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Abstract

For a generalized permutohedron Q the enumerator F (Q) of positive
lattice points in interiors of maximal cones of the normal fan ΣQ is a
quasisymmetric function. We describe this function for the class of nesto-
hedra as a Hopf algebra morphism from a combinatorial Hopf algebra
of building sets. For the class of graph-associahedra the corresponding
quasisymmetric function is a new isomorphism invariant of graphs. The
obtained invariant is quite natural as it is the generating function of or-
dered colorings of graphs and satisfies the recurrence relation with respect
to deletions of vertices.
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1 Introduction

Let Q be a convex polytope. The normal fan ΣQ is the set of cones over the
faces of the polar polytope Q∗. The polytope Q is simple if and only if the
normal fan ΣQ is simplicial. The polytope Q is a Delzant polytope if its normal
fan ΣQ is regular, i.e. the generators of the normal cone σv at any vertex v ∈ Q
can be chosen to form an integer basis of Zn.

The permutohedron Pen−1 is a (n − 1)-dimensional polytope which is the
convex hull Pen−1 = Conv{xω | ω ∈ Sn}, where x ∈ Rn is a point with
strictly increasing coordinates x1 < · · · < xn and xω = (xω(1), . . . , xω(n)) for a
permutation ω ∈ Sn. The normal fan ΣPen−1 of the permutohedron Pen−1 is
the braid arrangement fan. A generalized permutohedron Q is a polytope whose
normal fan ΣQ is refined by the braid arrangement fan ΣPen−1 . The generalized
permutohedra, introduced by Postnikov in [13], include some interesting classes
of polytopes, such as matroid polytopes, graphic zonotopes, nestohedra and
graph-associahedra.

Let Q be a generalized permutohedron in Rn. A function f : [n] → N is
Q-generic if it lies in the interior of the normal cone σv for some vertex v ∈ Q.
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Thus a Q-generic function f , as an element of (Rn)∗, uniquely maximizes over
Q at a vertex. Let F (Q) be the generating function of all Q-generic functions

F (Q) =
∑

f : Q−generic

xf =
∑
v∈Q

∑
f∈σv

xf ,

where xf = xf(1) · · ·xf(n). This power series is introduced and its main proper-
ties are derived by Billera, Jia and Reiner in ([2], Section 9). It is a homogeneous
quasisymmetric function of degree n. Consider its expansion in the monomial
basis of quasisymmetric functions

F (Q) =
∑
α|=n

ζα(Q)Mα,

where Mα =
∑
i1<···<ik x

a1
i1
· · ·xakik for a composition α = (a1, . . . , ak) |= n of

the integer n.
If Q = ZΓ is a graphic zonotope the function F (ZΓ) is easily seen to be

Stanley’s chromatic symmetric function XΓ of the graph Γ [17]. For the matroid
base polytope Q = PM the quasisymmetric function F (PM ) is an isomorphism
invariant of a matroid M introduced by Billera, Jia and Reiner in [2]. The uni-
fying principle of these two examples is a construction of certain combinatorial
Hopf algebras such that prescribed invariants are obtained by the universal mor-
phism to quasisymmetric functions. The theory of combinatorial Hopf algebras
is developed by Aguiar, Bergeron and Sotille in [1]. We particularly respond to
[2, Problem 9.3] and study the quasisymmetric functions F (Q) for the class of
nestohedra.

The nestohedron Q = PB is a simple polytope obtained from a simplex
by a sequence of face truncations. The family of faces by which truncations
are performed is encoded by a building set B, which is a subset of the face
lattice of the simplex. The ground sets of connected subgraphs of a graph Γ
produce the graphical building set B(Γ). The class of polytopes PB(Γ) is called
graph-associahedra. It contains an important series of polytopes such as associ-
ahedra or Stasheff polytopes, cyclohedra or Bott-Taubes polytopes, stellohedra
and permutohedra. For the class of nestohedra we describe coefficients ζα(PB)
in terms of underlying building set B. We construct a certain combinatorial
Hopf algebra of building sets B and show that the canonical morphism maps a
building set B precisely to the generating function F (PB) of the corresponding
nestohedron PB . The Hopf algebra B is not cocommutative which explains why
the function F (PB) is quasisymmetric rather then symmetric.

After Stanley’s chromatic symmetric function of a graph appeared, some
of its generalizations were introduced, as a quasisymmetric chromatic function
[10] and a noncommutative chromatic symmetric function [7]. We introduce a
new quasisymmetric function invariant FΓ associated to a graph Γ which has
independent combinatorial and algebraic descriptions as

1) the enumerator function of lattice points FΓ = F (PB(Γ)),
2) the Hopf morphism from certain combinatorial Hopf algebra of graphs,
3) the enumerator function of ordered colorings of Γ.
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We say a coloring of a graph is ordered if colors are linearly ordered and
monochromatic vertices are not connected by paths colored by smaller colors.
In addition the function FΓ satisfies the recurrence relation with respect to
deletions of vertices

FΓ =
∑
v∈V

(FΓ\v)1,

where F 7→ (F )1 is a certain shifting operator on quasisymmetric functions.
The paper is organized as follows. In section 2 we review the necessary facts

about nestohedra. In section 3 we review weak orders and preorders and their
connections with combinatorics of the permutohedron. In section 4 we construct
the combinatorial Hopf algebra B and prove that the assignment B 7→ F (PB)
comes from the universal Hopf algebra morphism to quasisymmetric functions.
In section 5 the function F (PB) is related with the multiset of unlabelled rooted
trees associated to vertices of PB . In section 6 the theory of P -partitions is used
to determine the expansion of F (PB) in the fundamental basis and the action
of the antipode on F (PB). In section 7 we give a graph theoretic interpretation
of the invariant F (PB(Γ)). We prove the recurrence relation for FΓ with respect
to deletions of vertices of a graph which serves as the main computational tool.
As an application we compute F (Q) for Q be a permutohedron, associahedron,
ciclohedron or stellohedron. As the conclusion some open problems concerning
the graph invariant FΓ and Hopf algebra B are posed.

2 Nestohedra

In this section we review the necessary definitions and facts about nestohedra.
This class of polytopes is introduced and studied in [5], [13], [14], [19].

A hypergraph B on the finite set [n] = {1, . . . , n} is a collection of nonempty
subsets of [n]. For convenience we suppose that {i} ∈ B, i ∈ [n]. For a subset
I ⊂ [n], let B |I= {J ⊂ I | J ∈ B} be the induced subhypergraphs. The
contraction of I ⊂ V from B is the hypergraph B/I = {J ⊂ [n] \ I | J ∈
B or I ′ ∪ J ∈ B for some I ′ ⊂ I}.

Let ∆[n] = Conv{e1, . . . , en} be the standard coordinate simplex in Rn. To
a subset I ⊂ [n] corresponds the face ∆I = Conv{ei | i ∈ I} ⊂ ∆[n]. For a
hypergraph B on [n] define the polytope PB as the Minkowski sum of simpleces

PB =
∑
I∈B

∆I =
∑
I∈B

Conv{ei | i ∈ I} = Conv
∑
I∈B
{ei | i ∈ I}.

The polytope PB is simple if additionally the hypergraph B satisfies the follow-
ing condition:
� If I, J ∈ B and I ∩ J 6= ∅ then I ∪ J ∈ B.

In that caseB is called a building set and the polytope PB is called a nestohedron.

Example 2.1. Given a simple graph Γ on the vertex set [n], the graphical
building set B(Γ) is defined as the collection of all I ⊂ [n] such that induced
graphs Γ |I are connected. For the graph Γ and a subset I ⊂ [n], the contraction
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Γ/I is a graph on the vertex set [n]\I with two vertices u and v connected by the
edge if either {u, v} is an edge of Γ or there is a path u,w1, . . . , wk, v in Γ with
w1, . . . , wk ∈ I. Then it is immediate that B(Γ |I) = B(Γ) |I and B(Γ/I) =
B(Γ)/I. The polytope PB(Γ) is called a graph-associahedron. For instance
the series Pen−1, Asn−1, Cyn−1, Stn−1, n > 2 of permutohedra, associahedra,
ciclohedra and stellohedra correspond respectively to complete graphs Kn, path
graphs Ln, cycle graphs Cn and star graphs K1,n−1 on n vertices.

Let Bmax be the collection of maximal by inclusion elements of a building set
B. We say that a building set B is connected if [n] ∈ B. Since the Minkowski
sum is the product for polytopes which are contained in the complementary
subspaces, we have

PB =
∑

I∈Bmax

∑
J∈B|I

∆J =
∏

I∈Bmax

PB|I .

Thus we may restrict ourselves to connected building sets. The realization of
nestohedra is given by the following proposition.

Proposition 2.2 ([5], Proposition 3.12). Let B be a connected building set on
the finite set [n] and µ(B) be the number of elements of B. The nestohedron PB
can be described as the intersection of the hyperplane H[n] with the halfspaces
HI,≥ corresponding to all I ∈ B \ {[n]}, where

H[n] = {x ∈ Rn |
∑
i∈[n]

xi = µ(B)},

HI,≥ = {x ∈ Rn |
∑
i∈I

xi ≥ µ(B |I)}.

As a consequence we obtain that for a connected building set B the nesto-
hedron PB can be obtained by a sequence of face truncations from the simplex
∆ = H[n] ∩ ∩ni=1H{i},≥. Let HI = ∂HI,≥ be the hyperplane corresponding to
I ⊂ [n]. We index the face lattice of ∆ by ∆I = ∆ ∩ ∩i∈IH{i}, I ⊂ [n]. Then
perform the face truncations ∆ ∩HI,≥ prescribed by non-singleton sets I ∈ B
in any reverse order. It follows that facets of the nestohedron PB are indexed
by the elements I ∈ B \ {[n]}. A facet FI ⊂ PB is isomorphic to the product
PB|I ×PB/I . The condition of connectedness of the building set B is important
since the same procedure for a disconnected building set B1 tB2 does not lead
to PB1tB2 = PB1 × PB2 .

Example 2.3. The permutohedron Pn is obtained by truncations along all faces
of the simplex ∆ in reverse order. Each facet of Pn is of the form Pk × Pn−k,
for some 1 ≤ k ≤ n− 1.

The face lattice of PB is described by the following proposition.

Proposition 2.4 ([5], Theorem 3.14; [13], Theorem 7.4). Given a connected bu-
ilding set B on [n], let {FI | I ∈ B \{[n]}} be the set of facets of the nestohedron
PB. The intersection FI1 ∩ . . .∩FIk , k ≥ 2 is a nonempty face of PB if and only
if
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(N1) Ii ⊂ Ij or Ij ⊂ Ii or Ii ∩ Ij = ∅ for any 1 ≤ i < j ≤ k.

(N2) Ij1 ∪ · · · ∪ Ijp /∈ B for any pairwise disjoint sets Ij1 , . . . , Ijp .

A subcollection {I1, . . . , Ik} ⊂ B that satisfies the conditions (N1) and (N2)
is called a nested set. The collection NB of all nested sets form a simplicial
complex called the nested set complex. The face poset of NB is opposite to the
face poset of PB . Therefore NB may be realized as a simplicial polytope which
is polar to PB .

The Proposition 2.4 implies that vertices of PB correspond to maximal nested
sets. We denote this correspondence by v 7→ Nv. To a vertex v ∈ PB associate
the poset (Nv ∪ {[n]},⊂). For I ∈ Nv ∪ {[n]} let iI ∈ [n] be the element such
that {iI} = I \∪{J ∈ Nv | J ( I}. The correspondence I 7→ iI is a well defined
bijection by the characterization of maximal nested sets ([13], Proposition 7.6).
It defines the partial order ≤v on [n] by iI ≤v iJ if and only if I ⊂ J in
Nv ∪ {[n]}. Denote this poset on [n] by Pv. The Hasse diagram Tv of the poset
Pv for v ∈ PB is called a B-tree [14, Definition 8.1]. So (i, j) ∈ Tv if and only
if ilPv

j is a covering relation in the poset Pv. The root of Tv is the maximal
element of Pv.

The following proposition, which is a consequence of Proposition 2.2, de-
scribes the coordinates and normal cones at vertices of PB . Note that any
nested set {I1, . . . , Ik} ⊂ B is ordered by inclusion of sets. The usual covering
relations is denoted by J l I.

Proposition 2.5. Let v ∈ PB be a vertex of the nestohedron PB and Nv ∈ NB
be the corresponding maximal nested set.

(i) The coordinates of the vertex v are given by

xiI = µ(B |I)−
∑

J∈Nv:JlI
µ(B |J), I ∈ Nv ∪ {[n]}.

(ii) The normal cone σv at the vertex v is determined by the inequalities

xiJ < xiI , for all J l I in Nv.

3 Preorders, Weak orders and Permutohedra

A binary relation - is called a preorder on the finite set V = {v1, . . . , vn} if it
is reflexive and transitive. If it is in addition total, i.e. u - v or v - u for all
u, v ∈ V , the preorder - is called a weak order or a total preorder. The preorder
defines an equivalence relation by u ∼ v if and only if u - v and v - u. The
relation - / ∼ is a partial order on the set of equivalence classes V/ ∼. If -
is a weak order on V then - / ∼ is a total order on V/ ∼. Any weak order is
represented as an ordered partition of V , i.e. as the ordered family (V1, . . . , Vk)
of nonempty disjoint subsets which covers V . The relation is recovered by u - v
if and only if u ∈ Vi and v ∈ Vj for some 1 ≤ i ≤ j ≤ k. The type of a weak
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order - is the corresponding composition type(-) = (|V1|, . . . , |Vk|) |= n and
k is its length. Any function f : V → N determines a weak order on V by
u -f v if f(u) ≤ f(v), for all u, v ∈ V . For any strictly increasing function
g : N → N we have -f=-g◦f . To a weak order - on V is associated the
monomial quasisymmetric function

Mtype(-) =
∑

-f=-

xf(1) · · ·xf(n).

Let WO(n) = ∪k=1,nWOk(n) be the set of all weak orders of the set V
graded by the lengths. To an ordered partition (V1, . . . , Vk) is associated the flag
∅ ⊂ V1 ⊂ V1∪V2 ⊂ . . . ⊂ V1∪ . . .∪Vk−1 ⊂ V . This is one-to-one correspondence
of ordered partitions and flags on V . Therefore the set of all weak orders WO(n)
is modelled as the simplicial complex ∆[n](1) the first barycentric subdivision of
the simplex on V . The simplicial complex ∆[n](1) is combinatorially equivalent
to the convex simplicial polytope whose polar polytope is the permutohedron
Pen−1 (see [12]). Thus k-faces of Pen−1 are labelled by ordered partitions
(V1, . . . , Vn−k) or equivalently by (n − k)-weak orders on V . Accordingly, to
any face F ⊂ Pen−1 is associated the monomial quasisymmetric function MF ,
where

MF = Mtype(-),

for the weak order - on V corresponding to the face F . Specially, facets corre-
spond to pairs (A, V \ A), for proper subsets A ⊂ V and the associated mono-
mial quasissymetric functions are of the form M(k,n−k) for 1 ≤ k ≤ n. Vertices
correspond to linear orders vi1 < . . . < vin on V with associated monomial
quasisymmetric functions equal to M(1,...,1).

By Proposition 2.5 the (n− 1)-permutohedron is realized in the hyperplane
H[n] = {x1 + · · ·+ xn = 2n − 1} as the convex hull of vertices

Pen−1 = Conv{(2π
−1(i1)−1, . . . , 2π

−1(in)−1) | π ∈ Sn}.

The normal cone at the vertex v ∈ Pen−1 that corresponds to a permutation
πv = (i1, . . . , in) is the Weyl chamber

σv = Cπv
: xi1 < · · · < xin .

The braid arrangement An is the arrangement of hyperplanes

An : xi = xj , 1 ≤ i, j ≤ n

in the quatient space Rn/R · (1, . . . , 1) ∼= Rn−1. The normal fan ΣPen−1 of
the permutohedron is the simplicial fan defined by An. A braid cone is the
polyhedral cone given by the conjuction of inequalities of the form xi ≤ xj . There
is an obvious bijection between preorders - on [n] and braid cones determined
by equivalency xi ≤ xj if and only if i - j. The correspondence and properties
of preorders and braid cones are given in [14, Proposition 3.5]. We remark that

6



partial orders on [n] correspond to full-dimensional braid cones. The monomial
quasisymmetric function MF is precisely the enumerator for all positive lattice
points in the interior of the normal cone associated to the face F ⊂ Pen−1.

For each generalized permutohedronQ there is a map ΨQ : Sn → Vertices(Q)
defined by Ψ(π) = v if and only if the normal cone σv of Q at v contains the
Weyl chamber Cπ or equivalently the permutation π ∈ Sn is a linear extension
of the poset determined by the normal cone at v [14, Corollary 3.9].

4 Hopf algebra morphism

The goal of this section is to show that the assignment of quasisymmetric func-
tion F (PB) to a building set B is a Hopf algebra morphism. We construct a
Hopf algebra associated with the species of building sets in the sense of [15].
Let B be the graded vector space generated by the set of all isomorphism classes
of building sets. The grading is defined by the number of vertices. Define the
multiplication and comultiplication by

B1 ·B2 = B1 tB2 and ∆(B) =
∑
I⊂V

B |I ⊗B/I.

The unit is the building set B∅ on the empty set and the counit is defined
by ε(B∅) = 1 and zero otherwise.

Proposition 4.1. The vector space B with the above defined operations is a
graded commutative and non-cocommutative connected bialgebra.

Proof. The only nontrivial parts of the statement are the coassociativity and the
compatibility of operations, which follows from the straightforward identities
(B/I) |J= (B |ItJ)/I, (B/I)/J = B/(I t J) for any disjoint I, J ⊂ V and
(B1 · B2) |I1tI2= B1 |I1 ·B2 |I2 , (B1 · B2)/(I1 t I2) = B1/I1 · B2/I2 for all
I1 ⊂ V1, I2 ⊂ V2.

The antipode of B is determined by general Takeuchi’s formula for the an-
tipode of a graded connected bialgebra ([18, Lemma 14], see also [6, Proposition
1.44])

S(B) =
∑
k≥1

(−1)k
∑
Lk

∏
j=1,k

(B |Ij )/Ij−1,

where the inner sum goes over all chains of subsets Lk : ∅ = I0 ⊂ I1 ⊂ · · · ⊂
Ik−1 ⊂ Ik = V .

Remark 4.2. The algebra B has an additional structure of a differential algebra
introduced in [3]. The derivation is determined by

d(B) =
∑

I∈B\{[n]}

B |I ·B/I
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for connected building set on [n] and extended by Leibnitz law d(B1B2) =
d(B1)B2 +B1d(B2).

Another Hopf algebra of building set BSet, which is a Hopf subalgebra of
the chromatic Hopf algebra of hypergraphs is studied in [8], [9]. As algebras B
and BSet are the same but the coalgebra structures are different.

Definition 4.3. Given a composition α = (a1, . . . , ak) |= n, we say that the
chain L : ∅ = I0 ⊂ I1 ⊂ · · · ⊂ Ik−1 ⊂ Ik = V is a splitting chain of the type
type(L) = α of a building set B if (B |Ij )/Ij−1 is discrete and |Ij \ Ij−1| = aj
for all 1 ≤ j ≤ k. A splitting chain L determines the weak order �L= (I1, I2 \
I1, . . . , Ik \ Ik−1) of the same type.

Proposition 4.4. For a connected building set B the generating function F (PB)
has the following expansion

F (PB) =
∑
α|=n

ζα(B)Mα,

where ζα(B) is the total number of splitting chains of the type α.

Proof. Let L be a splitting chain of the length k. The sets Ij \ Ij−1, 1 ≤ j ≤ k
decompose the set of vertices V = [n]. Define the level of a vertex i ∈ V by
l(i) = j if i ∈ Ij \ Ij−1. Let Si = {i}∪max{J ⊂ Il(i)−1 | {i}∪J ∈ B} for i ∈ V .
Since B is connected and B/Ik−1 is discrete it follows that |Ik \ Ik−1| = 1, i.e.
Si = V for the unique i ∈ V . Let N(L) = {Si | i ∈ V } \ {V }.

Claim: The collection N(L) is a maximal nested set.

(N1) Suppose that Si ∩ Sj 6= ∅ for some i, j ∈ V . If l = l(i) = l(j) then
Si ∪ Sj ∈ B and {i, j} ∈ (B |Il)/Il−1. If l(j) < l(i) then i ∈ Si ∪ Sj ∈ B
which implies Sj ⊂ Si.

(N2) If S = Si1 ∪ . . . ∪ Sip ∈ B then S = Sij for a vertex ij ∈ V with the
maximal level l = max{l(i1), . . . , l(ip)}. Therefore Si1 , . . . , Sip is not a
disjoint collection.

Denote by v(L) the vertex of PB which corresponds to N(L). It defines the
map g : L 7→ v(L) ∈ PB . We show the following identity∑

f∈σv

xf =
∑

L∈g−1(v)

Mtype(L).

Let L ∈ g−1(v) be a splitting chain. Then N(L) = Nv and the associated
level function i 7→ l(i) satisfies l(i) < l(j), Si l Sj in N(L). By Proposition 2.5
(ii) we have l ∈ σv which shows that the monomial quasisymmetric function
Mtype(L) is a summand of

∑
f∈σv

xf . On the other hand, for f ∈ σv with the
set of values i1 < · · · < ik, define the decomposition of the set V by Ij =
f−1({ij}), 1 ≤ j ≤ k. Then L : I1 ⊂ I1 ∪ I2 ⊂ · · · ⊂ I1 ∪ · · · ∪ Ik = V is a
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splitting chain of B and N(L) = Nv. The statement of theorem follows from
identities

F (PB) =
∑
v∈PB

∑
f∈σv

xf =
∑
v∈PB

∑
L∈g−1(v)

Mtype(L) =
∑
α|=n

ζα(B)Mα.

Theorem 4.5. The map F : B → QSym, defined by F (B) = F (PB), is a
morphism of combinatorial Hopf algebras.

Proof. Define a character ζ : B → k by ζ(B) = 1 if B is discrete and zero
otherwise. There is a unique morphism of combinatorial Hopf algebras Ψ :
(B, ζ)→ (QSym, ζQ), where ζQ : QSym→ k is the canonical character defined
on the monomial basis by ζQ(Mα) = 1 for α = () or α = (n) and zero otherwise
([1], Theorem 4.1). Let pj : B → Bj be the projection on the homogeneous part
of degree j. The morphism Ψ is defined by

Ψ(B) =
∑
α|=n

pα(B)Mα,

where pα = p(a1,...,ak) = pa1 ∗ . . . ∗ pak = mk−1 ◦ (pa1 ⊗ . . . ⊗ pak) ◦ ∆k−1 is
the convolution product of projections. It is straightforward to convince that
pα(B) = ζα(B) for any composition α |= n, so by Proposition 4.4 the morphism
Ψ coincides with the map F .

As a consequence we obtain the following identities for the function F :

F (PB1 × PB2) = F (PB1)F (PB2),

∆(F (PB)) =
∑
I⊂V

F (PB|I )⊗ F (PB/I).

Remark 4.6. The function F (PB) is not a combinatorial invariant of nesto-
hedra. For example, the building sets B1 = {1, 2, 3, 4, 12, 123} and B2 =
{1, 2, 3, 4, 12, 34} on the four element set V = [4] have PB1 and PB2 combi-
natorially equivalent to the 3-cube, but F (B1) 6= F (B2).

5 Unlabelled rooted trees

Let T be an unlabelled rooted tree on the set of vertices V = {v1, . . . , vn}. It
defines a poset (V,≤T ) with vi ≤ vj if and only if vj is the node on the unique
path from vi to the root. We do not make a difference between the rooted tree
T and the corresponding Hasse diagram of the poset (V,≤T ).

Remark 5.1. Let Tn be the set of all unlabelled rooted trees on n nodes and
r(n) be the total number of elements of Tn. In Neil Sloan’s OEIS the sequence
{r(n)}n∈N is numerated by A000081.
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We need some basic notions from Stanley’s theory of P -partitions. A detailed
survey of the theory can be found in [16], [6]. A function f : T → N on vertices
of a rooted tree T is called T -partition if f(vi) < f(vj) for any oriented edge
vi → vj ∈ T . Write A(T ) for the set of all T -partitions. Let F (T ) be the
quasisymmetric enumerator

F (T ) =
∑

f∈A(T )

xf .

Example 5.2. There are four unlabelled rooted trees on 4 vertices. They are
depicted in the Figure 1 with corresponding enumerators F (T ) in the monomial
basis.

Figure 1: The unlabelled rooted trees T4

The quasisymmetric function F (T ) can be determined recursively. To each
vertex v ∈ V define T≤v as the complete subtree on the set {u ∈ V | u ≤ v}
of predecessors of v. The leaf is a vertex v ∈ V for which T≤v = {v}. For a
rooted forest T = ti=1,kTi which is a finite collection of rooted trees we extend
multiplicatively definition of T -partitions enumerators

F (ti=1,kTi) = F (T1) · · ·F (Tk).

Definition 5.3. A shifting operator F 7→ (F )1 on quasisymmetric functions
is the linear extension of the map defined on the monomial basis by (Mα)1 =
M(α,1), for each composition α.
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Theorem 5.4. Given an unlabelled rooted tree T on the set of vertices V with
the root v0 ∈ V . Let T1, . . . , Tk be connected components of the forest T \ {v0}.
Then

F (T ) = (
∏
i=1,k

F (Ti))1 = F (T \ {v0})1.

Proof. Denote by v1, . . . , vk the neighbors in T of the root v0. Then Ti = T≤vi
for i = 1, . . . , k. A function f : T → N is a T -partition if and only if its
restrictions f |Ti : Ti → N are Ti-partitions for all i = 1, . . . , k and f(v) < f(v0)
for each v 6= v0.

Figure 2: Associahedron As3

Given a connected building set B, recall that to each vertex v ∈ PB is
associated the rooted tree Tv, called B-tree, which is the Hasse diagram of
the poset Pv. Let T (B) = {Tv | v ∈ PB} be the multiset of the corresponding
unlabelled rooted trees. The following expansion is a special case of [2, Theorem
9.2] which is formulated without proof for generalized permutohedra.

Theorem 5.5. For a building set B the quasisymmetric enumerator F (PB) is
the sum of T -partitions enumerators corresponding to vertices of PB

F (PB) =
∑

T∈T (B)

F (T ).

11



Proof. It is sufficient to show the identity F (Tv) =
∑
f∈σv

xf which follows from
the description of the normal cone σv at a vertex v ∈ PB , see Proposition 2.5
(ii).

Corollary 5.6. The quasisymmetric function F (PB) depends only on the mul-
tiset T (B) of unlabelled rooted trees Tv corresponding to the vertices v ∈ PB.

Question 5.7. In what extent the multiset T (B) determines a building set B?

Example 5.8. The 3-dimensional associahedron As3 is realized as the
graph-associahedron PB(L4) corresponding to the path graph L4 on the
set of vertices {1, 2, 3, 4}. The determining building set is B(L4) =
{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234}. At Figure 2 is indicated the correspondence
of vertices v ∈ As3 and unlabelled rooted trees Tv. By Theorem 5.5 we find

F (As3) = 24M(1,1,1,1) + 6M(2,1,1) + 4M(1,2,1).

Each T -partition f : T → N takes the maximal value at the root of T .
Therefore each monomial function Mα in the expansion of F (T ) in the monomial
basis is indexed by the composition α whose the last coefficient is 1. Since
r(n) > 2n−2 = dim(QSymn−1) for n > 4, we proved the following

Proposition 5.9. The quasisymmetric functions {F (T )}T∈Tn are linearly de-
pendent for each n > 4.

Example 5.10. We have r(5) = 9 and dim(QSym4)1 = 8. The unique linear
dependence relation is presented on Figure 3.

Figure 3: Linear dependence relation in T5

6 Expansions in the fundamental basis and the
antipode

The expansion of the lattice points enumerator F (Q) in the fundamental basis
and the action of the antipode on it is determined for a general class of general-
ized permutohedra in [2, Theorem 9.2]. We consider these formula for a special
class of nestohedra.

The fundamental basis {Lα}α|=n,n∈N of QSym is defined by Lα =
∑
α�βMβ ,

where α � β if and only if β refines α.
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For a rooted tree T let ω : V → [n] be a labelling of vertices such that ω(vi) >
ω(vj) whenever vi → vj ∈ T . Denote by L(T ) the set of linear extensions of the
induced poset on the set of labels [n]. Any linear extension of the poset on [n] can
be regarded as the permutation π ∈ Sn. Let des(π) be the descent composition of
a permutation π ∈ Sn whose components are given by the lengths of consecutive
maximal increasing subsequences of π. For instance des(24153) = (2, 2, 1).

The following expansion is fundamental in the theory of P -partitions ([16,
Corollary 7.19.5], [6, Proposition 5.19])

F (T ) =
∑

π∈L(T )

Ldes(π).

By Theorem 5.5 it follows

F (PB) =
∑

T∈T (B)

F (T ) =
∑

T∈T (B)

∑
π∈L(T )

Ldes(π),

which shows the positivity of F (PB) in the fundamental basis.
We determine how the antipode S on quasisymmetric functions acts on the

function F (PB). The formula for antipode in monomial and fundamental basis
are obtained independently in [11, Corollary 2.3], [4, Proposition 3.4], see also
[6, Proposition 5.26]. We have

S(Ldes(π)) = (−1)|π|Ldes(π),

where π is the opposite permutation to π defined as π = π0 ◦ π for π0 =
(n, n− 1, . . . , 2, 1). Therefore

S(F (PB)) = (−1)n
∑

T∈T (B)

∑
π∈L(T )

Ldes(π).

The quasisymmetric function F ∗(PB) = S(F (PB)) has a combinatorial inter-
pretation as the enumerator function

F ∗(PB) =
∑
v∈PB

∑
f∈σv

xf ,

where σv is the closer of the normal cone σv at the vertex v ∈ PB .
For F ∈ QSym let χ(F,m) = psm(F ) be the principal specialization defined

by algebraic extension of psm(xi) = 1 for 1 ≤ i ≤ m and psm(xi) = 0 for i > m.
Since psm(Mα) =

(
m
k(α)

)
we have

χ(PB ,m) =
∑
α|=n

ζα(B)

(
m

k(α)

)
,

which counts the number of PB-generic functions f : [n] → [m]. It is related
with χ∗(PB ,m) = psm(F ∗(PB)) by

13



χ(PB ,−m) = (−1)nχ∗(PB ,m).

Specially, for m = 1, we obtain the following

Proposition 6.1. The number of vertices f0(PB) of a nestohedron PB is de-
termined by χ(PB ,−1) =

∑
α|=n(−1)k(α)ζα(B) = (−1)nf0(PB).

Proof. The statement follows from the identity ps1(F ∗(PB)) = c(n), where c(n)

is the coefficient by M(n) in the expansion of F ∗(PB) in the monomial basis.

Example 6.2. Let B = B(L4) and As3 = PB as in Example 5.8. Then in the
fundamental basis F (As3) = 14L(1,1,1,1) + 6L(2,1,1) + 4L(1,2,1) and F ∗(As3) =
14L(4) + 6L(1,3) + 4L(2,2).

7 The graph invariant F (PB(Γ))

In this section we investigate the quasisymmetric function F (PB(Γ)) associated
to a simple graph Γ.

The vector space G spanned by all isomorphism classes of simple graphs is
endowed with the Hopf algebra structure by operations

Γ1 · Γ2 = Γ1 t Γ2 and ∆(Γ) =
∑
I⊂V

Γ |I ⊗Γ/I.

The map that associates the graphical building set B(Γ) to a graph Γ is extended
to a Hopf algebra monomorphism i : G → B. It follows from Theorem 4.5 that
the quasisymmetric function F (PB(Γ)) is a multiplicative graph invariant. By
Proposition 4.4 it may be defined purely in a graph theoretic manner.

Let Γ be a simple graph on n vertices V = {v1, · · · , vn} and λ : V → N be
a coloring with the set of colors {i1 < · · · < ik}. Define a flag ∅ = I0 ⊂ I1 ⊂
· · · ⊂ Ik−1 ⊂ Ik = V by Ij = λ−1({i1, · · · , ij}) for 1 ≤ j ≤ k. We say that λ is a
ordered coloring of Γ if the graphs Γ|Ij/Ij−1 are discrete for all 1 ≤ j ≤ k. This
means that each monochromatic set of vertices is discrete and no two vertices of
the same color are connected by a path trough vertices colored by smaller colors.
The type of an ordered coloring λ is the composition co(λ) = (a1, · · · , ak) |= n,
where aj = |Ij \ Ij−1| is the number of vertices colored by ij , for all 1 ≤ j ≤ k.
Let Col≤(Γ) be the set of all ordered colorings of the graph Γ and FΓ be the
enumerator function

FΓ =
∑

λ∈Col≤(Γ)

xλ.

By Proposition 4.4 it coincides with the quasisymmetric function of graph-
associahedra B(Γ)

FΓ = F (PB(Γ)).

Thus in the monomial basis it has the expansion FΓ =
∑
α|=n ζα(Γ)Mα, where

ζα(Γ) is the number of ordered colorings λ : V → {1, · · · , k(α)} of the type

14



co(λ) = α. The polynomial χ(Γ,m) = χ(B(Γ),m) counts the number of ordered
colorings with at most m colors.

Remark 7.1. Stanley’s chromatic symmetric function of a graph XΓ introduced
in [17] is the enumerator of proper colorings λ : V (Γ) → N. A coloring λ is
proper if the graph Γ does not contain a monochromatic edge, i.e. the induced
graph on λ−1({i}) for each color i ∈ N is discrete. The sizes of monochromatic
parts define the type of the proper coloring which is a partition of the number of
vertices of the graph since ordering of colors is inessential. The assignment XΓ is
the canonical morphism from the chromatic Hopf algebra of graphs to symmetric
functions, see ([1], Example 4.5). The coefficients cµ(Γ) in the expansion in the
monomial basis of symmetric functions

XΓ =
∑
µ`n

cµ(Γ)mµ,

count the numbers of proper colorings of prescribed types µ ` n. Recall that
mµ =

∑
s(α)=µMα, where the sum is over all compositions α |= n that can be

rearranged to the partition µ ` n.

The coefficients ζα(Γ), α |= n satisfy the following properties. Recall that a
graph Γ is called q-connected if it remains connected after removing any q − 1
vertices.

Theorem 7.2. Given a graph Γ on the set of vertices V = [n].

(a) The coefficients ζ(k,1n−k)(Γ), 1 ≤ k ≤ n determine the f−vector of the
independence complex Ind(Γ) of the graph Γ.

(b) If Γ is q-connected then ζα(Γ) = 0 for all α |= n with aj > 1 for some
j > k(α)− q.

(c) If Γ is q-connected then ζ(1n−q−k,k,1q)(Γ) is determined by q-element sets
of vertices S ⊂ V such that Γ |V \S has k components.

(d) For any pair α � β it holds ζα(Γ) ≤ ζβ(Γ).

(e) ζα(Γ) ≤ cµ(Γ) for each composition α |= n such that s(α) = µ ` n
and cµ(Γ) are the coefficients of XΓ in the monomial basis {mµ}µ`n of
symmetric functions.

Proof. Recall that the coefficient ζα(Γ) counts the number of ordered colorings
λ : V → [k(α)] of the type α |= n.

(a) The only condition for a coloring λ : V → [n− k + 1] to be ordered with
type(λ) = (k, 1n−k) is that the set of vertices colored by 1 is k-element
and discrete. Hence ζ(k,1n−k)(Γ) = (n− k)!fk−1(Ind(Γ)).

(b) Take j0 = max{j | aj > 1}. Removing the vertices colored by last k − j0
colors disconnects the graph Γ, so k − j0 ≥ q. Specially if Γ is connected
then ζα(Γ) = 0 for all α |= n with ak(α) > 1.
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(c) Let λ : V → [n − k + 1] be an ordered coloring with type(λ) =
(1n−q−k, k, 1q). Removing the vertices colored by last q colors discon-
nects Γ into k parts. On the other hand any choice of q vertices which
disconnects the graph into k parts defines (n− q − k)!q!

∏k
j=1mj ordered

colorings of the type (1n−q−k, k, 1q), where mj , j = 1, k are the sizes of
components.

(d) Suppose that α is obtained from β by combining some of its adjacent
parts, i.e. α = (a1, . . . , ai, . . . , ak) and β = (a1, . . . , a

′

i, a
′′

i , . . . , ak) with

ai = a
′

i+a
′′

i . Then any ordered coloring of the type α defines at least
(ai
a
′
i

)
ordered colorings of the type β.

(e) It is obvious since any ordered coloring of a type α |= n is the coloring of
the type s(α) ` n.

Example 7.3. The invariant FΓ differs graphs on 5 vertices. Specially graphs
given in Stanley’s example of graphs with the same chromatic symmetric func-
tions XΓ are distinguished by FΓ.

Proposition 7.4. The invariant FΓ is not a complete invariant of graphs, i.e.
there are non-isomorphic graphs which are not distinguished by FΓ.

Proof. The total number γn of non-isomorphic graphs on n vertices satisfies

γn ∼ 2(n
2)/n!, n → ∞ and γn > 2(n

2)/n!. The coefficients of the expansion
FΓ =

∑
α|=n cαLα are in the range 0 ≤ cα ≤ n!. The statement follows from

the inequality 2(n
2)/n! > 2n−1n!, which holds for n > 12.

The following theorem allows one to define the invariant FΓ recursively start-
ing with F∅ = M() = 1. Recall that F 7→ (F )1 is the shifting operator, see
Definition 5.3.

Theorem 7.5. For a connected graph Γ on the vertex set [n] it holds

FΓ =
∑
i∈[n]

(FΓ\{i})1.

Proof. We arrange the vertices v ∈ PB(Γ) according to the maximal elements of
corresponding posets Pv. Let T (B(Γ))i = {Tv | v ∈ PB(Γ),maxPv = i} be the
multiset of specified B(Γ)-trees. Then by Theorem 5.5 we have

FΓ =
∑
i=1,n

∑
T∈T (B(Γ))i

F (T ).

The formula follows from the recurrence formula for T -partitions enumerators,
see Theorem 5.4
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∑
T∈T (B(Γ))i

F (T ) =
∑

T∈T (B(Γ))i

(F (T \ {root(T )}))1 = (FΓ\{i})1.

As an application of Theorem 7.5 we obtain the recurrence relations satis-
fied by enumerators F (Q) for Q = Pen−1, Asn−1, Cyn−1, Stn−1. We assume
the realization of Q as a graph-associahedron of the corresponding graph as in
Example 2.1. By convention the only (−1)-dimensional polytope is ∅.

Corollary 7.6. For n ≥ 1 the following recurrence relations hold

F (Pen−1) = n(F (Pen−2))1,

F (Asn−1) = (

n∑
k=1

F (Ask−2)F (Asn−k−1))1,

F (Cyn−1) = n(F (Asn−2))1,

F (Stn−1) = ((n− 1)F (Stn−2) +Mn−1
(1) )1.

From Proposition 6.1 and Corollary 7.6 we recover the recurrence relations
satisfied by numbers of vertices of corresponding graph-associahedra. Note that
χ((F )1,−1) = −χ(F,−1) which is a consequence of χ(Mα,−1) = (−1)k(α).

Corollary 7.7. For n ≥ 1 we have that the number of vertices pn = f0(Pen−1),
an = f0(Asn−1), cn = f0(Cyn−1) and sn = f0(Stn−1) satisfy

pn = npn−1,

an =

n∑
k=1

ak−1an−k,

cn = nan−1,

sn = (n− 1)sn−1 + 1

with p1 = a1 = c1 = s1 = 1. Therefore pn = n!, an = 1
n+1

(
2n
n

)
, cn =

(
2n−2
n−1

)
and

sn = (n− 1)!
∑n−1
k=0

1
k! .

8 Conclusion

We conclude with several natural questions in connection with the Hopf algebra
B and the graph invariant FΓ.

Problem 8.1. In a combinatorial Hopf algebra are defined the generalized
Dehn-Sommerville relations which characterize the odd subalgebra (see [1], Sec-
tion 5). Find a graph or a building set that satisfies the generalized Dehn-
Sommerville relations for B. The same problem is resolved in [9] for the chro-
matic Hopf algebra of hypergraphs, where the whole class of solutions called
eulerian hypergraphs are found.
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Problem 8.2. In what extent the function FΓ differs simple graphs? Find two
non-isomorphic graphs Γ1 and Γ2 such that FΓ1 = FΓ2 . According to Theorem
7.5, two graphs Γ1 and Γ2 with the same multisets of vertex-deleted subgraphs
satisfy FΓ1

= FΓ2
. But this leads to the famous Reconstruction conjecture in

graph theory. One could try to find two such graphs by using linear dependence
relations among enumerators of T -partitions, see Example 3. Relate Stanly’s
chromatic symmetric function XΓ with FΓ. Does it hold that XΓ1 6= XΓ2 implies
FΓ1
6= FΓ2

?
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[8] V. Grujić, T. Stojadinović, Hopf algebra of building sets, Electr. Jour. of
Comb. 19(4) (2012) P42
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