned, the
GraPHedron project aims to discover relationships among invariants using linear programming
techniques. The Encyclopedia, with a greater number of graphs and invariants, could be
employed to extend their results.

Being restricted to graphs of small order, the Encyclopedia’s contribution is the compilation
of graphs and their invariants into a queryable SQL database that is open-sourced and readily
extensible. The Encyclopedia allows users to query specific invariant conditions and visualize
the matching graphs. As an example, there are exactly three graphs with 10 vertices that are
simultaneously bipartite, integral and Eulerian. These graphs are illustrated in Figure 1. As
the Encyclopedia grows however, the published static database will be insufficient to handle
these extensions. We plan to create a web interface that would allow users to query graphs
based on their name their names (e.g. “Peterson graph”) or their invariant conditions.
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Figure 1: An example query to the Encyclopedia using specific invariant conditions. The com-
mand python viewer.py 10 -i is bipartite 1 -i is integral 1 -i is eulerian 1

displays the three graphs that are simultaneously bipartite, integral and Eulerian with
ten vertices.

6



References

[1] Ronald C Read and Robin J Wilson. An Atlas of Graphs. Clarendon Press, 1998.

[2] Massimo De Santo, Pasquale Foggia, Carlo Sansone, and Mario Vento. A large database of
graphs and its use for benchmarking graph isomorphism algorithms. Pattern Recognition
Letters, 24(8):1067–1079, 2003.

[3] Gunnar Brinkmann, Kris Coolsaet, Jan Goedgebeur, and Hadrien Mélot. House of
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Appendices

A Invariant Descriptions

The invariant descriptions are broadly organized into sections of algebraic graph theory,
topological graph theory, and invariants related to structure-like connectivity. Readers are
instructed to look to standard references for more comprehensive definitions [28, 29, 30].

Algebraic Graph Theory

The adjacency matrix A has the value at Aij equal to the number of edges joining vertex i to
j. For simple graphs, this is a {0, 1} matrix with zeros down the diagonal. The characteristic
polynomial for a matrix is given by its eigenvalues, det(λI − A). A sequence of eigenvalues
λ1, λ2, . . . is called the spectrum. A graph is integral if all the values of the adjacency
spectrum are integral, λk ∈ Z. A graph is real if λk ∈ R.

An independent vertex/edge set is a subset of vertices/edges of a graph such that no two
vertices/edges in the subset share an edge/vertex. The maximal independent vertex set or
independence number, is the cardinality of the largest independent vertex set. A graph is
bipartite if there exists two disjoint independent subsets of the vertices whose union is V .
The maximal independent edge set is the cardinality of the largest independent edge set.
The total number of independent edges sets is sometimes referred to as the number of edge
matchings, or the Hosoya index [31]. For graphs that are bounded in treewidth the Hosoya
index is fixed-parameter tractable. In general however, the Hosoya index #P-complete[32].

The automorphism group is formed by all mappings of the vertices onto themselves which
preserve isomorphism. The cardinality of this group is the automorphism number. Both
nauty and BLISS [33, 14] can compute the automorphism group and the number.

The Tutte polynomial is a bivariate polynomial which encodes information about the
graph’s connectedness. The polynomial Tg(x, y) is defined via the recurrence relation, Tg =
Tg−e +Tg/e for any edge e ∈ E that is not a loop or a bridge. Here g− e denotes edge removal,
g/e denotes edge contraction and a bridge is an edge whose removal disconnects the graph.
A graph with only i loops and j bridges has the base case of Tg(x, y) = xiyj. The chromatic
polynomial is a specialization of the Tutte polynomial

Pg(k) = (−1)|V |−ckcTg(1− k, 0) (4)

where c is the number of connected components of the graph. The chromatic polynomial
Pg(k) gives the number of proper k-colorings on a graph. A proper k-coloring of a graph is
an assignment of k colors to each vertex so that no two adjacent vertices have the same color.
The chromatic number χ(g), is the smallest non-zero k such that Pg(k) > 0.

The fractional coloring number is motivated by the chromatic number. A graph is a : b
colorable if each vertex is assigned b colors out of a palette of a total colors such that the
coloring of each adjacent vertex is disjoint. The smallest a such that the graph can be
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assigned to b colors is the b-fold chromatic number and is denoted by χb(g). Note that the
standard chromatic number is χ(g) = χ1(g). The fractional coloring number is defined to be

χf (g) = lim
b→∞

χb(g)

b
= inf

b

χb(g)

b
(5)

Not only does the limit exist, but χf (g) ∈ Q[34]. The integral chromatic number need not be
equal to its fractional counter part, in fact χf (g) ≤ χ(g). If the equality does not hold, we say
the graph has a fractional chromatic gap. Additionally, we can formulate χf (g) as a solution
to a linear program. Let I(g) be the set of all independent vertex sets and I(g, v) be the set
of independent vertex sets that contain vertex v. Define a system of non-negative variables vi.
Now χf(g) is the minimum of

∑
I∈I(g) vi subject to the constraints

∑
I∈I(g,x) vi ≥ 1 on each

vi.

Topological Graph Theory

The crossing number is the minimum possible number of edge crossings for an embedding
of the graph in a plane. A graph is planar if the crossing number is zero, in other words, a
graph is planar if it admits an embedding in the plane with no overlapping edges. A graph is
toroidal if the crossing number is one. The genus is the minimum number of edges that must
be added to a graph to make it planar. Due to a lack of freely available algorithms, planarity
is the only embedding currently considered.

Connectivity, Cycles and Subgraphs

The degree of vertex k is the number of edges incident to the vertex, d(vk) =
∑

j Akj. The
degree sequence is formed by listing the vertex degrees in descending order, and the number
of distinct degree sequences for graphs for simple connected graphs is OEIS A007721. The
degree matrix is a diagonal matrix defined by the degree sequence. The Laplacian matrix is
the difference of the diagonal matrix and the adjacency matrix. The Laplacian polynomial is
the characteristic polynomial of the Laplacian matrix. For connected graphs the spectrum of
the Laplacian matrix is real and λi ≤ 0, λ0 = 0. The second-largest eigenvalue is called the
spectral gap.

Let D denote the graph distance matrix, where Dij is the shortest path (geodesic) from
vertex i to j. A graph is connected if there is a path between all pairs of vertices. If there
is no path between vertices i and j, Dij =∞. By construction, all distances in connected
graphs are finite. The eccentricity of a vertex k is the maximum value of Dkj for all j. The
radius/diameter is the minimum/maximum value of eccentricity for all vertices.

A k-regular graph is one in which every vertex has degree k. A regular graph is strongly
regular, if there exist integers a and b such that any two adjacent vertices have a neighbors in
common and any two non-adjacent vertices have b neighbors in common. A graph is distance
regular if two conditions are met. First, for all pairs of vertices v, w and any pair of integers
i, j = 0, 1, . . . , d where d is the graph diameter, the number of vertices from v at a distance
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i and the number of vertices from w at a distance j depend only on i, j. Secondly, if the
distance between v and w is independent of the choice of v and w[35].

A circuit is a path that begins and ends at the same vertex. A graph is Hamilto-
nian/Eulerian if there is a circuit that visits each vertex/edge exactly once.

A vertex is an articulation point if its removal disconnects the graph. The vertex/edge
connectivity of a graph is the minimum number of vertices/edges needed to disconnect the
graph. A vertex joined to only a single edge is an end point.

The cycle space of a graph is the set of all of its Eulerian subgraphs, where every
member can be constructed as the symmetric difference of members of the cycle basis. A
tree is an acyclic connected graph whose cycle basis is the empty set. The length of the
shortest/longest cycle in a graph is its girth/circumference. Trees are defined to have infinite
girth and circumference. Due to technical limitations we record this value as a zero which is
unambiguous for connected loopless graphs. A chord of a cycle is an edge with one vertex
belonging to the cycle and one edge outside of the cycle. In a chordal graph, all cycles of
order four or more have a cycle chord.

A vertex subgraph or simply a subgraph, is a subset of vertices and the edges which are
common to all members of this subset. Let s(g, h) equal the number of vertex sets that
form subgraphs of h in g. The maximum clique number is the largest non-zero value of
s(g,Kn), where Kn is the complete graph on n vertices. A graph is triangle free or square
free if s(g, C3) = 0 or s(g, C4) = 0 respectively, where Cn is the cycle graph on n vertices.
In addition, we have checked for the subgraphs K4, K5, C5, C6 and several named graphs.
Illustrated below from left-to-right are the the bull graph B5, the bowtie graph ./ , the
open-bowtie graph o, and the diamond graph D4.
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B Submitted sequences

The sequences that were already present in the OEIS but extended by this project are listed
in Section B.1. The distinct sequences were those formed by considering the number of unique
values possible at a fixed order and are listed in Section B.2. Sequences involving a single
invariant, the primary sequences, are listed in Section B.3. The secondary sequences involve
two invariants and are listed in Section B.4.

Each sequence was hand-checked against the OEIS. We validated that either the sequence
was unique or the invariant description matched the sequence found. We reiterate that all
results shown are for simple, connected graphs. For some invariants the definition may be
ambiguous for small orders. When possible, we tried to refer to conventions found in the
literature and the OEIS for these cases. For brevity the symbols describing the invariants are
shown below.

Invariant symbol Description

|Aut(g)| Automorphism group size
χ(g) Chromatic number
κV (g), κE(g) vertex/edge connectivity
dia(g), girth(g) diameter, girth
a(g) number of articulation points
αV (g), αE(g) size of maximal independent vertex/edge set
s(g, h) number of subgraphs of h in g
T,H,E, I, I∗ properties: tree, Hamiltonian, Eulerian, integral, real
R,R∗, D,B properties: regular, strongly regular, distance regular, bipartite
C,X properties: chordal, chromatic gap

B.1 Extended sequences

OEIS Invariant Sequence: S1, S2, . . . , S10, terms in (·) were added by this project

A086216 κV (g) > 3 0 0 0 0 1 4 25 384 14480 (1211735)
A086217 κV (g) > 4 0 0 0 0 0 1 4 39 1051 (102630)
A052446 κE(g) = 2 0 1 1 3 10 52 351 3714 63638 (1912203)
A052447 κE(g) = 3 0 0 1 2 8 41 352 (4820) (113256) (4602039)
A052448 κE(g) = 4 0 0 0 1 2 15 121 (2159) (68715) (3952378)
A088741 R∗(g) = 1 1 1 1 2 2 3 1 3 3 (5)
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B.2 Distinct sequences

OEIS Invariant Sequence: S1, S2, . . . , S10

A245881 Tutte poly 1 1 2 5 16 73 532 7245 192605 9717156
A245883 chromatic poly 1 1 2 5 14 50 231 1650 21121 584432
A245880 characteristic poly 1 1 2 6 21 111 821 10423 236064 10375796
A245882 Laplacian poly 1 1 2 6 21 110 793 10251 239307 10985229
A245879 fractional chromatic 1 1 2 3 5 7 11 17 29 50

B.3 Primary sequences

OEIS Invariant Sequence: S1, S2, . . . , S10

A241454 |Aut(g)| = 2 0 1 1 2 9 37 317 4098 84602 2933996
A241455 |Aut(g)| = 4 0 0 0 1 3 28 198 1971 29047 672516
A241456 |Aut(g)| = 6 0 0 1 1 1 7 31 221 3025 68033
A241457 |Aut(g)| = 8 0 0 0 1 2 9 55 499 6017 107312
A241458 |Aut(g)| = 10 0 0 0 0 1 1 1 3 13 123
A241459 |Aut(g)| = 12 0 0 0 0 3 10 51 356 3395 49862
A241460 |Aut(g)| = 14 0 0 0 0 0 0 2 2 2 6
A241461 |Aut(g)| = 16 0 0 0 0 0 3 10 123 992 14026
A241462 |Aut(g)| = 20 0 0 0 0 0 0 2 6 29 199
A241463 |Aut(g)| = 24 0 0 0 1 1 1 14 118 1247 17191
A241464 |Aut(g)| = 36 0 0 0 0 0 1 3 16 132 1341
A241465 |Aut(g)| = 48 0 0 0 0 0 4 14 65 504 5215
A241466 |Aut(g)| = 72 0 0 0 0 0 1 2 16 124 1070
A241467 |Aut(g)| = 120 0 0 0 0 1 1 1 5 21 211
A241468 |Aut(g)| = 144 0 0 0 0 0 0 3 12 51 477
A241469 |Aut(g)| = 240 0 0 0 0 0 0 3 8 51 336
A241470 |Aut(g)| = 720 0 0 0 0 0 1 1 4 13 60
A241471 |Aut(g)| = 5040 0 0 0 0 0 0 1 1 1 5
A241702 χ(g) = 7 0 0 0 0 0 0 1 6 110 4125
A241703 κE(g) = 4 0 0 0 0 1 3 25 378 14306 1141575
A241704 κE(g) = 5 0 0 0 0 0 1 3 41 1095 104829
A241705 κE(g) = 6 0 0 0 0 0 0 1 4 65 3441
A241706 dia(g) = 2 0 0 1 4 14 59 373 4154 91518 4116896
A241707 dia(g) = 3 0 0 0 1 5 43 387 5797 148229 6959721
A241708 dia(g) = 4 0 0 0 0 1 8 82 1027 19320 598913
A241709 dia(g) = 5 0 0 0 0 0 1 9 125 1818 37856
A241710 dia(g) = 6 0 0 0 0 0 0 1 12 180 2928
A241711 girth(g) = 3 0 0 1 3 15 93 792 10833 259420 11704309
A241712 girth(g) = 4 0 0 0 1 2 11 43 234 1498 11451
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A241713 girth(g) = 5 0 0 0 0 1 1 5 18 82 539
A241714 girth(g) = 6 0 0 0 0 0 1 1 7 25 137
A241715 girth(g) = 7 0 0 0 0 0 0 1 1 6 20
A241767 a(g) = 1 0 0 1 2 7 33 244 2792 52448 1690206
A241768 a(g) = 2 0 0 0 1 3 17 101 890 11468 239728
A241769 a(g) = 3 0 0 0 0 1 5 32 242 2461 35839
A241770 a(g) = 4 0 0 0 0 0 1 7 60 527 6056
A241771 a(g) = 5 0 0 0 0 0 0 1 9 97 1029
A241782 s(g,K5) = 0 1 1 2 6 20 107 802 10252 232850 9905775
A241784 s(g, C5) = 0 1 1 2 6 13 44 144 577 2457 12499
A242790 s(g,D4) = 0 1 1 2 4 11 39 165 967 7684 87012
A242792 s(g,o) = 0 1 1 2 6 15 60 273 1769 14836 174111
A242791 s(g, ./) = 0 1 1 2 6 11 34 98 408 1957 12740
A243243 s(g, C4) > 0 0 0 0 3 13 93 796 10931 260340 11713182
A243246 s(g, C5) > 0 0 0 0 0 8 68 709 10540 258623 11704072
A243245 s(g,K3) > 0 0 0 1 3 15 93 794 10850 259700 11706739
A243244 s(g,K4) > 0 0 0 0 1 4 30 317 5511 165165 8932499
A243242 s(g,K5) > 0 0 0 0 0 1 5 51 865 28230 1810796
A243250 s(g,D4) > 0 0 0 0 2 10 73 688 10150 253396 11629559
A243248 s(g,B5) > 0 0 0 0 0 12 86 773 10777 259390 11705139
A243249 s(g,o) > 0 0 0 0 0 6 52 580 9348 246244 11542460
A243247 s(g, ./) > 0 0 0 0 0 10 78 755 10709 259123 11703831
A241814 D(g) = 1 1 1 1 2 2 4 2 5 4 7
A241839 R(g) = 0 1 0 1 4 19 107 849 11100 261058 11716404
A241840 D(g) = 0 0 0 1 4 19 108 851 11112 261076 11716564
A241841 T (g) = 0 0 0 1 4 18 106 842 11094 261033 11716465
A241842 I(g) = 0 0 0 1 4 18 106 846 11095 261056 11716488
A241843 C(g) = 0 0 0 0 1 6 54 581 9503 249169 11607032
A242952 I∗(g) = 1 1 1 1 3 11 54 539 7319 209471 10000304
A242953 I∗(g) = 0 0 0 1 3 10 58 314 3798 51609 1716267
A243241 R∗(g) = 0 0 0 1 4 19 109 852 11114 261077 11716566
A243251 X(g) = 1 0 0 0 0 1 3 33 496 16464 969293
A243252 X(g) = 0 1 1 2 6 20 109 820 10621 244616 10747278
A243781 αV (g) = 2 0 0 1 4 11 34 103 405 1892 12166
A243782 αV (g) = 3 0 0 0 1 8 63 524 5863 100702 2880002
A243783 αV (g) = 4 0 0 0 0 1 13 205 4308 135563 7161399
A243784 αV (g) = 5 0 0 0 0 0 1 19 513 21782 1576634
A243800 αE(g) = 2 0 0 0 5 20 16 22 29 37 46
A243801 αE(g) = 3 0 0 0 0 0 95 830 790 1479 2625
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B.4 Secondary sequences

OEIS Invariant Sequence: S1, S2, . . . , S10

A243270 H(g) = 1, B(g) = 1 1 0 0 1 0 4 0 24 0 473
A243271 H(g) = 1, D(g) = 1 1 0 1 2 2 4 2 5 4 6
A243272 H(g) = 1, E(g) = 1 1 0 1 1 2 5 21 120 1312 26525
A243273 H(g) = 1, I(g) = 0 0 0 0 1 7 43 379 6185 177071 9305068
A243274 H(g) = 1, I(g) = 1 1 0 1 2 1 5 4 11 12 50
A243275 H(g) = 1, s(g,K3) = 0 1 0 0 1 1 4 5 35 130 1293
A243276 H(g) = 1, s(g,K4) = 0 1 0 1 2 5 29 188 2481 52499 1857651
A243319 B(g) = 1, D(g) = 1 1 1 0 1 0 2 0 3 0 3
A243320 B(g) = 1, E(g) = 1 1 0 0 1 0 2 1 6 7 29
A243321 B(g) = 1, P (g) = 1 1 1 1 3 5 16 41 158 582 2749
A243322 D(g) = 1, E(g) = 1 1 0 1 1 2 2 2 3 4 4
A243323 I(g) = 0, B(g) = 1 0 0 1 2 4 14 43 179 730 4019
A243324 I(g) = 0, E(g) = 1 0 0 0 0 2 6 33 180 1773 31006
A243325 I(g) = 0, P (g) = 1 0 0 1 4 18 95 642 5962 71876 1052786
A243326 I(g) = 0, s(g,K3) = 0 0 0 1 2 5 16 58 264 1380 9818
A243327 I(g) = 0, s(g,K4) = 0 0 0 1 4 15 77 531 5597 95900 2784034
A243328 I(g) = 1, B(g) = 1 1 1 0 1 1 3 1 3 0 13
A243329 I(g) = 1, D(g) = 1 1 1 1 2 1 4 1 4 3 6
A243330 I(g) = 1, E(g) = 1 1 0 1 1 2 2 4 4 9 20
A243331 I(g) = 1, P (g) = 1 1 1 1 2 2 4 4 12 9 19
A243332 I(g) = 1, s(g,K3) = 0 1 1 0 1 1 3 1 3 0 14
A243333 I(g) = 1, s(g,K4) = 0 1 1 1 1 2 5 5 9 15 38
A243334 s(g,K3) = 0, D(g) = 1 1 1 0 1 1 2 1 3 1 4
A243335 s(g,K3) = 0, E(g) = 1 1 0 0 1 1 2 3 8 19 62
A243336 s(g,K4) = 0, E(g) = 1 1 0 1 1 3 6 22 93 656 7484
A243337 s(g,K4) = 0, P (g) = 1 1 1 2 5 17 79 478 4123 46666 648758
A243338 T (g) = 1, I(g) = 0 0 0 1 2 2 5 10 23 47 105
A243339 s(g,K4) = 0, D(g) = 1 1 1 1 1 1 3 1 3 3 4
A243545 H(g) = 1, s(g,o) = 0 1 0 1 3 3 14 50 390 3627 52858
A243546 s(g,o) = 0, D(g) = 1 1 1 1 2 1 2 1 3 1 4
A243547 s(g,o) = 0, E(g) = 1 1 0 1 1 2 4 8 35 115 629
A243548 s(g,o) = 0, I(g) = 1 1 1 1 2 2 4 1 8 1 19
A243549 s(g,o) = 0, I(g) = 0 0 0 1 4 13 56 272 1761 14835 174092
A243550 s(g,o) = 0, P (g) = 1 1 1 2 6 15 58 255 1510 10766 94109
A243551 s(g,o) = 0, s(g,K4) = 0 1 1 2 5 14 56 256 1656 13952 163878
A243552 s(g,o) = 0, s(g,B5) = 0 1 1 2 6 8 25 77 333 1668 11355
A243553 H(g) = 1, s(g,B5) = 0 1 0 1 3 1 4 5 35 130 1293
A243554 s(g,B5) = 0, D(g) = 1 1 1 1 2 1 2 1 3 1 4
A243555 s(g,B5) = 0, E(g) = 1 1 0 1 1 2 3 5 14 30 95
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A243556 s(g,B5) = 0, I(g) = 1 1 1 1 2 1 3 2 3 0 14
A243557 s(g,B5) = 0, I(g) = 0 0 0 1 4 8 23 78 337 1690 11418
A243558 s(g,B5) = 0, P (g) = 1 1 1 2 6 9 25 76 302 1360 7606
A243559 s(g,B5) = 0, s(g,K4) = 0 1 1 2 5 9 26 80 340 1690 11432
A243560 H(g) = 1, s(g,D4) = 0 1 0 1 1 2 9 27 190 1750 25658
A243561 s(g,D4) = 0, D(g) = 1 1 1 1 1 1 2 1 3 2 4
A243562 s(g,D4) = 0, E(g) = 1 1 0 1 1 2 3 8 21 79 334
A243563 s(g,D4) = 0, I(g) = 0 0 0 1 3 10 35 162 964 7682 86994
A243564 s(g,D4) = 0, I(g) = 1 1 1 1 1 1 4 3 3 2 18
A243565 s(g,D4) = 0, P (g) = 1 1 1 2 4 11 38 159 882 6242 55316
A243566 s(g,D4) = 0, s(g,K4) = 0 1 1 2 4 11 39 165 967 7684 87012
A243567 s(g,D4) = 0, s(g,o) = 0 1 1 2 4 10 36 141 784 5626 56249
A243568 s(g,D4) = 0, s(g,B5) = 0 1 1 2 4 9 26 80 340 1690 11432
A243789 s(g, ./) = 0, s(g,D4) = 0 1 1 2 4 9 30 89 379 1864 12365
A243790 s(g, ./) = 0, H(g) = 1 1 0 1 3 3 9 13 59 203 1651
A243791 s(g, ./) = 0, E(g) = 1 1 0 1 1 1 2 3 8 19 62
A243792 s(g, ./) = 0, I(g) = 1 1 1 1 2 1 4 1 3 0 15
A243783 s(g, ./) = 0, I(g) = 0 0 0 1 4 10 30 97 405 1957 12725
A243794 s(g, ./) = 0, P (g) = 1 1 1 2 6 11 33 94 370 1627 8895
A243795 s(g, ./) = 0, s(g,B5) = 0 1 1 2 6 7 22 65 285 1442 10106
A243253 C(g) = 1, E(g) = 1 1 0 1 0 3 2 13 18 116 366
A243785 C(g) = 1, I(g) = 0 0 0 1 4 12 56 267 1605 11909 109525
A243786 C(g) = 1, I(g) = 1 1 1 1 1 3 2 5 9 2 14
A243787 C(g) = 1, P (g) = 1 1 1 2 5 14 52 228 1209 7463 52520
A243788 C(g) = 1, s(g,K4) = 0 1 1 2 4 11 35 124 500 2224 10640
A243796 H(g) = 1, C(g) = 1 1 0 1 2 4 15 58 360 2793 28761
A243797 s(g,o) = 0, C(g) = 1 1 1 2 5 10 27 70 206 613 1942
A243798 s(g,B5) = 0, C(g) = 1 1 1 2 5 6 12 25 55 126 304
A243799 s(g, ./) = 0, C(g) = 1 1 1 2 5 6 13 25 58 130 316
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