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Abstract

The sequence (xn)n∈N = (2, 5, 15, 51, 187, . . .) given by the rule
xn = (2n + 1)(2n−1 + 1)/3 appears in several seemingly unrelated
areas of mathematics. For example, xn is the density of a language of
words of length n with four different letters. It is also the cardinality
of the quotient of (Z2×Z2)

n under the left action of the special linear
group SL(2,Z). In this paper we show how these two interpretations
of xn are related to each other. More generally, for prime numbers
p we show a correspondence between a quotient of (Zp × Zp)

n and a
language with p2 letters and words of length n.

Mathematics Subject Classifications: 37F20, 57Q20, 05E15, 68R15

1 Introduction

When we looked for the sequence, listed as sequence A007581 in the Online
Encyclopedia of Integer Sequences [Slo],

(xn)n∈N =
(
(2n + 1)(2n−1 + 1)/3

)
n∈N = (2, 5, 15, 51, 187, . . .) (1.1)

we were greatly surprised to find that it arises in many different contexts.
Indeed, there exist at least four distinct areas where the sequence appears:
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(1) the density of a language with four letters (see [MR05]);

(2) the dimension of the universal embedding of the symplectic dual polar
space (see [BB03]);

(3) the number of isomorphism classes of regular fourfold coverings of a
graph with Betti number n and with voltage group Z2×Z2 (see [HK93]);

(4) the rank of the Zn
2 -cobordism category in dimension 1+1 (see [Seg12]).

In combinatorial theory, (2) was known as Brouwer’s conjecture. It
was proved by P. Li (see [Li01]) and independently by A. Blokhuis and
A. E. Brouwer (see [BB03]). This former conjecture states that the di-
mension of the universal embedding of the symplectic polar space Sp2n(2)
is (2n + 1)(2n−1 + 1)/3.

In [Seg], the first author constructs a function which relates (2) and (1).
In this paper, in Theorem 5.1, we establish a relation between (1) and (4).
The relation between (3) and (4) will be considered in a future work.

The paper is organised as follows. In Section 2 we briefly describe (1) and
(4) and give yet another interpretation of the sequence in Section 2.2 as the
number of orbits of (Z2×Z2)

n under the left action of SL(2,Z). In Section 3
we give a bijection between these interpretations. Finally, in Section 5 we
show that the sequence (1.1) appears also in certain point-set geometries, in
cobordism categories and in topological field theory.

Throughout the paper, the cardinality of a finite set M is denoted by
|M |.

2 Interpretations of the sequence

In this section we will present three instances where the sequence (1.1) nat-
urally appears. For other interpretations of the sequence and their relation
to the ones given above, we refer to [Seg] and [Slo, sequence A007581].

2.1 Density of a language

For a prime number p we consider a language with p2 letters 0, 1, 2, . . . , p2−1.
For n ∈ N we define the set W n

p as the set of words a1a2 . . . an of length n
such that there exist 1 ≤ j < k with:
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(R1) ai = 0 for i < j,

(R2) aj = 1,

(R3) ai ∈ {0, 1, . . . , p− 1} for j < i < k,

(R4) ak ∈ {p, 2p, 3p, . . . , (p− 1)p} if k ≤ n,

(R5) ai ∈ {0, 1, . . . , p2 − 1} for i > k if k < n.

We call |W n
p | the density of the language with p2 − 1 letters and words of

length n.

Example 2.1 (Moreira and Reis [MR05]). Let us consider the case p = 2.
The letters of our language are 0, 1, 2, 3 and a word a1 . . . an belongs to W n

2

if and only if its letters satisfy 0 ≤ ai ≤ maxj<i{aj}+ 1. For instance,

• W 1
2 = {0, 1},

• W 2
2 = {00, 01, 10, 11, 12},

• W 3
2 = {000, 001, 010, 100, 011, 110, 101, 111, 012, 112, 121, 122, 120, 102, 123}.

Observe that |W 1
2 | = 2 = x1, |W 2

2 | = 5 = x2, and |W 3
2 | = 15 = x3, where xn

is the sequence defined in (1.1). In Corollary 4.4 we will prove that |W n
2 | = xn

for all n ∈ N.

2.2 (Zp × Zp)
n/ SL(2,Z)

Let us consider the usual left action of SL(2,Z) on the vector space (Zp ×

Zp)
n. Vectors in this vector space are denoted by

(
u
v

)
or (u, v)t where

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Zn
p are line vectors. Observe that

SL(2,Z) is generated by the matrices

(
0 1
−1 0

)
and

(
1 1
0 1

)
. Two elements

(u, v)t, (x, y)t ∈ (Zp × Zp)
n belong to the same orbit if they can be trans-

formed into each other by line transformations given by elements of SL(2,Z),
that is we may change one line with the negative of another one, or sum a
multiple of one line to another. We call (u, v)t, (x, y)t ∈ (Zp×Zp)

n equivalent
if they belong to the same orbit. Clearly this gives an equivalence relation.
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The equivalence class or the orbit containing (u, v)t is denoted by [(u, v)t].
Note that any two given orbits are either equal or disjoint.

Let us consider the example p = 2. For n = 1, there are the two orbits
{(0, 0)t} and {(1, 0)t, (0, 1)t, (1, 1)t}. For n = 2, there are the five orbits{(

0 0
0 0

)}
,{(

0 0
0 1

)
,

(
0 1
0 0

)
,

(
0 1
0 1

)}
,{(

1 0
0 0

)
,

(
0 0
1 0

)
,

(
1 0
1 0

)}
,{(

1 1
0 0

)
,

(
0 0
1 1

)
,

(
1 1
1 1

)}
,{(

1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)}
.

Note that for these examples the number of orbits coincides with the number
of words of the type described in the section before. In Section 3 this will be
proved rigorously.

3 Bijection between W n
p and (Zp×Zp)n/ SL(2,Z)

In this section we construct a bijection from W n
p to (Zp×Zp)

n/ SL(2,Z). As
a corollary we obtain that both sets have the same cardinality whose value
will be calculated in the next section.

Theorem 3.1. Let p be a prime number and n ∈ N. Then there exists a
bijection between the sets W n

p and (Zp × Zp)
n/ SL(2,Z).

Proof. The language under consideration has p2 letters denoted by 0, 1, 2, . . . , p2−

1. Let us define φ : {0, 1, . . . , p2 − 1} → Zp × Zp by φ(a) =

(
u
v

)
where u, v

are the unique elements in {0, 1, . . . , p− 1} such that a = u+ vp. Clearly, φ
is a bijection. Now let us define

fn : W n
p → (Zp × Zp)

n, fn(a1a2 . . . an) = (φ(a1), φ(a2), . . . , φ(an))
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and

[fn] : W n
p → (Zp × Zp)

n/ SL(2,Z), [fn](a1a2 . . . an) = [fn(a1a2 . . . an)].

Clearly fn is well-defined. We show that [fn] is an injection. Since a word
in W n

p must satisfy the rules (R1)-(R5), the range of fn consists exactly of 0
and the vectors of the form(

0 . . . 0 1 uj+1 . . . uk−1 0 uk+1 . . . un
0 . . . 0 0 0 . . . 0 vk vk+1 . . . vn

)
(3.1)

or (
0 . . . 0 1 uj+1 . . . un
0 . . . 0 0 0 . . . 0

)
(3.2)

with 1 ≤ j < k ≤ n, vk ∈ {1, . . . , p − 1} and u`, vi ∈ {0, 1, . . . , p − 1} for
` ∈ {j+1, . . . , n}\{k} and i ∈ {k+1, . . . n}. Let (u, 0)t be of the form (3.2).
It is easy to see that in this case[(

u
0

)]
=

{(
mu
nu

)
: m,n = 0, 1, . . . , p− 1

}
.

This shows that (u1, 0)t, (u2, 0)t of the form (3.2) belong to the same equiv-
alence class if and only if u1 = u2 and that they are not equivalent to any
element of the form (3.1). Now let (u, v)t, (y, z)t of the form (3.1) and assume

that they are equivalent. Then there exists a matrix S =

(
a b
c d

)
∈ SL(2,Z)

such that S(u, v)t = (y, z)t. Without restriction we may assume a, b, c, d ∈
{0, 1, . . . , p− 1}. Since S leaves zero columns invariant, the number of lead-
ing columns with only zeros in both vectors must be equal. Now, looking
at the first non-zero column of the vectors, we find that S(1, 0)t = (1, 0)t.
Consequently we find a = 1 and c = 0. Since detS = 1, it follows that

d = 1. So we showed that

(
1 b
0 1

)(
u
v

)
=

(
y
z

)
for some b. In particular,

v = z and uk = yk, where k is as indicated in (3.1). For the kth column

we obtain

(
bvk
vk

)
=

(
0
zk

)
. Since vk 6= 0, it follows that b = 0. So S = id

and (u, v)t = (y, z)t. We showed that the equivalence classes generated by
elements of the form (3.1) and (3.2) are mutually disjoint, so fn is injective.
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In order to prove that fn is surjective, we show that every nonzero (u, v)t ∈
(Zp×Zp)

n belongs to an equivalence class generated by an element of the form

(3.1) or (3.2). Let j ∈ {0, . . . , n} such that

(
u
v

)
=

(
0 . . . 0 uj . . . un
0 . . . 0 vj . . . vn

)
with (uj, vj)

t 6= (0, 0)t. Without restriction we may assume that uj 6= 0
(note that (u, v) and (−v, u)t belong to the same equivalence class). Choose
m,n ∈ Z such that muj + vj ≡ 1 mod p and uj + n ≡ 1 mod p and set

S1 =

(
1 +mn n

m−mn− 1 1− n

)
. Then S1 ∈ SL(2,Z) and

S1

(
u
v

)
=

(
0 . . . 0 1 u1j+1 . . . u1n
0 . . . 0 0 v1j+1 . . . v1n

)
.

If v1i = 0 for all i ≥ j + 1, this is an element of the form (3.2). Otherwise
there is a k ∈ {j + 1, . . . , n} such that v1i = 0 for all i ≤ k − 1 and vk 6= 0.

Choose r ∈ Z such that uk + rvk ≡ 0 mod p and set S2 =

(
1 r
0 1

)
. Clearly

S2S1 ∈ SL(2,Z) and

S2S1

(
u
v

)
=

(
0 . . . 0 1 u1j+1 . . . u1k−1 0 u2l+1 . . . u2n
0 . . . 0 0 0 . . . 0 v1k v2l+1 . . . u2n

)
is an element of the form (3.2).

4 Formula for |(Zp × Zp)n/ SL(2,Z)|
By Theorem 3.1, we know that |(Zp × Zp)

n/ SL(2,Z)| = |W n
p |. Moreira and

Reis [MR05] proved that the density of a language with four letters has the
value (2n+1)(2n−1+1)/3. Theorem 4.3 in this section generalises their result.

In the following we set r(p, n) := |(Zp×Zp)
n/ SL(2,Z)| and F (p, n) := r(p, n+

1)− r(p, n) for n ≥ 1.

Lemma 4.1. For any prime number p we have r(p, 1) = 2 and r(p, 2) =
2p+ 1.

Proof. The first assertion is clear. For the second assertion note that (Zp ×
Zp)

2 is the disjoint union of 0 and the orbits generated by vectors of the form
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(3.1) and (3.2). Hence all equivalence classes are given by[(
0 0
0 0

)]
,

[(
0 1
0 0

)]
,

[(
1 m
0 0

)]
,

[(
1 0
0 n

)]
with m ∈ {0, 1, . . . , p − 1}, n ∈ {1, . . . , p − 1} which proves the formula for
r(p, 2).

Lemma 4.2. F (p, n) = pn−1(pn +p−1) for any prime number p and n ∈ N.

Proof. Note that the formula holds for n = 1 because F (1) = r(p, 2) −
r(p, 1) = 2p− 1 by Lemma 4.1. We will prove that

F (p, n) = pF (p, n− 1) + p2n−2(p− 1), n ∈ N. (4.1)

The conclusion follows then easily by an induction on n.

Recall that F (p, n) = r(p, n+1)−r(p, n) and observe that (Zp×Zp)
n can

be viewed as the subspace of all vectors in (Zp × Zp)
n+1 whose first column

consists of 0 only. Since SL(2,Z) leaves zero columns invariant, F (p, n) is
the number of different orbits in (Zp × Zp)

n+1 whose representatives have
nonvanishing first column. Note that if the first column is not vanishing, we
can always choose a representative whose first column is (1, 0)t.

Now let (u, v)t be a vector in (Zp×Zp)
n+1 with nonvanishing first column.

Then this vector belongs to exactly one of the following cases:

(1) The second column is vanishing. Then there exists S ∈ SL(2,Z) such

that S

(
u
v

)
=

(
1 0 . . .
0 0 . . .

)
. Clearly, the orbits generated by such vec-

tors in (Zp×Zp)
n+1 with nonvanishing first column and vanishing sec-

ond column correspond bijectively to the orbits of vectors in (Zp×Zp)
n

with nonvanishing first column. Hence there are F (p, n − 1) distinct
orbits of this type.

(2) The second column is nonvanishing and there exists S ∈ SL(2,Z) such

that S

(
u
v

)
=

(
a 1 . . .
0 0 . . .

)
with some a ∈ {1, 2, . . . , p − 1}. For fixed

a, there exists a bijection between orbits generated such an elements
and the orbits generated by vectors with nonvanishing first column in
(Zp × Zp)

n. Clearly orbits with different a’s are disjoint (see the proof
of Theorem 3.1), we have (p− 1)F (p, n− 1) different orbits generated
by elements of this type.
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(3) The second column is nonvanishing and there exists S ∈ SL(2,Z) such

that S

(
u
v

)
=

(
0 1 . . .
a 0 . . .

)
with some a ∈ {1, 2, . . . , p − 1}. It is easy

to see that such vectors with different a’s generate disjoint orbits, and
that vectors with the same a but different tails (the last n−1 columns)
also generate disjoint orbits. Since there are (p2)n−1 different tails, the
number of orbits generated by vectors of the form above is (p−1)p2n−2.

In total the number of orbits generated by vectors in (Zp × Zp)
n+1 with

nonvanishing first column is F (p, n− 1) + (p− 1)F (p, n− 1) + (p− 1)p2n−2 =
pF (p, n− 1) + (p− 1)p2n−2.

Theorem 4.3. For any prime number p and n ∈ N we have

r(p, n) =
p2n−1 + pn+1 − pn−1 + p2 − p− 1

p2 − 1
. (4.2)

Proof. As before let F (p, n) = r(p, n + 1)− r(p, n). By Lemma 4.2 we have
that

F (p, n) = pn−1(pn + p− 1) . (4.3)

This implies

r(p, n) = r(p, 1) + F (p, 1) + · · ·+ F (p, n− 1) = 2 +
n−1∑
j=1

pj−1(pj + p− 1)

= 2 + p
n−2∑
j=0

p2j + (p− 1)
n−2∑
j=0

pj = 2 +
p(1− p2n−2)

1− p2
− (1− pn−1)

=
p2n−1 + pn+1 − pn−1 + p2 − p− 1

p2 − 1
.

Corollary 4.4. For p = 2 we obtain the formula of Moreira and Reis [MR05]

r(2, n) = (22n−1 + 2n+1 − 2n−1 + 1)/3

= (22n−1 + 2n + 2n−1 + 1)/3

= (2n + 1)(2n−1 + 1)/3.
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Figure 1: Cremona-Richmond configuration.

5 More occurrences of the sequence (2, 5, 15, . . . )

5.1 Dual polar space

Let V be a vector space of dimension 2n over the field F2 with the standard
symplectic form. Then every maximal totally isotropic subspace of V has
dimension n. It can be shown that every totally isotropic subspace of V
of dimension n − 1 is contained in exactly three maximal totally isotropic
subspaces.

Let us consider the configuration (X,L) where the set of points X consists
of the maximal totally isotropic subspaces of V , the set of lines L consists of
the totally isotropic spaces of dimension n− 1, and a point U lies on the line
W if and only if W ⊆ U as vector spaces. Thus every line contains exactly
three points. This point-line geometry is called dual polar space Sp2n(2).

If n = 1, then X = {〈( 1
0 )〉, 〈( 0

1 )〉, 〈( 1
1 )〉} and L = {0}. If n = 2, then X

and L have 15 elements each and they form the so-called Cremona-Richmond
configuration, see Figure 1.
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g g
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h

g

g + h I

Figure 2: Elementary components of cobordisms: cylinder, pair of pants and
disc.

Let F2L and F2X be the F2-vector spaces freely generated by L and X,
respectively. Consider the map σ : F2L→ F2X which sends every line of the
graph to the sum of its three elements. The dimension of the universal embed-
ding is given by the F2-dimension of the quotient udim := dim(F2X/σF2L).
For n = 1, udim = 2; for n = 2, udim = 5. This can be easily verified in the
configuration of Figure 1 by the following procedure: It is possible to mark 5
vertices such that, whenever there is a line with already two vertices marked,
the missing one is marked too, in the end, all vertices will be marked.
For n = 3 the configuration is unknown but it is known that it has 135
vertices and 80 lines. We conjecture that (1), (3) and (4) can be used to find
a shortcut for the construction of these configurations. More details can be
found in [Seg].

5.2 Cobordism categories

For an abelian finite group G of order n < ∞ we consider the G-cobordism
category in dimension 1 + 1. Its objects are finite sequences (g1, · · · , gm) of
elements in G. Each g ∈ G defines an n-fold covering of the unit circle by
taking the product G × [0, 1] with the identification (h, 0) ∼ (h + g, 1) for
every h ∈ G. So geometrically, the objects of the category can be represented
as disjoint unions of circles. The morphisms of the category are the gluing
together of elementary cobordisms with labels as in Figure 2 up to certain
identifications. We do not yet have a short combinatorial description of all
morphisms; this matter will be discussed in a forthcoming work.

The importance of the G-cobordism category in dimension 1 + 1 is its
algebraic counterpart given by the definition of a G-Frobenius algebra, see
[MS06, Kau03]. The relation between a geometric and an algebraic object is
interpreted in functorial terms by what is called a G-equivariant topological
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field theory, see [MS06]. Recently, the study of the fundamental group asso-
ciated to the classifying space of this category gave an interesting invariant
for the group G. Indeed, for a finite abelian group G the first author [Seg12]

proves that this group is isomorphic to Zr(G) :=
⊕r(G)

i=1 Z, where r(G) is the
cardinality of the quotient (G×G)/ SL(2,Z), see [Seg12]. Therefore, for the
special case G = Zn

p , we have r(Zn
p ) = r(p, n) and Theorem 4.3 leads to the

following theorem.

Theorem 5.1. Let G = Zn
p for some prime number p and n ∈ N. Then

the fundamental group of the classifying space of the G-cobordism category is
isomorphic to Zr(G), where

r(G) = r(Zn
p ) =

p2n−1 + pn+1 − pn−1 + p2 − p− 1

p2 − 1
.

5.3 Topological field theory

The sequence (1.1) appears in topological field theory (TFT) in connection
with the classification of the invertible TFTs (see [Til96]) and more recently
for the unoriented case (see [JT13]). We denote by S Zn

2 the Zn
2 -cobordism

category in dimension 1 + 1 (see [Seg12]). A topological field theory is a
symmetric monoidal functor from S Zn

2 to the category of vector spaces. We
denote the category of TFTs by

S Zn
2 − SymmMon[S Zn

2 ,VectC]∗ .

When we take the invertible ones, we have to pass to the Picard category of
the vector spaces which is identified with C× := C \ {0}. Thus the category
of invertible TFTs is

S Zn
2 − SymmMon[S Zn

2 , P ic(VectC)]∗ .

The category of fractions of S Zn
2 is equivalent to the fundamental group of

its classifying space which has the form Zr(Zn
2 ). In [Seg12], it was proved that

r(Zn
2 ) = (2n + 1)(2n−1 + 1)/3, that is, the sequence (1.1). Thus we have that

S Zn
2 − SymmMon[S Zn

2 , P ic(VectC)]∗ ' [Zr(Zn
2 ),C×] = (C×)

r(Zn
2 )

where ∗ means based monoidal functors.
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