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COUNTING FRIEZES IN TYPE Dn

BRUCE FONTAINE AND PIERRE-GUY PLAMONDON

Abstract. We prove that there is an finite number of friezes in type
Dn, and we provide a formula to count them. As a corollary, we obtain
formulas to count the number of friezes in types Bn, Cn and G2. We
conjecture finiteness (and precise numbers) for other Dynkin types.

1. Introduction

Friezes of type An were defined by Coxeter [4] and studied by Conway and
Coxeter [3] in the early ’70’s. An observation credited to Caldero in [1] is that
Fomin and Zelevinsky’s cluster algebras [7] allow for a huge generalization of
the original definition. In this paper, we are interested in friezes of Dynkin
types.

One way to define friezes is to say that they are ring homomorphisms from
a cluster algebra to the ring of integers such that all cluster variables are sent
to positive integers. In Dynkin types, a cluster-free definition may be given
as follows [1, Section 3]. Let C = (Ci,j)n×n be a Cartan matrix of Dynkin
type ∆, and assume that we have an acyclic orientation of the associated
Dynkin diagram. Then a frieze of type ∆ is a collection of positive integers
a(j,m), with j ∈ {1, . . . , n} and m ∈ Z, such that

a(j,m)a(j,m + 1) = 1 +
(

∏

j→i

a(i,m)|Ci,j |
)(

∏

i→j

a(i,m + 1)|Ci,j |
)

.

This is conveniently represented as in Figure 1. For friezes of type Dn, there
is a model developed by Schiffler [11] (see also [2] and [6]) involving tagged
arcs in a punctured polygon. We recall this model in section 2.1.
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Figure 1. A frieze in type D5.

Conway and Coxeter proved in [3] that in type An, there is only a finite
number of friezes, and that this number is the (n+1)-st Catalan number. In
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type D4, Morier-Genoud, Ovsienko and Tabachnikov [9] proved that there
are 51 friezes, a result conjectured by Propp [10] (in fact, they were working
with 2-friezes, which in these small cases are related to friezes). In this
paper, we extend these results to arbitrary Dn types:

Theorem 1.1 (2.9). The number of Dn friezes is
∑n

m=1 d(m)

(

2n−m− 1
n−m

)

,

where d(m) is the number of divisors of m.

As a corollary to this and to the results in [3], we can count friezes in
types Bn, Cn and G2 by folding Dynkin diagrams:

Corollary 1.2 (3.2, 3.3, 3.4). The number of friezes in type Bn, Cn and

G2 is
∑

m≤
√
n+1

(

2n −m2 + 1
n

)

,

(

2n
n

)

and 9, respectively.

It is worth noting that in types Bn, Dn and G2, the number of friezes
is strictly greater than the number of clusters. The sequences of numbers
of friezes in types Dn and Bn make up two new entries in the On-Line
Encyclopedia of Integer Sequences [12] [13].

For the other Dynkin types, we propose the following

Conjecture 1.3 (3.6). The number of friezes of type E6, E7, E8 and F4 is
868, 4400, 26592 and 112, respectively.

Note that the number for type E6 was conjectured already by Propp
[10], and evidence for this number was further obtained by Morier-Genoud,
Ovsienko and Tabachnikov [9].

Finally, we would like to thank Dylan Thurston for some helpful conver-
sions, MSRI for supporting us during the Cluster Algebras semester where
this research began and the Sage mathematics software and community. We
would also like to thank Dylan Rupel for his comments on an earlier version
of the paper.

2. Friezes of type Dn

2.1. Triangulations of the punctured polygon. Recall that we defined
a frieze as an evaluation of all cluster variables, where each variable is a
positive integer. The following geometric model is due to Schiffler:

Theorem 2.1 ([11]). The cluster variables of Dn correspond to the (tagged)
arcs in a once punctured n-gon. Moreover, the exchange relations are those
of Figure 2.

Thus, as is noted in [2], a Dn frieze is simply a choice of positive integer
weight for each (tagged) arc in the punctured disk model, satisfying the
relations of Figure 2. In the rest of the paper, this is the point of view from
which we will view friezes.
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Figure 2. Ptolemy relation xy = ac + bd (left) and other
relations xy = a + b (middle) and xy = bc + atu (right).
The middle relation also holds if u and y are tagged and x is
untagged, and the left one does for any tagging.
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Figure 3. An example of a triangulation as in Proposition 2.2.

2.2. Description of all friezes. We will prove the following proposition,
which describes the friezes in type Dn and ensures that there is only a finite
number of them.

Proposition 2.2. From any frieze of type Dn can be extracted a unique
tagged triangulation T of the punctured n-gon in such a way that

(1) T contains all arcs of weight 1;
(2) all arcs of T connecting marked points on the boundary have weight

1;
(3) the m arcs of T incident with the puncture are untagged and all have

the same weight, which can be any divisor of m.

In particular, there is only a finite number of friezes of type Dn.

Figure 3 gives an example of a triangulation satisfying (1), (2) and (3).
If such a triangulation exists for a given frieze, then its uniqueness is clear.
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We prove its existence in several steps. First, we show that there is indeed
a triangulation containing all the arcs of weight 1 of the frieze:

Lemma 2.3. Two arcs of weight 1 in a frieze of type Dn cannot cross.

Proof. When two arcs cross, then their weights, say x and y, have to satisfy
a relation of the form xy = m1 +m2, where m1 and m2 are monomials in
the weights of the other arcs (see Figure 2). In particular, xy is at least 2,
so x and y cannot both be equal to 1. �

Let T0 be the triangulation of the punctured n-gon defined thus: add to
T0 all arcs of weight 1, and then add untagged arcs from the boundary to
the puncture whenever it is possible to do so without crossings. Then T0

is a uniquely defined triangulation which satisfies conditions (1) and (2) of
Proposition 2.2.

The following statement was proved by Hugh Thomas in an appendix to
[2, Proposition A.2].

Lemma 2.4. If one of the arcs of a frieze of type Dn incident with the
puncture has weight 1, then the frieze contains a triangulation of arcs of
weight 1. In particular, if one of the arcs of T0 incident with the puncture
has weight 1, then all arcs of T0 have weight 1.

Proof. Assume that an arc of a frieze of type Dn incident with the puncture
has weight 1. Then all the arcs compatible with this one form a frieze of
type An−1; in particular, by [3], there is a triangulation consisting of arcs of
weight 1. �

Lemma 2.5. Assume a frieze of type Dm contains no arcs of weight 1.
Then

(1) All untagged arcs incident with the puncture have the same weight.
The same is true for tagged arcs.

(2) Any arc not incident with the puncture and forming a (d + 1)-gon
not containing the puncture has weight d.

(3) If x and y are the weights of the tagged and untagged arcs, respec-
tively, incident with the puncture, then xy = m.

Proof. Let a1, a2, . . . , am be the weights of the untagged arcs incident with
the puncture, in clockwise order. Without loss of generality, we can assume
that a1 ≥ ai for all i ∈ {1, . . . ,m}. Let ti be the weight of the arc forming
a triangle with the arcs weighted ai and ai+2, where the indices are viewed
modulo m. Figure 4 illustrates this in an octogon.

For each i, there is a Ptolemy relation ai+1ti = ai + ai+2. By our assump-
tions, ti ≥ 2, and by maximality of a1, we get

2a1 ≤ a1tm = am + a2 ≤ 2a1,



COUNTING FRIEZES IN TYPE Dn 5

•

1

•

2

•

3•

4

•

5

•

6

•

7 •

8

•

a1
a2

a3

a4a5
a6

a7

a8
t1

Figure 4. Labeling of the weights.

so 2a1 = am + a2, which implies that am = a1 = a2, again by maximality of
a1. This argument propagates around the polygon, so by induction, we get
that all the ai’s are equal. This proves part (1) for untagged arcs; the proof
for tagged arcs is the same.

By the above relations, ai+1ti = ai + ai+2 = 2ai+1, so ti = 2 for all i.
Thus all arcs forming a triangle with the boundary have weight 2. We prove
(2) by induction from here: assume that for a given d, all arcs forming a
(d+1)-gon with the boundary have weight d. Let z be the weight of an arc
forming a (d+ 2)-gon with the boundary. Then there is a Ptolemy relation
of the form ai+dz = ai + ai+d+1d, so ai+dz = ai+d(1 + d), and therefore
z = d+ 1. Part (2) is proved.

Part (3) follows from part (2) and from the relation on the right in Figure
2. �

It follows from Lemma 2.5 that T0 satisfies condition (3). Indeed, cutting
along all arcs of weight 1, we are left with a smaller punctured polygon
whose arcs have weight at least 2 and form a frieze of type D. Thus Lemma
2.5 applies. This finishes the proof of Proposition 2.2.

2.3. Triangulations of punctured n-gons. Let Tn,m be the number of
triangulations of a once-punctured n-gon with exactly m untagged arcs, or
spokes, from the outer marked points to the inner puncture.

Theorem 2.6. Tn,m =

(

2n −m− 1
n− 1

)

.

Lemma 2.7. We have Tn,m = n
m

∑

i1+···+im=n−m

∏

j Cij , where Cn is the
n-th Catalan number.

Proof. Given a triangulation of the punctured n-gon with m spokes, the
portion of the triangulation between two adjacent spokes is an honest tri-
angulation of a k + 2-gon, where k is the number of vertices contained in
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between the two spokes. The two extra vertices are the end points of the
spokes themselves. Thus there are Ck possible triangulations that fit be-
tween the two given spokes. The total number of vertices not involved with
the spokes is n − m, so we partition n − m into m non-negative pieces
i1 + · · ·+ im = n−m with ij ≥ 0. Fix one of the spokes as a starting point,
then we should see

∑

i1+···+im=n−m

∏

j Cij triangulations. This under counts
the true number since rotating a triangulation one step can give a different
triangulation. Thus if we multiply by n, the total number of possible rota-
tions, we would count each triangulation at least once. But we are ignoring
the fact that we fixed one of the m spokes, so we are now over counting by
a factor of m. This leaves us with Tn,m = n

m

∑

i1+···+im=n−m

∏

j Cij . �

We can now prove Theorem 2.6:

Proof. Recall that c(x) = 1−
√
1−4x
2x is the generating function for the Catalan

numbers. The coefficient of xn in (c(x))k is known as the ballot number

B(n, k) and has closed form B(n, k) = k
2n+k

(

2n+ k
n

)

. But, Tn,m =

n
m
B(n−m,m) =

(

2n−m− 1
n− 1

)

. �

Since the generating function for the k ballot numbers is (c(x))k , then
the sum 1 + (c(x))y + (c(x))2y2 + · · · = 1

1−yc(x) is a two variable generating

function for the ballot numbers. If we examine 1
1−xyc(x) , then we see that

the coefficient for xnym is B(n−m,m).

Lemma 2.8. The generating function for Tn,m is 1
(c(x)−2)(1−xyc(x)) .

Proof. Note that 1
1−xyc(x) is almost a generating function for Tn,m, it is off

by a factor of n
m

in term xnym. This can be corrected by integration and
differentiation:

∫
(

x

y

d

dx

(

1

1− xyc(x)

))

dy =
c(x) + xc′(x)

c(x)(xyc(x) − 1)
.

One can check that 1+ xc′(x)
c(x) = 1

2−c(x) , in which case the generating function

becomes 1
(2−c(x))(1−xyc(x)) . �

2.4. Counting friezes. We can now prove our main theorem.

Theorem 2.9. The number of Dn friezes is
∑n

m=1 d(m)

(

2n−m− 1
n−m

)

.

Proof. A frieze is determined by its weights on a single cluster, or (tagged)
triangulation. This, together with Proposition 2.2, tells us that the number
of friezes is

∑n
m=1 d(m)Tn,m, where Tn,m is as in section 2.3. The result

follows from Theorem 2.6.
�
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3. Friezes of other Dynkin types

What remains is to discover how many friezes there are in other Dynkin
types. In the case of Bn, Cn and G2 we can use the folding method of [5]. To
summarize, if ∆ is a Dynkin quiver and G a group of automorphisms, then
∆/G is a valued quiver and the action of G lifts to the cluster algebra A(∆).
In this case [5, Corollary 5.16] shows that A(∆/G) can be identified with
a subalgebra of A(∆)/G. More over [5, Corollary 7.3] gives equality since
∆ is Dynkin. The projection π : A(∆) → A(∆)/G can then be thought of
as a surjective ring homomorphism from A(∆) to A(∆/G), which sends the
cluster variables of A(∆) to the cluster variables of A(∆/G) via a quotient
by G.

Lemma 3.1. Let ∆ by a Dynkin quiver and G a group of automorphisms,
then each ∆/G frieze gives rise to a ∆ frieze. More over, each ∆ frieze that
is G invariant descends to a ∆/G frieze.

Proof. For the first part, if we consider a ∆/G frieze to be a ring homomor-
phism from the cluster algebra A(∆/G) to Z, then composing with the map
π gives a ∆ frieze.

For the second part, a ∆ frieze that is G invariant descends to a ring
homomorphism from A(∆)/G to Z and thus gives a ∆/G frieze under the
identification of A(∆)/G with A(∆/G). �

For the case of Bn, Cn and G2, these are quotients of Dn+1, A2n−1 and
D4 respectively where the automorphisms we use are the maps swapping
the short arms of Dn+1, mirroring A2n−1 through the middle vertex and the
order 3 rotation of D4.

Theorem 3.2. The number of Cn friezes is

(

2n
n

)

.

Proof. Since Cn is a folding of A2n−1, by the above lemma, each Cn frieze
can be lifted to a unique A2n−1 frieze which is G-invariant. One can check
that the action of G on the A2n−1 cluster variables is given by the following
action on the arcs of a 2n+2-gon: take an arc and map it to the arc whose
end points are diametrically opposed to the originals. Recall from [3] that
the set of arcs in the 2n+2-gon that are labeled 1 must form a triangulation.
But the image of each arc labeled 1 under G is also an arc labeled 1, so the
triangulation is G-invariant. Thus we have a G-invariant cluster in A2n−1

on which the frieze evaluates to 1, but by [5], this descends to a cluster of
Cn.

Thus each Cn frieze is determined by fixing one cluster with every variable

being 1 and the number of Cn friezes is the number of Cn clusters,

(

2n
n

)

(see [8, Table 3]). �

Theorem 3.3. The number of Bn friezes is
∑

m≤
√
n+1

(

2n−m2 + 1
n

)

.
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Proof. Since Bn is a folding of Dn+1, each Bn frieze lifts to Dn+1 frieze which
is G-invariant. The two nodes on the end of Dn+1 which are identified by
G correspond to an untagged/tagged pair of parallel arcs in the punctured
n+ 1-gon. Thus it follows that the label assigned to each pair is the same.
Now as outlined in the calculation of the Dn+1 friezes, when we decompose
a frieze into a partial triangulation of all arcs labeled 1, and a Dm frieze
containing no 1’s, the Dm contains at least one spoke from the Dn+1 frieze.
Moreover, in Lemma 2.5, we see that the product of an untagged spoke with
its parallel tagged spoke in the Dm frieze is m. Thus m must be a perfect
square and moreover, the only Dm frieze which is allowed is a frieze with
the square root labeling the spokes. Applying this reduction to the Dn+1

formula results in the given formula. �

Theorem 3.4. The number of G2 friezes is 9.

Proof. Since G2 is a folding of D4, each G2 frieze lifts to a D4 frieze which
is G-invariant. Of the 50 D4 friezes which come from setting a cluster to
all 1’s, only 8 are G-invariant and thus correspond to the 8 G2 friezes which
also come from setting a cluster to all 1’s. The remaining frieze assigns 2 to
the outer nodes of D4 and 3 to the center, and this is also G-invariant, so it
descends to the sole remaining G2 frieze, leaving us with 9 friezes. �

What remains are the sporadic E6, E7, E8 and F4. We developed an algo-
rithm to enumerate the friezes of each type, but it depends on the following
conjecture:

Conjecture 3.5. The value of a frieze at a node in a Dynkin diagram is
less than the maximal value of the node over the set of unitary friezes, that
is, friezes obtained by evaluating all cluster variables in a given cluster to 1.

Since the set of unitary friezes is computable (i.e. using Sage for instance),
this puts an easily computed maximal bound on the entries in a frieze.

Conjecture 3.6. The number of E6, E7 and E8 frieze are 868, 4400 and
26592 respectively. Since F4 is a folding of E6, the number of F4 friezes is
112.

The listing of friezes and the programs used to generate them are available
at [14].
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Pierre-Guy Plamondon, Université de Paris Sud XI, UMR 8628 du CNRS,
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