Writing π as sum of arcotangents with linear recurrent sequences, Golden mean and Lucas numbers

Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru

Abstract

In this paper, we study the representation of π as sum of arcotangents. In particular, we obtain new identities by using linear recurrent sequences. Moreover, we provide a method in order to express π as sum of arcotangents involving the Golden mean, the Lucas numbers, and more in general any quadratic irrationality.

1 Expressions of π via arctangent function with linear recurrent sequences

The problem of expressing π as the sum of arctangents has been deeply studied during the years. The first expressions are due to Newton (1676), Machin (1706), Euler (1755), who expressed π using the following identities

$$
\begin{gathered}
\frac{\pi}{2}=2 \arctan \left(\frac{1}{2}\right)+\arctan \left(\frac{4}{7}\right)+\arctan \left(\frac{1}{8}\right) \\
\frac{\pi}{4}=\arctan \left(\frac{1}{2}\right)+\arctan \left(\frac{1}{3}\right) \\
\frac{\pi}{4}=5 \arctan \left(\frac{1}{7}\right)+2 \arctan \left(\frac{3}{79}\right),
\end{gathered}
$$

respectively (see, e.g., [12] and [13). Many other identities and methods to express and calculate π involving the arctangent function have been developed. Some recent results are obtained in [6] and [2].

In this section, we find a method to generate new expressions of π in terms of sum of arctangents, mainly using the properties of linear recurrent sequences. For the sake of simplicity, we will use the following notation:

$$
A(x)=\arctan (x) .
$$

It is well-known that for $x, y \geq 0$, if $y \neq \frac{1}{x}$

$$
A(x)+A(y)=\left\{\begin{array}{lll}
A(x \odot y) & \text { if } & x y<1, \\
A(x \odot y)+\operatorname{sign}(x) \pi & \text { if } & x y>1
\end{array}\right.
$$

where

$$
x \odot y=\frac{x+y}{1-x y} .
$$

Let us denote by $x^{\odot n}$ the n-th power of x with respect to the product \odot.
Remark 1. The product \odot is associative, commutative and 0 is the identity.
Definition 1. We denote by $a=\left(a_{n}\right)_{n=0}^{+\infty}=\mathcal{W}(\alpha, \beta, p, q)$ the linear recurrent sequence of order 2 with characteristic polynomial $t^{2}-p t+q$ and initial conditions α and β, i.e.,

$$
\left\{\begin{array}{l}
a_{0}=\alpha \\
a_{1}=\beta \\
a_{n}=p a_{n-1}-q a_{n-2} \quad \forall n \geq 2
\end{array}\right.
$$

Theorem 1. Given $n \in \mathbb{N}$ and $x \in \mathbb{R}$, with $x \neq \pm 1$, we have

$$
\left(\frac{1}{x}\right)^{\odot n}=\frac{v_{n}(x)}{u_{n}(x)}, \quad \forall n \geq 1
$$

where

$$
\begin{equation*}
\left(u_{n}(x)\right)_{n=0}^{\infty}=\mathcal{W}\left(1, x, 2 x, 1+x^{2}\right), \quad\left(v_{n}(x)\right)_{n=0}^{\infty}=\mathcal{W}\left(0,1,2 x, 1+x^{2}\right) \tag{1}
\end{equation*}
$$

Proof. The matrix

$$
M=\left(\begin{array}{cc}
x & 1 \\
-1 & x
\end{array}\right)
$$

has characteristic polynomial $t^{2}-2 x t+x^{2}+1$. Consequently, it is immediate to see that

$$
M^{n}=\left(\begin{array}{cc}
u_{n}(x) & v_{n}(x) \\
-v_{n}(x) & u_{n}(x)
\end{array}\right) .
$$

Using the matrix M we can observe that

$$
\left(\begin{array}{cc}
u_{n-1}(x) & v_{n-1}(x) \\
-v_{n-1}(x) & u_{n-1}(x)
\end{array}\right)\left(\begin{array}{cc}
x & 1 \\
-1 & x
\end{array}\right)=\left(\begin{array}{cc}
u_{n}(x) & v_{n}(x) \\
-v_{n}(x) & u_{n}(x)
\end{array}\right)
$$

i.e.,

$$
\left\{\begin{array}{l}
u_{n}(x)=x u_{n-1}(x)-v_{n-1}(x) \\
v_{n}(x)=u_{n-1}(x)+x v_{n-1}(x)
\end{array} \quad, \quad \forall n \geq 1\right.
$$

Now, we prove the theorem by induction. It is straightforward to check that

$$
\frac{1}{x}=\frac{v_{1}(x)}{u_{1}(x)}, \quad\left(\frac{1}{x}\right)^{\odot 2}=\frac{\frac{1}{x}+\frac{1}{x}}{1-\frac{1}{x^{2}}}=\frac{2 x}{x^{2}-1}=\frac{v_{2}(x)}{u_{2}(x)}
$$

Moreover, let us suppose

$$
\left(\frac{1}{x}\right)^{\odot(n-1)}=\frac{v_{n-1}(x)}{u_{n-1}(x)}
$$

for a given integer $n \geq 1$, then

$$
\left(\frac{1}{x}\right)^{\odot n}=\frac{1}{x} \odot\left(\frac{1}{x}\right)^{\odot(n-1)}=\frac{1}{x} \odot \frac{v_{n-1}(x)}{u_{n-1}(x)}=\frac{u_{n-1}(x)+x v_{n-1}(x)}{x u_{n-1}(x)-v_{n-1}(x)}=\frac{v_{n}(x)}{u_{n}(x)}
$$

Theorem 2. Given $n \in \mathbb{N}$ and $x \in \mathbb{R}$, with $x \neq \pm 1$, we have

$$
x^{\odot n}=(-1)^{n+1}\left(\frac{v_{n}(x)}{u_{n}(x)}\right)^{(-1)^{n}}, \quad \forall n \geq 1
$$

where $u_{n}(x)$ and $v_{n}(x)$ are given by Eq.(11).
Proof. By using the same arguments of Theorem 1, we can write

$$
x=\frac{u_{1}(x)}{v_{1}(x)} \quad \text { and } \quad x^{\odot 2}=\frac{2 x}{1-\frac{1}{x^{2}}}=-\frac{v_{2}(x)}{u_{2}(x)} .
$$

Let us suppose by induction that $x^{\odot(n-1)}=(-1)^{n}\left(\frac{v_{n-1}(x)}{u_{n-1}(x)}\right)^{(-1)^{n-1}}$, then if n is even

$$
x^{\odot n}=\frac{x-\frac{v_{n-1}(x)}{u_{n-1}(x)}}{1+x \frac{v_{n-1}(x)}{u_{n-1}(x)}}=\frac{x u_{n-1}(x)-v_{n-1}(x)}{u_{n-1}(x)+x v_{n-1}(x)}=\frac{u_{n}(x)}{v_{n}(x)}
$$

if n is odd

$$
x^{\odot n}=\frac{x+\frac{u_{n-1}(x)}{v_{n-1}(x)}}{1-x \frac{u_{n-1}(x)}{v_{n-1}(x)}}=\frac{x v_{n-1}(x)+u_{n-1}(x)}{v_{n-1}(x)-x u_{n-1}(x)}=-\frac{v_{n}(x)}{u_{n}(x)}
$$

Let us highlight the matrix representation of the sequences $\left(u_{n}\right)_{n=0}^{\infty}$ and $\left(v_{n}\right)_{n=0}^{\infty}$ used in the previous theorem. Given the matrix

$$
M=\left(\begin{array}{cc}
x & 1 \\
-1 & x
\end{array}\right)
$$

we have

$$
\begin{gathered}
M^{n}=\left(\begin{array}{cc}
u_{n}(x) & v_{n}(x) \\
-v_{n}(x) & u_{n}(x)
\end{array}\right) \\
M^{n}\binom{v_{m}(x)}{u_{m}(x)}=\binom{v_{n+m}(x)}{u_{n+m}(x)}
\end{gathered}
$$

The sequences $\left(u_{n}\right)_{n=0}^{\infty}$ and $\left(v_{n}\right)_{n=0}^{\infty}$ are particular cases of the Rédei polynomials $N_{n}(d, z)$ and $D_{n}(d, z)$, introduced by Rédei [10] from the expansion of $(z+\sqrt{d})^{n}=N_{n}(d, z)+D_{n}(d, z) \sqrt{d}$. The rational functions $\frac{N_{n}(d, z)}{D_{n}(d, z)}$ have many interesting properties, e.g., they are permutations of finite fields, as described in the book of Lidl [7]. In [1], the authors showed that Rédei polynomials are linear recurrent sequences of degree 2 :

$$
\left(N_{n}(d, z)\right)_{n=0}^{\infty}=\mathcal{W}\left(1, z, 2 z, z^{2}-d\right), \quad\left(D_{n}(d, z)\right)_{n=0}^{\infty}=\mathcal{W}\left(0,1,2 z, z^{2}-d\right)
$$

Thus, we can observe that

$$
u_{n}(x)=N_{n}(-1, x), \quad v_{n}(x)=D_{n}(-1, x), \quad \forall n \geq 0
$$

Moreover, a closed expression of Rédei polynomials is well-known (see, e.g., [1]). In this way, we can derive a closed expression for the sequences $\left(u_{n}\right)_{n=0}^{\infty}$ and $\left(v_{n}\right)_{n=0}^{\infty}$:

$$
\left\{\begin{array}{l}
u_{n}(x)=\sum_{k=0}^{[n / 2]}\binom{n}{2 k}(-1)^{k} x^{n-2 k} \tag{2}\\
v_{n}(x)=\sum_{k=0}^{[n / 2]}\binom{n}{2 k+1}(-1)^{k} x^{n-2 k-1}
\end{array}\right.
$$

Rational powers with respect to the product \odot can also be considered by defining the n-th root as usual by

$$
\begin{equation*}
z=x^{\odot \frac{1}{n}} \quad \text { iff } \quad z^{\odot n}=x \tag{3}
\end{equation*}
$$

Moreover, by means of Theorem 2, we have that Eqs. (3) are equivalent to

$$
x=(-1)^{n+1}\left(\frac{v_{n}(z)}{u_{n}(z)}\right)^{(-1)^{n}}
$$

i.e., by Eqs. (2), the n-th root of x with respect to the product \odot is a root of the polynomial

$$
P_{n}(z)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{\left\lfloor\frac{k+1}{2}\right\rfloor} x^{\frac{1+(-1)^{k+1}}{2}} z^{k} .
$$

Let us consider the equation

$$
\begin{equation*}
n A\left(\frac{1}{x}\right)+A\left(\frac{1}{y}\right)=\frac{\pi}{4}, \tag{4}
\end{equation*}
$$

we want to solve it when n and x are integer values. We point out that Eq. (4) is equivalent to

$$
\begin{equation*}
\left(\frac{1}{x}\right)^{\odot n} \odot \frac{1}{y}=1 \tag{5}
\end{equation*}
$$

By Theorem 1 we have

$$
\left(\frac{1}{x}\right)^{\odot n} \odot \frac{1}{y}=\frac{v_{n}(x)}{u_{n}(x)} \odot \frac{1}{y}=\frac{u_{n}(x)+v_{n}(x) y}{-v_{n}(x)+u_{n}(x) y} .
$$

Thus

$$
y=\frac{u_{n}(x)+v_{n}(x)}{u_{n}(x)-v_{n}(x)}
$$

solves Eq. (5), i.e.,

$$
\left(\frac{1}{x}\right)^{\odot n} \odot \frac{u_{n}(x)+v_{n}(x)}{u_{n}(x)-v_{n}(x)}=1, \quad \forall x \in \mathbb{Z}
$$

and consequently we can solve Eq. (4), i.e.,

$$
\begin{equation*}
n A\left(\frac{1}{x}\right)+A\left(\frac{u_{n}(x)-v_{n}(x)}{u_{n}(x)+v_{n}(x)}\right)=\frac{\pi}{4}+k(n, x) \pi, \quad \forall x \in \mathbb{Z} \tag{6}
\end{equation*}
$$

where k is a certain integer number depending on n and x. Precisely, we have

$$
\begin{equation*}
k(n, x)=\operatorname{sign}\left(n A\left(\frac{1}{x}\right)-\frac{\pi}{4}\right)\left(\lfloor T\rfloor+\chi_{\left(\frac{1}{2}, 1\right)}(\{T\})\right), \tag{7}
\end{equation*}
$$

where $\chi_{\left(\frac{1}{2}, 1\right)}$ is the characteristic function of the set $\left(\frac{1}{2}, 1\right)$ and

$$
T=\frac{\left|\frac{\pi}{4}-n A\left(\frac{1}{x}\right)\right|}{\pi}
$$

In order to obtain Eq. (77), we can rewrite Eq. (6) as

$$
A\left(\frac{u_{n}(x)-v_{n}(x)}{u_{n}(x)+v_{n}(x)}\right)=\frac{\pi}{4}-n A\left(\frac{1}{x}\right)+k(n, x) \pi .
$$

Let us consider the case in which the first member lies in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. If $\frac{\pi}{4}-n A\left(\frac{1}{x}\right) \geq 0$, then $k(n, x)$ must be negative so that $\frac{\pi}{4}-$ $n A\left(\frac{1}{x}\right)+k(n, x) \pi$ lies in the correct interval. Since

$$
\frac{\pi}{4}-n A\left(\frac{1}{x}\right)=\pi(\lfloor T\rfloor+\{T\})
$$

it follows that if $0 \leq\{T\} \leq \frac{1}{2}$, then $0 \leq \pi \cdot\{T\} \leq \frac{\pi}{2}$ and consequently $k=$ $-\lfloor T\rfloor$. Conversely, if $\frac{1}{2}<\{T\}<1$, then $\frac{\pi}{2}<\pi \cdot\{T\}<\pi$ and, observing that

$$
\frac{\pi}{4}-n A\left(\frac{1}{x}\right)=\pi(\lfloor T\rfloor+1)+\pi(\{T\}-1)
$$

we obtain $-\frac{\pi}{2}<\pi(\{T\}-1)<0$, that is $k(n, x)=-(\lfloor T\rfloor+1)$.
Similar considerations apply to $\frac{\pi}{4}-n A\left(\frac{1}{x}\right)<0$, obtaining Eq. (77).
Proposition 1. The sequences $\left(u_{n}(x)+v_{n}(x)\right)_{n=0}^{\infty}$ and $\left(u_{n}(x)-v_{n}(x)\right)_{n=0}^{\infty}$ are linear recurrent sequences of order 2 and precisely
$\left(u_{n}(x)+v_{n}(x)\right)_{n=0}^{\infty}=\mathcal{W}\left(1, x+1,2 x, 1+x^{2}\right), \quad\left(u_{n}(x)-v_{n}(x)\right)_{n=0}^{\infty}=\mathcal{W}\left(1, x-1,2 x, 1+x^{2}\right)$
Proof. It immediately follows from the definition of the sequences $\left(u_{n}\right)_{n=0}^{\infty}$ and $\left(v_{n}\right)_{n=0}^{\infty}$.

Eq. (6) provides infinitely many identities that express π as sum of arctangents.
Example 1. Taking $n=7$ and $x=3$ in Eq. (6) we have

$$
7 A\left(\frac{1}{3}\right)+A\left(\frac{u_{7}(3)-v_{7}(3)}{u_{7}(3)+v_{7}(3)}\right)=\frac{\pi}{4}
$$

i.e.,

$$
7 \arctan \left(\frac{1}{3}\right)-\arctan \left(\frac{278}{29}\right)=\frac{\pi}{4}
$$

For $n=8$ and $x=3$, we have

$$
8 \arctan \left(\frac{1}{3}\right)+\arctan \left(\frac{863}{191}\right)=\frac{\pi}{4}+\pi .
$$

For $n=5$ and $x=2$, we have

$$
5 \arctan \left(\frac{1}{2}\right)-\arctan \left(\frac{79}{3}\right)=\frac{\pi}{4}
$$

For $n=2$ and $x=7$, we have

$$
2 \arctan \left(\frac{1}{7}\right)+\arctan \left(\frac{17}{31}\right)=\frac{\pi}{4}
$$

2 Golden mean and π

In Mathematics the most famous numbers are π and the Golden mean. Thus, it is very interesting to find identities involving these special numbers. In particular, many expressions for π in terms of the Golden mean have been found. For example, using the Machin formula of π via arctangents, the following equalities arise

$$
\begin{gathered}
\frac{\pi}{4}=\arctan \left(\frac{1}{\phi}\right)+\arctan \left(\frac{1}{\phi^{3}}\right) \\
\frac{\pi}{4}=2 \arctan \left(\frac{1}{\phi^{2}}\right)+\arctan \left(\frac{1}{\phi^{6}}\right) \\
\frac{\pi}{4}=3 \arctan \left(\frac{1}{\phi^{3}}\right)+\arctan \left(\frac{1}{\phi^{5}}\right) \\
\pi=12 \arctan \left(\frac{1}{\phi^{3}}\right)+4 \arctan \left(\frac{1}{\phi^{5}}\right),
\end{gathered}
$$

see [3], [4], [5]. Moreover, in [8], the authors found all possible relations of the form

$$
\frac{\pi}{4}=a \arctan \left(\phi^{k}\right)+b \arctan \left(\phi^{l}\right),
$$

where a, b are rational numbers and k, l integers.
In this section, we find new expressions of π as sum of arctangents involving ϕ. When $n=2$, from Eq. (5) we find

$$
\begin{equation*}
y=\frac{x^{2}+2 x-1}{x^{2}-2 x-1} . \tag{8}
\end{equation*}
$$

It is well-known that the minimal polynomial of ϕ^{m} is

$$
f_{m}(t)=t^{2}-L_{m} t+(-1)^{m}
$$

where $\left(L_{m}\right)_{m=0}^{\infty}=\mathcal{W}(2,1,1,-1)$ is the sequence of Lucas numbers (A000032 in OEIS [11). If we set $x=\phi^{m}$ in (8), then it is equivalent to replace $x^{2}+2 x-1$ and $x^{2}-2 x-1$ with

$$
x^{2}+2 x-1 \quad\left(\bmod f_{m}(x)\right), \quad x^{2}-2 x-1 \quad\left(\bmod f_{m}(x)\right)
$$

respectively. When m is odd, dividing by $x^{2}-L_{m} x-1$, we obtain

$$
y=\frac{\left(L_{m}+2\right) x}{\left(L_{m}-2\right) x}=\frac{L_{m}+2}{L_{m}-2}
$$

and when m is even, we have

$$
y=\frac{-2+\left(2+L_{m}\right) x}{-2+\left(-2+L_{m}\right) x}
$$

and therefore

$$
y=\frac{-2+\left(2+L_{m}\right) \phi^{m}}{-2+\left(-2+L_{m}\right) \phi^{m}} .
$$

We find the following identities

$$
\begin{align*}
& \frac{\pi}{4}=2 \arctan \left(\frac{1}{\phi^{2 k+1}}\right)+\arctan \left(\frac{L_{2 k+1}-2}{L_{2 k+1}+2}\right) \tag{9}\\
\frac{\pi}{4}= & 2 \arctan \left(\frac{1}{\phi^{2 k}}\right)+\arctan \left(\frac{-2+\left(L_{2 k}-2\right) \phi^{2 k}}{-2+\left(L_{2 k}+2\right) \phi^{2 k}}\right) .
\end{align*}
$$

The above procedure can be reproduced for any root α of a polynomial $x^{2}-h x+k$, finding expression of π as the sum of arctangents involving quadratic irrationalities.
Example 2. Let us express π in terms of $\sqrt{2}$. Its minimal polynomial is $x^{2}-2$ and
$x^{2}+2 x-1 \quad\left(\bmod x^{2}-2\right)=1+2 x, \quad x^{2}-2 x-1 \quad\left(\bmod x^{2}-2\right)=1-2 x$.
We have

$$
\frac{\pi}{4}=2 \arctan \left(\frac{1}{\sqrt{2}}\right)+\arctan \left(\frac{1-2 \sqrt{2}}{1+2 \sqrt{2}}\right)
$$

In general, if k is odd the minimal polynomial of $\sqrt{2^{k}}$ is $x^{2}-2^{k}$ and $x^{2}+2 x-1 \quad\left(\bmod x^{2}-2^{k}\right)=2^{k}-1+2 x, \quad x^{2}-2 x-1 \quad\left(\bmod x^{2}-2^{k}\right)=2^{k}-1-2 x$.
We have the following identity

$$
\frac{\pi}{4}=2 \arctan \left(\frac{1}{\sqrt{2^{k}}}\right)+\arctan \left(\frac{2^{k}-1-2^{\frac{k}{2}+1}}{2^{k}-1+2^{\frac{k}{2}+1}}\right)
$$

Example 3. Let us consider $\alpha=\frac{1}{2}(5+\sqrt{29})$. The minimal polynomial of α^{3} is $x^{2}-140 x-1$ and
$x^{2}+2 x-1 \quad\left(\bmod x^{2}-140 x-1\right)=142 x, \quad x^{2}-2 x-1 \quad\left(\bmod x^{2}-140 x-1\right)=138 x$.
Thus, we have

$$
\frac{\pi}{4}=2 \arctan \left(\frac{8}{(5+\sqrt{29})^{3}}\right)+\arctan \left(\frac{69}{71}\right) .
$$

We can find different identities involving π and the Golden mean considering the equation

$$
\begin{equation*}
x^{\odot \frac{1}{2}} \odot y=1 \tag{10}
\end{equation*}
$$

Proposition 2. For any real number x, the following equalities hold

$$
\begin{equation*}
2 A\left(-x \pm \sqrt{1+x^{2}}\right)+A(x)= \pm \frac{\pi}{2} \tag{11}
\end{equation*}
$$

Proof. By Theorem 2 we know that the roots of the polynomial $P_{2}(z)=$ $x z^{2}+2 z-x$ are the values of $x^{\odot \frac{1}{2}}$. Hence, from Eq. (10) we obtain

$$
\begin{equation*}
z_{i} \odot y=1, \quad i=1,2, \tag{12}
\end{equation*}
$$

where

$$
z_{1}=\frac{-1+\sqrt{1+x^{2}}}{x} \text { and } z_{2}=\frac{-1-\sqrt{1+x^{2}}}{x} .
$$

Finally, solving Eq. (10) with respect to y we get

$$
y_{1}=-x+\sqrt{1+x^{2}} \quad \text { or } \quad y_{2}=-x-\sqrt{1+x^{2}}
$$

It should be noted that if x is positive then $y_{2}<0$ and $z_{2} \cdot y_{2}>1$ so that

$$
\frac{1}{2} A(x)+A\left(y_{2}\right)=A\left(x^{\odot \frac{1}{2}}+y_{2}\right)-\frac{\pi}{2}
$$

similar reasoning can be applied if x is negative.
Now, substituting in Eqs. (12) we have

$$
\frac{1}{2} A(x)+A\left(-x \pm \sqrt{1+x^{2}}\right)= \pm \frac{\pi}{4}
$$

or equivalently

$$
2 A\left(-x \pm \sqrt{1+x^{2}}\right)+A(x)= \pm \frac{\pi}{2} .
$$

Eqs. (11) yield to other interesting formulas involving π, ϕ and Lucas numbers. To show this, we need some identities about Lucas numbers, Fibonacci numbers and the Golden mean:

$$
\phi^{m}=\frac{L_{m}+F_{m} \sqrt{5}}{2}, \quad L_{m}^{2}-5 F_{m}^{2}=4(-1)^{m}
$$

see, e.g., 9]. Considering m odd, if we set

$$
x=\frac{L_{m}}{2}
$$

it follows

$$
\begin{equation*}
-x-\sqrt{1+x^{2}}=\frac{-L_{m}-\sqrt{4+L_{m}^{2}}}{2}=\frac{-L_{m}-F_{m} \sqrt{5}}{2}=-\phi^{m} \tag{13}
\end{equation*}
$$

Thus, substituting Eq. (13) into Eqs. (11) we find the formula

$$
\begin{equation*}
-\frac{\pi}{2}=\arctan \left(\frac{L_{2 k+1}}{2}\right)-2 \arctan \left(\phi^{2 k+1}\right) \tag{14}
\end{equation*}
$$

On the other hand, if we consider $y=-x+\sqrt{1+x^{2}}$ we have

$$
\begin{equation*}
-x+\sqrt{1+x^{2}}=\frac{-L_{m}+\sqrt{4+L_{m}^{2}}}{2}=\frac{-L_{m}+F_{m} \sqrt{5}}{2} \tag{15}
\end{equation*}
$$

Moreover,

$$
\phi^{m} \cdot \frac{-L_{m}+F_{m} \sqrt{5}}{2}=\frac{-L_{m}^{2}+5 F_{m}^{2}}{4}=1
$$

and substituting in Eqs. (11) another interesting formula arises

$$
\begin{equation*}
\frac{\pi}{2}=\arctan \left(\frac{L_{2 k+1}}{2}\right)+2 \arctan \left(\frac{1}{\phi^{2 k+1}}\right) \tag{16}
\end{equation*}
$$

Furthermore, by Eq. (91) we obtain an identity that only involves the Lucas numbers

$$
\begin{equation*}
\frac{\pi}{4}=\arctan \left(\frac{L_{2 k+1}}{2}\right)-\arctan \left(\frac{L_{2 k+1}-2}{L_{2 k+1}+2}\right) \tag{17}
\end{equation*}
$$

The previous identity corresponds to a special case of the following proposition.

Proposition 3. Let f, g be real functions. If

$$
g(x)=\frac{f(x)-1}{f(x)+1}
$$

then

$$
\begin{equation*}
A(f(x))-A(g(x))=\frac{\pi}{4}+k \pi \tag{18}
\end{equation*}
$$

for some integer k.

Proof. We use the product \odot for solving $A(f(x))-A(g(x))=\frac{\pi}{4}$. We have

$$
A\left(\frac{f(x)-g(x)}{1+f(x) g(x)}\right)=\frac{\pi}{4}
$$

and

$$
\frac{f(x)-g(x)}{1+f(x) g(x)}=1
$$

from which

$$
g(x)=\frac{f(x)-1}{f(x)+1} .
$$

Remark 2. Eq. (18) has been found by means of only elementary algebraic considerations. The same result could be derived from analysis. Observe that given the functions f and g satisfying the hypothesis of the previous proposition, then $(\arctan f(x))^{\prime}=(\arctan g(x))^{\prime}$.

When $f(x)$ and $g(x)$ are specified in Eq. (18), the value of k can be retrieved as in Eq. (7) with analogous considerations.

The previous proposition allows to determine new beautiful identities. For example, the function $f(x)=\frac{a x}{b}$ determines the function $g(x)=\frac{a x-b}{a x+b}$ and

$$
A\left(\frac{a x}{b}\right)-A\left(\frac{a x-b}{a x+b}\right)=\frac{\pi}{4}+k \pi
$$

For $a=1$ and $b=2$, we obtain the following interesting formulas

$$
\begin{equation*}
\frac{\pi}{4}=\arctan \left(\frac{x}{2}\right)-\arctan \left(\frac{x-2}{x+2}\right) \tag{19}
\end{equation*}
$$

which holds for any real number $x>-2$ and

$$
\begin{equation*}
-\frac{3 \pi}{4}=\arctan \left(\frac{x}{2}\right)-\arctan \left(\frac{x-2}{x+2}\right) \tag{20}
\end{equation*}
$$

valid for any real number $x<-2$. Eqs. (19) and (20) provide infinitely many interesting identities, like Eq. (17) and, e.g., the following ones

$$
\begin{gathered}
\frac{\pi}{4}=\arctan \left(\frac{\phi}{2}\right)-\arctan \left(\frac{\phi-2}{\phi+2}\right) \\
\frac{\pi}{4}=\arctan \left(\frac{F_{m}}{2}\right)-\arctan \left(\frac{F_{m}-2}{F_{m}+2}\right) \\
\frac{\pi}{4}=\arctan \left(\frac{\sqrt{2}}{2}\right)-\arctan \left(\frac{\sqrt{2}-2}{\sqrt{2}+2}\right)
\end{gathered}
$$

References

[1] S. Barbero, U. Cerruti and N. Murru, Solving the Pell equation via Rédei rational functions, The Fibonacci Quarterly 48 (2010) 348-357.
[2] J. S. Calcut, Gaussian integers and arctangent identities for π, The American Mathematical Monthly 116(6) (2009) 515-530.
[3] H. C. Chan and S. Ebbing, π in terms of ϕ : Some recent developments, Proc. of the Twelfth International Conference in Fibonacci Numbers and Their Applications (San Francisco State University, 2006).
[4] H. C. Chan, π in terms of ϕ, The Fibonacci Quarterly 44(2) (2006) 141-145.
[5] H. C. Chan, Machin-type formulas expressing π in terms of ϕ, The Fibonacci Quarterly 46/48(1), (2008/2009) 32-37.
[6] H. Chien-Lih, Some observations on the method of arctangents for the calculation of π, The Mathematical Gazette 88(512) (2004) 270-278.
[7] R. Lidl, G. L. Mullen and G. Turnwald, Dickson polynomials, Pitman Monogr. Surveys Pure appl. Math. 65 (Longman, 1993).
[8] F. Luca and P. Stanica, On Machin's formula with powers of the Golden section, International Journal of Number Theory 05(973) (2009).
[9] S. Rabinowitz, Algorithmic manipulation of Fibonacci identities, Applications of Fibonacci Numbers 6 (1996) 389-408.
[10] L. Rédei, Uber eindeuting umkehrbare polynome in endlichen korpen, Acta Sci. Math. (Szeged) 11 (1946) 85-92.
[11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Published electronically at http://www.research.att.com/njas/sequences (2010).
[12] I. Tweddle, John Machin and Robert Simson on inverse-tangent series for π, Arch. Hist. Exact Sci. 42 (1991) 1-14.
[13] J. W. Wrench, The evolution of extended decimal approximations of π, Math. Teacher (1960) 644-650.

