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Abstract. This paper studies the product Gn of the binomial coefficients in
the n-th row of Pascal’s triangle, which equals the reciprocal of the product of

all the reduced and unreduced Farey fractions of order n. It studies its size as

a real number, measured by log(Gn), and its prime factorization, measured by

the order of divisibility νp(Gn) = ordp(Gn) by a fixed prime p, each viewed

as a function of n. It derives three formulas for ordp(Gn), two of which relate

it to base p radix expansions of integers up to n, and which display different

facets of its behavior. These formulas are used to determine the maximal
growth rate of each ordp(Gn) and to explain structure of the fluctuations of

these functions. It also defines analogous functions νb(Gn) for all integer bases
b ≥ 2 using base b radix expansions replacing base p-expansions. A final topic

relates factorizations of Gn to Chebyshev-type prime-counting estimates and

the prime number theorem.

1. Introduction

The complete products of binomial coefficients of order n are the integers

Gn :=

n∏
k=0

(
n

k

)
.

This integer sequence begins G1 = 1, G2 = 2, G3 = 9, G4 = 96, G5 = 2500, G6 =
162000, and G7 = 26471025, and appears as A001142 in OEIS [48]. The integer
Gn is the reciprocal of the product Gn of all nonzero unreduced Farey fractions of
order n, as we describe in Section 2. We encountered unreduced Farey products
Gn while investigating the products Fn of all nonzero (reduced) Farey fractions.
The connections with Farey fractions and their relations to prime number theory
motivated this work.

We study the size of the integers Gn viewed as real numbers and the behavior of
their prime factorizations, as functions of n. Since the Gn grow exponentially fast
we measure their size in terms of the rescaled function

ν∞(Gn) := log(Gn). (1.1)

It is easy to show that log(Gn) has smooth growth, given by an asymptotic ex-
pansion having leading term 1

2n
2. We derive the first few terms of its asymptotic

expansion in Section 3, which are obtainable using Stirling’s formula. We observe
that from the Farey fraction viewpoint this asymptotic estimate has an analogy
with a formulation of the Riemann hypothesis for Farey fractions due to Mikolás
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[43]. The function log(Gn) actually has a complete asymptotic expansion in nega-
tive powers 1

nk valid to all orders after its first few lead terms. This full asymptotic
expansion is derived in Appendix A, in which we make use of known asymptotics
for the Barnes G-function.

The relations between primes encoded in the factorizations of binomial products
Gn seem to be of deep arithmetic significance. These factorizations are described
by the functions

νp(Gn) := ordp(Gn), (1.2)

with pordp(Gn) denoting the maximal power of p dividing Gn. The prime factoriza-
tions of the first few Gn are G1 = 1, G2 = 2, G3 = 32, G4 = 25 ·3, G5 = 22 ·54, G6 =
24 ·34 ·53 and G7 = 32 ·52 ·76. These initial values already exhibit visible oscillations
in ord2(Gn), and each function ordp(Gn) separately has a somewhat complicated

structure of oscillations. Figure 1.1 plots values of ord2(Gn) for 1 ≤ n ≤ 1023. This
plot exhibits significant structure in the behavior of ord2(Gn), visible as a set of
stripes in intervals between successive powers of 2.

Figure 1.1. ν2(n) := ord2(Gn), 1 ≤ n ≤ 1023 = 210 − 1.

The behavior of the prime factorizations of Gn is the main focus of this paper.
We derive three different formulas for ordp(Gn), given in Sections 4, 5 and 6, respec-

tively. Each of the formulas encodes different information about ordp(Gn). The
first of these formulas follows from the unreduced Farey product interpretation.
The second of these formulas relates ordp(Gn) to the base p expansion of n, which
relates to values of the Riemann zeta function ζ(s) on the line Re(s) = 0 through
a result of Delange [11]. The third of these formulas directly involves the base p
radix expansion of n, and is linear and bilinear in the radix expansion digits.

The second and third formulas for νp(Gn) generalize to notions attached to radix
expansions to an arbitrary integer base. For each b ≥ 2 we define integer-valued
functions νb(Gn) (resp. ν∗b (Gn)) for n ≥ 1, which for primes p satisfy νp(Gn) =

ν∗p(Gn) = ordp(Gn) for all n ≥ 1. In Appendix B we prove these definitions agree
in general: for all b ≥ 2,

νb(Gn) = ν∗b (Gn) for all n ≥ 1. (1.3)
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The functions νb(Gn) for composite b can no longer be interpreted as specifying
the amount of “divisibility by b” of the integer Gn. It is an interesting problem
to determine what arithmetic information about Gn the functions νb(Gn) might
encode.

From the formulas obtained for ordp(Gn) we deduce results on its size and the
behavior of its fluctuations. We show that

0 ≤ ordp(Gn) < n logp n,

and that

lim sup
n→∞

ordp(Gn)

n logp n
= 1.

It follows that n logp n is the correct scale of growth for this function. We also show

that each function ordp(Gn) oscillates infinitely many times between the upper and
lower bounds as n→∞.

In Section 7 we compare the three formulas for ordp(Gn). We show that between
them they account for much of the structure visible in the picture in Figure 1.1.

In Section 8 we present direct connections between individual binomial products
Gn and the distribution of prime numbers. There is a tension between the smooth
asymptotic growth of Gn and the oscillatory nature of the divisibility of Gn by
individual primes. This tension encodes a great deal of information about the
structure of prime numbers. Our results yield a Chebyshev-type estimate for π(x)
and suggest the possibility of a approach to the prime number theorem via radix
expansion properties of n to prime bases. In another direction, a connection of the
Gn to the Riemann hypothesis may exist via their relation to products of Farey
fractions, see [36].

2. Unreduced Farey Fractions

The Farey sequence Fn of order n is the sequence of reduced fractions h
k between

0 and 1 (including 0 and 1) which, when in lowest terms, have denominators less
than or equal to n, arranged in order of increasing size. It is the set

Fn := {h
k

: 0 ≤ h ≤ k ≤ n : gcd(h, k) = 1.}

The Farey sequences encode deep arithmetic properties of the integers and are
important in Diophantine approximation, e.g. [26, Chap. III].) The distribution
of the Farey fractions approaches the uniform distribution on [0, 1] as n → ∞
in the sense of measure theory, and the rate at which it approaches the uniform
distribution as a function of n is related to the Riemann hypothesis by a theorem of
Franel [21]. Extensions of Franel’s result are given in many later works, including
Landau [37], [38], Mikolás [42], [43], and Huxley [29, Chap. 9 ].

The Farey sequences have a simpler cousin, the unreduced Farey sequence Gn,
which is the ordered sequence of all reduced and unreduced fractions between 0
and 1 with denominator of size at most n. We define the positive unreduced Farey
sequence by omitting the value 0, obtaining

G∗n := {h
k

: 1 ≤ h ≤ k ≤ n}.
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We let Φ∗(n) = |G∗n| denote the number of positive unreduced Farey fractions, and
clearly

Φ∗(n) =

(
n+ 1

2

)
=

1

2
n(n+ 1). (2.1)

We order these unreduced fractions in increasing order, breaking ties between equal
fractions ordering them by increasing denominator. For example, we have

G∗4 := {1

4
,

1

3
,

1

2
,

2

4
,

2

3
,

3

4
,

1

1
,

2

2
,

3

3
,

4

4
}.

We label the fractions in G∗n in this order as ρ∗r = ρ∗r,n, and write

G∗n = {ρ∗r = ρ∗r,n : 1 ≤ r ≤ Φ∗(n)},

Then we can define the unreduced Farey product as

Gn :=

Φ∗(n)∏
r=1

ρ∗r,n =
N∗n
D∗n

, (2.2)

in whichN∗n (resp. D∗n) denotes the product of the numerators (resp. denominators)
of all ρ∗r,n. The numerator function

N∗n =

n∏
k=1

k!

has been called the superfactorial function and appears as sequence A000178 in
OEIS [48]. The denominator function

D∗n =

n∏
k=1

kk

has been called the hyperfactorial function, and appears as sequence A002109 in
OEIS [48]. The hyperfactorial D∗n in expressible in terms of factorials as

D∗n =

∏n
k=1 k

n

1n−12n−2 · · · (n− 1)1 · n0
=

(n!)n

(n− 1)! · · · 1!
=

(n!)n

N∗n−1

. (2.3)

It was studied by Glaisher [22], [23], starting in 1878. The integers D∗n were later
found to be the sequence of discriminants of the Hermite polynomials1 in the prob-
abilist’s normalization Hen(x) = 2−n/2Hn( x√

2
).

The unreduced Farey products Gn have their reciprocal Gn = 1/Gn expressible
in terms of binomial coefficients.

Theorem 2.1. The unreduced Farey product Gn has its reciprocal Gn = 1/Gn
given by the product of binomial coefficients

Gn =

n∏
j=0

(
n

j

)
. (2.4)

Thus 1/Gn is always an integer.

1 The hyperfactorials occur as the discriminants of the Hermite polynomials up to factor of a

power of 2 in the usual normalization Hn(x) = (−1)nex
2/2 dn

dxn (e−x2/2), see Szego [50, (6.71.7)].
The Hermite polynomials are a fundamental family of orthogonal polynomials, and this connection
hints at a deep importance of the hyperfactorial function.
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Proof. Enumerating the unreduced Farey fractions in order of fixed k, as j
k with

1 ≤ j ≤ k ≤ n, we have Gn =
D∗n
N∗n

, in which D∗n =
∏n
k=1 k

k and N∗n =
∏n
j=1 j! =∏n

j=1 j
n−j+1. Therefore, setting 0! = 1, we have

Gn =
11.22.33 . . . nn

1n.2n−1.3n−2 · · ·n
=

(
n!
0! .

n!
1! . . .

n!
(n−1)!

)
1! 2! · · · (n− 1)!n!

=

n∏
t=1

n!

t!(n− t)!
=

n∏
t=1

(
n

t

)
.

The last product also equals
∏n
t=0

(
n
t

)
, as required. �

Remark 2.2. Products of binomial coefficients Gn appear as normalizing constants
cn+1 associated to the density z 7→ n+1

π (1 + |z|2)−n on C, see Lyons [39, Sec.3.8].
This density is associated with a particular Gaussian orthogonal polynomial en-
semble, the (n + 1)-st spherical ensemble, which is the (randomly ordered) set of
eigenvalues of M−1

1 M2 where Mi are independent (n+ 1)× (n+ 1) matrices whose
entries are independent standard complex Gaussians. This eigenvalue interpreta-
tion of the spherical ensemble is due to Krishnapur [32], see [27].

Remark 2.3. The reciprocal Fn = 1/Fn of the product Fn of all nonzero Farey
fractions of order n is a quantity analogous to Gn. It encodes interesting arithmetic
information, but is usually not an integer. The Riemann hypothesis is encoded in
its asymptotic behavior, as discussed in Remark 3.4 below. The quantities Fn and
Gn are related by the identity Gn =

∏n
k=1 F bn/kc, which under a form of Möbius

inversion yields Fn =
∏n
k=1(Gbn/kc)

µ(k). Our study of Gn was motivated in part

for its potential to obtain useful information about Fn.

3. Growth of Gn

We estimate the growth of Gn using its connection to superfactorials N∗n and
hyperfactorials D∗n. One can derive a complete asymptotic expansion for each of
log(N∗n), log(D∗n) and log(Gn), using the Barnes G-function, which we present in
Appendix A. Here we derive the first few leading terms, for which Stirling’s formula
suffices, and which permit

Theorem 3.1. For n ≥ 2 the superfactorials N∗n and hyperfactorials D∗n satisfy

log(D∗n) =
1

2
n2 log n− 1

4
n2 +

1

2
n log n+ +O(log n).

log(N∗n) =
1

2
n2 log n− 3

4
n2 + n log n+

(
1

2
log(2π)− 1

)
n+O(log n),

Proof. We will apply Stirling’s formula in the truncated form

log(n!) = n log n− n+
1

2
log n+

1

2
log(2π) +O(

1

n
),

valid for all n ≥ 1.
For the denominator term, we have

log(D∗n) =

n∑
k=1

k log k =

n∑
j=1

 n∑
k=j

log k

 =

n∑
j=1

(log(n!)− log(j − 1)!) .
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Applying Stirling’s formula on the right side (and shifting j by 1) yields

n∑
k=1

k log k = n log(n!)−
n−1∑
j=1

(
j log j − j +

1

2
log j +

1

2
log(2π) +O(

1

j
)

)
,

We move the term
∑n−1
j=1 j log j to the left side and obtain

2

(
n∑
k=1

k log k

)
= n log(n!)+n log n+

n(n− 1)

2
−1

2
log(n!)−

(
1

2
log(2π)

)
n+O(log n).

Applying Stirling’s formula again on the right and simplifying yields
n∑
k=1

k log k =
1

2
n2 log n− 1

4
n2 +

1

2
n log n+O(log n), (3.1)

which gives the asymptotic formula for log(D∗n) above.
For the numerator term we have

log(N∗n) =

n∑
k=1

log(k!) =

n∑
k=1

(
k log k − k +

1

2
log k +

1

2
log(2π) +O(

1

k
)
)

=
1

2
n2 log n− 3

4
n2 +

1

2
n log n+

1

2
(log(2π)− 1)n+O(log n).

The second line used
∑n
k=1 log k = log(n!) with Stirling’s formula, plus the asymp-

totic formula (3.1). �

We single out for special emphasis the initial terms in the asymptotic expansion
for log(Gn).

Theorem 3.2. The function ν∞(Gn) := log(Gn) satisfies for n ≥ 2 the estimate

log(Gn) =
1

2
n2 − 1

2
n log n+

(
1− 1

2
log(2π)

)
n+O(log n). (3.2)

Here 1− 1
2 log(2π) ≈ 0.08106.

Proof. The asymptotic formula for log(Gn) = log(D∗n) − log(N∗n) follows immedi-
ately from Theorem 9.2. �

Remark 3.3. This expansion captures a connection to density of primes and has
a further analogy with the Riemann hypothesis, given the next remark. It shows
that the function log(Gn) is asymptotic to 1

2n
2, which is smaller by a logarithmic

factor than either of log(D∗n) or log(N∗n) separately. That is, the top terms in the
asymptotic expansions of log(D∗n) or log(N∗n) cancel. This savings of a logarithmic
factor in the main term of the asymptotic formula is directly related to primes
having density O( n

logn ), and to obtaining Chebyshev-type bounds for π(x), see

Section 8.

Remark 3.4. The analogy of the asymptotic formula (3.2) with the Riemann hy-
pothesis arises from its interpretation in terms of products of unreduced Farey
fractions and concerns its remainder term O(log n). We can rewrite it in terms of
the number Φ∗(n) =

(
n+1

2

)
of unreduced Farey fractions as

log(Gn) = Φ∗(n)− 1

2
n log n+

(1

2
− 1

2
log(2π))

)
n+O(log n), (3.3)
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with 1
2 −

1
2 log(2π) ≈ −041894. This expression is directly comparable with an

expression for the logarithm of (inverse) Farey products log(Fn) having the form

log(Fn) = Φ(n)− 1

2
n+R(n), (3.4)

in which Φ(n) counts the number of Farey fractions and R(n) is a remainder term
defined by the equality (3.4). The function Φ(n) =

∑n
k=1 φ(k) is the summatory

function for the Euler φ-function, and satisfies Φ(n) ∼ 3
π2n

2 as n → ∞. In 1951
Mikolás [43, Theorem 1], showed that the Riemann hypothesis is equivalent to the
assertion that the remainder term is small, satisfying

R(n) = O(n
1
2 +ε)

for each ε > 0 for n ≥ 2. In fact he showed that estimates of form R(n) = O(xθ+ε)
for fixed 1/2 ≤ θ < 1 and for all ε > 0 were equivalent to a zero-free region of the
Riemann zeta function for Re(s) > θ. We can therefore view (3.3) by analogy as
an “unreduced Farey fraction Riemann hypothesis” in view of its small error term
O(log n). A Riemann hypothesis type estimate would require only an error term of
form O(n1/2+ε).

See [36, Section 3] for a further discussion of Mikolas’s results, which include
unconditional error bounds for R(n). The true subtlety in the Mikoläs formula
seems to resolve around oscillations in the function Φ(x) of magnitude at least
Ω(x
√

log log x) which themselves are related to zeta zeros.

4. Prime-power divisibility of Gn: Formulas using integer parts

We study the divisibility of Gn by powers of a fixed prime. We obtain three
distinct formulas for ordp(Gn), in this section and in the following two sections,
respectively.

The first formula simply encodes the Farey product decomposition.

Theorem 4.1. For p a prime, the function νp(Gn) := ordp(Gn) satisfies

νp(Gn) = ordp(D
∗
n)− ordp(N

∗
n), (4.1)

where D∗n =
∏n
k=1 k

k and N∗n =
∏n
k=1 k!.

Proof. This formula follows directly by applying ordp(·) to both sides of the de-

composition Gn = 1
Gn

=
D∗n
N∗n
. �

The formula (4.1) has several interesting features.

(i) This formula expresses ordp(Gn) as a difference of two positive terms,

S+
p,1(n) := ordp(D

∗
n) =

n∑
k=1

ordp(k
k)

and

S−p,1(n) := ordp(N
∗
n) =

n∑
k=1

ordp(k!).

Both terms are nondecreasing in n, that is,

∆(S±p,1)(n) := S±p,1(n)− S±p,1(n− 1)

are nonnegative functions. Furthermore the difference term ∆(S−p,1)(n) is
nondecreasing in n.
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(ii) There is a race in size between the terms S+
p,1(n) and S−p,1(n), as n varies.

The first term S+
p,1(n) jumps only when p divides n and makes large jumps

at these values. In contrast, the second term S−p,1(n) changes in smaller
nonzero increments, making a positive contribution whenever p - n and
n > p. In consequence: For n ≥ p, ordp(Gn) increases going from n− 1 to
n when p | n, and strictly decreases when p - n.

We may re-express the terms in formula (4.1) using the floor function (greatest
integer part function). We start with de Polignac’s formula (attributed to Legendre
by Dickson [16, p. 263]), which states that

ordp(n!) =

∞∑
j=1

⌊ n
pj

⌋
.

The sum on the right is always finite, with largest nonzero term j = blogp nc, with

pj ≤ n < pj+1. We obtain

ordp(N
∗
n) =

n∑
k=1

( ∞∑
j=1

⌊ k
pj

⌋)
and, using (2.3),

ordp(D
∗
n) = n

 ∞∑
j=1

⌊ n
pj

⌋− ordp(N
∗
n−1).

We next obtain asymptotic estimates with error term for ordp(N
∗
n) and ordp(D

∗
n),

and use these estimates to upper bound the size of ordp(Gn).

Theorem 4.2. For p a prime, and all n ≥ 2,

ordp(N
∗
n) =

1

2(p− 1)
n2 +O

(
n logp n

)
.

and

ordp(D
∗
n) =

1

2(p− 1)
n2 +O

(
n logp n

)
.

It follows that,

ordp(Gn) = O
(
n logp n

)
.

for all n ≥ 1.

Proof. We rewrite de Polignac’s formula using the identity n
pj = b npj c+ { npj }, with

the fractional part function {x} := x− bxc, to obtain

ordp(n!) =
n

p− 1
−
∞∑
j=1

{ n
pj
}. (4.2)

For j > logp n we have { npj } = n
pj so the series becomes a geometric series past this

point and can be summed. One obtains the estimate

ordp(n!) =
n

p− 1
+O(1 + logp n),

with an O-constant independent of p.



PRODUCTS OF BINOMIAL COEFFICIENTS AND UNREDUCED FAREY FRACTIONS 9

For N∗n we have ordp(N
∗
n) =

∑N
k=1 ordp(k!), and applying (4.2) yields

ordp(N
∗
n) =

n∑
k=1

k

p− 1
−

n∑
k=1

( ∞∑
j=1

{ k
pj
}
)

=
n2 + n

2(p− 1)
+O

(
n(1 + logp n)

)
The result follows by shifting 1

2(p−1)n to the remainder term.

For D∗n we have, using (2.3), that

ordp(D
∗
n) = nordp(n!)− ordp(N

∗
n−1)

=

(
n

(
n

p− 1

)
+O(1 + logp n)

)
−
(

1

2(p− 1)
(n− 1)2 +O

(
n(1 + logp n)

)
=

1

2(p− 1)
n2 +O

(
n logp n

)
.

(4.3)

For G
∗
n the result follows from ordp(Gn) = ordp(D

∗
n)− ordp(N

∗
n). �

The bound ordp(Gn) = O(n logp n), valid for all n ≥ p, quantifies the smaller

size of in size of log(Gn) compared to either log(N∗n) and log(D∗n)‘. In the situation
here the smaller size is by almost a square root factor. The bound on ordp(Gn)
above is the correct order of magnitude, and we obtain a sharp constant in Theorem
6.8 below.

5. Prime-power divisibility of Gn: Formulas using base p digit sums

We obtain a second formula for ordp(Gn), one expressed directly in terms of base
p digit sums, and draw consequences. We start from

ordp(Gn) =

n∑
k=0

ordp

(
n

k

)
. (5.1)

The divisibility of binomial coefficients by prime powers pk has been studied for
over 150 years, see the extensive survey of Granville [25]. Divisibility properties are
well known to be related to the coefficients aj of the the base p radix expansion of
n, written as

n =

k∑
j=0

ajp
j , 0 ≤ aj ≤ p− 1,

with k = blogp nc.

5.1. Prime-power divisibility of Gn: digit summation form. We derive a
formula for ordp(Gn) that expresses it in terms of summatory functions of base p
digit sums.

We will consider digit sums more generally for radix expansions to an arbitrary
integer base b ≥ 2. Write a positive integer n in base b ≥ 2 as

n :=

k∑
i=0

aib
i, for bk ≤ n < bk+1.
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with digits 0 ≤ ai ≤ b− 1. Here k = blogb nc. and ai := ai(n) with ak(n) ≥ 1.

(1) The sum of digits function db(n) (to base b) of n is

db(n) :=

k∑
i=0

ai(n), (5.2)

with k = blogb nc.
(2) The running digit sum function Sb(n) (to base b) is

Sb(n) :=

n−1∑
j=0

db(j). (5.3)

Our second formula for ordp(Gn) is given in terms of these quantities; we defer
its proof to the end of this subsection.

Theorem 5.1. Let the prime p be fixed. Then for all n ≥ 1,

νp(Gn) := ordp(Gn) =
1

p− 1

(
2Sp(n)− (n− 1)dp(n)

)
. (5.4)

The formula (5.4) has several interesting features.

(i) This formula expresses ordp(Gn) as a difference of two positive terms,

S+
p,2(n) :=

2

p− 1
Sp(n) (5.5)

and

S−p,2(n) :=
n− 1

p− 1
dp(n). (5.6)

The two functions, Sp(n) and dp(n) have been extensively studied in the
literature. They exhibit very different behaviors as n varies: Sp(n) grows
rather smoothly while dp(n) exhibits large abrupt variations in size.

(ii) The function Sp(n) has smooth variation and obeys the asymptotic estimate

Sp(n) = (
p− 1

2
)n logp n+O(n),

see Theorem 5.6. In consequence S+
p,2(n) = n logp n + O(n). Furthermore

Sp(n) can itself be written as a difference of two positive functions using
the identity (5.12) below, and noting the second term is nonpositive, by
Theorem 5.8 (1).

(iii) The function dp(n) is known to have average size p−1
2 logp(n) but is oscil-

latory. For most n it is rather close to its average size, however it varies
from 1 to a value as large as (p − 1) logp n infinitely often as n → ∞, as

given by the distribution of dp(n) as n varies. If one takes n = pk and
samples m uniformly on the range [1, pk], then dp(m) it is a sum of k iden-
tically distributed independent random variables, and as k →∞ will obey
a central limit theorem. One can show that it has size sharply concentrated
around (p−1

2 ) logp n with a spread on the order of Cp
√
k(p−1

2 ). In conse-

quence, the second term S−p,2(n) = n+1
p−1dp(n) is positive and has average

size 1
2n logp n+O(n), which is in magnitude half that of the first term. It

has large variations in size, between being twice its average size and being
o(n log n).
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(iv) The function dp(n) is highly correlated between successive values of n. It
exhibits an ”odometer” behavior where it has increases by one at most
steps, but has jumps downward of size about pk at values of n that pk

exactly divides.

To derive Theorem 5.1, we make use of the following elegant formula for ordp
(
n
t

)
noted by Granville [25, 25, equation following (18) ].

Proposition 5.2. For n ≥ 1 and 0 ≤ t ≤ n,

ordp

(
n

t

)
=

1

p− 1

(
dp(t) + dp(n− t)− dp(n)

)
. (5.7)

Proof. Writing n =
∑k
i=0 aip

i, and applying de Polignac’s formula, we have

ordp(n) =
n− a0

p
+
n− (a1p+ a0)

p2
+ · · ·+ n− (ak−1p

k−1 + · · ·+ a0)

pk

+

∞∑
i=k+1

n− (akp
k + ak−1p

k−1 + · · ·+ a0)

pi
,

in which all the terms in the last sum are identically zero. Collecting the terms
for n and for each ai separately on the right side of this expression, each forms a
geometric progression, yielding

ordp(n!) =
1

p− 1

(
n− (ak + ak−1 + · · ·+ a0)

)
=

1

p− 1

(
n− dp(n)

)
. (5.8)

Writing the binomial coefficient
(
n
t

)
= n!

t!(n−t)! and substituting (5.8) above yields

the desired formula. �

Proof of Theorem 5.1. Combining Theorem 2.1 with Proposition 5.2 and noting
that dp(0) = 0, we have

ordp(Gn) =

n∑
t=0

ordp

(
n

t

)
=

1

p− 1

n∑
t=0

(dp(t) + dp(n− t)− dp(n))

=
1

p− 1

(
2

n∑
t=0

dp(t)− (n+ 1)dp(n)
)

=
1

p− 1
(2Sp(n)− (n− 1)dp(n)),

as required. �

5.2. Analogue function νb(Gn) for a general radix base b. The functions of
digit sums on the right side of (5.4) make sense for all radix bases b ≥ 2, which
leads us to define general functions νb(Gn) for b ≥ 2.

Definition 5.3. For each integer b ≥ 2 and n ≥ 1, the generalized order νb(Gn) of
Gn to base b is

νb(Gn) :=
1

b− 1

(
2Sb(n)− (n− 1)db(n)

)
. (5.9)

Theorem 5.1 shows that for prime p we have νp(Gn) = ordp(Gn). However for

composite b the function νb(Gn) does not always coincide with the largest power
of b dividing Gn, even for b = pk (k ≥ 2) a prime power, i.e. for composite b
νb(Gn) 6= ordb(Gn) occurs for some n.
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One may obtain an upper bound for νb(n) using an upper bound for the running

digit sum function Sb(n) =
∑n−1
m=0 db(m). In 1952 Drazin and Griffith [17] obtained

the following sharp upper bound, as a special case of more general results.

Theorem 5.4. (Drazin and Griffith (1952)) Let b ≥ 2 be an integer. Then for all
n ≥ 1,

Sb(n) ≤ b− 1

2
n logb n. (5.10)

and equality holds if and only if n = bk for k ≥ 0.

Proof. This result is [17, Theorem 1], taking t = 1, asserting ∆1(b, n) ≥ 0 with
equality for n = bk. In their notation σ1(b) = (b− 1)/2, F1(b, n) = b−1

2 n logb n and

∆1(b, n) = 2
b−1 (F1(b, n)− Sb(n)).

�

We deduce the following upper bound for the generalized order to base b.

Theorem 5.5. Let b ≥ 2 be an integer. Then for all n ≥ 1,

νb(Gn) ≤ n logb n−
n− 1

b− 1
. (5.11)

Proof. Using the definition and Theorem 5.4 we have

νb(Gn) =
1

b− 1

(
2Sb(n)− (n− 1)db(n)

)
≤ n logb n−

n− 1

b− 1
db(n) ≤ n logb(n)− n− 1

b− 1
,

as asserted. �

For the case that b = p is prime, we obtain a slight improvement on this upper
bound in Theorem 6.7.

5.3. Summatory function of base b digit sums: Delange’s theorem. The
detailed behavior of the running digit sum function Sb(n) =

∑n−1
j=0 db(n) has compli-

cated, interesting properties. In 1968 Trollope [53] obtained an exactly describable
closed form for S2(n). In 1975 Delange [11] obtained the following definitive result
applying to Sb(n) for all bases b ≥ 2.

Theorem 5.6. (Delange (1975)) Let b ≥ 2 be an integer.
(1) For all integers n ≥ 1,

Sb(n) =
(b− 1

2

)
n logb n+ fb(logb n)n, (5.12)

in which fb(x) is a continuous real-valued function which is periodic of period 1.
(2) The function fb(x) has a Fourier series expansion

fb(x) =
∑
k∈Z

cb(k)e2πikx,

whose Fourier coefficients are, for k 6= 0,

cb(k) = −b− 1

2kπi

(
1 +

2kπi

log b

)−1
ζ(

2kπi

log b
) (5.13)
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and, for the constant term k = 0,

cb(0) =
b− 1

2 log b
(log(2π)− 1)− (

b+ 1

4
). (5.14)

The function fb(x) is continuous but not differentiable.

Proof. (1) This statement is the main Theorem2 of Delange [11, p. 32].
(2) The explicit Fourier series expression is derived in Section 4 of [11]. The

Fourier coefficients are complex-valued with c−k = c̄k, as is required for a real-
valued function fb(x). The Fourier series coefficients in (5.13) for fb(x) involve
values of the Riemann zeta function evaluated at points on the line Re(s) = 0 which
are, b = p a prime the poles of the Euler product factor at p in the Euler product
for ζ(s), which is (1 − 1

ps )−1. The growth rate of the Riemann zeta function on

the line Re(s) = 0 states that |ζ(it)| = O((1 + |t|)1/2+ε), which bounds the Fourier
coefficients sufficiently to prove that fb(x) is a continuous function. Delange deduces
the everywhere non-differentiable property of fb(x) from a self-similar functional
relation that fb(x) satisfies. �

Remark 5.7. Delange proved Theorem 5.6 using methods from real analysis. Differ-
ent approaches were introduced in 1983 by Mauclaire and Murata ([40], [41]), and in
1994 by Flajolet et al. [20, Theorem 3.1], using complex analysis and Mellin trans-
form techniques. The latter methods obtain the Fourier expansion of fb(x) but do
not establish the non-differentiability properties of the function fb(x). In another
direction, in 1997 G. Tenebaum [52] extended the non-differentiability property of
fb(x) to other periodic functions arising from summation formulas in a similar fash-
ion. Generalizations of the Delange function connected to higher moments of digit
sums were studied by Coquet [10] and Grabner and Hwang [24].

We next show that the function fb(n) is nonpositive, and give some estimates
for its size, using results of Drazin and Griffiths [17].

Theorem 5.8. (1) For integer b ≥ 2 and all real x,

fb(x) ≤ 0, (5.15)

and equality fb(x) = 0 holds only for x = n, n ∈ Z.
(2) For integer b ≥ 3 and all real x,

2

b− 1
|fb(x)| ≤ b− 1

b− 2

log(b− 1)

log b
. (5.16)

Proof. (1) Drazin and Griffiths [17] study a function ∆1(b, n) for integer (b, n) which
is exactly ∆1(b, n) = − 2

b−1fb(logb n) The nonpositivity for x ∈ [0, 1] follows from

[17, Theorem 1], using the fact that Fb(x) is periodic of period 1 and a continuous
function, together with the fact that the fractional parts of logb n are dense in [0, 1].

(2) This result follows from the bound on ∆1(b, n) in [17, Theorem 2] in a similar
fashion. �

Figure 5.1 presents a picture of the function f2(x) computed by J. Arias de
Reyna. It shows the non-positivity of f2(x) but can only hint at the property of
f2(x) being non-differentiable at every point. In fact f2(x) is related to a famous

2 Delange uses a different notation for digit sums. He writes Sp(n) for the function that we

call dp(n).
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Figure 5.1. The periodic function f2(x).

everywhere non-differentiable function, the Takagi function τ(x), introduced by
Takagi [51] in 1903, which is given by

τ(x) :=

∞∑
n=0

1

2n
� 2nx�, (5.17)

where � x � is the distance from x to the nearest integer. This connection can
be deduced from work of Trollope [53], as explained in [34, Theorems 9.1 and 9.2].
One finds that

f2(x) = −1

2

(τ(2x − 1)

2x
+

2x − 1

2
− 2x − 1

2x

)
, 0 ≤ x ≤ 1. (5.18)

Although τ(x) is everywhere non differentiable, its oscillations on small scales are
known to not be too large. There is a constant C such that for all real x,

|τ(x+ h)− τ(x)| ≤ C|h| log
1

|h|
, for all |h| ≤ 1

2
.

For our application to Gn, b = p is a prime, the formula (5.12) for Sb(n)
gives a smooth “main term” p−1

2 n logp n and a slowly oscillating “remainder term”
Rp(n) := fb(logb n)n of order O(n), with an explicit constant in the O-symbol,
which encodes a logarithmic rescaling of the value of n.

6. Prime-power divisibility of binomial products Gn: Formulas using
fractional parts

6.1. Prime-power divisibility of Gn: bilinear radix expansion form. We
give a third formula for ordp(Gn), which is also based on the base p radix expan-
sion of n, but which expresses it as a linear and bilinear expression in its base p
coefficients.
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Theorem 6.1. Let p be prime and write the base p expansion of n =
∑k
j=0 ajp

j,
with ak 6= 0. Then

ordp(Gn) =

k∑
j=1

jajp
j −

 k∑
j=1

aj

(
pj − 1

p− 1

)
+

k∑
j=0

1

pj+1

( j∑
u=0

aup
u
)( k∑

v=j+1

avp
v
) .

(6.1)

The formula (6.1) has several interesting features.

(i) The formula expresses ordp(Gn) as a difference of two positive terms,

S+
p,3(n) :=

k∑
j=1

jajp
j

and

S−p,3(n) :=

k∑
j=1

aj
pj − 1

p− 1
+

k∑
j=0

1

pj

( j∑
u=0

aup
u
)( k∑

v=j+1

avp
v
)
.

An immediate consequence is the upper bound ordp(Gn) ≤ S+
p,3(n) which

is useful in obtaining upper bounds for ordp(Gn), see Section 6.2.
(ii) The first two sums on the right in (6.1) are linear functions of the base p

digits of n, while the third sum is bilinear in the base p digits.
(iii) The first sum on the right in (6.1) makes sense as a p-adic function. That

is, it extends continuously to a p-adically convergent series for n ∈ Zp, the
p-adic integers. However the last two sums on the right, treated separately
or together, do not have continuous extensions to Zp.

The right side of (6.1) makes sense for arbitrary bases b ≥ 2, so we make the
following definition for arbitrary b.

Definition 6.2. For each integer b ≥ 2 and n ≥ 1 set

ν∗b (Gn) :=

k∑
j=1

jajb
j −

 k∑
j=1

aj

(
bj − 1

b− 1

)
+

k∑
j=0

1

bj+1

( j∑
u=0

aub
u
)( k∑

v=j+1

avb
v
) ,

in which n =
∑k
j=0 ajb

j is its base b radix expansion.

For b = p a prime, we have ν∗p(Gn) = ordp(Gn) by Theorem 6.1. A priori
this definition looks different from that of the generalized order νb(n) to base b
introduced in Section 5, but in Appendix B we show they coincide: For each b ≥ 2
one has

ν∗b (Gn) = νb(Gn) for all n ≥ 1.

We will deduce Theorem 6.1 starting from Kummer’s formula for the maximal
power of p dividing a binomial coefficient (Kummer [33]).

Theorem 6.3. (Kummer (1852)) Given a prime p, the exact divisibility pe of
(
n
t

)
by a power of p is found by writing t, n− t and n in base p arithmetic. Then e is
the number of carries that occur when adding n− t to t in base p arithmetic, using
digits {0, 1, 2, . . . , p− 1}, working from the least significant digit upward.
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Proof. Kummer’s theorem easily follows from Proposition 5.2 as Granville [25] ob-
serves. By inspection we see that each carry operation adding t to n− t in the j-th
place reduces the sum of the digits in the sum n by p− 1, since it adds a 1 in the
(j + 1)-st place while removing a sum of p in the j-th place. Thus the formula on
the right in (5.7) counts the number of carries made in adding t to n− t. �

To establish Theorem 6.1 we first reinterpret Kummer’s formula as counting the
number of borrowings involved in subtracting j from n in base p arithmetic, now
working from the least significant digit upwards. As an example, take base p = 3
and consider

n = 13 = (111)3, t = 5 = (12)3 and n− t = 8 = (22)3.

In the following table we add (n− t) to t on the left and subtract t from n on the
right. We list the carries (+1) and the borrowings (−1) on the top line of the table.

carries : 1 1 0 borrows : −1 −1 0

2 2 1 1 1
+ 1 2 − 1 2
1 1 1 0 2 2

In this example there are 2 carries in the additive form versus 2 borrowings in the
subtractive form.

We will derive the formula (6.1) of Theorem 6.1 by keeping track of the total
number of borrowings in the addition made for the j-digit of n, but treating the
contributions to each digit separately, specified by a function cj(n) defined below.
For a given n and 0 ≤ t ≤ n set the j-th carry digit cj(n, t) = 1 or 0 according
as whether the addition of t to n − t in base p expansion has a carry digit, or
not, added to the (j + 1)-place from the j-th place. Equivalently cj(n, t) specifies
whether there is a borrowing from the (j + 1)-st place in subtracting t from n in
base p arithmetic. Here cj(n, t) depends only on n (mod pj+1) and t (mod pj+1).
The table above computes that c2(13, 5) = 0.

Definition 6.4. Let a prime p be fixed, and let a digit position j ≥ 0 be given.
The j-th position total carry function cj(n) is

cj(n) :=

n∑
t=0

cj(n, t). (6.2)

Kummer’s theorem applied to (5.1) yields

ordp(Gn) =

∞∑
j=0

cj(n). (6.3)

The sum on the right is always finite since cj(n) = 0 for all j ≥ k = blogp nc.

Lemma 6.5. (1) For a fixed prime p,

cj(n) =

(
(pj+1 − 1)−

j∑
u=0

aup
u

) k∑
t=j+1

atp
t−j−1

 . (6.4)

(2) Alternatively we have

cj(n) =

(
pj+1 − 1− pj+1

{
n

pj+1

})(
n

pj+1
−
{

n

pj+1

})
(6.5)
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Where j ≥ 0, [x] is the floor function and {x} is the fractional part of the rational
number.

Proof. (1) Denote t in base p as t = tkp
k + tk−1p

k−1 + · · ·+ t0 and note that since
t ≤ n − 1, tk ≤ ak. We prove the result by induction on j ≥ 0. For the base
case j = 0 whenever t0 > a0 then that value of t contributes 1 towards c0(n). The
number of values that t0 can take while being greater than a0 is p − 1 − a0. The
number of values t can take with t0 > a0 for a fixed t0 is (n− a0)/p and so we have

c0(n) = (p− 1− a0)
(n− a0)

p
= (p0+1 − 1− a0p

0)

(
k∑
t=1

atp
t−1

)
.

For the induction step we observe that a value t contributes to cj(n) only if its
j smallest base p digits satisfy:

j∑
v=0

tvp
v >

j∑
v=0

avp
v. (6.6)

The number of last j digits that would contribute to cj(n) is consequently

pj+1 − 1−
j∑

v=0

avp
v. (6.7)

The number of t that would satisfy (6.7) is therefore:

n−
∑j
v=0 avp

v

pj+1
=

k∑
t=j+1

atp
t−j−1. (6.8)

And so we obtain the value of cj(n) by taking the product of(6.7) and (6.8)

cj(n) =

(
(pj+1 − 1)−

j∑
u=0

aup
u

) k∑
t=j+1

atp
t−j−1

 .

(2) The formula (6.5) follows by rewriting the sums in (6.4), observing that

k∑
t=j+1

atp
t−j−1 =

[
n

pj

]
=

n

pj
−
{
n

pj

}
and

pj − 1−
j∑

v=0

avp
v = pj − 1− pj

{
n

pj

}
,

as required. �

We apply Lemma 6.5 to prove our first formula for ordp(Gn).

Proof of Theorem 6.1. Substituting in (6.3) the formula of Lemma 6.5 yields

ordp(Gn) =

k−1∑
j=0

cj(n) =

k−1∑
j=0

((pj+1 − 1)−
j∑

u=0

aup
u

) k∑
t=j+1

atp
t−j−1


Expanding the latter sum yields
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ordp(Gn) =

k−1∑
j=0

k∑
t=j+1

atp
t−

k−1∑
j=0

k∑
t=j+1

atp
t−j−1−

k−1∑
j=0

j∑
u=0

k∑
t=j+1

auatp
u+t−j−1 (6.9)

Now we simplify the three sums in (6.9) individually. The first of these sums is

k−1∑
j=0

k∑
t=j+1

atp
t =

k∑
j=1

jajp
j . (6.10)

This sum extends to a p-adically convergent series, which for α :=
∑∞
j=0 ajp

j is

f(α) =
∑∞
j=0 jajp

j . In fact f : Zp → Zp is not only a continuous function, but is
a p-adic analytic function on Zp.

The second sum of (6.9) can be re-written as:

k−1∑
j=0

k∑
t=j+1

atp
t−j−1 =

k∑
j=1

aj
(
pj−1 + pj−2 + · · ·+ 1

)
=

k∑
j=1

aj

(
pj − 1

p− 1

)
(6.11)

The third sum is a bilinear sum, which satisfies the identity

k−1∑
j=0

j∑
b=0

k∑
t=j+1

abatp
b+t−j−1 =

k∑
j=0

1

pj+1

(
j∑

u=0

aup
u

) k∑
v=j+1

avp
v

 . (6.12)

By substituting (6.12), (6.10) and (6.11) into (6.9) we obtain the desired result. �

Remark 6.6. The total carry functions cj(n) seem of interest in their own right.
Bergelson and Leibman [6] study the class of all bounded functions obtainable as
finite iterated combinations of the fractional part function {·}, calling them gen-
eralized polynomials. They relate generalized polynomials to piecewise polynomial
maps on nilmanifolds and use this relation to derive recurrence and distribution
properties of values of such functions. The formula in Lemma 6.5(2) involves such
functions. It can be written as cj(n) = ng1,j(n) + g2,j(n) where gi,j(n) are the
bounded generalized polynomials

g1,j(n) := 1− 1

pj+1
− { n

pj+1
},

and

g2,j(n) := −g1(n)
(
pj+1

{
n

pj+1

})
.

each of which is a periodic function of n with period pj+1. However the function
cj(n) itself is unbounded, so is not a generalized polynomial.

6.2. Prime-power divisibility of binomial products Gn: extreme values.
Theorem 6.1 permits an exact determination of the extreme behaviors of ordp(Gn).

We obtain a useful upper bound on ordp(Gn) by retaining only those terms in
Theorem 6.1 that are linear in the ai, and this upper bound turns out to be sharp.

Theorem 6.7. Let the prime p be fixed. Then we have for all n > 0 that

0 ≤ ordp(Gn) ≤Mp(n) :=

k∑
j=0

jajp
j −

k∑
j=1

aj

(
pj − 1

p− 1

)
. (6.13)
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The equality ordp(Gn) = 0 holds if and only if n = apk − 1, with 1 ≤ a ≤ p − 1.

The equality ordp(Gn) = Mp(n) holds if and only if n = apk and in that case

ordp(Gapk) = a

(
kpk − pk − 1

p− 1

)
.

Proof. The lower bound in (6.7) is immediate since Gn is an integer. The case of
equality can be deduced directly from Kummer’s theorem. To have ordp(Gn) = 0
using Kummer’s theorem, all binomial coefficients

(
n
j

)
must be prime to p, so there

can be no value 0 ≤ j ≤ n such that subtracting j from n in base p arithmetic
results in borrowing a digit. This fact requires that the base p digits aj of n except
the top digit be p− 1, i.e. aj = p− 1 for 0 ≤ j ≤ k − 1. There is no constraint on
the top digit ak other than ak 6= 0, since no borrowing can occur in this digit.

The upper bound inequality ordp(Gn) ≤ Mp(n) follows immediately from The-
orem 6.1. The equality case will hold only if the bilinear term in that theorem
vanishes; it is

k∑
j=1

1

pj

( j∑
u=0

aup
u
)( k∑

v=j+1

avp
v
)
.

This term will be positive whenever two nonzero coefficients appear in the base p
expansion of n, since one can find a nonzero cross term in this expression. Therefore
equality can hold only for those n having one nonzero base p digit, i.e. n = apk

with a 6= 0. Direct substitution of aj = 0 for 0 ≤ j ≤ p − 1 yields the explicit

formula for ordp(Gn) above. �

The previous result implies the following bounds.

Theorem 6.8. For each prime p, there holds for all n ≥ 1,

0 ≤ ordp(Gn) < n logp n. (6.14)

The value n = pk has ordp(Gn) ≥ n(logp n− 1).

Proof. Only the upper bound in (6.14) needs to be verified. By Theorem 6.1 we
have

ordp(Gn) <

k∑
j=1

jajp
j = kn−

k−1∑
u=0

(k − u)aup
u ≤ kn = nblogp nc ≤ n logp n.

For n = pk we have ordp(Gn) = kn−(1+p+· · ·+pk−1) ≥ kn−n = n(logp n−1). �

7. Formulas for ordp(Gn): Comparison and Implications

We presented three formulas for ordp(Gn) in Sections 4, 5 and 6, respectively.
Now we compare the formulas and discuss what they imply about features of the
graph of ν2(Gn) = ord2(Gn) given in Figure 1.1 and in the rescaled Figure 7.1
following.

Each of the three formulas express ordp(Gn) as a difference of positive terms
S+
p,j(n) and S−p,j(n), for j = 1, 2, 3. The term S+

p,j(n) is nondecreasing in n in each

formula, while the term S−p,j(n) is smooth for j = 1 but is oscillatory in the other
two formulas.
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n ord2(D∗n) ord2(N∗n) S+
2,2(n) S−2,2(n) S+

2,3(n) S−2,3(n) ord2(Gn)

1 0 0 0 0 0 0 0
2 2 1 2 1 2 1 1
3 2 2 4 4 2 2 0
4 10 5 8 3 8 3 5
5 10 8 10 8 8 6 2
6 16 12 14 10 10 6 4
7 16 16 18 18 10 10 0
8 40 23 24 7 24 7 17
9 40 30 26 16 24 14 10

10 50 38 30 18 26 14 12
11 50 46 34 30 26 22 4
12 74 56 40 22 32 14 18
13 74 66 44 36 32 24 8
14 88 77 50 39 34 23 11
15 88 88 56 56 34 34 0
16 152 103 64 15 64 15 49

TABLE 7.1. Comparison of Theorems 4.1, 5.1 and 6.1 for ord2(Gn),
1 ≤ n ≤ 16, divided in blocks 2k ≤ n < 2k+1.

Table 7.1 presents numerical data on the three formulas for p = 2 and small
n, which illustrate their differences. The lead term S+

p,1(n) = ordp(D
∗
n) in the

first formula grows much more rapidly than the corresponding terms S+
p,j(n) for

j = 2, 3, evidenced by the asymptotic formula in Theorem 4.2. The second and
third formulas differ qualitatively in their second terms, in that S+

p,2(n) := 2
p−1Sp(n)

grows smoothly, being of size n logp n + O(n), while S+
p,3(n) grows less smoothly,

having occasional jumps proportional to n log n as the base p digits ai vary. It
appears that the third formula gives the best upper bound of the three formulas,
in the sense of minimal growth of the positive term S+

2,3(n) among the S+
2,j(n). In

particular S+
2,2(n) ≥ S+

2,3(n) holds in the table entries, with equality holding for

n = 2k.
We have shown that the function ordp(Gn) is of average size about 1

2n logp n and
of size at most n logp n. It is natural to make a companion plot to Figure 1.1 that

rescales the values of ord2(Gn) by a factor 1
2n log2 n, which we present in Figure

7.1 below. In the rescaled plot all values fall in the interval [0, 2], and have average
size around 1, according to the discussion of dp(n) in feature (iii) after Theorem
5.1.

There are several patterns visible in Figure 1.1 and in Figure 7.1 above.

(i) Between n = 2k − 1 to n = 2k there is a large jump visible in the value of
ord2(Gn). The large jump between n = 2k−1 and n = 2k is quantified more
generally in Theorem 6.7 for ordp(Gn) between n = pk − 1 and n = pk.

(ii) In Figure 1.1 the values of ord2(Gn) between n = 2k to n = 2k+1 show
a pattern of diagonal lines or “stripes”. These diagonal lines are sloping
upwards, have different lengths, and are roughly parallel to each other. The
lengths of the “stripes” vary in a predictable manner: from top to bottom,
they first increase in length, starting from the left, until they extend nearly
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Figure 7.1. Values of ord2(Gn)/(0.5n log2 n), 1 ≤ n ≤ 1023 = 210 − 1.

to the next level 2k+1, remain stable at this width for a while, and thereafter
decrease in length while continuing to end near the next level 2k+1. In the
rescaled Figure 7.1 these lines flatten out to give parallel “stripes”.

Theorem 5.1 accounts for the “stripes” visible in Figure 7.1 via its term
−n−1
p−1 dp(n), which shows that each stripe is occupied by integers having a

fixed value dp(n) = j, in which dp(n) = 1 labels the highest stripe, and
each stripe downward increases j by one. The odometer behavior of the
function dp(n) also accounts for the horizontal width of the “stripes” and
the motion of their behavior over the interval [pk, pk+1−1], and determines
when they start near the left endpoint pk (small values of dp(n)) or end
near the right endpoint pk+1 − 1 (large values of dp(n)).

(iii) On comparing “stripes” in the interval n = 2k and n = 2k+1−1, with those
at the next interval between n = 2k+1 and n = 2k+2 − 1, the number of
“stripes” increases by 1. This increase in the number of stripes from the
interval from [pk, pk+1−1] and the interval [pk+1, pk+2−1] is accounted for
by the allowed values of dp(n) labeling the given interval. For p = 2 there
are exactly k + 1 such stripes on the region 2k ≤ n ≤ 2k+1 − 1, there is an
increase of exactly one stripe in the new interval, and the spacing between
the stripes is of width approximately 1

k ≈
1

logp n
. For a general prime p,

the increase in the number of stripes between the interval [pk, pk+1−1] and
[pk+1, pk+2 − 1] is exactly p− 1.

(iv) The values between successive powers 2k and 2k+1 have an apparent enve-
lope of largest growth. The envelope appears to be of size proportional to
k2k, a value approximately equal to n log2 n. Under the rescaling by a factor
proportional to n log n, as is done in Figure 7.1, the “stripes” become ap-
proximately flat, and they fall in the range 0 ≤ ord2(Gn)/(0.5n log2 n) ≤ 2.

The envelope of largest growth for dp(n) is n logp(n)−n, as quantified in
Theorem 6.8. On rescaling by a factor 1/n logp n, as done in Figure 7.1 the

“stripe” of values with dp(n) = j over the interval [pn, pn+1 − 1] becomes
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approximately flat. Note that the smooth main term 2
p−1Sp(n) in Theorem

5.1, changes by at most n over this interval, which becomes after rescaling
of size O( 1

logn ) which is asymptotically negligible.

(v) Inside the envelope of largest growth are irregular, correlated fluctuations in
size consisting of a structured set of negative “jumps” of various sizes. The
“stripes” are a structure that indirectly emerges from correlations within
the pattern of “jumps”. We observe that the odometer behavior of dp(n)
completely accounts for the pattern of downward “jumps” in the values of
ordp(Gn), The odometer behavior also produces the self-similar structure
in the locations of values n with dp(n) = j which produce the “stripes”.

A remaining mystery of the functions ordp(Gn) concerns the interpretation of

their generalizations νb(Gn) introduced for all integers b ≥ 2 in Section 5.2 using
base b radix expansions. One can view Gn as a universal object that encodes all
the data νp(n) = ordp(Gn) for prime p. If so, what might be the universal object

encoding the data for all νb(Gn), b ≥ 1?

8. Binomial Products and Prime Counting Estimates

Binomial coefficients are well known to encode information about the distribution
of prime numbers. This holds more generally for integer factorial ratios, which are
one-parameter families of ratios of products of factorials that are integers for all
parameter values. Let π(x) count the number of primes p ≤ x. Chebyshev [9] used

the integer factorial ratios An := (30n)!n!
(15n)!(10n)!(6n)! to obtain his bounds

0.92
x

log x
≤ π(x) ≤ 1.11

x

log x
,

It is known that the in principle the ensemble of integer factorial ratios contain
enough information to give a proof of the prime number theorem, see Diamond
and Erdős [15]. However their method to show the existence of a suitable sequence
of such ratios used the prime number theorem as an input, so did not yield an
elementary proof of the prime number theorem, see the discussion in Diamond [14,
Sect. 9].

We now consider the restricted set of all products of binomial coefficients. The
asymptotic formula for log(Gn) in Theorem 9.2 gives log(Gn) = 1

2n
2 + O(n log n).

The prime number theorem says that π(n) ∼ n
logn and is therefore equivalent to

the assertion

log(Gn) =
1

2
π(n)n log n+ o(n2). (8.1)

The individual binomial products Gn imply Chebyshev-type bounds for π(x). The
product formula expressing unique factorization ([2]) yields on taking a logarithm

log(Gn) =
∑
p≤n

ordp(Gn) log p. (8.2)

The left side is estimated by the asymptotic formula for log(Gn) in Theorem 9.2,

log(Gn) =
1

2
n2 − 1

2
n log n+ (1− 1

2
log(2π))n+O(log n).

Since 1− 1
2 log(2π) > 0, one has for sufficiently large n, and in fact for all n ≥ 3,
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log(Gn) ≥ 1

2
n2 − 1

2
n log n. (8.3)

Theorem 6.8 states ordp(Gn) ≤ n logp(n), which upper bounds the right side of
(8.1) by

log(Gn) =
∑
p≤n

ordp(Gn) log p ≤
∑
p≤n

(n logp n) log p = π(n)n log n. (8.4)

Combining these two inequalities yields the Chebyshev-type lower bound,

π(n) ≥ 1

2
(
n

log n
)− 1

2
,

valid for all n ≥ 2. This bound loses a constant factor of 2 compared to the prime
number theorem, so is much worse than Chebyshev’s lower bound. But it has a
redeeming feature: in an average sense most ordp(Gn) are of size near 1

2n logp n.
This observation follows from Theorem 5.1, combined with the fact that dp(n) has

mean p−1
2 logp n, provided that one averages over n. This (heuristic) observation

would save back exactly the factor of 2 lost in the argument above on the right
side of (8.4), which therefore suggests the possibility of an approach to proving the
prime number theorem3 via radix expansions.

There remain serious obstacles to obtaining a proof of the prime number theorem
along these lines. If one holds p fixed and varies n, then one can rigorously show that
ordp(Gn) is usually of size near 1

2n logp n. However the sum
∑
p≤n ordp(Gn) log p

appearing in (8.4) makes a different averaging: holding n fixed and letting p vary,
restricting to p ≤ n. The analysis of this new averaging leads to new kinds of
arithmetical sums involving radix expansions and we leave their investigation to
future work.

Another relation of binomial products Gn to the distribution of prime num-
bers arises via their connection to products of Farey fractions. This connection
via Möbius inversion creates other products of binomial coefficients which may be
directly related to the Riemann hypothesis, for which see [36]. Moreover, there are
general relations known between families of integer factorial ratios and the Riemann
hypothesis. For some recent work on their structure, see Bell and Bober [7] and
Bober [8].

9. Appendix A: Asymptotic expansions for log(D∗n), log(N∗n) and log(Gn)

In this appendix we derive full asymptotic expansions for the logarithms of the
superfactorial function N∗n =

∏n
k=1 k!, the hyperfactorial function D∗n =

∏n
k=1 k

k

and the binomial products Gn = D∗n/N
∗
n.

We start from the formulas

N∗n = Γ(n+ 1)G(n+ 1), (9.1)

D∗n =
Γ(n+ 1)n

G(n+ 1)
, (9.2)

3The lower bound π(x) ≥ x
log x

+ o( x
log x

) is known to be equivalent to the full prime number

theorem
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in which Γ(n) denotes the Gamma function and G(n) denotes the Barnes G-
function, both discussed below. The formulas (9.1) and (9.2) follow from the
standard identities Γ(n + 1) = n! and G(n + 1) = 1!2! · · · (n − 1)!, respectively.
These two formulas yield

Gn =
D∗n
N∗n

=
Γ(n+ 1)n−1

G(n+ 1)2
. (9.3)

The Gamma function Γ(z) was originally defined to interpolate the factorial
function, and was studied at length by Euler (see [35, Sect. 2.3], and Artin [?]).
It satisfies a functional equation Γ(z + 1) = zΓ(z), and has Γ(1) = 1, which yields
Γ(n + 1) = n!. Its reciprocal is an entire function of order 1 (and maximal type)
defined by the everywhere convergent Hadamard product

1

Γ(z)
= eγzz

∞∏
k=1

(
1 +

z

k

)
e−

z
k ,

in which γ ≈ 0.57721 denotes Euler’s constant. The asymptotic expansion of the
logarithm of the Gamma function is related to Stirling’s formula. It was determined
by Stieltjes, who gave a precise notion of asymptotic expansion (see [35, Sect. 3.1,
and (3.1.10)], [45, Chapter 5, (5.11.1)]). It states4 for any fixed N ≥ 1 that

log Γ(z + 1) = z log z − z +
1

2
log z +

1

2
log(2π)

+

N∑
k=1

B2k

2k(2k − 1)

1

z2k−1
+O

( 1

z2N+1

)
,

(9.4)

where Bk denote the Bernoulli numbers, as determined by the generating function
t

et−1 =
∑∞
k=0Bk

tk

k! , in particular B1 = − 1
2 . This formula is known to be valid

in any sector −π + ε < Arg(z) ≤ π − ε of the complex plane, with the implied
O-constant depending on both N and ε.

The Barnes G-function was introduced by Barnes [4] in 1900. It is a less well
known than the Gamma function, and is closely related to a generalization of the
gamma function, the double gamma function, also introduced by Barnes ([3], [5]),
see also [45, Sect. 5.17]. It satisfies the functional equation

G(z + 1) = Γ(z)G(z),

and has G(1) = 1, which yields G(n+1) = (n−1)!(n−2)! · · · 1!, and also G(n+2) =
N∗n. Recently the Barnes G-function has assumed prominence from its appearance
in formulas relating the Riemann zeta function to random matrix theory. These
formulas appear in random matrix theory for the Circular Unitary Ensemble, and
in conjectured formulas for moments of the Riemann zeta function on the critical
line Re(s) = 1

2 , see Keating and Snaith [30] and Hughes [28].
The Barnes G-function is an entire function of order 2 defined by the everywhere

convergent Weierstrass product

G(z) := (2π)
z
2 exp

(
− 1

2
(z + z2(1 + γ))

) ∞∏
k=1

(1 +
z

k
)k exp(

z2

2k
− z),

4The asymptotic expansion of log Γ(z) is extremely similar to that of log Γ(z + 1), changing

only one term 1
2

log z to − 1
2

log z, via the identity log Γ(z + 1) = log Γ(z) + log z. The expansion

of log Γ(z) given in Whittaker and Watson [54, Sect. 12.33] uses an older notation for Bernoulii

numbers: their notation Bk corresponds to |B2k| in our notation.
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where again γ is Euler’s constant. The asymptotic expansion for the Barnes G-
function5 ([4, p. 285]) has the form, for any fixed N ≥ 1,

logG(z + 1) =
1

2
z2 log z − 3

4
z2 +

(1

2
log(2π)

)
z − 1

12
log z

+ (
1

12
− logA) +

N∑
k=1

B2k+2

2k(2k + 2)

1

z2k
+O

(
1

z2N+2

)
,

(9.5)

where A = exp
(

1
12 − ζ

′
(−1)

)
is the Glasher-Kinkelin constant (Kinkelin [31],

Glaisher [22], [23]), which has a numerical value of A ≈ 1.2824271291 . . . and
where Bk denote the Bernoulli numbers. This asymptotic expansion is valid in any
sector −π+ ε < Arg(z) ≤ π− ε of the complex plane, with the implied O-constant
depending on both N and ε. The original derivation of Barnes did not control the
error term but Ferreira and Löpez [19] later obtained an asymptotic expansion6

with error term as above, see also Ferreira [18] and Nemes [44].
The asymptotic expansions for both Γ(z + 1) and G(z + 1) when extended to

all orders are divergent series. That is, the associated power series in w = 1
z ,

taking N =∞, has radius of convergence zero, a fact which follows from the super
exponential growth of the even Bernoulli numbers |B2n| ∼ 4

√
πn( nπe )2n as n→∞.

The derived asymptotic expansions for log(D∗n), log(N∗n) and and log(Gn) below
also involve Bernoulli numbers and are also divergent series when extended to all
orders.

We now state asymptotic expansions for log(D∗n) and log(N∗n).

Theorem 9.1. (1) The superfactorial N∗n =
∏n
k=1 k! has an asymptotic expansion

for log(N∗n) valid to any given order N ≥ 1, valid uniformly for all n ≥ 2, of the
form

log(N∗n) =
1

2
n2 log n− 3

4
n2 + n log n+

(1

2
log(2π)− 1)

)
n+

5

12
log n+

+ c0 +

N∑
j=1

cj(
1

nj
) +O

(
1

nN+1

)
.

The constant c0 = 1
2 log(2π) + 1

12 − logA where A = exp
(

1
12 − ζ

′
(−1)

)
is the

Glaisher-Kinkelin constant, for j ≥ 1 the coefficients cj are explicitly computable
rational numbers,and the implied O-constant depends on N .

(2) The hyperfactorial D∗n =
∏n
k=1 k

k has an asymptotic expansion for log(D∗n)
up to any given order N ≥ 1, valid uniformly for all n ≥ 2, of the form

log(D∗n) =
1

2
n2 log n− 1

4
n2 +

1

2
n log n+

1

12
log n+

+ d0 +

N∑
j=1

dj
( 1

nj
)

+O

(
1

nN+1

)
.

The constant d0 = logA, where A is the Glaisher-Kinkelin constant, for j ≥ 1
the coefficients dj are explicitly computable rational numbers, and the implied O-
constant depends on N .

5Barnes [4] follows a different convention for Bernoulli numbers: his Bk corresponds to |B2k|
in the notation used here. We have altered his formula accordingly.

6 Their expansion contains a term z log Γ(z + 1) so the asymptotic expansion of log Γ(z + 1)

must be substituted in their formula.
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Proof of Theorem 4.1. (1) We have

log(N∗n) = log Γ(n+ 1) + logG(n+ 1).

Substituting the asymptotic series for Γ(n + 1) and G(n + 1) each term by term

yields (9.6). Here for k ≥ 1 we have c2k = B2k+2

2k(2k+2) while c2k−1 = B2k

(2k)(2k−1) .

(2) We have

log(D∗n) = n log Γ(n+ 1)− logG(n+ 1).

Substituting the asymptotic series Γ(n+1) and G(n+1) term by term on the right
side yields (9.6). Multiplying by n in the first term on the right shifts the coefficient
indices of the asymptotic expansion of log Γ(n+ 1) down by 1. For k ≥ 1 we have

d2k = c2k+1 − c2k =
B2k+2

(2k + 2)(2k + 1)
− B2k+2

2k(2k + 2)
=

B2k+2

2k(2k + 1)(2k + 2)

while d2k−1 = 0. �

Theorem 4.1 immediately yields asymptotic expansion for log(Gn). The resulting
asymptotic behavior of log(Gn) is of smaller order of magnitude, since the leading
term in the asymptotic series of log(N∗n) and log(D∗n) on the right side of (9.6)
cancel.

Theorem 9.2. The complete binomial products Gn =
∏n
j=1

(
n
j

)
have an asymptotic

expansion for log(Gn) to any given order N ≥ 1, valid uniformly for all n ≥ 2, of
the form

log(Gn) =
1

2
n2−1

2
n log n+

(
1−1

2
log(2π))

)
n−1

3
log n+g0+

N∑
j=1

gj
( 1

nj
)
+O

(
1

nN+1

)
.

Here g0 = − 1
2 log(2π)− 1

12 + 2 logA where A is the Glaisher-Kinkelin constant, for
j ≥ 1 the coefficients gj are explicitly computable rational numbers, and the implied
O-constant depends on N .

Proof. We have

log(Gn) = log(D∗n)− log(N∗n). (9.6)

Direct substation from Theorem 4.1 then gives the result. Here the terms gj for
j ≥ 1 are given by gj = dj − cj , so are

g2k = d2k − c2k = − B2k+2

2k(2k + 1)(2k + 2)
− B2k+2

2k(2k + 2)
= − B2k+2

2k(2k + 1)
,

while g2k−1 = −c2k−1 = − B2k

2k(2k−1) . �

Table A.1 below gives coefficients of the first few terms 1
nk in the asymptotic

expansions above in Section 3. The small size of the coefficients in the table is
quite misleading; later coefficients become very large, since the Bernoulli numbers
satisfy |B2n| ∼ 4

√
πn( nπe )2n as n→∞.
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Coefficient k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

log Γ(z + 1) 1
12 0 − 1

360 0 1
1260 0

logG(z + 1) 0 − 1
240 0 1

1008 0 − 1
1440

ck
1
12 − 1

240 − 1
360

1
1008

1
1260 − 1

1440

dk 0 1
720 0 - 1

5040 0 1
10080

gk − 1
12

1
180

1
360 − 1

860 − 1
1260

1
1260

TABLE A.1. Asymptotic expansion coefficients ck, dk, gk.

Remark 9.3. (1) We may extend Gn to an analytic function G
an

(z) of a complex
variable z on the complex plane cut along the nonpositive real axis, using the right
side of (9.3) as a definition:

G
an

(z) :=
Γ(z + 1)z−1

G(z + 1)2
.

Since the Gamma function has no zeros, the function log Γ(z+ 1) is well-defined on
the cut plane, and we may set Γ(z+1)z−1 := exp((z−1) log Γ(z+1)), choosing that

branch of the logarithm that is real on the positive real axis. The function G
an

(z)
is not a meromorphic function; instead, it analytically continues to a multi-valued
function on a suitable Riemann surface which covers the complex plane punctured
at the negative integers. It is an example of an “endlessly continuable” function,
as discussed in Sternin and Shalatov [49] or Sauzin [47].

(2) For number-theoretic applications (as in [36]) one extends the values Gn to
positive real x another way, making it a step function setting Gx := Gbxc. For the

step function definition the function log(Gx), viewed as a function of a real variable
x, has jumps of size � n at integer values of x. These jumps are of much larger
size than most terms in the asymptotic expansion of Theorem 9.2. In this case the
asymptotic expansion in Theorem 9.2 is valid to all orders 1

nk exactly at integer
points x = n.

10. Appendix B: Equality of νb(Gn) and ν∗b (Gn)

In this Appendix we shows that the functions νb(Gn) and ν∗b (Gn) introduced in
Section 5.2 and 6.1 are equal. Recall from Section 5.2 that

νb(Gn) :=
1

b− 1

(
2Sb(n)− (n− 1)db(n)

)
.

Recall from Section 6.1 that

ν∗b (Gn) :=

k∑
j=1

jajp
j −

 k∑
j=1

aj

(
pj − 1

p− 1

)
+

k∑
j=0

1

pj+1

( j∑
u=0

a`p
u
)( k∑

v=j+1

avp
v
) .
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Both these functions are expressed in terms of the base b expansion n =
∑k
j=0 ajb

j .

These functions were defined so that they satisfy νp(Gn) = ν∗p(Gn) = ordp(Gn) for
p a prime.

Theorem 10.1. For each integer b ≥ 2 there holds

νb(Gn) = ν∗b (Gn) for all n ≥ 1.

Proof. We re-express both functions using the floor function. We first have

νb(Gn) =
1

b− 1

2

n−1∑
m=1

m− (b− 1)
∑
j≥1

bm
bj
c

− (n− 1)
∑
j≥0

(
b n
bj
c − bb n

pj+1
c
)

= (n− 1)
∑
j≥1

b n
bj
c − 2

n−1∑
m=1

(∑
j≥1

bm
bj
c
)
.

We also have

ν∗b (Gn) =

k∑
j=1

jbj
(
b n
bj
c − bb n

bj+1
c
)
−

 k∑
j=1

aj

(
bj − 1

b− 1

)
+

k∑
j=0

1

bj+1

( j∑
u=0

aup
u
)( k∑

v=j+1

avb
v
)

=
∑
j≥1

bjb n
bj
c −

 k∑
j=1

(
b n
bj
c − bb n

bj+1
c
)(bj − 1

b− 1

)
+

k∑
j=0

1

bj+1

( j∑
u=0

aub
u
)( k∑

v=j+1

avb
v
)

=
∑
j≥1

bjb n
bj
c −

∑
j≥1

b n
bj
c+

k∑
j=0

1

bj+1

( j∑
u=0

aub
u
)( k∑

v=j+1

avb
v
)

=
∑
j≥1

bjb n
bj
c −

∑
j≥1

b n
bj
c+

∑
j≥1

( n
bj
− b n

bj
c
)(

bjb n
bj
c
) .

Combining these two formulas yields

νb(Gn)− ν∗b (Gn) = n
∑
j≥1

⌊ n
bj

⌋
−

n−1∑
m=1

(∑
j≥1

⌊m
bj

⌋)
−
∑
j≥1

bj

bn/bjc∑
k=1

k


=
∑
j≥1

n⌊ n
bj

⌋
−

n−1∑
m=1

⌊m
bj

⌋
− bj

bn/bjc∑
k=1

k

 .

We assert that each inner sum (for fixed j) on the right side of this sum is 0. To
see this, we have

n
⌊ n
bj

⌋
−

n−1∑
m=1

⌊m
bj

⌋
− bj

bn/bjc∑
k=1

k

 =

bn/bjc∑
k=1

(n− bjk)−
n−1∑
m=1

bm
bj
c.

=

bn/bjc∑
k=1

(n− bjk)−
n−1∑
m=1

bn−m
bj
c = 0.

The equality to zero on the last line follows by a counting argument. We evaluate
the last sum on the right in blocks of length bj , taking 1 + (k − 1)bj ≤ m ≤
kbj for 1 ≤ k ≤ bn/bjc. If n = bjbn/bjc + a then the first block contributes
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bjbn/bjc − (bj − a) = n − bj . The k-th block contributes n − bjk similarly, and a
possible final “short” block contributes 0. �
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