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Abstract. The probability distribution of the number s of distinct sites visited up

to time t by a random walk on the fully-connected lattice with N sites is first obtained

by solving the eigenvalue problem associated with the discrete master equation. Then,

using generating function techniques, we compute the joint probability distribution of

s and r, where r is the number of sites visited only once up to time t. Mean values,

variances and covariance are deduced from the generating functions and their finite-

size-scaling behaviour is studied. Introducing properly centered and scaled variables u

and v for r and s and working in the scaling limit (t → ∞, N → ∞ with w = t/N fixed)

the joint probability density of u and v is shown to be a bivariate Gaussian density. It

follows that the fluctuations of r and s around their mean values in a finite-size system

are Gaussian in the scaling limit. The same type of finite-size scaling is expected to

hold on periodic lattices above the critical dimension dc = 2.
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1. Introduction

The study of random walks and Brownian motion, associated with the names of

Bachelier [1], Einstein [2], Smoluchowski [3] and Langevin [4] at the beginning of the

last century, still remains an active field of research with many applications in various

domains of physics [5–9], mathematics [10–12], physical chemistry [13, 14], biology [15–

17], economics [18], etc.

The discrete random walk on a periodic lattice was introduced by Polya [19] who

showed that, with probability 1, a random walker returns infinitely often to the origin in

dimension d ≤ 2 and escapes to infinity when d ≥ 3. The walk is said to be recurrent in

the first case and transient in the second. A quantity of interest for applications is the

mean number of distinct sites, s∞(t), visited by a random walker on an infinite periodic
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lattice up to time t. In 1d (one dimension) s∞(t) evidently grows as
√
t. The asymptotic

behaviour in higher dimensions was first obtained by Dvoretzky and Erdös [20] with

s∞(t) = πt/ ln(t) +O

[

t ln(ln t)

ln2 t

]

, d = 2 (square lattice) ,

s∞(t) = γ3t+O(
√
t) , d = 3 ,

s∞(t) = γ4t+O(ln t) , d = 4 ,

s∞(t) = γdt+O(1) , d > 4 . (1.1)

Thus d = 2 plays the role of a critical dimension dc above which the time exponent of

the leading contribution stays constant †. Exact values of the amplitudes γd and sub-

dominant contributions were later calculated for different lattices in 3d [22, 23]. The

mean number of distinct sites visited exactly k times was also examined for d ≤ 3 [23].

For k = 1 the following results were obtained [23, 24]:

r∞(t > 1) = 2 , d = 1 ,

r∞(t) ∼ t/(ln t)2 , d = 2 ,

r∞(t) ∼ t , d = 3 . (1.2)

More recently, the mean values of different local observables associated with the

geometry of the set of visited sites have been studied in 2d [25] and d > 2 [26].

Instead of considering a single random walk, one may generalize to the case of

ν statistically independent random walks. Such studies were first concerned with the

properties of first passage times [27–30]. The study of the mean number of distinct sites

visited by ν random walkers, s∞,ν(t), was initiated in [31] where asymptotic expressions

for ν large were obtained. In [32, 33] some corrections to [31] were given and sub-

dominant contributions were evaluated.

With several random walkers, another quantity of interest is the number of common

sites visited up to time t. This study was initiated in [34] where the mean value and

the variation with d of the long-time behaviour was examined. It was later generalized

by considering two walkers starting from different points [35].

The number of distinct sites visited up to time t can be written as s∞(t) =
∑t

k=1 σk
where σk is an indicator such that σk = 1 when a new site is visited at time k and σk = 0

otherwise. Thus s∞(t) is a sum of random variables which are neither independent, nor

identically distributed. Nevertheless it has been shown that for transient walks (d ≥ 3)

the deviations from the mean display Gaussian fluctuations [36, 37].

More recent results concern recurrent random walks. In 1d non-trivial exact

probability distributions for the number of distinct and common sites visited by ν

independent walkers have been obtained [38]. In 2d and 3d it has been shown that,

at long time, the deviations from the mean of different local observables associated with

the set of visited sites are proportional to a single universal random process which is

non–Gaussian in 2d and Gaussian in 3d [25, 26].

† This is true only when d > 4 for the sub-leading terms. Note that the fractal dimension of the

intersection of two random walks vanishes when d ≥ 4 [21]
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N=1 N=2 N=3 N=4 N=5

Figure 1. The fully-connected lattice (complete graph) with N sites can be embedded

in a Euclidean space of dimension d = N − 1.

This paper is concerned with the statistics of the number of sites visited by a

random walker up to time t on a finite-size fully-connected lattice (see figure 1). The

fully-connected lattice with N sites can be embedded in a Euclidean space of N − 1

dimensions. It can be also considered as a finite-size system embedded in an infinite-

dimensional space where the thermodynamic limit N → ∞ can be taken. Such lattices

have been used in the theory of phase transitions [39–41] and in models of the nucleus [42]

to obtain exact solutions. In the thermodynamic limit the critical behaviour is that of

a system above its upper critical dimension dc, i.e., mean-field like. Since the system

lives in a space with d = ∞ and is characterized by a number of sites N , instead of a

length L, the formulation of finite-size scaling is not standard [43–45].

Our main results can be summarized as follows. We have obtained exact expressions

for the probability distribution of the number s of distinct sites visited by the random

walk up to time t

SN(s, t) =
N s

N t

{

t

s

}

, (1.3)

the probability distribution of the number r of sites visited once up to time t

RN(r, t) =
1

N t

t
∑

k=r

(−1)k+r

(

t

k

)(

k

r

)

(N − k)t−kNk , (1.4)

and their joint probability distribution

PN(r, s, t) =
N s

N t

s
∑

k=r

(−1)k+r

(

t

k

)(

k

r

){

t− k

s− k

}

. (1.5)

In these expressions nm is a falling factorial power ([46] p 47) and
{

n
m

}

is a Stirling

number of the second kind [47].

In the scaling limit (t → ∞, N → ∞ with w = t/N fixed) RN (r, t) and SN(s, t)

lead to centered Gaussian probability densities in the variables

u =
r − rN(t)

N1/2
, v =

s− sN(t)

N1/2
, (1.6)

with the following mean values for r and s at time t

rN(t) = t e−w , sN(t) = t
1− e−w

w
, (1.7)



Random walk on the fully-connected lattice 4

while PN (r, s, t) leads to a bivariate Gaussian density. The elements of the covariance

matrix are given by:

∆u2=w
[

e−w−(w2−w+1)e−2w
]

, ∆v2=e−w−(w+1)e−2w, ∆u∆v=w2e−2w. (1.8)

A similar Gaussian finite-size behaviour is expected on periodic lattices above the critical

dimension dc = 2.

The outline of the paper is as follows. In section 2, we solve the eigenvalue problem

associated with the discrete master equation governing the probability distribution

SN(s, t) of the number of distinct sites s visited by a random walk up to time t. The

probability distribution is obtained and generalized to the case of ν independent walkers.

Section 3 is devoted to the study of the probability distribution RN(r, t) of the number of

sites r visited once up to time t. Actually, we first solve the master equation for the joint

probability distribution PN(r, s, t), from which RN(r, t) is deduced, using a generating

function technique. Next, in section 4, mean values, variances and covariance of r and

s are computed and their finite-size scaling behaviour is examined. Finally, in section

5, using properly scaled variables, the probability densities are obtained in the scaling

(continuum) limit. Details of the calculations are given in five appendices.

2. Total number of distinct sites visited by the random walk

2.1. Discrete master equation

The random walk we consider takes place on the fully-connected lattice (complete graph)

with N sites. At each time step, with probability 1/N , the walker either remains on

the same site or jumps to any of the N − 1 other sites. We shall study the probability

distribution SN(s, t) of the number s of distinct sites visited by the walker up to time t.

It satisfies the following recurrence relation

SN(s, t) =
s

N
SN(s, t− 1) +

N − s+ 1

N
SN (s− 1, t− 1) , (2.1)

with the boundary condition SN (s < 0, t) = 0. The first (second) term on the right

corresponds to a step on one of the s (respectively N − s + 1) sites already (not yet)

visited at time t− 1. The walk starts at some arbitrary origin at time t = 1. Thus the

initial condition can be written as SN(s, 1) = δs,1 or alternatively, according to (2.1),

SN(s, 0) = δs,0. The stationary solution is given by SN(s, t) = δs,N .

2.2. Eigenvalue problem

Let us introduce the column state vector |SN(t)〉 with components SN(s, t), s = 1, . . . , N .

The master equation (2.1) can be rewritten in matrix form as |SN(t)〉 = T |SN(t − 1)〉
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where T is the transition matrix of the Markov chain given by:

T =





















1
N

0 0 0 0 0
N−1
N

2
N

0 0 0 0
. . .

. . .

0 0 N−s+1
N

s
N

0 0
. . .

. . .

0 0 0 0 1
N

1





















. (2.2)

The eigenvalue problem (T|v(k)〉 = λk|v(k)〉 leads to the following system of equations

N − s+ 1

N
v
(k)
s−1 +

( s

N
− λk

)

v(k)s = 0 , s = 1, . . . , N , (2.3)

with v
(k)
0 = 0. It is easy to verify that the solution is given by

λk =
k

N
, v(k)s =

{

0 when s < k

(−1)s−k
(

N−k
s−k

)

v
(k)
k when s ≥ k

, k = 1, . . . , N , (2.4)

where the v
(k)
k are left undetermined and depend on the initial state.

2.3. Probability distribution

Let us consider a walk starting from some arbitrary site at t = 1 so that SN (s, 1) = δs,1.

With the following choice for the initial state

|SN(1)〉 =
N
∑

k=1

|v(k)〉 , v
(k)
k =

(

N − 1

k − 1

)

, (2.5)

one obtains

SN(s, 1) =
s

∑

k=1

v(k)s =
s

∑

k=1

(−1)s−k

(

N − k

s− k

)(

N − 1

k − 1

)

=

(

N − 1

s− 1

) s
∑

k=1

(−1)s−k

(

s− 1

k − 1

)

=

(

N − 1

s− 1

) s−1
∑

l=0

(−1)l
(

s− 1

l

)

= δs,1 , (2.6)

as required for this initial state.

The probability distribution at later times is given by the state vector

|SN(t)〉 = T
t−1|SN(1)〉 =

N
∑

k=1

λt−1
k |v(k)〉 , (2.7)

so that

SN(s, t) =

(

N − 1

s− 1

) s
∑

k=1

(−1)s−k

(

s− 1

k − 1

)(

k

N

)t−1

=
N s

N t(s− 1)!

s
∑

k=1

(−1)s−k

(

s− 1

k − 1

)

kt−1

=
N s

N t

1

s!

s
∑

k=0

(−1)s−k

(

s

k

)

kt =
N s

N t

{

t

s

}

. (2.8)
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Table 1. Stirling number of the second kind: the table is constructed using the

recursion which follows from equations (2.1) and (2.8),
{

t
s

}

= s
{

t−1

s

}

+
{

t−1

s−1

}

with
{

t
0

}

= δt,0 and
{

t
s

}

= 0 when s > t.

t\s 0 1 2 3 4 5 6 7

0 1 0

1 0 1 0

2 0 1 1 0

3 0 1 3 1 0

4 0 1 7 6 1 0

5 0 1 15 25 10 1 0

6 0 1 31 90 65 15 1 0

Here N s = N(N − 1) · · · (N − s+ 1) and
{

t

s

}

=
1

s!

s
∑

k=0

(−1)s−k

(

s

k

)

kt (2.9)

is a Stirling number of the second kind ([46] p 257; see table 1). Note that the term

k = 0 does not contribute in (2.8) where t > 0.

When the forward-difference operator ∆, such that ∆f(η) = f(η + 1) − f(η), is

applied s times to f(η) one obtains ([46] p 188)

∆sf(η) =

s
∑

k=0

(−1)s−k

(

s

k

)

f(η + k) , (2.10)

which follows from the relation ∆ = E − I where E is the shift operator, such that

Ef(η) = f(η +1), and I the identity operator. Using (2.10), the Stirling number of the

second kind in equation (2.9) can be rewritten as
{

t

s

}

=
1

s!
∆sηt

∣

∣

η=0
(2.11)

and the probability distribution in (2.8) takes the following form:

SN(s, t) =
N s

N ts!
∆sηt

∣

∣

η=0
=

1

N t

(

N

s

)

∆sηt
∣

∣

η=0
. (2.12)

This last expression is used in appendix A to calculate the generating function

SN(y, z) =
[

1 + y
(

ez/N − 1
)]N

. (2.13)

This generating function is ordinary in y but exponential in z.

The behaviour of SN (s, t) when both t and N are large, will be analysed in section 5.

2.4. The case of ν independent walkers

The evolution of s with ν independent walkers is the same in one time step as for a

single walker in ν time steps. When the ν walkers start from arbitrary sites at t = 1
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(initial condition SN,ν(s, 0) = δs,0) the probability distribution is simply obtained by

changing t into νt in equation (2.8) so that

SN,ν(s, t) =
N s

Nνt

{

νt

s

}

. (2.14)

If the ν walkers start from the same origin at t = 1 (initial condition SN,ν(s, 1) = δs,1)

T must be replaced by T
ν in equation (2.7) which amounts to change t into 1+ ν(t− 1)

leading to

SN,ν(s, t) =
N s

N1+ν(t−1)

{

1 + ν(t− 1)

s

}

. (2.15)

3. Number of sites visited only once by the random walk

3.1. Discrete master equation for the joint probability distribution

To get access to the statistics of the number r of sites visited only once up to time t we

have first to evaluate the joint probability distribution PN(r, s, t), where s ≥ r has the

same meaning as before. It satisfies the following master equation

PN(r, s, t)=
s−r
N

PN(r, s, t−1)+
r+1

N
PN(r+1, s, t−1)+N−s+1

N
PN(r−1, s−1, t−1), (3.1)

with the boundary conditions PN(r, s < 0, t) = PN(r < 0, s, t) = 0. The first (last) term

on the right corresponds to a step towards one of the s − r (respectively N − s + 1)

multi-visited (non-visited) sites at time t−1 and the middle term gives the contribution

of a step towards one of the r + 1 sites visited only once at time t − 1. The initial

condition can be written as PN(r, s, 0) = δr,0δs,0, i.e., the walker is outside the lattice at

t = 0 and the walk starts at t = 1 with equation (3.1) giving PN(r, s, 1) = δr,1δs,1. The

stationary solution is PN(r, s, t) = δr,0δs,N

3.2. Generating functions

Let us introduce the multivariate generating function

PN (x, y, z) =
∞
∑

t=0

zt

t!

∞
∑

s=0

ys
∞
∑

r=0

xrPN(r, s, t) = 1 +
∞
∑

t=1

zt

t!

∞
∑

s=0

ys
∞
∑

r=0

xrPN(r, s, t) , (3.2)

which is ordinary in x, y and exponential in z. As shown in appendix B, it satisfies the

following partial differential equation:

PN(x, y, z) =
x− 1

Nxy

∂PN

∂x
+
xy − 1

Nx

∂PN

∂y
+

1

xy

∂PN

∂z
. (3.3)

Let PN(x, y, z) = QN (χ, ψ, ω) where:

χ =
yz(x− 1)

N
, ψ = 1− y , ω = yez/N . (3.4)

With the new variables equation (3.3) transforms into:

QN (χ, ψ, ω) =
1

N

(

χ
∂QN

∂χ
+ ψ

∂QN

∂ψ
+ ω

∂QN

∂ω

)

+
x− 1

Nx

(

∂QN

∂χ
− ∂QN

∂ψ

)

. (3.5)
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Figure 2. Time evolution of the probability distributions SN (s, t) (full lines) and

RN (r, t) (dashed lines) for different values of N increasing from left to right (1448

(red), 2048 (orange), 2896 (green), 4096 (blue)).

The last term vanishes if χ and ψ enter QN under the combination χ+ ψ. Then QN is

homogeneous of degree N in the new variables and thus takes the form

QN(χ, ψ, ω) = (χ+ ψ + ω)N , (3.6)

which translates into

PN(x, y, z) =

[

1 + y

(

ez/N − 1 +
z(x− 1)

N

)]N

, (3.7)

which indeed satisfies the initial and boundary conditions.

In the infinite lattice limit, one obtains:

P∞(x, y, z) = lim
N→∞

(

1 +
xyz

N

)N

= exp xyz . (3.8)

With x = 1 one recovers SN (y, z) in equation (2.13). The generating function for

the probability distribution of the number of sites visited only once up to time t,

RN(r, t) =
∑

s PN(r, s, t), is given by:

RN(x, z) = PN (x, 1, z) =

[

ez/N +
z(x− 1)

N

]N

. (3.9)

3.3. Probability distributions

An expansion of the generating function in equation (3.7) (see equation (C.5) in

appendix C) leads to the following joint probability distribution ‡ :

PN(r, s, t) =
N s

N t

s
∑

k=r

(−1)k+r

(

t

k

)(

k

r

){

t− k

s− k

}

, 0 ≤ r ≤ s . (3.10)

According to equation (3.8), on the infinite lattice

P∞(r, s, t) = δr,tδs,t (3.11)

‡ When r = 0 the sum in equation (3.10) gives associated Stirling numbers of the second kind [48]

T (t, s) =
∑s

k=0
(−1)k

(

t
k

){

t−k
s−k

}

.
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as expected, the walker visiting a new site at each step with probability one.

The probability distribution for the number of sites visited once up to time t follows

from (3.10) by summing over s:

RN(r, t) =
1

N t

t
∑

s=r

s
∑

k=r

(−1)k+r

(

t

k

)(

k

r

){

t− k

s− k

}

N s . (3.12)

Changing the order of the sums,
∑t

s=r

∑s
k=r →

∑t
k=r

∑t
s=k and replacing the sum over

s by a sum over j = s− k leads to:

RN(r, t) =
1

N t

t
∑

k=r

(−1)k+r

(

t

k

)(

k

r

) t−k
∑

j=0

{

t− k

j

}

N j+k . (3.13)

Making use of the identities N j+k = Nk(N − k)j and
∑n

j=0

{

n
j

}

xj = xn (see [46] p 262)

one finally obtains:

RN(r, t) =
1

N t

t
∑

k=r

(−1)k+r

(

t

k

)(

k

r

)

(N − k)t−kNk . (3.14)

The time evolution of SN(s, t) and RN (r, t) is shown in figure 2 for different values of N .

4. Mean values, fluctuations and finite-size scaling behaviour

4.1. Moments of the probability distributions

The mean number of distinct sites visited up to time t is the coefficient of zt/t! in the

y-derivative of the generating function (2.13) at y = 1 §:

sN(t) =

[

zt

t!

]

∂SN (y, z)

∂y

∣

∣

∣

∣

y=1

=

[

zt

t!

]

N
(

ez − e
N−1

N
z
)

= N

[

1−
(

N − 1

N

)t
]

. (4.1)

As in the infinite system the initial growth is linear. The approach to the saturation

value, N , is exponential with a relaxation time tr such that limN→∞ tr = N (see

figure 3(a)).

The mean number of sites visited once up to time t is deduced in the same way

from RN (x, z) in equation (3.9)

rN(t) =

[

zt

t!

]

∂RN (x, z)

∂x

∣

∣

∣

∣

x=1

=

[

zt

t!

]

N
(

z e
N−1

N
z
)

= t

(

N − 1

N

)t−1

. (4.2)

It grows linearly at short time as sN(t), goes through a maximum at tmax ≈ N and then

decays exponentially with a relaxation time tr = N , asymptotically (see figure 3(b)).

The second moments are given by

s2N(t) =

[

zt

t!

]

∂

∂y

[

y
∂SN (y, z)

∂y

]∣

∣

∣

∣

y=1

= sN(t) +

[

zt

t!

]

N(N − 1)
(

ez − 2e
N−1

N
z + e

N−2

N
z
)

= N2 −N(2N − 1)

(

N − 1

N

)t

+N(N − 1)

(

N − 2

N

)t

, (4.3)

§ See appendix D for direct calculations of the mean values
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Figure 3. Time evolution for different lattice sizes of (a) sN (t), the mean value of

the number of distinct sites visited up to time t, (b) rN (t), the mean value of the

number of sites visited only once up to time t and (c) rN (t)sN (t), the mean value of

their product. The dashed lines correspond to the infinite system behaviour where

s∞(t) = r∞(t) = t and r∞(t)s∞(t) = t2, according to equation (3.11). The insets

show the data collapse obtained for the ratios of the mean values in finite and infinite

systems as functions of the scaled time w = t/N (see details in section 4.3). The scaling

functions given in equation (4.11) are indicated by full lines. Symbols correspond to

finite-size results with N = 16 (down triangle), 32 (up triangle), 64 (diamond), 128

(square), 256 (circle).

and

r2N(t) =

[

zt

t!

]

∂

∂x

[

x
∂RN (x, z)

∂x

]∣

∣

∣

∣

x=1

= rN (t) +

[

zt

t!

]

N − 1

N
z2e

N−2

N
z ,
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= t

(

N − 1

N

)t−1

+ t(t− 1)
N − 1

N

(

N − 2

N

)t−2

. (4.4)

The mean value of the product of the two variables is obtained by taking a second

derivative of PN (x, y, z) in equation (3.7)

rN(t)sN(t) =

[

zt

t!

]

∂2PN (x, y, z)

∂x∂y

∣

∣

∣

∣

x=y=1

=

[

zt

t!

]

[

Nze
N−1

N
z − (N − 1)ze

N−2

N
z
]

= Nt

(

N − 1

N

)t−1

− (N − 1)t

(

N − 2

N

)t−1

. (4.5)

It behaves as NrN (t) when t≫ N (see figure 3(c)).

4.2. Variances and covariance

Combining these results, one obtains the variances (figures 4(a) and (b))

∆s2N(t) = s2N(t)− s2N(t) = N

(

N − 1

N

)t

+N(N − 1)

(

N − 2

N

)t

−N2

(

N − 1

N

)2t

, (4.6)

∆r2N(t) = t

(

N − 1

N

)t−1

+ t(t− 1)
N − 1

N

(

N − 2

N

)t−2

− t2
(

N − 1

N

)2t−2

. (4.7)

and the covariance (figure 4(c))

∆rN(t)∆sN (t) = rNsN(t)− rN(t) sN(t) = Nt

(

N − 1

N

)2t−1

− (N − 1)t

(

N − 2

N

)t−1

. (4.8)

The three functions have a similar time-dependence. The initial growth is quadratic in

t. The fluctuations are maximum at values tmax close to N and the decay is exponential

at long time.

4.3. Finite-size scaling

In order to determine how finite-size effects alter the properties of the fully-connected

lattice and what are the appropriate scaling variables, we first examine the case of a

periodic lattice in d dimensions and then extend the results to d infinite.

Let us first consider the scaling behaviour of s∞(t), the mean number of distinct

sites visited up to time t by a random walk on the infinite lattice in d dimensions. The

fractal dimension of the walk is df = 2 such that the typical size of the walk at time

t is R(t) ∼ t1/df . Below the critical dimension dc = 2, the fractal dimension of the

walk is larger than the Euclidean dimension d and the exploration of space is compact,

thus s∞(t) ∼ Rd(t) ∼ td/df . Above dc, multiple visits are irrelevant and, to leading

order, s∞(t) ∼ t. This new regime sets in with a logarithmic correction at dc (see

equation (1.1)). For r∞(t), due to the irrelevance of multiple visits, the same behaviour

as for s∞(t) is obtained above dc [23]. In contrast, the behaviour differs at and below

dc as indicated in equation (1.2).
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Figure 4. Time evolution for different lattice sizes of (a) the variance ∆s2N (t) of the

number of distinct sites visited up to time t, (b) the variance ∆r2N (t) of the number of

sites visited only once up to time t and (c) the covariance ∆rN (t)∆sN (t). The insets

show the data collapse obtained with the scaled variables defined in section 4.3. The

scaling functions given in equation (4.13) are indicated by full lines and the symbols

have the same meaning as in figure 3.

On a finite system with size L and N = Ld sites, finite-size effects are governed by

the dimensionless ratio R(t)/L or td/df /N and the finite-size scaling Ansatz, valid when

N ≫ 1 and t≫ 1, takes the following form [49, 50]:

GN(t) = G∞(t)φG

(

td/df

N

)

, lim
w→0

φG(w) = 1 . (4.9)
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This finite-size behaviour applies only below dc. Above dc and, in particular, on the fully-

connected lattice for which d = ∞, the scaling relations are verified with d replaced by dc,

the upper critical dimension above which the critical exponents remain constant [44, 45].

Thus we have:

sN(t)=s∞(t)φs(t/N), rN(t)=r∞(t)φr(t/N), rN (t)sN(t)=r∞(t)s∞(t)φrs(t/N). (4.10)

Since above dc s∞(t) ∼ t and limt→∞ sN(t) = N , the time-dependence disappears in

this limit only if the scaling function behaves as w−1 with a scaled variable w = t/N .

On the fully-connected lattice, according to (3.11), s∞(t) = r∞(t) = t and

r∞(t)s∞(t) = t2. Thus equations (4.1), (4.2) and (4.5) lead to the scaling functions ‖:

φs(w) =
1− e−w

w
, φr(w) = e−w , φrs(w) =

e−w − e−2w

w
. (4.11)

As shown in the insets of figures 3(a)–(c), a good data collapse is obtained in

agreement with these scaling functions for the whole range of values of w = t/N ,

provided that N and t are not too small.

A different normalization is required for the variances which vanish when N → ∞
according to equation (3.11). Since both the variances in equations (4.6) and (4.7) and

the covariance in equation (4.8) scale as N , the following scaling forms are appropriate:

∆s2N(t) = N τs(t/N) , ∆r2N(t) = N τr(t/N) , ∆rN(t)∆sN (t) = N τrs(t/N) . (4.12)

From equations (4.6), (4.7) and (4.8) one deduces the following scaling functions:

τs(w)=e−w−(w+1)e−2w, τr(w)= w
[

e−w− (w2−w+ 1)e−2w
]

, τrs(w)=w
2e−2w. (4.13)

Here too the data collapse is quite good, even for relatively small values of N (see

the insets in figures 4(a)–(c)). The maxima of the scaling functions are located at

wmax = 1 for ∆r2N and ∆rN∆sN and at wmax = 1.256431 . . ., the positive solution of

w = ln(1 + 2w), for ∆s2N .

5. Probability densities in the scaling limit

In this section we work in the scaling limit (t → ∞, N → ∞, w = t/N fixed) and we

introduce the scaling variables

u =
r − rN(t)

N1/2
, v =

s− sN(t)

N1/2
, (5.1)

the form of which follows from equation (4.12).

In this continuum limit the probability distributions RN(r, t), SN(s, t) and

PN(r, s, t) transform into the probability densities ρ(u, w), σ(v, w) and Π(u, v, w),

respectively. Since du = N−1/2dr and dv = N−1/2ds, the conservation of probability

leads to the following relations in the scaling limit: ρ = N1/2RN , σ = N1/2SN and

Π = NPN .

‖ The scaling functions are obtained by making use of the identity (1 − a/N)bt−c =

e−abw
[

1 + (c− abw/2)a/N +O(N−2)
]

, where w = t/N is the scaled time.
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Figure 5. Data collapse obtained for the scaled probability distributions at different

values of the scaled time w = t/N : (a) N1/2RN (r, t) as a function of u = N−1/2(r −
rN (t)) and (b) N1/2SN (r, t) as a function of v = N−1/2(s − sN (t)). The different

lattice sizes are N = 1448 (up triangle), 2048 (diamond), 2896 (square), 4096 (circle)).

The Gaussian densities obtained in the scaling limit, (a) ρ(u,w) and (b) σ(v, w), given

by equation (5.4), are indicated by full lines.

The scaling behaviour of the probability densities is illustrated in figures 5(a)

and (b) for ρ and σ. These figures strongly suggest a Gaussian behaviour for both

densities. In order to verify this point we rewrite the master equation (3.1) in terms

of the scaled variables and keep the leading contributions in an expansion in powers of

N−1/2. The calculation is lengthy but straightforward (details are given in Appendix E)

and leads to the following partial differential equation:

∂Π

∂w
=

e−w

2

[

w + 1− (w − 1)2e−w
] ∂2Π

∂u2
+

e−w

2

(

1− e−w
) ∂2Π

∂v2

+ e−w
[

1 + (w − 1)e−w
] ∂2Π

∂u∂v
+ (u+ v)

∂Π

∂u
+ v

∂Π

∂v
+ 2Π . (5.2)

Using MapleTM we verified that the bivariate Gaussian density

Π(u, v, w) =
1

2π
√

∆(w)
exp

[

−τs(w)u
2 − 2τrs(w)uv + τr(w)v

2

2∆(w)

]

,

∆(w) = τr(w)τs(w)− τ 2rs(w) , (5.3)
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is indeed solution of equation (5.2) with τr, τs and τrs given by equation (4.13). An

integration over either v or u leads to the Gaussian probability densities

ρ(u, w) =
1

√

2πτr(w)
exp

[

− u2

2τr(w)

]

, σ(v, w) =
1

√

2πτs(w)
exp

[

− v2

2τs(w)

]

. (5.4)

The evolution of these probability densities is illustrated in figures 5(a) and (b) for three

values of the scaled time w = t/N .

In the case of ν walkers, when N and νt are large, the probability distribution for

the number of distinct sites visited up to time t in equation (2.14) leads to the same

Gaussian density σν(v, w) = σ(v, w) with v = [s− sN (νt)]/N
1/2 and w = νt/N .

6. Conclusion

In this work we have studied the statistics of the number of sites visited by a random

walk up to time t on a fully-connected lattice with N sites. Exact expressions have

been obtained for the probability distributions SN(s, t) and RN (r, t) associated with the

total number s of distinct sites visited and the number r of sites visited once. This

last distribution was deduced from the joint probability distribution, PN(r, s, t), itself

derived via generating function techniques. The mean values, variances and covariance

of r and s have been calculated by taking derivatives of the appropriate generating

functions. Their finite-size scaling behaviour have been determined, allowing us to

define centered and scaled variables u and v, corresponding respectively to r and s, and

a scaled time w = t/N . Using these new variables, a partial differential equation for the

joint probability density Π(u, v, w) have been obtained in the scaling limit. The solution

is a bivariate Gaussian density thus the scaled variables u and v both display Gaussian

fluctuations.

We believe our results are representative of the behaviour on periodic lattices

above dc. The same type of finite-size scaling should be observed for the number of

distinct sites visited for d ≥ 3. A different behaviour is expected for d ≤ 2, involving

logarithmic corrections at d = 2 and, as explained in section 4.3, the scaling variable

td/df /N with N = Ld for d < 2. Thus a finite-size scaling study of the mean values and

the probability distributions of r and s in 1d and 2d would be of interest.

In the case of ν walkers, the finite-size effects on the number of common sites visited

deserves also some attention.

Appendix A. Generating function for SN (s, t)

It is convenient to define a bivariate generating function

SN(y, z) =
∞
∑

s=0

ys
∞
∑

t=0

zt

t!
SN (s, t) , (A.1)
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which is ordinary in y and exponential in z. Inserting the probability distribution under

the form given in equation (2.12), one obtains

SN(y, z) =

N
∑

s=0

(

N

s

)

(y∆)s
∞
∑

t=0

(zη/N)t

t!

∣

∣

∣

∣

∣

η=0

= (I+ y∆)Nezη/N
∣

∣

η=0
, (A.2)

where I is the identity operator and∆ is the finite-difference operator acting on η. Since

(I+ y∆)ezη/N = ezη/N + y
[

ez(η+1)/N − ezη/N
]

=
[

1 + y
(

ez/N − 1
)]

ezη/N , (A.3)

repeating this operation N times leads to

SN(y, z) =
[

1 + y
(

ez/N − 1
)]N

ezη/N
∣

∣

∣

η=0
=

[

1 + y
(

ez/N − 1
)]N

. (A.4)

Appendix B. Partial differential equation for PN(x, y, z)

Replacing PN (r, s, t) on the right-hand side of equation (3.2) by its expression in (3.1)

and using the boundary conditions, one has:

PN (x, y, z)=1+
1

N

∞
∑

t=1

zt

t!

∞
∑

s=0

sys
∞
∑

r=0

xrPN(r, s, t−1)− 1

N

∞
∑

t=1

zt

t!

∞
∑

s=0

ys
∞
∑

r=0

rxrPN(r, s, t−1)

+
1

N

∞
∑

t=1

zt

t!

∞
∑

s=0

ys
∞
∑

r=0

(r+1)xrPN(r+1, s, t−1)+
∞
∑

t=1

zt

t!

∞
∑

s=1

ys
∞
∑

r=1

xrPN(r−1, s−1, t−1)

−1

N

∞
∑

t=1

zt

t!

∞
∑

s=1

(s−1)ys
∞
∑

r=1

xrPN(r−1, s−1, t−1) . (B.1)

Using the changes of variables t − 1 → t and s − 1 → s, r ± 1 → r when appropriate,

one obtains:

PN (x, y, z)=1+
y

N

∞
∑

t=0

zt+1

(t+1)!

∞
∑

s=0

sys−1

∞
∑

r=0

xrPN(r, s, t)−
x

N

∞
∑

t=0

zt+1

(t+1)!

∞
∑

s=0

ys
∞
∑

r=0

rxr−1PN(r, s, t)

+
1

N

∞
∑

t=0

zt+1

(t + 1)!

∞
∑

s=0

ys
∞
∑

r=0

rxr−1PN(r, s, t)+xy

∞
∑

t=0

zt+1

(t+ 1)!

∞
∑

s=1

ys
∞
∑

r=0

xrPN(r, s, t))

−xy
2

N

∞
∑

t=0

zt+1

(t + 1)!

∞
∑

s=0

sys−1
∞
∑

r=0

xrPN(r, s, t) . (B.2)

Taking the partial derivative of both sides with respect to z leads to:

∂PN

∂z
=
y(1− xy)

N

∂PN

∂y
+

1− x

N

∂PN

∂x
+ xyPN(x, y, z) , (B.3)

from which equation (3.3) follows.

Appendix C. Expansion of the generating function

Expanding (3.7), one obtains:

PN(x, y, z) =
N
∑

s=0

ys
(

N

s

)

(ez/N − 1)s
[

1 +
z(x− 1)

N(ez/N − 1)

]s
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=

∞
∑

s=0

ysN s

s
∑

k=0

( z

N

)k (x− 1)k

k!

(ez/N − 1)s−k

(s− k)!
. (C.1)

Making use of the exponential generating function of the Stirling numbers of the second

kind ([46] p 351)

(eu − 1)m

m!
=

∞
∑

n=m

{

n

m

}

un

n!
, (C.2)

with u = z/N , m = s− k and n = t− k, (C.1) can be rewritten as:

PN(x, y, z) =
∞
∑

s=0

ysN s
s

∑

k=0

(x− 1)k

k!

∞
∑

t=0

(z/N)t

(t− k)!

{

t− k

s− k

}

. (C.3)

Note that the last sum actually starts at t = s since the Stirling numbers vanish when

t < s. Changing the order of the sums leads to:

PN(x, y, z) =
∞
∑

t=0

zt

t!

∞
∑

s=0

ys
N s

N t

s
∑

k=0

(

t

k

){

t− k

s− k

}

(x− 1)k

=

∞
∑

t=0

zt

t!

∞
∑

s=0

ys
N s

N t

s
∑

k=0

(

t

k

){

t− k

s− k

} k
∑

r=0

xr(−1)k+r

(

k

r

)

. (C.4)

Changing
∑s

k=0

∑k
r=0 into

∑s
r=0

∑s
k=r gives

PN(x, y, z) =
∞
∑

t=0

zt

t!

∞
∑

s=0

ys
s

∑

r=0

xr
N s

N t

s
∑

k=r

(−1)k+r

(

t

k

)(

k

r

){

t− k

s− k

}

, (C.5)

from which, comparing to equation (3.2), one extracts the probability distribution

function PN(r, s, t) in equation (3.10).

When x = 1 in the first line of (C.4), i.e. for SN (y, z), the term k = 0 alone

contributes to the last sum and, comparing to (2.13), one recovers the final expression

of SN(s, t) in equation (2.8).

Appendix D. Direct calculation of some mean values

The mean values sN(t) in equation (4.1) and rN (t) in equation (4.2) can be obtained

directly as follows. Let n
(k)
i (t) be a binary indicator associated with site i such that

n
(k)
i (t) = 1 when this site has been visited k times by the walker up to time t and

n
(k)
i (t) = 0 otherwise. Then the number of sites visited k times for a given realization

of the walk is s
(k)
N (t) =

∑N
i=1 n

(k)
i (t) and its mean value is given by

s
(k)
N (t) =

N
∑

i=1

n
(k)
i (t) = Npk(t) , (D.1)

where

pk(t) =

(

t

k

)(

1

N

)k (
N − 1

N

)t−k

(D.2)
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is the probability to visit the same site exactly k times in t steps. Thus one obtains

sN(t) = N − s
(0)
N (t) = N

[

1−
(

N − 1

N

)t
]

, (D.3)

in agreement with equation (4.1) and

rN(t) = s
(1)
N (t) = t

(

N − 1

N

)t−1

, (D.4)

in agreement with equation (4.2).

In the same way

s
(k)
N (t)s

(l)
N (t) =

N
∑

i,j=1

n
(k)
i (t)n

(l)
j (t) = N(N − 1)pkl(t) +Npk(t)δk,l , (D.5)

where pk(t) is given by equation (D.2) and

pkl(t) =

(

t

k

)(

t− k

l

)(

1

N

)k+l (
N − 2

N

)t−k−l

(D.6)

is the probability that two given sites have been respectively visited k and l times, up

to time t. Thus, making use of equations (D.5), (D.6) and (D.2), one obtains

s2N(t) =
[

N − s
(0)
N (t)

]2

= N2 − 2Ns
(0)
N (t) +

[

s
(0)
N (t)

]2

= N2 −N(2N − 1)

(

N − 1

N

)t

+N(N − 1)

(

N − 2

N

)t

, (D.7)

in agreement with equation (4.3) and

r2N(t) =
[

s
(1)
N (t)

]2

= t

(

N − 1

N

)t−1

+ t(t− 1)
N − 1

N

(

N − 2

N

)t−2

. (D.8)

in agreement with equation (4.4).

Appendix E. Partial differential equation for Π(u, v, w)

Making use of equations (4.10) and (4.11), the scaled variables in equation (5.1) are

given by

u = −we−wN1/2 +
r

N1/2
, v =

(

e−w − 1
)

N1/2 +
s

N1/2
, w =

t

N
, (E.1)

with the following partial derivatives:

∂u

∂r
=

1

N1/2
,

∂u

∂t
= (w − 1)

e−w

N1/2
,

∂v

∂s
=

1

N1/2
,

∂v

∂t
= − e−w

N1/2
,

∂w

∂t
=

1

N
. (E.2)

Other derivatives either vanish or are of order N−3/2 or higher.

To obtain a partial differential equation for Π(u, v, w), one first multiplies the master

equation (3.1) by N since NPN (r, s, t) gives Π[u(r, t), v(s, t), w(t)] in the scaling limit.
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Using equation (E.1) to rewrite the prefactors one obtains:

Π=

(

1−e−w−we−w− v−u
N1/2

)

NPN (r, s, t−1) +

(

we−w+
u

N1/2
+

1

N

)

NPN (r+1, s, t−1)

+

(

e−w− v

N1/2
+

1

N

)

NPN (r−1, s− 1, t−1) . (E.3)

In the next step, one expands PN on the right-hand side. To keep terms of order at

most N−1 in the final equation, the expansion of PN is up to terms of second order:

PN(r, s, t−1)=PN(r, s, t)−
∂PN

∂t
+

1

2

∂2PN

∂t2
,

PN(r+1, s, t−1)=PN(r, s, t) +
∂PN

∂r
− ∂PN

∂t
+

1

2

∂2PN

∂r2
− ∂2PN

∂r∂t
+

1

2

∂2PN

∂t2
,

PN(r−1, s−1, t−1)=PN(r, s, t)−
∂PN

∂r
− ∂PN

∂s
− ∂PN

∂t
+

1

2

∂2PN

∂r2
+

1

2

∂2PN

∂s2
+

1

2

∂2PN

∂t2

+
∂2PN

∂r∂s
+
∂2PN

∂r∂t
+
∂2PN

∂s∂t
. (E.4)

Thus the following derivatives are needed:

N
∂PN

∂r
=

1

N1/2

∂Π

∂u
, N

∂PN

∂s
=

1

N1/2

∂Π

∂v
, N

∂PN

∂t
=(w−1)

e−w

N1/2

∂Π

∂u
− e−w

N1/2

∂Π

∂v
+

1

N

∂Π

∂w
,

N
∂2PN

∂r2
=

1

N

∂2Π

∂u2
, N

∂2PN

∂s2
=

1

N

∂2Π

∂v2
, N

∂2PN

∂r∂s
=

1

N

∂2Π

∂u∂v
,

N
∂2PN

∂t2
= (w − 1)2

e−2w

N

∂2Π

∂u2
− 2(w − 1)

e−2w

N

∂2Π

∂u∂v
+

e−2w

N

∂2Π

∂v2
,

N
∂2PN

∂r∂t
=(w−1)

e−w

N

∂2Π

∂u2
− e−w

N

∂2Π

∂u∂v
, N

∂2PN

∂s∂t
=−e−w

N

∂2Π

∂v2
+(w−1)

e−w

N

∂2Π

∂u∂v
. (E.5)

After inserting these expressions into equation (E.4) multiplied by N and the results

into the master equation (E.3), one may collect terms of the same order in N−1/2. Only

the terms of order N−1 survive, leading to the partial differential equation (5.2) for the

joint probability density Π(u, v, w).
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