
ar
X

iv
:1

40
9.

64
55

v1
  [

m
at

h.
N

T
] 

 2
3 

Se
p 

20
14

Writing π as sum of arcotangents with linear

recurrent sequences, Golden mean and Lucas

numbers

Marco Abrate, Stefano Barbero, Umberto Cerruti, Nadir Murru

Abstract

In this paper, we study the representation of π as sum of arcotan-
gents. In particular, we obtain new identities by using linear recurrent
sequences. Moreover, we provide a method in order to express π as
sum of arcotangents involving the Golden mean, the Lucas numbers,
and more in general any quadratic irrationality.

1 Expressions of π via arctangent function with

linear recurrent sequences

The problem of expressing π as the sum of arctangents has been deeply
studied during the years. The first expressions are due to Newton (1676),
Machin (1706), Euler (1755), who expressed π using the following identities

π

2
= 2arctan

(

1

2

)

+ arctan

(

4

7

)

+ arctan

(

1

8

)

π

4
= arctan

(

1

2

)

+ arctan

(

1

3

)

π

4
= 5arctan

(

1

7

)

+ 2arctan

(

3

79

)

,

respectively (see, e.g., [12] and [13]). Many other identities and methods to
express and calculate π involving the arctangent function have been devel-
oped. Some recent results are obtained in [6] and [2].

In this section, we find a method to generate new expressions of π in
terms of sum of arctangents, mainly using the properties of linear recurrent
sequences. For the sake of simplicity, we will use the following notation:

A(x) = arctan(x).
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It is well–known that for x, y ≥ 0, if y 6=
1

x

A(x) +A(y) =

{

A(x⊙ y) if xy < 1,

A(x⊙ y) + sign(x)π if xy > 1,

where

x⊙ y =
x+ y

1− xy
.

Let us denote by x⊙n the n–th power of x with respect to the product ⊙.

Remark 1. The product ⊙ is associative, commutative and 0 is the identity.

Definition 1. We denote by a = (an)
+∞

n=0 = W(α, β, p, q) the linear recur-
rent sequence of order 2 with characteristic polynomial t2−pt+q and initial
conditions α and β, i.e.,











a0 = α

a1 = β

an = pan−1 − qan−2 ∀n ≥ 2 .

Theorem 1. Given n ∈ N and x ∈ R, with x 6= ±1, we have

(

1

x

)⊙n

=
vn(x)

un(x)
, ∀n ≥ 1

where

(un(x))
∞

n=0 = W(1, x, 2x, 1 + x2), (vn(x))
∞

n=0 = W(0, 1, 2x, 1 + x2). (1)

Proof. The matrix

M =

(

x 1
−1 x

)

has characteristic polynomial t2−2xt+x2+1. Consequently, it is immediate
to see that

Mn =

(

un(x) vn(x)
−vn(x) un(x)

)

.

Using the matrix M we can observe that

(

un−1(x) vn−1(x)
−vn−1(x) un−1(x)

)(

x 1
−1 x

)

=

(

un(x) vn(x)
−vn(x) un(x)

)

,

i.e.,
{

un(x) = xun−1(x)− vn−1(x)

vn(x) = un−1(x) + xvn−1(x)
, ∀n ≥ 1.
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Now, we prove the theorem by induction. It is straightforward to check that

1

x
=

v1(x)

u1(x)
,

(

1

x

)⊙2

=
1
x + 1

x

1− 1
x2

=
2x

x2 − 1
=

v2(x)

u2(x)
.

Moreover, let us suppose

(

1

x

)⊙(n−1)

=
vn−1(x)

un−1(x)

for a given integer n ≥ 1, then

(

1

x

)⊙n

=
1

x
⊙
(

1

x

)⊙(n−1)

=
1

x
⊙

vn−1(x)

un−1(x)
=

un−1(x) + xvn−1(x)

xun−1(x)− vn−1(x)
=

vn(x)

un(x)
.

Theorem 2. Given n ∈ N and x ∈ R, with x 6= ±1, we have

x⊙n = (−1)n+1

(

vn(x)

un(x)

)(−1)n

, ∀n ≥ 1

where un(x) and vn(x) are given by Eq.(1).

Proof. By using the same arguments of Theorem 1, we can write

x =
u1(x)

v1(x)
and x⊙2 =

2x

1− 1
x2

= −
v2(x)

u2(x)
.

Let us suppose by induction that x⊙(n−1) = (−1)n

(

vn−1(x)

un−1(x)

)(−1)n−1

, then

if n is even

x⊙n =

x−
vn−1(x)

un−1(x)

1 + x
vn−1(x)

un−1(x)

=
xun−1(x)− vn−1(x)

un−1(x) + xvn−1(x)
=

un(x)

vn(x)
,

if n is odd

x⊙n =

x+
un−1(x)

vn−1(x)

1− x
un−1(x)

vn−1(x)

=
xvn−1(x) + un−1(x)

vn−1(x)− xun−1(x)
= −

vn(x)

un(x)
.
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Let us highlight the matrix representation of the sequences (un)
∞
n=0 and

(vn)
∞
n=0 used in the previous theorem. Given the matrix

M =

(

x 1
−1 x

)

we have

Mn =

(

un(x) vn(x)
−vn(x) un(x)

)

Mn

(

vm(x)
um(x)

)

=

(

vn+m(x)
un+m(x)

)

The sequences (un)
∞
n=0 and (vn)

∞
n=0 are particular cases of the Rédei poly-

nomials Nn(d, z) and Dn(d, z), introduced by Rédei [10] from the expansion

of (z+
√
d)n = Nn(d, z)+Dn(d, z)

√
d. The rational functions

Nn(d, z)

Dn(d, z)
have

many interesting properties, e.g. , they are permutations of finite fields, as
described in the book of Lidl [7]. In [1], the authors showed that Rédei
polynomials are linear recurrent sequences of degree 2:

(Nn(d, z))
∞

n=0 = W(1, z, 2z, z2 − d), (Dn(d, z))
∞

n=0 = W(0, 1, 2z, z2 − d).

Thus, we can observe that

un(x) = Nn(−1, x), vn(x) = Dn(−1, x), ∀n ≥ 0.

Moreover, a closed expression of Rédei polynomials is well–known (see, e.g.,
[1]). In this way, we can derive a closed expression for the sequences (un)

∞
n=0

and (vn)
∞
n=0:



























un(x) =

[n/2]
∑

k=0

(

n

2k

)

(−1)kxn−2k

vn(x) =

[n/2]
∑

k=0

(

n

2k + 1

)

(−1)kxn−2k−1

. (2)

Rational powers with respect to the product ⊙ can also be considered
by defining the n–th root as usual by

z = x
⊙

1

n iff z⊙n = x. (3)

Moreover, by means of Theorem 2, we have that Eqs. (3) are equivalent
to

x = (−1)n+1

(

vn(z)

un(z)

)(−1)n

,
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i.e., by Eqs. (2), the n–th root of x with respect to the product ⊙ is a root
of the polynomial

Pn(z) =

n
∑

k=0

(

n

k

)

(−1)⌊ k+1
2 ⌋x

1+(−1)k+1

2 zk.

Let us consider the equation

nA

(

1

x

)

+A

(

1

y

)

=
π

4
, (4)

we want to solve it when n and x are integer values. We point out that Eq.
(4) is equivalent to

(

1

x

)⊙n

⊙
1

y
= 1 (5)

By Theorem 1 we have

(

1

x

)⊙n

⊙
1

y
=

vn(x)

un(x)
⊙

1

y
=

un(x) + vn(x)y

−vn(x) + un(x)y
.

Thus

y =
un(x) + vn(x)

un(x)− vn(x)

solves Eq. (5), i.e.,

(

1

x

)⊙n

⊙
un(x) + vn(x)

un(x)− vn(x)
= 1, ∀x ∈ Z

and consequently we can solve Eq. (4), i.e.,

nA

(

1

x

)

+A

(

un(x)− vn(x)

un(x) + vn(x)

)

=
π

4
+ k(n, x)π, ∀x ∈ Z, (6)

where k is a certain integer number depending on n and x. Precisely, we
have

k(n, x) = sign

(

nA

(

1

x

)

−
π

4

)

(

⌊T ⌋+ χ( 1
2
,1) ({T})

)

, (7)

where χ( 1
2
,1) is the characteristic function of the set

(

1
2 , 1
)

and

T =

∣

∣

∣

∣

∣

π

4
− nA

(

1

x

)
∣

∣

∣

∣

∣

π
.
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In order to obtain Eq. (7), we can rewrite Eq. (6) as

A

(

un(x)− vn(x)

un(x) + vn(x)

)

=
π

4
− nA

(

1

x

)

+ k(n, x)π.

Let us consider the case in which the first member lies in the interval
(

−π

2
,
π

2

)

. If
π

4
− nA

(

1

x

)

≥ 0, then k(n, x) must be negative so that
π

4
−

nA

(

1

x

)

+ k(n, x)π lies in the correct interval. Since

π

4
− nA

(

1

x

)

= π (⌊T ⌋+ {T}) ,

it follows that if 0 ≤ {T} ≤ 1

2
, then 0 ≤ π · {T} ≤ π

2
and consequently k =

−⌊T ⌋. Conversely, if
1

2
< {T} < 1, then

π

2
< π · {T} < π and, observing

that
π

4
− nA

(

1

x

)

= π (⌊T ⌋+ 1) + π ({T} − 1) ,

we obtain −π

2
< π({T} − 1) < 0, that is k(n, x) = −(⌊T ⌋+ 1).

Similar considerations apply to
π

4
− nA

(

1

x

)

< 0, obtaining Eq. (7).

Proposition 1. The sequences (un(x) + vn(x))
∞
n=0 and (un(x)− vn(x))

∞
n=0

are linear recurrent sequences of order 2 and precisely

(un(x)+vn(x))
∞

n=0 = W(1, x+1, 2x, 1+x2), (un(x)−vn(x))
∞

n=0 = W(1, x−1, 2x, 1+x2)

Proof. It immediately follows from the definition of the sequences (un)
∞
n=0

and (vn)
∞
n=0.

Eq. (6) provides infinitely many identities that express π as sum of
arctangents.

Example 1. Taking n = 7 and x = 3 in Eq. (6) we have

7A

(

1

3

)

+A

(

u7(3)− v7(3)

u7(3) + v7(3)

)

=
π

4
,

i.e.,

7 arctan

(

1

3

)

− arctan

(

278

29

)

=
π

4
.
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For n = 8 and x = 3, we have

8 arctan

(

1

3

)

+ arctan

(

863

191

)

=
π

4
+ π.

For n = 5 and x = 2, we have

5 arctan

(

1

2

)

− arctan

(

79

3

)

=
π

4
.

For n = 2 and x = 7, we have

2 arctan

(

1

7

)

+ arctan

(

17

31

)

=
π

4
.

2 Golden mean and π

In Mathematics the most famous numbers are π and the Golden mean.
Thus, it is very interesting to find identities involving these special numbers.
In particular, many expressions for π in terms of the Golden mean have
been found. For example, using the Machin formula of π via arctangents,
the following equalities arise

π

4
= arctan

(

1

φ

)

+ arctan

(

1

φ3

)

π

4
= 2arctan

(

1

φ2

)

+ arctan

(

1

φ6

)

π

4
= 3arctan

(

1

φ3

)

+ arctan

(

1

φ5

)

π = 12arctan

(

1

φ3

)

+ 4arctan

(

1

φ5

)

,

see [3], [4], [5]. Moreover, in [8], the authors found all possible relations of
the form

π

4
= a arctan(φk) + b arctan(φl),

where a, b are rational numbers and k, l integers.
In this section, we find new expressions of π as sum of arctangents in-

volving φ. When n = 2, from Eq. (5) we find

y =
x2 + 2x− 1

x2 − 2x− 1
. (8)
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It is well–known that the minimal polynomial of φm is

fm(t) = t2 − Lmt+ (−1)m,

where (Lm)∞m=0 = W(2, 1, 1,−1) is the sequence of Lucas numbers (A000032
in OEIS [11]). If we set x = φm in (8), then it is equivalent to replace
x2 + 2x− 1 and x2 − 2x− 1 with

x2 + 2x− 1 (mod fm(x)), x2 − 2x− 1 (mod fm(x)),

respectively. When m is odd, dividing by x2 − Lmx− 1, we obtain

y =
(Lm + 2)x

(Lm − 2)x
=

Lm + 2

Lm − 2

and when m is even, we have

y =
− 2 + (2 + Lm)x

−2 + (−2 + Lm)x
,

and therefore

y =
− 2 + (2 + Lm)φm

−2 + (−2 + Lm)φm
.

We find the following identities

π

4
= 2arctan

(

1

φ2k+1

)

+ arctan

(

L2k+1 − 2

L2k+1 + 2

)

(9)

π

4
= 2arctan

(

1

φ2k

)

+ arctan

(

− 2 + (L2k − 2)φ2k

−2 + (L2k + 2)φ2k

)

.

The above procedure can be reproduced for any root α of a polynomial
x2 − hx + k, finding expression of π as the sum of arctangents involving
quadratic irrationalities.

Example 2. Let us express π in terms of
√
2. Its minimal polynomial is

x2 − 2 and

x2 +2x− 1 (mod x2 − 2) = 1+ 2x, x2 − 2x− 1 (mod x2 − 2) = 1− 2x.

We have
π

4
= 2arctan

(

1√
2

)

+ arctan

(

1− 2
√
2

1 + 2
√
2

)

.

In general, if k is odd the minimal polynomial of
√
2k is x2 − 2k and

x2+2x−1 (mod x2−2k) = 2k−1+2x, x2−2x−1 (mod x2−2k) = 2k−1−2x.

We have the following identity

π

4
= 2arctan

(

1√
2k

)

+ arctan

(

2k − 1− 2
k

2
+1

2k − 1 + 2
k

2
+1

)

.
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Example 3. Let us consider α =
1

2
(5 +

√
29). The minimal polynomial of

α3 is x2 − 140x − 1 and

x2+2x−1 (mod x2−140x−1) = 142x, x2−2x−1 (mod x2−140x−1) = 138x.

Thus, we have

π

4
= 2arctan

(

8

(5 +
√
29)3

)

+ arctan

(

69

71

)

.

We can find different identities involving π and the Golden mean con-
sidering the equation

x⊙
1
2 ⊙ y = 1. (10)

Proposition 2. For any real number x, the following equalities hold

2A(−x±
√

1 + x2) +A(x) = ±
π

2
. (11)

Proof. By Theorem 2 we know that the roots of the polynomial P2(z) =

xz2 + 2z − x are the values of x⊙
1
2 . Hence, from Eq. (10) we obtain

zi ⊙ y = 1, i = 1, 2, (12)

where

z1 =
− 1 +

√
1 + x2

x
and z2 =

− 1−
√
1 + x2

x
.

Finally, solving Eq. (10) with respect to y we get

y1 = −x+
√

1 + x2 or y2 = −x−
√

1 + x2.

It should be noted that if x is positive then y2 < 0 and z2 · y2 > 1 so that

1

2
A(x) +A(y2) = A

(

x⊙
1
2 + y2

)

−
π

2
,

similar reasoning can be applied if x is negative.
Now, substituting in Eqs. (12) we have

1

2
A(x) +A(−x±

√

1 + x2) = ±
π

4
,

or equivalently

2A(−x±
√

1 + x2) +A(x) = ±
π

2
.

9



Eqs. (11) yield to other interesting formulas involving π, φ and Lucas
numbers. To show this, we need some identities about Lucas numbers,
Fibonacci numbers and the Golden mean:

φm =
Lm + Fm

√
5

2
, L2

m − 5F 2
m = 4(−1)m,

see, e.g., [9]. Considering m odd, if we set

x =
Lm

2

it follows

− x−
√

1 + x2 =
− Lm −

√

4 + L2
m

2
=

− Lm − Fm

√
5

2
= −φm. (13)

Thus, substituting Eq. (13) into Eqs. (11) we find the formula

−
π

2
= arctan

(

L2k+1

2

)

− 2 arctan
(

φ2k+1
)

. (14)

On the other hand, if we consider y = −x+
√
1 + x2 we have

− x+
√

1 + x2 =
− Lm +

√

4 + L2
m

2
=

− Lm + Fm

√
5

2
. (15)

Moreover,

φm ·
− Lm + Fm

√
5

2
=

− L2
m + 5F 2

m

4
= 1,

and substituting in Eqs. (11) another interesting formula arises

π

2
= arctan

(

L2k+1

2

)

+ 2arctan

(

1

φ2k+1

)

. (16)

Furthermore, by Eq. (9) we obtain an identity that only involves the Lucas
numbers

π

4
= arctan

(

L2k+1

2

)

− arctan

(

L2k+1 − 2

L2k+1 + 2

)

. (17)

The previous identity corresponds to a special case of the following propo-
sition.

Proposition 3. Let f, g be real functions. If

g(x) =
f(x)− 1

f(x) + 1
,

then

A(f(x))−A(g(x)) =
π

4
+ kπ, (18)

for some integer k.

10



Proof. We use the product ⊙ for solving A(f(x))−A(g(x)) =
π

4
. We have

A

(

f(x)− g(x)

1 + f(x)g(x)

)

=
π

4

and
f(x)− g(x)

1 + f(x)g(x)
= 1

from which

g(x) =
f(x)− 1

f(x) + 1
.

Remark 2. Eq. (18) has been found by means of only elementary algebraic
considerations. The same result could be derived from analysis. Observe
that given the functions f and g satisfying the hypothesis of the previous
proposition, then (arctan f(x))′ = (arctan g(x))′.

When f(x) and g(x) are specified in Eq. (18), the value of k can be
retrieved as in Eq. (7) with analogous considerations.

The previous proposition allows to determine new beautiful identities.

For example, the function f(x) =
ax

b
determines the function g(x) =

ax− b

ax+ b
and

A

(

ax

b

)

−A

(

ax− b

ax+ b

)

=
π

4
+ kπ.

For a = 1 and b = 2, we obtain the following interesting formulas

π

4
= arctan

(

x

2

)

− arctan

(

x− 2

x+ 2

)

, (19)

which holds for any real number x > −2 and

−
3π

4
= arctan

(

x

2

)

− arctan

(

x− 2

x+ 2

)

, (20)

valid for any real number x < −2. Eqs. (19) and (20) provide infinitely
many interesting identities, like Eq. (17) and, e.g., the following ones

π

4
= arctan

(

φ

2

)

− arctan

(

φ− 2

φ+ 2

)

π

4
= arctan

(

Fm

2

)

− arctan

(

Fm − 2

Fm + 2

)

π

4
= arctan

(√
2

2

)

− arctan

(√
2− 2√
2 + 2

)

.
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