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Abstract

Using Rees index, the subsemigroup growth of free semigroups is investigated. Lower and

upper bounds for the sequence are given and it is shown to have superexponential growth

of strict type n
n for finite free rank greater than 1. It is also shown that free semigroups

have the fastest subsemigroup growth of all finitely generated semigroups. Ideal growth is

shown to be exponential with strict type 2n and congruence growth is shown to be at least

exponential. In addition we consider the case when the index is fixed and rank increasing,

proving that for subsemigroups and ideals this sequence fits a polynomial of degree the

index, whereas for congruences this fits an exponential equation of base the index. We use

these results to describe an algorithm for computing values of these sequences and give a

table of results for low rank and index.

1 Introduction

The concept of word growth of a finitely generated group has been a central research topic
connecting differential geometry, geometric and combinatorial group theory for the past 50 years1

Given a finitely generated group, take the sequence that counts the number of elements of the
group of length at most n (with respect to some finite generating set). In 1981, answering a
question of Milnor, Gromov proved that a finitely generated group is virtually nilpotent if and
only if this sequence has polynomial growth [17]. This powerful result indicated the strong
connections between a groups algebraic properties and its asymptotic behaviour.

This result inspired the definition of subgroup growth for a group, see for instance [20]. Given
a finitely generated group, take the sequence that counts the number of index n subgroups of the
group. In 1993 Lubotzky, Mann and Segal proved that a finitely generated residually finite group
is virtually solvable of finite rank if and only if this sequence has polynomial growth [19]. This
area has now been extended to many other mathematical objects, e.g. representation growth
and subring growth [21].

In this paper we consider the situation for semigroups. In order to define subsemigroup
growth of a semigroup we first need to define index. At first, it is not clear what the correct
definition should be, and there have been many different attempts depending on the types of
semigroups considered. Ideally you want the notion of index to generalise group index, but
perhaps more imporantly, you want finite index subsemigroups to preserve important properties
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of the semigroup. For example, Grigorchuk gave a definition of index for a subsemigroup which
generalised group index and impressively extended Gromov’s polynomial growth theorem to
cancellative semigroups. However, his definition of index does not preseve even the simplest
property of finite generation [15].

In this paper we choose Rees index, which is defined simply to be the cardinality of the
complement. This clearly does not generalise group index, but finite Rees index subsemigroups
do preserve a very large number of important properties (e.g. being finitely generated/presented,
residually finite, solvable word problem, automatic etc.) See the survey article [9] for more details.
The very nature of Rees index makes this an inherently combinatorial problem. For example
this paper includes results relating to: binomial coefficients, Stirling numbers (of the first and
second kind), Bell numbers, Catalan numbers (and the generalised ‘Fuss-Catalan’ numbers) and
Fibonacci numbers.

This work, and the techniques involved were inspired by the rank one situation: finite Rees
index subsemigroups of the free monogenic semigroup are well studied in the literature under
the name of numerical semigroups [8, 7, 23, 12, 5, 22]. Increasing interest is being shown in
numerical semigroups, with applications arising in commutative algebra and algebraic geometry
[4]. It has recently been proved that the numerical semigroups of genus n, that is, the Rees index
n subsemigroups of the free monogenic semigroup, have Fibonacci-like growth [22], answering in
the positive a conjecture of Bras-Amorós [6].

Recall the following results from the subgroup growth literature (where group index is used).
Every free group Fr with free rank r ≥ 2 has:

1. subgroup growth of strict type nn [20, Cor 2.2],

2. subnormal subgroup growth of strict type 2n = nn/log(n) [20, Cor 2.4],

3. normal subgroup growth of strict type nlog(n) [20, Cor 2.8].

Firstly we recall the definitions from the numerical semigroup literature that we adapt to
the higher free rank case, then we prove some basic results about generating sets and how to
constuct semigroups of both higher and lower index from a given subsemigroup.

Using a generalisation of the subsemigroup tree of [8] we then illustrate upper and lower
bounds for the number of (Rees) index n subsemigroups of the free semigroups FSr and conclude
that, similar to groups, FSr has subsemigroup growth of strict type nn for r ≥ 2. In Section 5
we consider the situation when the index is fixed and the free rank varies, in which case we show
it fits an exact polynomial of degree the index.

We then consider the question of counting just the ideals, after giving upper and lower bounds,
we show that free semigroups of rank greater than 1 have exponential ideal growth of strict type
2n = nn/log(n), and for fixed index they also satisfy a polynomial of degree the index.

Finally congruence growth is considered, where we count the number of congruences with
n classes, and we show this to have at least exponential growth. We conjecture that it is in
fact exponential. This is analagous to counting normal subgroups of free groups which have
intermediate growth, so in some sense free semigroups have ‘more’ quotients than free groups.
We also consider the sequence for a fixed number of classes n as the free rank r increases and
show this satisfies an exponential equation of base n.

Part of this project was computational. We use some of our results to describe algorithms
which were implemented to calculate values of the sequences for low rank and index. The code is
available online [1] and tables of the results are presented at the end of the paper as appendices.
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2 Preliminaries

Let S be a semigroup, the Rees index of a subsemigroup T of S is defined to be |S \ T |, and
we say T has finite index in S if |S \ T | <∞.

Let Xr = {g1, . . . , gr} be a finite set of symbols, and FSr = X+
r denote the free semigroup

of rank r on the set Xr, that is, all non-empty words over the alphabet Xr.
Let Λ ⊆ FSr be a finite (Rees) index subsemigroup of FSr. Following terminology from

numerical semigroups, we call G(Λ) = FSr \ Λ the set of gaps of Λ, and we remark that the
index of Λ is equal to |G(Λ)| (this is usually called the genus). We use |w| to denote the length
of any word w ∈ FSr. We now define a total order on FSr, usually called the shortlex order,
where we order first by word length, and then lexicographically. Using the shortlex order we call
f(Λ) = max{w | w ∈ G(Λ)} the Frobenius of Λ, and m(Λ) = min{w | w ∈ Λ} the multiplicity

of Λ.
Given any word w ∈ FSr and any 1 ≤ i ≤ |w|−1, let wpre(i) denote the prefix of w of length

i, and wsuf(i) denote the suffix of w of length i.

Lemma 2.1. For any index n subsemigroup Λ of FSr, |f(Λ)| ≤ 2n− 1.

Proof. Let Λ ⊆ FSr with |G(Λ)| = n, and assume |f(Λ)| = k ≥ 2n. For every 1 ≤ i ≤ n, either
fpre(i) ∈ G(Λ) or fsuf(k−i) ∈ G(Λ) as otherwise f /∈ G(Λ). Therefore, along with f ∈ G(Λ), there
must be at least n+ 1 distinct words in G(Λ) which is a contradiction.

This immediately gives the following result:

Corollary 2.2. There are only finitely many index n subsemigroups of FSr.

Proof. Let s = r + r2 + · · ·+ r2n−1 be the number of words of FSr of length less than 2n, then
there are at most

(
s
n

)
possible choices for the set of gaps.

Another basic result that will be used frequently is the following:

Lemma 2.3. Every finite index subsemigroup of FSr has a finite unique minimal generating
set.

Proof. Let Λ ⊆ FSr be an index n subsemigroup of FSr. It is clear that Λ is finitely generated
as every word of length at least 4n can be written as a product of two words of length at least 2n
which are all in Λ by Lemma 2.1. Therefore there is a minimal size, say k ∈ N, for any generating
set of Λ. Take two minimal generating sets X = {x1, . . . , xk} and Y = {y1, . . . , yk} of Λ and
assume X 6= Y . Let yi ∈ Y \X , then yi = xi1xi2 · · ·xil for some xi1 , xi2 , . . . , xil ∈ X with l ≥ 2.
Therefore |yi| > |xij | for each 1 ≤ j ≤ l. Now since Y is a generating set, every xij is a product
of elements from Y \ {yi}, and so yi is a product of elements from Y \ {yi} contradicting the
minimality of Y , hence X = Y .

Given any finitely generated semigroup S, let an(S) denote the number of index n subsemi-
groups of S, and let sn(S) =

∑n
i=1 ai(S) be the partial sums. That an(S) is always finite is

implied by Corollary 2.2 and the next result which essentially says that free semigroups have the
fastest subsemigroup growth.

Proposition 2.4. If S can be generated by r elements, then an(S) ≤ an(FSr) for all n.

Proof. Let S = 〈s1, . . . , sr〉, then there exists an epimorphism φ : FSr → S. Given any s ∈ S
there exists a minimal s ∈ FSr with respect to the shortlex order such that φ(s) = s. Let T be
an index n subsemigroup of S with S \ T = {w1, . . . , wn} and let G = {w1, . . . , wn}. The result
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follows if we can show that Λ = FSr \ G is a subsemigroup of FSr. Assume that there exists
wi ∈ G, and x, y ∈ Λ such that wi = xy, then wi = φ(wi) = φ(x)φ(y). Since T is a subsemigroup,
either φ(x) or φ(y) is in S \ T . Without loss of generality, assume φ(x) = wj ∈ S \ T . Since
φ(wj) = φ(x) and x /∈ G, then wj < x by the minimality of wj . However, that implies wjy < wi

but φ(wjy) = φ(wj)φ(y) = φ(x)φ(y) = wi which contradicts the minimality of wi and so Λ is a
subsemigroup.

Recall that given two sequences f(n), g(n), we say that:

• f(n) = O(g(n)) if there exists a constant C > 0 such that f(n) ≤ C · g(n) for all large n.

• f(n) ≍ g(n) if f(n) = O(g(n)) and g(n) = O(f(n)).

• f(n) ∼ g(n) if f(n)/g(n)→ 1 for large n.

We say that a semigroup S has subsemigroup growth of strict type f(n) if

log(sn(S)) ≍ log(f(n)).

Note that, unless it has a subscript, log is always base 2.

3 Minimal generators

In this section we show how the minimal generators of a finite index subsemigroup of FSr are
connected to its set of gaps. In particular we show the different forms that a generator can take
and use this information to outline an algorithm for calculating the set of minimal generators
from the set of gaps.

Given a finite index subsemigroup Λ ⊆ FSr, let MG(Λ) denote the set of minimal generators
of Λ.

Remark 3.1. Note that h ∈ MG(Λ) if and only if h ∈ Λ and {hpre(i), hsuf(|h|−i)} ∩ G(Λ) 6= ∅
for all 1 ≤ i ≤ |h| − 1. This remark will be used ubiquitously without reference throughout this
paper.

Given any index n subsemigroup Λ ⊆ FSr we can construct new semigroups in the following
ways:

1. Given f = f(Λ), let Λf denote the set Λ ∪ {f}, which is an index n − 1 subsemigroup
as every product wf or fw with w ∈ Λ, is larger than f in shortlex order (and hence an
element of Λf ).

2. Given any h ∈ MG(Λ), let Λh denote the set Λ \ {h}. This is a subsemigroup of index
n + 1, as no pair of elements x1,x2 ∈ Λ satisfy x1x2 = h. This is the content of Remark
3.1.

Observe that in case (1), f becomes a minimal generator of Λf , and in case (2), h is no longer
a minimal generator. In general these constructions will make changes to the minimal generating
set. Minimal generators of Λ that are no longer minimal generators of Λf when f is added are
said to turn off. Similarly, elements of Λ that become new minimal generators of Λh are said
to turn on.

The remainder of this section is considering the interplay of these two constructions and their
effect on the minimal generating set.
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Lemma 3.2. Given a finite index subsemigroup Λ of FSr, let h ∈MG(Λ) and let Y = MG(Λh)\
(MG(Λ) \ {h}) be the set of new generators turned on when we remove h from Λ. Then x ∈ Y
only if it has one of the following three forms:

1. x = hw with w ∈MG(Λ); or

2. x = wh with w ∈MG(Λ); or

3. x = hwh with w ∈MG(Λ).

Proof. Let x ∈ Y and note that G(Λh) = G(Λ) ∪ {h}. Then x ∈ Λh and {xpre(i), xsuf(|x|−i)} ∩
(G(Λ) ∪ {h}) 6= ∅ for all 1 ≤ i ≤ |x| − 1, but x /∈ MG(Λ) and so there exists some x1, x2 ∈ Λ
such that x = x1x2. Therefore either x1 = h or x2 = h. We consider each case separately:

1. Let x1 = h. If x2 ∈MG(Λ) then x is of form 1. So assume x2 /∈MG(Λ) and x2 = a1 · · · ak,
where a1, . . . , ak ∈MG(Λ) and k ≥ 2. Since x ∈MG(Λh) then either ha1 ∈ G(Λ)∪{h} or
a2 · · ·ak ∈ G(Λ)∪{h}. Now if ha1 ∈ G(Λ)∪{h}, then ha1 ∈ G(Λ) which is a contradiction
as both h, a1 ∈ Λ. Therefore a2 · · · ak ∈ G(Λ) ∪ {h} which implies a2 · · · ak = h. If k ≥ 3
then we get a contradiction as h is a minimal generator in Λ. Hence k = 2, a2 = h and x
satisfies form 3.

2. Let x2 = h. If x1 ∈ MG(Λ) then it is of form 2. Otherwise the proof is similar to the
previous case and x is of form 3.

Lemma 3.3. Given any finite index subsemigroup Λ of FSr, we have h ∈MG(Λ) only if it has
one of the following four forms:

1. h = gi where gi ∈ Xr; or

2. h = xgi where x ∈ G(Λ), gi ∈ Xr; or

3. h = gix where x ∈ G(Λ), gi ∈ Xr; or

4. h = xgiy, where x, y ∈ G(Λ), gi ∈ Xr.

Proof. We prove this by induction on the index. Let |G(Λ)| = 0, then x must be of form 1.
Assume the statement is true for all subsemigroups of index n. Given any subsemigroup Λ with
index n+ 1, we can construct a subsemigroup of index n by considering Λf , where f = f(Λ). If
h ∈MG(Λf ), then by assumption h has the correct form. Suppose that h 6∈ MG(Λf) then h is
turned on when we remove f from Λf , so by Lemma 3.2 it has one of the forms wf , fw or fwf
where w ∈MG(Λf ). We consider each case separately:

1. Let h = fw where w ∈ MG(Λf), then either |w| = 1 and h is of form 2, or |w| ≥ 2 and
w = giw

′ for some gi ∈ Xr, w
′ ∈ FSr. As f is the Frobenius of Λ, we know that fgi ∈ Λ.

Now h ∈MG(Λ), so we must have w′ ∈ G(Λ) and h is of form 4.

2. Let h = wf where w ∈MG(Λf ), then either |w| = 1 and h is of form 3, or similarly to the
previous case, h is of form 4.

3. Let h = fwf , then either |w| = 1 and h is of form 4, or |h| ≥ 2 and fwf = (fx1)(x2f) is
not a minimal generator of Λ.

We can now use Lemma 3.3 to outline an algorithm that will calculate the set MG(Λ) from
the set G(Λ). Let ǫ be the empty word.
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Algorithm 1 Find minimal generators from set of gaps

Require: G(Λ) the set of gaps of a finite index subsemigroup Λ of FSr, and Xr

1: procedure Generators(G(Λ), Xr)
2: Gens ← {}
3: for all x ∈ G(Λ) ∪ {ǫ} do
4: for all y ∈ G(Λ) ∪ {ǫ} do
5: for all g ∈ Xr do

6: if MinGen(xgy,G(Λ)) then
7: Gens ← Gens ∪{xgy}
8: end if

9: end for

10: end for

11: end for

12: return Gens
13: end procedure

Where MinGen(w,G(Λ)) determines whether or not a word w ∈ Λ is a minimal generator
of Λ.

Algorithm 2 Check if a word is a minimal generator

Require: A word w ∈ Λ and the set of gaps G(Λ)
1: procedure MinGen(w,G(Λ))
2: Pass ← FALSE
3: if w /∈ G(Λ) then
4: Pass ← TRUE
5: n← length(w)
6: i← 1
7: while Pass and i < n do

8: if wpre(i) /∈ G(Λ) and wsuf(n−i) /∈ G(Λ) then
9: Pass ← FALSE

10: end if

11: i← i+ 1
12: end while

13: end if

14: return Pass
15: end procedure

4 Subsemigroup growth

The sequence an(FSr) has been extensively studied for when r = 1, this is precisely the number
of numerical semigroups of genus n. It has recently been proved [22] that an(FS1) has ‘Fibonacci

like’ growth, that is, an(FS1) ∼ Kφn, where K is a constant and φ = 1+
√
5

2 is the golden ration.
In this section we give lower and upper bounds for an(FSr) and in particular show that for r ≥ 2,
an(FSr) grows superexponentially in n with strict growth type nn. We imitate the methods used
in [8] by constructing a tree of all finite index subsemigroups of FSr.
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4.1 Subsemigroup tree

It is clear that every subsemigroup Λ ⊆ FSr of index n+ 1 gives rise to a subsemigroup Λf of
index n. Therefore, every index n subsemigroup can be obtained from a subsemigroup of index
n − 1 by removing a minimal generator larger than the Frobenius (using the shortlex order).
Given a subsemigroup Λ of finite index, any subsemigroup Λh that is obtained by removing a
minimal generator h larger than the Frobenius f(Λ) is a descendant. This gives a method for
obtaining a tree of all finite index subsemigroups of FSr.

For example: given the index 1 subsemigroup {a}c of FS2 = 〈a, b〉, the minimal generators
of {a}c are {b, a2, ab, ba, a3, aba} and they are all bigger than the Frobenius, the minimal gener-
ators of {b}c are {a, ab, ba, b2, bab, b3} but a is not bigger than the Frobenius and so {a, b}c is a
descendant of {a}c but not of {b}c.

So the beginning of the tree of all index n subsemigroups of FS2 looks like Figure 1.

FS2

{a}c

{a, a2}c

.

.

.

{a, ab}c

.

.

.

{a, ba}c

.

.

.

{a, a3}c

.

.

.

{a, aba}c

.

.

.

{a, b}c

.

.

.

{b}c

{b, ab}c

.

.

.

{b, ba}c

.

.

.

{b, b2}c

.

.

.

{b, bab}c

.

.

.

{b, b3}c

.

.

.

Figure 1: Subsemigroup tree of FS2

It is clear that an(FSr) is the number of nodes on the nth level of this tree.

Inspired by the numerical semigroup situation [7, 8], we say that a finite index subsemigroup
Λ ⊆ FSr is ordinary if f(Λ) < m(Λ) in the shortlex order, that is, all the gaps are ‘at the
beginning’. For a given rank r, clearly there is one ordinary subsemigroup for each index n
which we denote by Or(n).

Lemma 4.1. In this tree the subsemigroup Or(n) has (r − 1)n2 + (2r − 1)n+ r descendants.

Proof. Let Or(n) be the ordinary index n subsemigroup of FSr and let k = |f(Or(n))|. Figure
2 represents the set of words of G(Or(n)) within the set of all words in FSr:

Let i ≥ 1 be the number of words of length k that belong to the set of gaps G(Or(n)).

Observe that n = (
∑k−1

j=1 r
j) + i where 1 ≤ i ≤ rk.

We now consider, in three separate cases, which of the words w ∈ Or(n) are minimal gener-
ators. These cases correspond to the numbered regions in Figure 2.

1. Let |w| ≤ 2k−1. Then w ∈MG(Or(n)) if and only if w ∈ Or(n) as w cannot be written as

a product of two words in Or(n). Hence there are (
∑2k−1

j=k rj)− i such w that are minimal
generators.
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G(Or(n))

i

(1.)

2k

2k + 1

(2.)

(3.)

k

Figure 2: Set of gaps G(Or(n)) within FSr.

2. Let |w| = 2k. Then w ∈ MG(Or(n)) if and only if w = wkw
′
k where |wk| = |w′

k| = k and
at least one of wk, w

′
k are in G(Or(n)). Being careful not to double count the cases where

wk = w′
k we have that there are

∑i−1
j=0(2(r

k − j)− 1) = 2irk − i2 such w ∈ Or(n).

3. Let |w| ≥ 2k+1. Clearly no word of length at least 2k+2 is a minimal generator as every
such word is a product of two words of length at least k+1, all of which are in Or(n). This
leaves the words of length 2k+1, which are minimal generators if and only if wpre(k) ∈ G(Λ)
and wsuf(k) ∈ G(Λ), with the middle letter of w being any of the r generators of FSr. There
are therefore ri2 such words.

Hence

|MG(Or(n))| =









2k−1∑

j=k

rj



 − i



+ (2irk − i2) + (ri2)

After some manipulation, we deduce that:

|MG(Or(n))| = (r − 1)









k−1∑

j=1

rj



+ i





2

+ (2r − 1)









k−1∑

j=1

rj



+ i



+ r

= (r − 1)n2 + (2r − 1)n+ r.

Since every word in Or(n) is bigger than the Frobenius, every minimal generator gives rise to a
descendant and the result follows.

4.2 Lower bound

We now describe how to construct a lower bound for the sequence an(FSr) by constructing a
subtree of the subsemigroup tree.

Following [7], we construct a subtree of the subsemigroup tree using the ordinary subsemi-
groups. We describe it as folows: beginning with the single vertex representing FSr we attach
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to this root the subsemigroups of index 1 obtained by removing each generator. We now proceed
inductively. Consider a node (that represents a subsemigroup Λ):

1. If the subsemigroup Λ is ordinary then attach, for every h ∈MG(Λ), a node for Λh.

2. If the subsemigroup Λ is not ordinary, then it is obtained by removing minimal generators
from some ordinary subsemigroup of a lower index. Add nodes for each of the minimal
generators h of Λ that are bigger than the Frobenius f(Λ) and are also minimal generators
of this ordinary subsemigroup.

This is a subtree of the subsemigroup tree that has one infinite branch consisting of ordinary
subsemigroups of FSr. The number of nodes on the nth level of the tree is a lower bound for
an(FSr). Recalling the result from Lemma 4.1, if we let p(n, r) = (r − 1)n2 + (2r − 1)n+ r be
the number of descendants of Or(n), then Figure 3 illustrates the beginning of this subtree for
FS2.

p(0, 2) = 2

0 p(1, 2) = 6

0 1

0

2

0 1

3

0 1 2

4

0 1 2 3

p(2, 2) = 12

0 1 2 10 p(3, 2)· · ·

Figure 3: Subtree of subsemigroup tree for FS2

Observe that every node belongs to a branch starting from some ordinary subsemigroup
Or(n), and corresponds to choosing a subset of MG(Or(n)). Therefore it is clear that the
number of nodes on the nth level of this tree is

L(n, r) :=

J(n,r)
∑

i=0

(
p(n− i, r)− 1

i

)

.

where

J(n, r) =







n/2 for r = 1
⌊

(n− 1) +
(2r−1)−

√
(r−1)n+(2r−1))

r−1

⌋

for r > 1

where J(n, r) is obtained from the inequality p(n − i, r) − 1 ≥ i. Hence we have proved the
following Theorem:

Theorem 4.2. an(FSr) ≥ L(n, r) for all r, n.

Note that L(n, 1) = Fn+1 the Fibonacci numbers, which is a good lower bound for the
numerical semigroup case, since an(FS1) ∼ C · L(n, 1) for some constant C [22]. It seems
reasonable to conjecture that for each r ≥ 1, an(FSr) ∼ Cr · L(n, r) for some constant Cr.
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The proof in [22] that an(FS1) ∼ C · L(n, 1) relied on the fact that almost all numerical
semigroups satisfy f < 3m, where m is the multiplicity and f is the frobenius. It would be of
interest to know whether this proof can be extended to the higher rank case, that is, do almost
all finite index subsemigroups Λ ⊆ FSr satisfy |f(Λ)| < 3 · |m(Λ)|?

Theorem 4.3. For r ≥ 2, log(nn) = O(log(sn(FSr))).

Proof. First note that n/2 ≤ J(n, r) so by considering the term i = n/2 we have

sn(FSr) ≥ an(FSr) ≥ L(n, r) ≥
(
p(n− n/2, r)− 1

n/2

)

.

Note, we can continuously extend the binomial coeffecients using Gamma functions, so we need
not worry whether n is even. When r ≥ 2, p(n, r) ≥ n2 + 1 and so

sn(FSr) ≥
(
(n/2)2

n/2

)

≥
(
(n/2)2

n/2

)n/2

= (n/2)n/2.

Thus log(sn(FSr)) ≥ n
2 (log(n)− log(2)) and so nlog(n) = O(log(sn(FSr))).

4.3 Upper bound

We now construct an upper bound for the sequence an(FSr). In order to do this we show that,
similar to the situation for numerical semigroups (see [7]), ordinary subsemigroups have the
maximum number of descendants. To show this we require the following Proposition:

Proposition 4.4. Let Λ be a finite index non-ordinary subsemigroup of FSr, then |MG(Λ)| ≤
|MG(Λf

m)|.
Proof. We prove the statement by showing that every minimal generator of Λ turned off by
adding f gives rise to a unique new minimal generator of Λf

m turned on by removing m from Λf .
First note that the minimal generators of Λ that are turned off by adding f are precisely the new
minimal generators of Λ turned on by removing the minimal generator f from Λf . By Lemma
3.2, such a minimal generator x ∈ D = MG(Λ)\ (MG(Λf)\ {f}) has one of three possible forms
fw,wf or fwf where w ∈MG(Λf ). Note that x could have more than one of these forms. We
now partition D in to nine distinct (possibly empty) sets.

D1 : = {fwf ∈ D | w ∈MG(Λf )}
D2 : = {fyf ∈ D | yf or fy ∈MG(Λf ),my /∈ Λf}
D3 : = {fyf ∈ D | yf or fy ∈MG(Λf ),my ∈ Λf , ym /∈ Λf}
D4 : = {fyf ∈ D | yf or fy ∈MG(Λf ),my, ym ∈ Λf}
D5 : = {fw ∈ D | w ∈MG(Λf),m 6= w 6= f, fw /∈ D1 ∪D2 ∪D3 ∪D4}
D6 : = {wf ∈ D | w ∈MG(Λf),m 6= w 6= f, wf /∈ D1 ∪D2 ∪D3 ∪D4 ∪D5}
D7 : = {fm ∈ D | fm /∈ D6}
D8 : = {mf ∈ D | mf /∈ D5 ∪D7}
D9 : = {f2 ∈ D}

It is a straightforward matter to check that D1, . . . , D9 are indeed disjoint and that their union is
D (in particularD2 is disjoint from D1 as fy or yf ∈MG(Λf ) implies y ∈ G(Λ), so y /∈MG(Λ)).
Now for each x ∈ D, we are going to assign some x ∈ C = MG(Λf

m) \ (MG(Λf ) \ {m}). All the
proofs here use Remark 3.1.
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1. Let x = fwf ∈ D1. We intend to show that mwm ∈ C. Firstly, |w| = 1 as otherwise
w = x1x2 for some x1, x2 ∈ FSr and x = (fx1)(x2f) /∈ MG(Λ) as fx1, x2f ∈ Λ. Also,
since m and everything smaller than m is in G(Λf

m), we have mwmpre(i) ∈ G(Λf
m) for all

1 ≤ i ≤ |m| and mwmsuf(|mwm|−i) ∈ G(Λf
m) for all |m|+ 1 = |mw| ≤ i ≤ |mwm| − 1. Now

since w,m ∈ Λf we see that mwm ∈ Λf , and mwm ∈MG(Λf
m) but (mw)(m) /∈MG(Λf ),

so mwm ∈ C.

2. Let x = fyf ∈ D2. Firstly, as before, |y| = 1 as otherwise fyf /∈ MG(Λ). Secondly, since
my /∈ Λf , then my /∈ Λf

m. Now, since m and everything smaller than m is not in Λf
m we

have myfpre(i) ∈ G(Λf
m) for all 1 ≤ i ≤ |m|, and myfpre(|myf |−(|m|+1)) = my ∈ G(Λf

m) and

since x ∈MG(Λ) and fy ∈ Λ, we also have myfsuf(|myf |−i) ∈ G(Λf
m) for all |m|+ 2 ≤ i ≤

|myf | − 1. Therefore since myf ∈ Λf
m we have myf ∈MG(Λf

m) but (m)(yf) /∈MG(Λf ),
and so myf ∈ C.

3. Let x = fyf ∈ D3. Similarly to the previous case, fym ∈ C.

4. Let x = fyf ∈ D4. Again, |y| = 1 as otherwise fyf /∈ MG(Λ). Since m and everything
smaller than m is not in Λf

m, we have mympre(i) ∈ G(Λf
m) for all 1 ≤ i ≤ |m| and

mymsuf(|mym|−i) ∈ G(Λf
m) for all |m|+ 1 = |my| ≤ i ≤ |mym| − 1. Since m and my ∈ Λf

we see m 6= mym ∈ Λf
m and mym ∈MG(Λf

m) but (my)(m) /∈MG(Λf), and so mym ∈ C.

5. Let x = fw ∈ D5. Firstly, since fw /∈ D1 ∪ D2 ∪ D3 ∪ D4, then w does not have f as a
proper suffix. Secondly, sincem and w ∈ Λf , thenmw /∈MG(Λf ). Now since fw ∈MG(Λ)
and anything bigger than f is in Λf

m and w does not have f as a proper suffix, we have
fwsuf(|fw|−i) ∈ G(Λf

m) for all |f |+ 1 ≤ i ≤ |fw| − 1. This implies mwsuf(|mw|−i) ∈ G(Λf
m)

for all |m| + 1 ≤ i ≤ |mw| − 1 and since m and everything smaller than m is in G(Λf
m)

we also have mwpre(i) ∈ G(Λf
m) for all 1 ≤ i ≤ |m|. Finally, since m,mw ∈ Λf , then

m 6= mw ∈ Λf
m and mw ∈MG(Λf

m), so mw ∈ C.

6. Let x = wf ∈ D6. Similarly to the previous case, this implies wm ∈ C.

7. Let x = fm ∈ D7. Firstly, recall that since fm ∈ MG(Λ) we have fm ∈ Λ and
{fmpre(i), fmsuf(|fm|−i} ∩ G(Λ) 6= ∅ for all 1 ≤ i ≤ |fm| − 1. We wish to show that

fm is also in MG(Λf
m). It is enough to check the cases when f is a prefix or suffix of fm.

Obviously f is a prefix, but in that case m ∈ G(Λf
m). Assume fm has f as a suffix, that

is fm = wf for some w ∈ FSr not equal to f . Then w 6∈ MG(Λf ) as fm 6∈ D6, but
|w| = |m| implies that w ∈MG(Λf ). Hence, fm does not have f as a suffix. Observe also
that fm ∈ Λf

m. Finally, (f)(m) /∈MG(Λf ) and so fm ∈ C.

8. Let x = mf ∈ D8. Similarly to x ∈ D7, we have mf ∈ C.

9. Let x = f2. It is clear that m2 is always a minimal generator of Λf
m as firstly, m 6= m2 ∈ Λf

m

and secondly, m and everything smaller than m is in G(Λf
m) and so m2

pre(i) ∈ G(Λf
m) for

all 1 ≤ i ≤ |m| and m2
suf(|m2|−i) ∈ G(Λf

m) for all |m| ≤ i ≤ |m2| − 1. Clearly also

m2 = mm /∈MG(Λf ) and so m2 ∈ C.
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Hence we can construct a function

Φ : D → C

x 7→







mwm if x = fwf ∈ D1,

myf if x = fyf ∈ D2,

fym if x = fyf ∈ D3,

mym if x = fyf ∈ D4,

mw if x = fw ∈ D5,

wm if x = wf ∈ D6,

fm if x = fm ∈ D7,

mf if x = mf ∈ D8,

m2 if x = f2 ∈ D9.

Since D is the disjoint union of D1, . . . , D9, this function is well-defined. Since FSr is cancellative
it is clear that if x1, x2 ∈ Di for some 1 ≤ i ≤ 9, then Φ(x1) = Φ(x2) implies x1 = x2. Therefore
to show that Φ is injective, it is enough to show that Φ(x1) can never equal Φ(x2) whenever
x1 ∈ Di, x2 ∈ Dj and i 6= j. There are 36 different cases to check, which are straightforward but
tedious. We consider two of the cases and leave the rest to the reader, as they are either trivial
or identical in nature to the ones presented.

1. Let x1 ∈ D9 and x2 ∈ D1, if Φ(x1) = Φ(x2) then m2 = mwm which is an immediate
contradiction as |w| ≥ 1.

2. Let x1 ∈ D6 and x2 ∈ D5. If Φ(x1) = Φ(x2) then wm = mw′, hence w = mz for some
z ∈ FSr. This implies wf = m(zf) /∈MG(Λ) since m, zf ∈ Λ which is a contradiction.

Therefore Φ is injective and we can extend it to an injective function

Ψ : MG(Λ)→MG(Λf
m)

x 7→







Φ(x) if x ∈ D

x if x ∈MG(Λ) ∩MG(Λf ), x 6= m

f if x = m

and so |MG(Λ)| ≤ |MG(Λf
m)|.

Corollary 4.5. For a fixed index, ordinary subsemigroups of FSr have the maximum number
of descendants in the subsemigroup tree.

Proof. Firstly note that ordinary subsemigroups have the maximum number of minimal gener-
ators. In fact, given any non-ordinary finite index subsemigroup Λ ⊆ FSr, by Proposition 4.4,
Λf
m has no less minimal generators than Λ so apply Proposition 4.4 to Λ finitely many times

until it is ordinary. Since every minimal generator of an ordinary subsemigroup is bigger than
the Frobenius, each gives rise to a descendant and the result follows.

Now we can prove the following Theorem using the information from Lemma 4.1

Theorem 4.6. For r ≥ 2, an(FSr) ≤ (r − 1)n(n+ 1)(n!)2.
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Proof. By Corollary 4.5, the ordinary subsemigroups have the maximum number of descendants,
which by Lemma 4.1, is (r− 1)n2 + (2r− 1)n+ r. So let us assume every subsemigroup has this
number of descendants to construct an upper bound. Then

an(FSr) ≥
n−1∏

k=0

(
(r − 1)k2 + (2r − 1)k + r)

)

=

n−1∏

k=0

(
(r − 1)(k + 1)2 + (k + 1)

)

=
n∏

k=1

(
(r − 1)k2 + k

)
≤

n∏

k=1

(
(r − 1)k2 + (r − 1)k

)

= (r − 1)n
n∏

k=1

(k(k + 1))

= (r − 1)n(n+ 1)(n!)2.

Theorem 4.7. For r ≥ 2, log(sn(FSr)) = O(log(nn)).

Proof. Let U(n, r) = (r − 1)n(n + 1)(n!)2. Since an(FSr) ≤ U(n, r) and since U(n, r) is non-
decreasing, we have sn(FSr) ≤ n · U(n, r). Since n! < nn, we have

log(sn(FSr)) ≤ log(n) + nlog(r − 1) + log(n+ 1) + 2nlog(n) = O(nlog(n)).

Corollary 4.8. For r ≥ 2, FSr has subsemigroup growth of strict type nn.

Proof. By Theorems 4.3 and 4.7.

5 Subsemigroup growth for a fixed index

In this section we consider the growth of an(FSr) when n is fixed and the rank r varies. In this
case the sequence fits an explicit polynomial. In order to prove this, we need some preliminary
remarks.

Given any word w = gα(1) . . . gα(m) ∈ FSr, with gα(i) ∈ Xr, and any permutation σ ∈
Sym(Xr), let σ(w) denote the word σ(gα(1)) . . . σ(gα(m)). Given Λ a finite index subsemigroup
of FSr with G(Λ) = {w1, . . . , wn}, then let σ(G(Λ)) denote the set {σ(w1), σ(w2), . . . , σ(wn)}.
It is clear that FSr \ σ(G(Λ)) is also a finite index subsemgroup of FSr isomorphic to Λ.

For any index n subsemigroup Λ ⊆ FSr we wish to think of the set of gaps of Λ as a ‘pattern’
by forgetting the labels of the generators of FSr. To make this idea precise, let Fin be the set
of all finite index subsemigroups of finite rank free semigroups.

We now define an equivalence relation ∼ on Fin. Let Λ1,Λ2 ∈ Fin be two finite in-
dex subsemigroups with Λ1 ⊆ FSp and Λ2 ⊆ FSq say. We say Λ1 ∼ Λ2 if there exists
σ ∈ Sym(Xmax{p,q}) such that G(Λ1) = σ(G(Λ2)). If Λ1 ∼ Λ2 then we say that Λ1 and Λ2

have the same gap pattern.
Let w ∈ FSr. Define the support of w to be the set of minimal generators that make up w.

That is, if w = gα(1)gα(2) . . . gα(m) where gα(i) ∈ Xr, then supp(w) := {gα(1), . . . , gα(m)}. Given
Λ ∈ Fin, with G(Λ) = {w1, w2, . . . , wn}, we define supp(G(Λ)) to be

⋃n
i=1 supp(wi).

Let Λ ∈ Fin with |supp(G(Λ))| = k. Then Λ has a minimal representative Λmin ⊆ FSk

of the ∼-class of Λ so that supp(Λmin) = Xk and the elements of the support ‘first appear in
order’. More formally, let gj = max{gi | gi ∈ supp(Λ)} be the largest generator in the gaps of
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Λ using the standard lexicographical order. If we let y = w1 . . . wn be the concatenation of the
set of gaps of Λ, then we can totally order the σ ∈ Sym(Xj) using the lexicographcial order on
σ(y). Let σmin be the smallest permutation with respect to this total order, then Λmin is the
complement of σmin(G(Λ)) in FSk.

Now, for a fixed Λ ∈ Fin let the orbit of Λ be defined as Orb(Λ) := {σ(Λ) | σ ∈
Sym(supp(Λ))}. This is the set of all elements of Fin with the same gap pattern and the
same support as Λ. By the orbit-stabilizer theorem, |Orb(Λ)| is a divisor of |Sym(supp(Λ))| =
|supp(Λ)|!.

For each n ≥ 1, let Z(n) be the set of minimal representatives of ∼-classes of index n
subsemigroups. For each k ≥ 1, let Z(n, k) := {P ∈ Z(n) | |supp(P )| = k} and for each i | k!,
let Z(n, k, i) := {P ∈ Z(n, k) | |Orb(P )| = i}. Note, we have that

Z(n, k) =
⊔

i|k!
Z(n, k, i). (1)

Observe that each of the sets Z(n, k) are finite. In fact, as each P is minimal |Z(n, k)| is no
bigger than the number of index n subsemigroups of FSk, which by Corollary 2.2, is finite.

Now given any r and n, we wish to determine the number of index n subsemigroups of FSr.
For each P ∈ Z(n, k) there are k possible generators we could choose from r for the support of
P , and there are |Orb(P )| different subsemigroups of FSr with the same gap pattern and the
same support as P . Therefore, there are |Orb(P )| ·

(
r
k

)
index n subsemigroups of FSr with the

same gap pattern as P , and we have the following equation:

an(FSr) =

r∑

k=1

∑

P∈Z(n,k)

|Orb(P )| ·
(
r

k

)

.

Lemma 5.1. Z(n, k) = ∅ for all k > n.

Proof. This is equivalent to proving that every index n subsemigroup Λ has |supp(G(Λ))| ≤ n.
We prove by induction on the index. Let n = 1 and given any index 1 subsemigroup Λ with
G(Λ) = {w1}, then w1 must be in Xr and so |supp(Λ)| = 1. Now assume the statement is true
for n ≥ 1. Given any subsemigroup with |G(Λ)| = n+1, let f = f(Λ) and consider the semigroup
Λf which has |G(Λf )| = n. If G(Λf ) = {w1, . . . , wn} then by the assumption |supp(G(Λf ))| ≤ n.
Since f is a minimal generator of Λf , by Lemma 3.3, f is of the form wig, gwi or wigwj

for some wi, wj ∈ G(Λf ), g ∈ Xr and therefore supp(G(Λf )) = supp(G(Λ)) ∪ supp(g) and
|supp(Λ)| ≤ n+ 1.

Therefore we can refine our range of summation slightly to get:

an(FSr) =

n∑

k=1

∑

P∈Z(n,k)

|Orb(P )| ·
(
r

k

)

=

n∑

k=1

∑

i|k!

∑

P∈Z(n,k,i)

i

(
r

k

)

by (1)

=
n∑

k=1

∑

i|k!
|Z(n, k, i)| · i

(
r

k

)

=

n∑

k=1

∑

i|k!
|Z(n, k, i)| i

k!

k−1∏

j=0

(r − j)
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So if we let
c(n, k) :=

∑

i|k!
|Z(n, k, i)| · i

and s(n, k) be the (signed) Stirling numbers of the first kind, then

an(FSr) =

n∑

k=1

c(n, k)

k!

n∑

j=0

s(n, j)rj

=

n∑

k=1









n∑

j=k

c(n, j)

j!
s(n, k)



 rk





We remark that the ordinary subsemigroup On(n) has |supp(On(n))| = n and so c(n, n) 6= 0.
Therefore we have proved:

Theorem 5.2. an(FSr) is a polynomial in r of degree n with no constant term.

We now use this result to describe an algorithm (making use of the previous algorithms) for
inductively computing the sets Z(n, k, i) and therefore the values an(FSr). See Algorithm 3.

Using this algorithm, we computed the polynomials and hence the values of an(FSr) for
1 ≤ n ≤ 9 which are presented in Appendix A. This was implemented on the Iridis 4 compute
cluster [2] using C++ code which is available for download [1]. It took 2 hours 30 minutes
running on 64 x Intel Xeon E5-2670 processor cores, equivalent to approximately one week of
computation on a standard desktop computer.

6 Ideal growth

Recall that a subsemigroup I of a semigroup S is called a left (resp. right) ideal of S if SI ⊆ I
(resp. IS ⊆ I), and a (two-sided) ideal if it is both a left ideal and a right ideal. Let aLI

n (FSr)
denote the number of (Rees) index n left ideals of FSr, let aRI

n (FSr) denote the number of
index n right ideals and aIn(FSr) denote the number of index n two-sided ideals. Note that the
number of left ideals is equal to the number of right ideals as FSr → FSr, w 7→ rev(w) is an
anti-isomorphism, and since every ideal is also a subsemigroup it is clear that

aIn(FSr) ≤ aLI
n (FSr) = aRI

n (FSr) ≤ an(FSr).

We show that both aLI
n (FSr) = aRI

n (FSr) and aIn(FSr) have exponential growth, that is, strict
growth type 2n = nn/log(n) where strict growth type is defined as in subsemigroup growth.

6.1 One-sided ideals

We now make an observation and give an exact formula for the number of index n one-sided
ideals of FSr.

Let Λ be an index n right ideal of FSr, then it is clear that given any w ∈ G(Λ), we must
also have wpre(|w|−1) ∈ G(Λ). Therefore considering the right multiplication tree, the set of gaps
(including the empty word) corresponds to a rooted r-ary tree with n+ 1 vertices. The number
of such is precisely the ‘Fuss-Catalan’ numbers:

aRI
n (FSr) =

1

(r − 1)(n+ 1) + 1

(
r(n+ 1)

n+ 1

)

.
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Algorithm 3 Find the sets Z(n, k, i) for all i, from the sets Z(n− 1, k, i) and Z(n− 1, k − 1, i)

Require: Index n, support k, the sets Z(n− 1, k, i) and Z(n− 1, k − 1, i) for all i
1: procedure FindNextSets(n, k)
2: Input sets Z(n− 1, k, i), Z(n− 1, k − 1, i) for all i.
3: Z(n− 1, k)← ∪i Z(n− 1, k, i)
4: Z(n− 1, k − 1)← ∪i Z(n− 1, k − 1, i)
5: Descendants ← {}
6: for all Λ ∈ Z(n− 1, k) do
7: M ←Generators(G(Λ), Xk)
8: for all h ∈M do

9: if h > f(Λ) then
10: Descendants ← Descendants ∪{G(Λ) ∪ {h}}
11: end if

12: end for

13: end for

14: for all G(Λ) ∈ Z(n− 1, k − 1) do
15: M ←Generators(G(Λ), {gk})
16: for all h ∈M do

17: if h > f(Λ) then
18: Descendants ← Descendants ∪{G(Λ) ∪ {h}}
19: end if

20: end for

21: end for

22: for all G(Λ) ∈ Descendants do
23: Orbit ← {}
24: for all σ ∈ Sym(Xk) do
25: Orbit ← Orbit ∪{σ(Λ)}
26: end for

27: MinRep ← minimal representative of Orbit
28: Z(n, k, |Orbit|)← Z(n, k, |Orbit|) ∪ {MinRep}
29: end for

30: Output sets Z(n, k, i) for all i.
31: end procedure
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Note that when r = 2 this reduces to the standard Catalan numbers and when r = 1,
aRI
n (FSr) = aLI

n (FSr) = aIn(FSr) = 1 as the only ideals of (N,+) are the ordinary subsemi-
groups.

Theorem 6.1. For r ≥ 2, FSr has one-sided ideal growth of strict type 2n = nn/log(n).

Proof. This follows from the fact that rn+1 ≤
(r(n+1)
(n+1)

)
≤ (er)n+1.

For a fixed index n, with some basic manipulation the formula above yields a polynomial in
r of degree n with no constant term:

aRI
n (FSr) =

n∑

k=0

((
s(n+ 1, k)

(n+ 1)!
(n+ 1)k

)

rj
)

where s(n, k) are the (signed) Stirling numbers of the first kind.

6.2 Two-sided ideals

Recalling the subsemigroup tree in Section 4 we consider the subtree of all (two-sided) ideals.
That this really is a tree follows from the fact that given any ideal Λ ⊆ FSr, then Λf is also an
ideal.

Remark 6.2. Note that given any ideal Λ ⊆ FSr in this subtree, then Λh is a descendant of Λ
if and only if h > f(Λ) and hpre(|h|−1), hsuf(|h|−1) ∈ G(Λ).

The ordinary subsemigroups Or(n) are clearly ideals. Let desc(Or(n)) denote the set of ideals
that are descendants of Or(n) in this tree, and let D(Or(n)) = {h ∈ MG(Or(n)) | Or(n)h ∈
desc(Or(n))}. Clearly the sets D(Or(n)) and desc(Or(n)) are in bijection. We now construct a
lower bound on the size of these sets. First we need a technical lemma.

Lemma 6.3. g1wpre(|w|−1) ≤ w for all w ∈ FSr.

Proof. Let w = gα(1) . . . gα(m) and assume g1gα(1) . . . gα(m−1) > gα(1) . . . gα(m). Then g1 ≥
gα(1) ≥ gα(2) ≥ · · · ≥ gα(m−1) ≥ gα(m) and so gα(i) = g1 for all 1 ≤ i ≤ m in which case gm1 < gm1
which is a contradiction.

Lemma 6.4. |desc(Or(n))| ≤ |desc(Or(n+ 1))|

Proof. Let f = f(Or(n+1)), then it is clear that whenever Or(n)h is an ideal, Or(n+1)h is also
an ideal for all h 6= f . So we need only show that D(Or(n + 1)) contains at least one element
that D(Or(n)) does not. Let h = g1f , then by Lemma 6.3, hpre(|h|−1) ≤ f ∈ G(Or(n + 1)) and
clearly hsuf(|h|−1) = f ∈ G(Or(n + 1) but is not in G(Or(n)). Therefore Or(n + 1)h is an ideal
but Or(n)h is not an ideal.

Proposition 6.5. |desc(Or(n))| ≥ rm where m = ⌊logr((r − 1)n+ r)⌋.

Proof. Consider the case when n = r+r2+ · · ·+rm−1 = rm−r
r−1 for some m ≥ 1, then G(Or(n)) =

{w ∈ FSr | |w| ≤ rm−1} and every word w of length m satisfies wpre(|w|−1), wsuf(|w|−1) ∈
G(Or(n)) and no longer words do. Hence |desc(Or(n))| = rm. Otherwise n = rm−r

r−1 + i for some
m ≥ 1 and some 1 ≤ i ≤ rm − 1. By inductively applying Lemma 6.4, we have |desc(Or(n))| ≥
|desc(Or(n− i))| = rm.
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This underestimate has the largest error when n = r + r2 + · · · + rm − 1 = rm+1−r
r−1 − 1. So

take this as a lower bound and for r ≥ 2, it is always true that

h(n, r) :=
r − 1

r
n+

2r − 1

r
=

r − 1

r
(n+ 1) + 1 = rm ≤ |desc(Or(n))|.

So if we let

LI(n, r) =

K(n,r)
∑

i=0

(
h(n− i, r)− 1

i

)

where K(n, r) =
⌊

r−1
2r−1 (n+ 1)

⌋

is obtained from the inequality h(n− i, r)− 1 ≥ i. Then similar

to the argument in Section 4 for the lower bound, we have proved the following:

Theorem 6.6. For r ≥ 2, aIn(FSr) ≥ LI(n, r).

As a consequence we can see that two-sided ideal growth is bounded below by an expoential:

Theorem 6.7. For r ≥ 2, log(2n) = O(log(sIn(FSr))).

Proof. First note that for r ≥ 2, n/4 ≤ K(n, r) so by considering the term i = n/4 we have

sIn(FSr) ≥ aIn(FSr) ≥ LI(n, r) ≥
(
3n(r − 1)/4r + (2r − 1)/r

n/4

)n/4

∼
((

3(r − 1)

r

) 1
4

)n

Thus log(2n) = n = O(log(sIn(FSr))).

Since aIn(FSr) ≤ aRI
n (FSr), we immediately deduce from Theorem 6.1, log(sIn(FSr)) =

O(log(2n)) for r ≥ 2. Hence,

Theorem 6.8. For r ≥ 2, FSr has ideal growth of strict type 2n = nn/log(n).

It can be checked that the argument in Section 5 is valid for ideals also, and so for a fixed
index n, we also have the following:

Theorem 6.9. aIn(FSr) is a polynomial in r of degree n with no constant term.

We can easily adapt our previous algorithm to use Remark 6.2 instead of Remark 3.1. This
is computationally a much easier condition to check. This algorithm was implemented using
C++ code which is available for download [1]. The polynomials and hence the values of aIn(FSr)
for 1 ≤ n ≤ 12 were calculated and are presented in Appendix B. It took less than an hour to
calculate running on a single Intel Xeon E5-2670 processor.

We observed an interesting connection between aIn(FS2) and the central binomial coeffecients
(

n
⌊n/2⌋

)
which we are unable to explain (see Appendix D). They agree for the first 6 values and

then the central binomial coefficients seem to be an upper bound. It would be of interest to
know whether they are an asymptotic upper bound.

Note that, given any finite index ideal I ⊆ FSr and any word in the set of gaps G(I), then
every prefix and suffix of that word is also in the set of gaps, hence supp(I) ⊆ G(I). This implies
that there is only one index n ideal I with |supp(I)| = n, namely the ordinary subsemigroup,
and hence using the notation from Section 5, c(n, n) = 1. Consequently,

Theorem 6.10. For a fixed index n

aIn(FSr) ∼
nr

n!
.
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7 Congruence growth

Let Congn(FSr) denote the set of (two-sided) congruences on FSr with precisely n nonempty
congruence classes, and let aCn (FSr) = |Congn(FSr)|. We say that a semigroup S is at most r
generated if there exists an r-element subset of S that generates the semigroup. It is clear that
given any at most r generated semigroup S of order n, there exists a congruence ρ ∈ Congn(FSr)
such that FSr/ρ ∼= S. The number of congruences in Congn(FSr) that quotient to give S is
precisely the number of distinct epimorphisms from FSr to S. There are at most nr such
epimorphisms since the map is determined entirely by the image of the generators Xr. Hence

f(n, r) ≤ aCn (FSr) ≤ nr · f(n, r)

where f(n, r) is the number of non-isomorphic at most r generated semigroups of order n.

Proposition 7.1. For r ≥ 2, log(2n) = O(log(sCn (FSr))).

Proof. Every index n ideal I of FSr gives rise to a distinct congruence ρI ∈ Congn+1(FSr) where
ρI = ((FSr \ I)× (FSr \ I))∪ idI is usually called the Rees congruence on FSr modulo I. Hence
aIn(FSr) ≤ aCn+1(FSr) and the result follows by Theorem 6.7.

Theorem 7.2. FSr has congruence growth of the same strict type as f(n, r).

Proof. For a fixed r, it is clear that f(n, r) is non-decreasing and so by the observation above,
sCn (FSr) ≤ nr+1 · f(n, r). Therefore log(sCn (FSr)) ≤ (r + 1) · log(n) + log(f(n, r)) and so
by the previous proposition, log(sn(FSr)) = O(log(f(n, r)). Again, by the observation above
f(n, r) ≤ aCn (FSr) ≤ sCn (FSr) and so we have log(sCn (FSr)) ≍ log(f(n, r)).

We conclude from this that for r ≥ 2, the number of non-isomorphic at most r-generated
semigroups of order n is at least exponential of strict type 2n = nn/log(n) (whereas the number
of at most r-generated groups of order n is sub-exponential with strict growth type nlog(n)).

Question 7.3. Can f(n, r) be bounded above by an exponential?

If we can also show that f(n, r) grows at most exponentially then we will have proved that
FSr has congruence growth of strict type 2n. In answering the above question, one may be
tempted to consider 3-nilpotent semigroups as almost all finite semigroups are 3-nilptotent (see
[18] and [11] for example). However it turns out almost none of the r-generated semigroups
are 3-nilpotent, that is, there are no r-generated 3-nilpotent semigroups of order greater than
r2 + r + 1. The Smallsemi [10] data library in GAP [13] tells us that for n from 2 through 8,
f(n, 2) equals: 5, 17, 68, 217, 670, 1937, 5686. This seems to be exponential, and we conjecture
that the above question is true.

7.1 Ascendingly generated tables

When counting all semigroups of order n, a natural question is whether to count order n semi-
groups up to isomorphism, which we will denote f(n), or whether to count ‘up to equality’ all
n-element Cayley tables, that is, all binary operations on an n-element set, which we will denote
m(n). There are at most n! distinct Cayley tables of any semigroup up to isomorphism (precisely
when the semigroup has trivial automorphism group). Hence m(n) = O(n! · f(n)). As an aside,
it is generally believed (although still an open question) that almost all semigroups have trivial
automorphism group, in which case not only does m(n) = O(n! · f(n)) but m(n) ∼ n! · f(n).

We here introduce something between the two which turns out to be important for counting
congruences, namely what we have called ascendingly generated tables. Heuristically we are
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counting the generators {w1, . . . , wk} up to equality and the non-generators {wk+1, . . . , wn} up
to isomorphism and it satisfies O(nk · f(n, k)).

Let Wn = {w1 < w2 < · · · < wn} be an n-element set and let Cn = {(Wn,⊗)} be the set
of all Cayley tables on Wn. Let Cn,k ⊆ Cn be the set of all Cayley tables on (Wn,⊗) that are
generated (not necessarily minimally) by {w1, . . . , wk}, so that for example, Cn,n = Cn.

Given any w ∈ Wn, (Wn,⊗) ∈ Cn,k, there exists some decompostion (possibly many) of w
as a product of elements from {w1, . . . , wk}. Let dec(w) denote the smallest decomposition with
respect to <⊗, the shortlex order on Wn over the alphabet {w1, . . . , wk}. We say that (Wn,⊗)
is ascendingly generated by {w1, . . . , wk} if it is generated by {w1, . . . , wk} and

dec(wk+1) <⊗ dec(wk+2) <⊗ · · · <⊗ dec(wn).

Let Tn,k ⊆ Cn,k denote the set of all (Wn,⊗) ∈ Cn,k ascendingly generated by {w1, . . . , wk}.
Lemma 7.4. We observe the following facts:

1. |Tn,1| = n.

2. |Tn,n| = m(n).

3. Tn,r ⊆ Tn,r+1.

4. f(n, r) ≤ |Tn,r| ≤ r! ·
(
n
r

)
· f(n, r).

5. |Tn,r| = O(nr · f(n, r)) for a fixed r.

Proof. 1. Let (Wn,⊗) ∈ Tn,1. Since (Wn,⊗) is ascendingly generated by {w1} we must have

i
︷ ︸︸ ︷

w1 ⊗ · · · ⊗ w1 = wi for all 1 ≤ i ≤ n− 1

and (wi)
n is allowed to equal any of the n elements.

2. From the definition, every Cayley table on Wn is generated ascendingly by the whole of
Wn.

3. Again this follows vacuously from the definition.

4. Given any at most r generated semigroup S we can always label the elements {w1, . . . , wn}
such that {w1, . . . , wr} generate S and the remaining elements are labelled in the order
they are generated so that it is ascendingly generated, hence f(n, r) ≤ Tn,r. Given any at
most r-generated semigroup S there are at most

(
n
r

)
possible ways of choosing a generating

set which we can label in at most r! ways {w1, . . . , wr}, but for the remaining elements we
have no choice how to label them if we want S to be generated ascendingly by {w1, . . . , wr}.
Hence |Tn,r| ≤ r! ·

(
n
r

)
· f(n, r).

5. This follows immediately from 4.

Recall that there are n! monogenic Cayley tables of order n, but only n up to isomorphism.
So ascendingly generated tables behave like ‘up to isomorphism’ for k = 1 but like ‘up to equality’
for k = n.

Using the Smallsemi [10] data library in GAP [13] we calculated the number of Cayley tables
on {w1, . . . , wn} generated ascendingly by {w1, . . . , wk} (see Table 1).

Again recall from Lemma 7.4(2) that the diagonal in Table 1 is equal to m(n), see sequence
A023814 in OEIS [3].

http://oeis.org/A023814
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k \ n 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 8 37 145 452 1374 3933
3 113 1257 9020 60826 356023
4 3492 67394 938194 30492722
5 183732 6398792 466578957
6 17061118 3032145644
7 7743056064

Table 1: |Tn,k| for 1 ≤ k ≤ n ≤ 7.

See [1] for the code used to calculate these values. This ran on the Iridis 4 compute clus-
ter [2] and took one hour running on 64 x Intel Xeon E5-2670 processor cores, equivalent to
approximately 64 hours on a standard desktop computer.

That ascendingly generated Cayley tables are important is revealed in the next result.

A congruence ρ ∈ Congn(FSr) is completely determined by two pieces of information: an as-
cendingly generated Cayley table and by which congruence classes the generatorsXr are assigned
to. We formalise this below.

We say a function f : Xr →Wn is an assignment if f(g1) = w1 and f(gj) ∈ {w1, . . . , wα(j)+1}
where wα(j) = maxi<j{f(gi)} for all 2 ≤ j ≤ n. Let Ar,k be the set of assignments from Xr to
Wn such that the image has cardinality k.

We claim that

Proposition 7.5. There exists a bijection

φ : Congn(FSr)→
⊔

1≤k≤r

(Tn,k ×Ar,k).

Proof. Given any ρ ∈ Congn(FSr) we choose a subset Wn ⊆ FSr in the following way: let
w1 < w2 < · · · < wn be the minimal representatives of the n ρ-classes with respect to <, the
shortlex order on FSr over the alphabet Xr. Given any word w ∈ FSr, let [w]ρ ∈ Wn denote
the minimal representative of the class of w. Let k = |{[g1]ρ, [g2]ρ, . . . , [gr]ρ}| be the number of
classes that the generators Xr traverse.

Let f be defined as f(gi) := [gi]ρ for all 1 ≤ i ≤ r. Clearly f(g1) = w1 and for any j > 1,
either gj is in the same ρ-class as some gi for i < j in which case f(gj) = f(gi), or it is in a
different class from all gi with i < j in which case f(gj) = wα(j)+1 where wα(j) = maxi<j{f(gi)}.
Hence f is indeed an assignment and f ∈ Ar,k. We now define a binary operation on Wn,
which can be done by setting wi ⊗ wj := [wiwj ]ρ for all 1 ≤ i, j ≤ n. This is associative as ρ
is a congruence. We now show that (Wn,⊗) is generated by {w1, . . . , wk}. In fact, given any
w ∈ Wn, let w = gα(1)gα(2) . . . gα(m) be its unique decomposition in FSr, then wi = [wi]ρ =
[gα(1)gα(2) . . . gα(m)]ρ = [gα(1)]ρ ⊗ [gα(2)]ρ ⊗ · · · ⊗ [gα(m)]ρ, where [gα(1)]ρ, [gα(2)]ρ, . . . , [gα(m)]ρ ∈
im(f) = {w1, . . . , wk}. Hence (Wn,⊗) ∈ Cn,k.

Given any wi ∈ Wn, let dec(wi) = wγ(1) ⊗ · · · ⊗ wγ(m) be the minimal decomposition of wi.
As wi belongs to FSr, we also have its unique decomposition wi = gα(1) . . . gα(l) using letters
in Xr. We intend to show that gα(1) . . . gα(l) = wγ(1) . . . wγ(m). To do this, we make two initial
observations:

1. [gα(1)]ρ . . . [gα(l)]ρ ≤ gα(1) . . . gα(l);

2. [gα(1)]ρ . . . [gα(l)]ρ is in the same class as wi, which is minimal in its class.
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We can immediately deduce that [gα(1)]ρ . . . [gα(l)]ρ = gα(1) . . . gα(l) and gα(1), . . . , gα(l) ∈ Wn.
As dec(wi) is the smallest decomposition of wi in Wn we also have wγ(1) ⊗ · · · ⊗ wγ(m) ≤⊗
gα(1) ⊗ · · · ⊗ gα(l). Assume that wγ(1) . . . wγ(m) 6= gα(1) . . . gα(l), then wγ(1) . . . wγ(m) < wi but
in the same ρ-class as wi which is a contradiction. Hence gα(1) . . . gα(l) = wγ(1) . . . wγ(m) and
wi < wj if and only if dec(wi) <⊗ dec(wj) thus (Wn,⊗) ∈ Tn,k. Let φ(ρ) := ((Wn,⊗), f), it is
clear that if ρ = σ ∈ Congn(FSr) then φ(ρ) = φ(σ), whence φ is a well-defined function.

Now we prove surjectivity of φ by constructing a congruence: given any ((Wn,⊗), f) ∈⊔

1≤k≤r(Tn,k×Ar,k) we define ρ as follows: let (a, b) ∈ ρ if and only if f(gα(1))⊗ · · · ⊗ f(gα(l)) =
f(gβ(1))⊗ · · · ⊗ f(gβ(m)) where a = gα(1) . . . gα(l) and b = gβ(1) . . . gβ(m) are their unique decom-
positions in FSr. It is straightforward to check that this is indeed a congruence. We now show
that ρ has n congruence classes. The generators Xr clearly traverse |im(f)| = k classes. For each
wi ∈ {wk+1, . . . , wn} let dec(wi) = wγ(1) ⊗ · · · ⊗wγ(l). Then wγ(1) . . . wγ(k) is in a different class
from all {w1, . . . , wi−1} and therefore ρ ∈ Congn(FSr).

Let φ(ρ) = ((Wn,⊕), f ′). We intend to show that ((Wn,⊗), f) = ((Wn,⊕), f ′). Firstly note
that f(g1) = w1 = f ′(g1). We now proceed by induction: given any j > 1, assume f(gi) = f ′(gi)
for all i < j. Then either f(gj) = f(gi) for some i < j in which case f ′(gj) = [gj ]ρ = [gi]ρ =
f ′(gi) = f(gi) = f(gj) or, alternatively, f(gj) is different from all f(gi) with i < j. In which case
f(gj) = wα(j)+1 and f ′(gj) = wβ(j)+1 where wα(j) = maxi<j{f(gi)} and wβ(j) = maxi<j{f ′(gi)}.
By our assumption, wα(j) = wβ(j) and so f = f ′.

We now intend to show that (Wn,⊗) = (Wn,⊕). Given any wi, wj ∈ Wn, with dec(wi) =
wγ(1) ⊗ · · · ⊗ wγ(l), dec(wj) = wδ(1) ⊗ · · · ⊗ wδ(m), let wp = wi ⊗ wj where dec(wp) = wǫ(1) ⊗
· · · ⊗ wǫ(q). By the argument above we know that wi = wγ(1) . . . wγ(l), wj = wδ(1) . . . wδ(m),
wp = wǫ(1) . . . wǫ(q) are also their unique deompositions in FSr as the minimal representatives
of the ρ-classes. Hence wi ⊕ wj = [wiwj ]ρ = [wp]ρ = wp = wi ⊗ wj . So (Wn,⊗) = (Wn,⊕) and
hence φ is surjective.

Finally, we show that φ is injective: consider φ(ρ) = ((Wn,⊗), f) = φ(σ) for some ρ, σ ∈
Congn(FSr). Then (a, b) ∈ ρ if and only if f(gα(1))⊗ · · · ⊗ f(gα(l)) = f(gβ(1)) ⊗ · · · ⊗ f(gβ(m))
where a = gα(1) . . . gα(l) and b = gβ(1) . . . gβ(m) if and only if (a, b) ∈ σ and φ is a bijection.

Note that |Ar,k| is precisely the number of ways of partitioning an r-element set in to k
non-empty subsets, that is

{
r
k

}
the Stirling numbers of the second kind. Hence we have proved

the following,

Theorem 7.6.

aCn (FSr) =

r∑

k=1

{
r

k

}

|Tn,k|.

Hence from the values of |Tn,k| in Table 7.1 we can calculate aCn (FSr) for 1 ≤ n ≤ 7 which is
presented in Appendix C.

Corollary 7.7. For a fixed rank r, aCn (FSr) ≍ |Tn,r|.

Proof. Clearly aCn (FSr) ≥ |Tn,r|. From Lemma 7.4(3) |Tn,k| ≤ |Tn,r| for all k ≤ r, hence
aCn (FSr) ≤ B(r) · |Tn,r| where B(r) =

∑r
k=1

{
r
k

}
are the Bell numbers.

Compare this result to Theorem 7.2 and notice that this is much stronger than saying they
have the same strict growth type.

7.2 Congruence growth for a fixed number of classes

Given some fixed n we now prove that aCn (FSr) satisfies an exponential equation with base n.
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Theorem 7.8.

aCn (FSr) =
n∑

j=1









n∑

k=j

(−1)k−j

(
k

j

) |Tn,k|
k!



 jr



 .

Proof.

aCn (FSr) =

r∑

k=1

{
r

k

}

|Tn,k| =
r∑

k=1





k∑

j=1

(−1)k−j

k!

(
k

j

)

jr



 |Tn,k|

since |Tn,k| = 0 for all k > n, the result follows by a simple rearrangement.

Using Table 7.1, we calculate the exponential equations for 1 ≤ n ≤ 7 and present them in
Appendix C.

Corollary 7.9. For a fixed n, we have aCn (FSr) ∼ m(n)
n! nr.

8 Further work

There are many open questions regarding subsemigroup growth. It was shown in [20, Theorem
3.1] that all groups with superexponential subgroup growth are similar to free groups, in that
they involve every finite group as an upper section. What necessary conditions are imposed on
semigroups? In answering this question, it would be of interest to first investigate other classes
of semigroups. What is the subsemigroup growth of free commutative semigroups, free inverse
semigroups, the bicyclic monoid etc? For example, if free commutative semigroups have exponen-
tial subsemigroup growth, then by an argument similar to Proposition 2.4, non-commutativity
would certainly be a necessary condition for superexponential growth.

How does the geometry of the semigroup relate to its subsemigroup growth, for example, is
superexponential growth connected to hyperbolicity?

It may also be that another definition of index is more appropriate. One particularly natural
definition that might be considered is Green index [14] which agrees with Rees index for free
semigroups.

It may also be of interest to consider counting other objects, e.g. right/left congruences
(related to counting cyclic acts), maximal sub(semi)groups, classes related to Green’s relations
etc.
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6

A Values of an(FSr)

r \ n 1 2 3 4 5 6 7 8 9

1 1 2 4 7 12 23 39 67 118
2 2 11 62 382 2562 18413 140968 1142004 9745298
3 3 27 250 2568 28746 347691 4495983 61714968 894242997
4 4 50 644 9209 143416 2415078 43532832 833734416 16863679508
5 5 80 1320 24150 480736 10340800 238120365 5826981430 150609007570
6 6 117 2354 52437 1269738 33192442 928558122 27600653310 866466783828
7 7 161 3822 100317 2859878 87935351 2892046165 101031525714 3726895105059
8 8 212 5800 175238 5746592 203079088 7672012360 307755240801 13032655134280
9 9 270 8364 285849 10596852 423019929 18042714315 816825050010 39027404931886
10 10 335 11590 442000 18274722 813079415 38632533180 1947580054285 103592924112830
11 11 407 15554 654742 29866914 1465238951 76729376515 4261622698733 249671899238553
12 12 486 20332 936327 46708344 2504570454 143291607432 8692072992879 556011110821900

a1(FSr) =r

a3(FSr) =
38

3
r3 − 11r2 +

7

3
r

a2(FSr) =
7

2
r2 − 3

2
r

a4(FSr) =
1201

24
r4 − 239

4
r3 +

311

24
r2 +

15

4
r

a5(FSr) =
6389

30
r5 − 613

2
r4 +

185

6
r3 +

255

2
r2 − 264

5
r

a6(FSr) =
696049

720
r6 − 72727

48
r5 − 58627

144
r4 +

33101

16
r3 − 509257

360
r2 +

973

3
r

a7(FSr) =
11708603

2520
r7 − 87143

12
r6 − 146903

18
r5 +

54431

2
r4 − 9126049

360
r3 +

129725

12
r2 − 13019

7
r

a8(FSr) =
947714177

40320
r8 − 5336487

160
r7 − 55786441

576
r6 +

7419257

24
r5 − 2105526961

5760
r4 +

110385341

480
r3 − 52875299

672
r2 +

95103

8
r

a9(FSr) =
5649947729

45360
r9 − 78967849

560
r8 − 1039050691

1080
r7 +

142822454

45
r6 − 9770306269

2160
r5 +

2708660903

720
r4 − 44177206909

22680
r3

+
378138079

630
r2 − 776555

9
r
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B Values of aIn(FSr)

r \ n 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 3 6 10 20 35 68 126 242 458 886 1696
3 3 6 16 36 96 237 624 1608 4221 11043 29109 76768
4 4 10 32 89 284 866 2776 8860 28744 93464 305608 1000982
5 5 15 55 180 656 2330 8620 32020 120900 459660 1761230 6779350
6 6 21 86 321 1302 5212 21582 90132 382602 1639917 7096674 30926564
7 7 28 126 525 2331 10297 46796 215012 1003877 4740008 22622985 108914792
8 8 36 176 806 3872 18600 91520 455849 2306152 11808484 61161312 319883860
9 9 45 237 1179 6075 31395 165591 884592 4796848 26337348 146326572 821478540
10 10 55 310 1660 9112 50245 281920 1602175 9236660 53921531 318568940 1902539090

a
I

1(FSr) = r a
I

2(FSr) =
1

2
r
2 +

1

2
r

a
I

3(FSr) =
1

6
r
3 +

3

2
r
2 −

2

3
r

a
I

4(FSr) =
1

24
r
4+

5

4
r
3−

1

24
r
2−

1

4
r a

I

5(FSr) =
1

120
r
5 +

7

12
r
4 +

67

24
r
3 −

43

12
r
2 +

6

5
r

a
I

6(FSr) =
1

720
r
6 +

3

16
r
5 +

461

144
r
4 −

73

48
r
3 −

1513

360
r
2 +

10

3
r

a
I

7(FSr) =
1

5040
r
7 +

11

240
r
6 +

263

144
r
5 +

115

16
r
4 −

8089

360
r
3 −

319

−15
r
2 −

48

7
r

a
I

8(FSr) =
1

40320
r
8 +

13

1440
r
7 +

1979

2880
r
6 +

173

18
r
5 −

66113

5760
r
4 −

43913

1440
r
3 +

227777

3360
r
2 +

281

−8
r

a
I

9(FSr) =
1

362880
r
9 +

1

672
r
8 +

1657

8640
r
7 +

547

90
r
6 +

377749

17280
r
5 −

37105

288
r
4 +

18446699

90720
r
3 −

294191

2520
r
2 +

136

9
r

a
I

10(FSr) =
1

3628800
r
10 +

17

80640
r
9 +

5129

120960
r
8 +

14423

5760
r
7 +

5648053

172800
r
6 −

789689

11520
r
5 −

20055283

90720
r
4 +

18449327

20160
r
3 −

28177631

25200
r
2 +

2292

5
r

a
I

11(FSr) =
1

39916800
r
11 +

19

725760
r
10 +

937

120960
r
9 +

91897

120960
r
8 +

3771383

172800
r
7 +

2583703

34560
r
6 −

133247833

181440
r
5

+
289546877

181440
r
4 −

5427659

6300
r
3 −

1158377

1260
r
2 +

9054

11
r

a
I

12(FSr) =
1

479001600
r
12 +

1

345600
r
11 +

10487

8709120
r
10 +

17567

96768
r
9 +

137379751

14515200
r
8 +

1567309

12800
r
7 −

664752743

1741824
r
6

−
22482445

13824
r
5 +

108858294689

10886400
r
4 −

11855920577

604800
r
3 +

5629166951

332640
r
2 −

21769

4
r
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C Values of aCn (FSr)

r \ n 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 1 10 40 149 457 1380 3940
3 1 26 227 1696 10381 64954 367829
4 1 58 940 12053 124683 1312774 32656398
5 1 122 3383 68524 1089957 17321988 780465754
6 1 250 11320 344609 7962407 179542398 12045020929
7 1 506 36347 1609696 52053881 1600876052 147519031977
8 1 1018 113860 7172573 316326523 12911778902 1565476753784
9 1 2042 351263 30972244 1828173277 97095768316 15081546028136
10 1 4090 1073200 130896569 10196063247 694127660206 135628506406503

aC1 (FSr) = 1

aC2 (FSr) = 4 · 2r − 6

aC3 (FSr) =
113

6
3r − 38 · 2r + 45

2

aC4 (FSr) =
291

2
4r − 745

2
3r + 317 · 2r − 189

2

aC5 (FSr) =
15311

10
5r − 58169

12
4r + 5582 · 3r − 5493

2
2r +

2917

6

aC6 (FSr) =
8530559

360
6r − 444264

5
5r +

3069971

24
4r − 782245

9
3r +

216245

8
2r − 43211

15

aC7 (FSr) =
161313668

105
7r − 235545521

36
6r +

261192269

24
5r − 210522757

24
4r +

122535049

36
3r − 7912154

15
2r +

458861

24
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D Comparing aIn(FS2) with central binomial coeffecients

n aIn(FS2)
(

n
⌊n/2⌋

)
Difference

1 2 2 0
2 3 3 0
3 6 6 0
4 10 10 0
5 20 20 0
6 35 35 0
7 68 70 2
8 126 126 0
9 242 252 10
10 458 462 4
11 886 924 38
12 1696 1716 20
13 3284 3432 148
14 6339 6435 96
15 12302 12870 568
16 23850 24310 460
17 46390 48620 2230
18 90244 92378 2134
19 175940 184756 8816
20 343246 352716 9470
21 670714 705432 34718
22 1311764 1352078 40314
23 2568740 2704156 135416
24 5034652 5200300 165648
25 9877768 10400600 522832
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