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Writing 7 as sum of arcotangents with linear
recurrent sequences, Golden mean and Lucas
numbers
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Abstract

In this paper, we study the representation of m as sum of arcotan-
gents. In particular, we obtain new identities by using linear recurrent
sequences. Moreover, we provide a method in order to express 7w as
sum of arcotangents involving the Golden mean, the Lucas numbers,
and more in general any quadratic irrationality.

1 Expressions of 7 via arctangent function with
linear recurrent sequences

The problem of expressing 7 as the sum of arctangents has been deeply
studied during the years. The first expressions are due to Newton (1676),
Machin (1706), Euler (1755), who expressed 7 using the following identities

T 5 arct 1 " 4 " 1
5 = Zarctan 5 4+ arctan ? + arctan §
T " 1 " 1
Z = arctan 5 + arctan 5
T _ sarctan | - | + 2arctan [ -

1 arctan - + 2Z2arctan 79|’

respectively (see, e.g., [12] and [I3]). Many other identities and methods to
express and calculate 7 involving the arctangent function have been devel-
oped. Some recent results are obtained in [6] and [2].

In this section, we find a method to generate new expressions of 7 in
terms of sum of arctangents, mainly using the properties of linear recurrent
sequences. For the sake of simplicity, we will use the following notation:

A(x) = arctan(z).
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1
It is well-known that for =,y > 0, if y # —
T

Alz Oy if Ty < 1,
A(w) + A(y) = ) |
Az © y) + sign(x)m it zy>1,
where
r+
rOYy = Y .
1—zy

Let us denote by 2©" the n—th power of x with respect to the product ©.
Remark 1. The product ® is associative, commutative and 0 is the identity.

Definition 1. We denote by a = (a,)20 = W(a, B,p,q) the linear recur-

n=0 —
rent sequence of order 2 with characteristic polynomial t> —pt 4+ q and initial
conditions o and (3, i.e.,

ag = «
ay =3

ap = Pap-1 — qap—2 Vn=>2.

Theorem 1. Givenn € N and x € R, with x # +1, we have
<1> o Up ()
— = , Vn>1
(un(.%'));ozo =W(1,z,2z,1+ .%'2), (Un(.%'));ozo =W(0,1,2z,1 + '%2)' (1)

rz 1
M pu—
(522)
has characteristic polynomial t? —2xt+22+1. Consequently, it is immediate

to see that ( () ( )>
M — Up (T Up (X '

—vp(z)  un(z)

where

Proof. The matrix

Using the matrix M we can observe that
Un—1(T)  Vp—1(x) x 1\ [ un(z) vp(x)
—Up—1(x) Up—1(z) ) \=1 z)  \—vp(x) up(x))’

{un(x) = TUp—1(x) — vp—1(x)

Un(2) = tun—1(x) + 2n—1(2)

ie.,



Now, we prove the theorem by induction. It is straightforward to check that

1 o _ n1(2)
x Up—1(T)

for a given integer n > 1, then

T Up1(2)  Tup_1(x) —vp_1(x)  up(z)

Theorem 2. Givenn € N and x € R, with x # +1, we have
2On — (_1)n+1 ("_) . VYn>1
where u,(x) and vy (z) are given by Eq.(D).

Proof. By using the same arguments of Theorem [Il we can write

and 22

(=t
Up_1(x
Let us suppose by induction that z®™~1 = (=) ( n-1 )> , then

Up—1(T)
if n is even
B Up—1(x)
on Un—1(z)  Tup—1(z) —vp_1(z)  un(z
v N xvnfl(g;) U1 (2) Fave_1(z)  va(x)
Up—1(T)
if n is odd
Up—1(T)
on 0@ mea (@) fuaa(@)  va)
T wn@ v - aw(@) G
Up—1(x)



Let us highlight the matrix representation of the sequences (uy)32 , and
(v)9%, used in the previous theorem. Given the matrix

we have

v () = (i)

The sequences (uy, )22 and (vy, )52, are particular cases of the Rédei poly-
nomials N, (d, z) and D,(d, z), introduced by Rédei [10] from the expansion

N, (d,
of (z4++d)"* = N,(d, z) + D, (d, z)v/d. The rational functions ﬁdz; have
n 9 z

many interesting properties, e.g. , they are permutations of finite fields, as
described in the book of Lidl [7]. In [I], the authors showed that Rédei

polynomials are linear recurrent sequences of degree 2:
(Na(d, 2))2%0 = W(1, 2,22, 2% —d), (Dn(d,2)>2e = W(0,1,2z, 2% — d).
Thus, we can observe that
up(z) = Np(—=1,2), wvu(x) = Dyp(—1,2), VYn>0.

Moreover, a closed expression of Rédei polynomials is well-known (see, e.g.,
[1]). In this way, we can derive a closed expression for the sequences (uy)22
and (v,)0%

Un(z) = [nf] (;{) (—1)kgn2k

k= . 2)
[n/2] n
w1 =5 (7 Yot

k=0

Rational powers with respect to the product ® can also be considered
by defining the n—th root as usual by

z=x N iff 20" = g (3)

Moreover, by means of Theorem [2] we have that Eqs. (8] are equivalent

(-1
Ty G
=(=1) <un(z)> ,

4

to



i.e., by Egs. (@), the n—th root of x with respect to the product ® is a root
of the polynomial

Po(z) = zn: (Z)(_UL%J;UWZ’%

k=0

Let us consider the equation

A 1 A 1 T

we want to solve it when n and x are integer values. We point out that Eq.

() is equivalent to
On
1 1

1 on @} vp(z) 1 _ up(z) + vn(z)y

Thus
up(z) + vp ()

Un () — vp ()

solves Eq. (@), i.e.,

on
<l> QMWE:E;:L Vz €Z

x Un () — vp(x

and consequently we can solve Eq. ), i.e.,

nA G) A <M) - %Jr k(n,z)v, VeeZ,  (6)

Un () + vp(x)

where k is a certain integer number depending on n and x. Precisely, we

have
1 T
k(n,z) = sign (nA (;) - Z) ({TJ T X(10) ({T})) ; (7)

1) is the characteristic function of the set (%, 1) and

—_nAlZ
4 x

where (

1
27

T:



In order to obtain Eq. (@), we can rewrite Eq. (@) as

A un(z) —vp(x)\ " 1 .
@) o | — 1 MA g ) R
Let us consider the case in which the first member lies in the interval

T T ™ 1 ) T
<——, —). If ——nA| -] >0, then k(n,z) must be negative so that — —
22 4 T 4

1
nA (—) + k(n,z)m lies in the correct interval. Since
x

m 1
44 <5> =7 ([T]+{T}),
1
it follows that if 0 < {T} < 3 then 0 <7 -{T} < g and consequently k =
1
—|T|. Conversely, if 3 < {T} <1, then g <m-{T} <7 and, observing

that

%—nA <%> =7m(|T]+1)+7({T} -1),

we obtain —g <m({T} —1) <0, that is k(n,z) = —(|T] + 1).

s 1
Similar considerations apply to 1 nA <—> < 0, obtaining Eq. ().
x

Proposition 1. The sequences (u,(z) 4+ vp ()5 and (un(z) — vp(x))oe,
are linear recurrent sequences of order 2 and precisely

(U ()00 (1)) = W(L, 241,22, 1422),  (un(z)—vn ()22 = W(1,2—1, 2z, 1+2?)

Proof. 1t immediately follows from the definition of the sequences (uy)52
and (v,)0% . O

Eq. (6) provides infinitely many identities that express 7 as sum of
arctangents.

Example 1. Taking n =7 and x = 3 in Eq. (@) we have

1 U7(3) — 1)7(3)

4 <3> A (m)
1 278
7 arctan 3]~ arctan 29

6

SN

ie.,

I



For n = 8 and x = 3, we have

8 arct 1 ; 863 .
arctan § 4+ arctan ﬁ —Z—i-ﬂ'.

For n =5 and x = 2, we have

5 anct 1 " 79 T
arctan 5]~ arctan 3=
For n =2 and x = 7, we have
5 arct 1 ; 17 T
arctan ? 4+ arctan ﬁ = Z

2 Golden mean and 7

In Mathematics the most famous numbers are m and the Golden mean.
Thus, it is very interesting to find identities involving these special numbers.
In particular, many expressions for 7 in terms of the Golden mean have
been found. For example, using the Machin formula of 7 via arctangents,
the following equalities arise

T ; 1 N " 1

— = arctan [ — arctan | —

4 ¢ ¢3

T 2 t 1 t 1
Z = Zarctan ? + arctan %
s 3 arct 1 " 1
Z = Jarctan % + arctan ﬁ
1 1

m = 12 arctan g + 4 arctan ﬁ ,

see [3], [], [5]. Moreover, in [§], the authors found all possible relations of
the form

T_ k !
1= aarctan(¢”) + barctan(¢'),

where a, b are rational numbers and k,[ integers.
In this section, we find new expressions of m as sum of arctangents in-
volving ¢. When n = 2, from Eq. (@) we find

242 —1 g
Y= “or—1 (8)

7



It is well-known that the minimal polynomial of ¢ is
fn(t) =2 — Lipt + (=1)™,

where (Ly,)20_, = W(2, 1,1, —1) is the sequence of Lucas numbers (A000032
in OEIS [1I]). If we set © = ¢™ in (§), then it is equivalent to replace
2?42z — 1 and 22 — 22 — 1 with
2 +2x -1 (mod f,(z)), z>—-2z—-1 (mod f,(x)),
respectively. When m is odd, dividing by x? — L,,z — 1, we obtain
_ (Lm+2)x Ly +2
Y= Lm—22 Ln-2

and when m is even, we have

=242+ Ly
YT o (2 Ly

and therefore
=24 (24 Ly,)o™

T 2t (=2 + Ly)o™
We find the following identities

7T 1 Logi1—2
Z = 2arctan (W) + arctan <m (9)

T 1 — 2+ (Log — 2)¢?*
i~ 2 arctan W + arctan Tt (L £ 2% |
The above procedure can be reproduced for any root « of a polynomial

2?2 — hx + k, finding expression of 7 as the sum of arctangents involving
quadratic irrationalities.

Y

Example 2. Let us express 7 in terms of /2. Its minimal polynomial is
2
¢ — 2 and

2242r—1 (mod2?—-2)=1+2z, 2°2—2x—1 (modz?-2)=1-2z.

We have
" 2arct ! + arct L 2v2
— = 2arctan | — arctan [ ——— | .
4 V2 142V2

In general, if k is odd the minimal polynomial of v2* is 22 — 2¥ and
22 422—1 (mod 2?—2%) = 2 —142z, 22—22—1 (mod 2°—2%) = 2F—1-22.

We have the following identity

T 1 et ok _ 1 _95+1
—_ = arctan —— arctan _— .
4 V2F 2k — 1 4235+



1
Example 3. Let us consider o = 5(5 + v/29). The minimal polynomial of

a3 is 22 — 140z — 1 and
2242x—1 (mod #®—140x—1) = 142z, 2?—22—1 (mod z*>—1402—1) = 138z.

Thus, we have

T 2arct 5 + arctan | 22
—_— = arctan S EEE—— arctan —_— .
i (5 + v20)8 71

We can find different identities involving 7 and the Golden mean con-
sidering the equation
1
92 Oy =1. (10)

Proposition 2. For any real number x, the following equalities hold

2A(—z £ /1 +22) + A(z) = ig. (11)

Proof. By Theorem [2] we know that the roots of the polynomial Ps(z) =
222 + 22 — x are the values of 2°2. Hence, from Eq. (I0) we obtain

ZZ'@yzla i:1,25 (12)
where

—1 =1+ a?

x

z1 = and 29 =

—1+V1+ a2
T
Finally, solving Eq. (0] with respect to y we get

y1=—x+V1+ a2 or  yo=-—-x—\1+22
It should be noted that if = is positive then ys < 0 and 25 - y2 > 1 so that
1 ol s
SA@) + Aly2) = A (2% +92) - 5,

similar reasoning can be applied if = is negative.
Now, substituting in Eqs. (I2]) we have

1
§A(x) +A(—z+1+22) = i%’

or equivalently

2A(—z + 1+ 22) + A(z) = ig.



Egs. (II) yield to other interesting formulas involving 7, ¢ and Lucas
numbers. To show this, we need some identities about Lucas numbers,
Fibonacci numbers and the Golden mean:

Ly, + Fnv/d
o= It B g sre —
see, e.g., [9]. Considering m odd, if we set
Ly,
r=—
2
it follows
—— — Ly — 4+ L? — Ly, — FipV/5
Thus, substituting Eq. (I3)) into Egs. (II) we find the formula
7T Lok 2%+1
—5= arctan 5 — 2arctan (qb > . (14)

On the other hand, if we consider y = —x + v/1 + 22 we have

— Ly, +/4+ L2 — Ly, + Fuv/5
—z+V14a2=—"" T m\/—- (15)
2 2
Moreover,
gn. ZLm A EnV5 L 4 5E
2 4 ’
and substituting in Eqs. (II]) another interesting formula arises
us L 1
5= arctan < 2;+1> + 2arctan <W> . (16)
Furthermore, by Eq. (@) we obtain an identity that only involves the Lucas
numbers
us L L -2
— = arctan [ 2 ) — arctan | =2 (17)
4 2 Logt1+2

The previous identity corresponds to a special case of the following propo-
sition.

Proposition 3. Let f, g be real functions. If

@1
g(x) = TR
then
A(f(@)) = Alg(e)) = 7 + b, (18)

for some integer k.

10



Proof. We use the product ® for solving A(f(z)) — A(g(x)) = % We have

fla)—g@)\ =
8 (1 +f<w>g<w>> K

and
f@) - gl)
1+ f(z)g(z)
from which
o)1
T = F@) +1

O

Remark 2. Eq. (I8) has been found by means of only elementary algebraic
considerations. The same result could be derived from analysis. Observe
that given the functions f and g satisfying the hypothesis of the previous
proposition, then (arctan f(x)) = (arctan g(x))’.

When f(z) and g(z) are specified in Eq. (I8]), the value of k can be

retrieved as in Eq. () with analogous considerations.

The previous proposition allows to determine new beautiful identities.
ar —b

ar +b

ax
For example, the function f(z) = 5 determines the function g(z) =

4 ax 4 ar—b) w i
b ) ar+b) 4 .
For a = 1 and b = 2, we obtain the following interesting formulas

T €T X — 2
— =arctan | — | — arctan , (19)
4 2 42

which holds for any real number z > —2 and

3 o [ o [ £ 2 20
- = arctan | o | —arctan 2] (20)

valid for any real number z < —2. Eqgs. (I9) and (20)) provide infinitely
many interesting identities, like Eq. (I7) and, e.g., the following ones

and

11



References

1]

[2]

S. Barbero, U. Cerruti and N. Murru, Solving the Pell equation via Rédei
rational functions, The Fibonacci Quarterly 48 (2010) 348-357.

J. S. Calcut, Gaussian integers and arctangent identities for mw, The
American Mathematical Monthly 116(6) (2009) 515-530.

H. C. Chan and S. Ebbing, 7 in terms of ¢: Some recent developments,
Proc. of the Twelfth International Conference in Fibonacci Numbers and
Their Applications (San Francisco State University, 2006).

H. C. Chan, 7 in terms of ¢, The Fibonacci Quarterly 44(2) (2006)
141-145.

H. C. Chan, Machin—type formulas expressing 7 in terms of ¢, The
Fibonacci Quarterly 46/48(1), (2008/2009) 32-37.

H. Chien—Lih, Some observations on the method of arctangents for the
calculation of w, The Mathematical Gazette 88(512) (2004) 270-278.

R. Lidl, G. L. Mullen and G. Turnwald, Dickson polynomials, Pitman
Monogr. Surveys Pure appl. Math. 65 (Longman, 1993).

F. Luca and P. Stanica, On Machin’s formula with powers of the Golden
section, International Journal of Number Theory 05(973) (2009).

S. Rabinowitz, Algorithmic manipulation of Fibonacci identities, Appli-
cations of Fibonacci Numbers 6 (1996) 389-408.

[10] L. Rédei, Uber eindeuting umkehrbare polynome in endlichen korpen,

Acta Sci. Math. (Szeged) 11 (1946) 85-92.

[11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,

Published electronically at http://www.research.att.com/njas/sequences
(2010).

[12] I. Tweddle, John Machin and Robert Simson on inverse-tangent series

for m, Arch. Hist. Exact Sci. 42 (1991) 1-14.

[13] J. W. Wrench, The evolution of extended decimal approximations of ,

Math. Teacher (1960) 644-650.

12



	1 Expressions of  via arctangent function with linear recurrent sequences
	2 Golden mean and 

