THE $1 / k$-EULERIAN POLYNOMIALS AND k-STIRLING PERMUTATIONS

SHI-MEI MA AND TOUFIK MANSOUR

Abstract

In this paper, we establish a connection between the $1 / k$-Eulerian polynomials introduced by Savage and Viswanathan (Electron. J. Combin. 19 (2012), \#P9) and k-Stirling permutations. We also introduce the dual set of Stirling permutations.

Keywords: k-Stirling permutations; $1 / k$-Eulerian polynomials; Ascent-plateau

1. Introduction

For $k \geq 1$, the $1 / k$-Eulerian polynomials $A_{n}^{(k)}(x)$ are defined by

$$
\begin{equation*}
\sum_{n \geq 0} A_{n}^{(k)}(x) \frac{z^{n}}{n!}=\left(\frac{1-x}{e^{k z(x-1)}-x}\right)^{\frac{1}{k}} \tag{1}
\end{equation*}
$$

Let $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right) \in \mathbb{Z}^{n}$. Let $I_{n, k}=\left\{e \mid 0 \leq e_{i} \leq(i-1) k\right\}$, which known as the set of n-dimensional k-inversion sequences. The number of ascents of e is defined by

$$
\operatorname{asc}(e)=\#\left\{i: 1 \leq i \leq n-1 \left\lvert\, \frac{e_{i}}{(i-1) k+1}<\frac{e_{i+1}}{i k+1}\right.\right\} .
$$

Savage and Viswanathan [12] showed that

$$
\begin{equation*}
A_{n}^{(k)}(x)=\sum_{e \in I_{n, k}} x^{\operatorname{asc}(e)} . \tag{2}
\end{equation*}
$$

Let \mathfrak{S}_{n} be the symmetric group on the set $[n]=\{1,2, \ldots, n\}$ and $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathfrak{S}_{n}$. The number of excedances of π is exc $(\pi):=\#\left\{i: 1 \leq i \leq n-1 \mid \pi_{i}>i\right\}$. Let cyc (π) be the number of cycles in the disjoint cycle representation of π. In [5], Foata and Schützenberger introduced a q-analog of the classical Eulerian polynomials defined by

$$
\begin{equation*}
A_{n}(x ; q)=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{exc}(\pi)} q^{\operatorname{cyc}(\pi)} . \tag{3}
\end{equation*}
$$

The polynomials $A_{n}(x ; q)$ satisfy the recurrence relation

$$
\begin{equation*}
A_{n+1}(x ; q)=(n x+q) A_{n}(x ; q)+x(1-x) \frac{d}{d x} A_{n}(x ; q), \tag{4}
\end{equation*}
$$

with the initial conditions $A_{1}(x ; q)=1$ and $A_{2}(x ; q)=q$ (see [2, Proposition 7.2]). Savage and Viswanathan [12, Section 1.5] discovered that

$$
\begin{equation*}
A_{n}^{(k)}(x)=k^{n} A_{n}(x ; 1 / k)=\sum_{\pi \in \mathfrak{G}_{n}} x^{\operatorname{exc}(\pi)} k^{n-\operatorname{cyc}(\pi)} \tag{5}
\end{equation*}
$$

Let $A_{n}^{(k)}(x)=\sum_{j=0}^{n-1} a_{n, j}^{(k)} x^{j}$. It follows from (4) and (5) that

$$
\begin{equation*}
a_{n+1, j}^{(k)}=(1+k j) a_{n, j}^{(k)}+k(n-j+1) a_{n, j-1}^{(k)}, \tag{6}
\end{equation*}
$$

with the initial condition $a_{1,0}^{(k)}=1$.

Let $\left[\begin{array}{l}n \\ k\end{array}\right]$ be the Stirling number of the first kind, i.e., the number of permutations in \mathfrak{S}_{n} with precisely k cycles. It is well known that

$$
\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}=\prod_{i=0}^{n-1}(x+i)
$$

Thus it follows from (5) that

$$
A_{n}^{(k)}(1)=\prod_{i=1}^{n-1}(i k+1) \quad \text { for } n \geq 1
$$

Since $\prod_{i=1}^{n-1}(i k+1)$ also count k-Stirling permutations of order n (see [7, 8]), it is natural to consider the following question: Is there existing a connection between $A_{n}^{(k)}(x)$ and k-Stirling permutations? The main object of this paper is to provide a solution to this problem.

2. k-Stirling Permutations and their longest ascent-plateau

In the following discussion, we always let $j^{i}=\underbrace{j, j, \ldots, j}_{i}$ for $i, j \geq 1$. Stirling permutations were defined by Gessel and Stanley [6]. A Stirling permutation of order n is a permutation of the multiset $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$ such that for each $i, 1 \leq i \leq n$, all entries between the two occurrences of i are larger than i. We call a permutation of the multiset $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ a k Stirling permutation of order n if for each $i, 1 \leq i \leq n$, all entries between the two occurrences of i are at least i. Denote by $\mathcal{Q}_{n}(k)$ the set of k-Stirling permutation of order n. Clearly, $\mathcal{Q}_{n}(1)=\mathfrak{S}_{n}$ and $\mathcal{Q}_{n}(2)$ is the set of ordinary Stirling permutations of order n.

For $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{2 n} \in \mathcal{Q}_{n}(2)$, an occurrence of an ascent (resp. plateau) is an index i such that $\sigma_{i}<\sigma_{i+1}$ (resp. $\sigma_{i}=\sigma_{i+1}$). The reader is referred to [1, 7, 8, 11] for recent progress on the study of patterns in Stirling permutations.

Definition 1. Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{k n} \in \mathcal{Q}_{n}(k)$. We say that an index $i \in\{2,3, \ldots, n k-k+1\}$ is a longest ascent-plateau if

$$
\sigma_{i-1}<\sigma_{i}=\sigma_{i+1}=\sigma_{i+2}=\cdots=\sigma_{i+k-1} .
$$

Let ap (σ) be the number of the longest ascent-plateau of σ. For example, ap $(112233321)=1$. Now we present the main results of this paper.

Theorem 2. For $n \geq 1$ and $k \geq 2$, we have

$$
A_{n}^{(k)}(x)=\sum_{\sigma \in \mathcal{\mathcal { Q } _ { n } (k)}} x^{\operatorname{ap}(\sigma)}
$$

Proof. Let

$$
T(n, j ; k)=\#\left\{\sigma \in \mathcal{Q}_{n}(k): \operatorname{ap}(\sigma)=j\right\} .
$$

There are two ways in which a permutation $\widetilde{\sigma} \in \mathcal{Q}_{n+1}(k)$ with the number of the longest ascentplateau equals j can be obtained from a permutation $\sigma \in \mathcal{Q}_{n}(k)$.
(a) If the number of the longest ascent-plateau of σ equals j, then we can insert k copies of $(n+1)$ into σ without increasing the number of the longest ascent-plateau. Let i be one of the longest ascent-plateau of σ. Then we can insert k copies of $(n+1)$ before σ_{i} or after σ_{t}, where $i \leq t \leq i+k-2$. Moreover, the k copies of $(n+1)$ can also be inserted into the front of σ. This accounts for $(1+k j) T(n, j ; k)$ possibilities.
(b) If the number of the longest ascent-plateau of σ equals $j-1$, then we insert k copies of $(n+1)$ into the remaining $1+k n-(1+k(j-1))=k(n-j+1)$ positions. This gives $k(n-j+1) T(n, j-1 ; k)$ possibilities.

Hence

$$
T(n+1, j ; k)=(1+k j) T(n, j ; k)+k(n-j+1) T(n, j-1 ; k) .
$$

Clearly, $T(n, 0 ; k)=1$, corresponding to the permutation $n^{k}(n-1)^{k} \cdots 1^{k}$. Therefore, the numbers $T(n, j ; k)$ satisfy the same recurrence relation and initial conditions as $a_{n, j}^{(k)}$, so they agree.

Define

$$
\mathcal{Q}_{n}^{0}(k)=\left\{0 \sigma: \sigma \in \mathcal{Q}_{n}(k)\right\} .
$$

Therefore, for $\sigma \in \mathcal{Q}_{n}^{0}(k)$, we let $\sigma_{0}=0$ and the indices of the longest ascent-plateau belong to $\{1,2,3, \ldots, n k-k+1\}$. For example, ap $(0112332)=2$.

Define

$$
x^{n} A_{n}^{(k)}\left(\frac{1}{x}\right)=\sum_{j=1}^{n} b_{n, j}^{(k)} x^{j} .
$$

Then $b_{n, j}^{(k)}=a_{n, n-j}^{(k)}$. It follows from (6) that

$$
b_{n+1, j}^{(k)}=k j b_{n, j}^{(k)}+(k n-k j+k+1) b_{n, j-1}^{(k)} .
$$

Along the same lines of the proof of Theorem 2, we get the following result.
Theorem 3. For $n \geq 1$ and $k \geq 2$, we have

$$
x^{n} A_{n}^{(k)}\left(\frac{1}{x}\right)=\sum_{\sigma \in \mathcal{Q}_{n}^{0}(k)} x^{\mathrm{ap}(\sigma)} .
$$

3. The dual set of Stirling permutations

For convenience, we let $\mathcal{Q}_{n}=\mathcal{Q}_{n}(2)$. Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{2 n} \in \mathcal{Q}_{n}$. Let Φ be the bijection which map each first occurrence of letter j in σ to $2 j$ and the second occurrence of letter j in σ to $2 j-1$, where $j \in[n]$. For example, $\Phi(221331)=432651$. The dual set $\Phi\left(\mathcal{Q}_{n}\right)$ of \mathcal{Q}_{n} is defined by

$$
\Phi\left(\mathcal{Q}_{n}\right)=\left\{\pi: \sigma \in \mathcal{Q}_{n}, \Phi(\sigma)=\pi\right\} .
$$

Clearly, $\Phi\left(\mathcal{Q}_{n}\right)$ is a subset of $\mathfrak{S}_{2 n}$. Let $a b$ be an ascent in σ, so $a<b$. Using Φ, we see that $a b$ is maps into $(2 a-1)(2 b-1),(2 a-1)(2 b),(2 a)(2 b-1)$ or $(2 a)(2 b)$, and vice versa. Let as (σ) (resp. as $(\pi))$ be the number of ascents of σ (resp. π). Then Φ preserving ascents, i.e., as $(\sigma)=$ as $(\Phi(\sigma))=$ as (π). Hence the well known Eulerian polynomial of second kind $P_{n}(x)$ (see [13, A008517]) has the expression

$$
P_{n}(x)=\sum_{\pi \in \Phi\left(\mathcal{Q}_{n}\right)} x^{\mathrm{as}(\pi)}
$$

Perhaps one of the most important permutation statistics is the peaks statistic; see, e.g., 4, 4, and the references contained therein. Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathfrak{S}_{n}$. An interior peak in π is an index $i \in\{2,3, \ldots, n-1\}$ such that $\pi_{i-1}<\pi_{i}>\pi_{i+1}$. Let $\operatorname{ipk}(\pi)$ denote the number of interior peaks in π. A left peak in π is an index $i \in[n-1]$ such that $\pi_{i-1}<\pi_{i}>\pi_{i+1}$, where we take $\pi_{0}=0$. Denote by $\operatorname{lpk}(\pi)$ the number of left peaks in π. For example, $\operatorname{ipk}(21435)=1$ and $\operatorname{lpk}(21435)=2$.

As pointed out by Savage and Viswanathan [12, Section 4] that the numbers $a_{n, j}^{(2)}$ appear as A185410 in [13, and the numbers $a_{n, n-j}^{(2)}$ appear as A156919 in [13. We can now present a unified characterization of these numbers.

Theorem 4. For $n \geq 1$, we have

$$
\begin{gather*}
A_{n}^{(2)}(x)=\sum_{\pi \in \Phi\left(\mathcal{Q}_{n}\right)} x^{\operatorname{ipk}(\pi)}, \tag{7}\\
x^{n} A_{n}^{(2)}\left(\frac{1}{x}\right)=\sum_{\pi \in \Phi\left(\mathcal{Q}_{n}\right)} x^{\operatorname{lpk}(\pi)} . \tag{8}
\end{gather*}
$$

Proof. Recall that an occurrence of a pattern τ in a sequence π is defined as a subword in π whose letters are in the same relative order as those in τ.

Let $\sigma \in \mathcal{Q}_{n}$ and let $\Phi(\sigma)=\pi$. Let

$$
C=\{112,211,122,221,213,312,123,321\}
$$

For all $\sigma \in \mathcal{Q}_{n}$, we see that all patterns of length three of σ are belong to C. Let $a b b$ be an occurrence of the pattern 122 in σ, so $a<b$. Using Φ, we see that $a b b$ is maps to either $(2 a-1)(2 b)(2 b-1)$ or $(2 a)(2 b)(2 b-1)$, which is an interior peak of the pattern 132 . Moreover, one can easily verify that interior peaks can not be generated by the other patterns. Recall that an occurrence of the longest ascent-plateau in Stirling permutations is an occurrence of the pattern 122. Then we get (7) by using Theorem 2, Similarly, from Theorem 3, we get (8).

For $n \geq 1$, we define $C_{n}(x)$ by

$$
\begin{equation*}
(1+x) C_{n}(x)=x A_{n}^{(2)}\left(x^{2}\right)+x^{2 n} A_{n}^{(2)}\left(\frac{1}{x^{2}}\right) \tag{9}
\end{equation*}
$$

Set $C_{0}(x)=1$. It follows from (11) that

$$
C(x, z)=\sum_{n \geq 0} C_{n}(x) \frac{z^{n}}{n!}=\frac{e^{z(x-1)(1+x)}+x}{1+x} \sqrt{\frac{1-x^{2}}{e^{2 z(x-1)(1+x)}-x^{2}}}
$$

The first few $C_{n}(x)$ are given as follows:

$$
\begin{aligned}
& C_{1}(x)=x \\
& C_{2}(x)=x+x^{2}+x^{3} \\
& C_{3}(x)=x+3 x^{2}+7 x^{3}+3 x^{4}+x^{5} \\
& C_{4}(x)=x+7 x^{2}+29 x^{3}+31 x^{4}+29 x^{5}+7 x^{6}+x^{7} \\
& C_{5}(x)=x+15 x^{2}+101 x^{3}+195 x^{4}+321 x^{5}+195 x^{6}+101 x^{7}+15 x^{8}+x^{9} .
\end{aligned}
$$

Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathfrak{S}_{n}$. We say that π changes direction at position i if either $\pi_{i-1}<\pi_{i}>$ π_{i+1}, or $\pi_{i-1}>\pi_{i}<\pi_{i+1}$, where $i \in\{2,3, \ldots, n-1\}$. We say that π has k alternating runs if there are $k-1$ indices i where π changes direction (see [13, A059427]). Let run (π) denote the number of alternating runs of π. For example, run $(214653)=3$. There is a large literature devoted to the distribution of alternating runs. The reader is referred to [3, 10] for recent results on this subject.

We can now conclude the following result.
Theorem 5. For $n \geq 1$, we have

$$
\begin{equation*}
C_{n}(x)=\sum_{\pi \in \Phi\left(\mathcal{Q}_{n}\right)} x^{\mathrm{run}(\pi)} \tag{10}
\end{equation*}
$$

Proof. Define

$$
\begin{aligned}
& S_{1}=\left\{\pi \in \Phi\left(\mathcal{Q}_{n}\right): \operatorname{lpk}(\pi)=\operatorname{ipk}(\pi)\right\} \\
& S_{2}=\left\{\pi \in \Phi\left(\mathcal{Q}_{n}\right): \operatorname{lpk}(\pi)=\operatorname{ipk}(\pi)+1\right\}
\end{aligned}
$$

Then $\Phi\left(\mathcal{Q}_{n}\right)$ can be partitioned into subsets S_{1} and S_{2}.

From (9), we have

$$
\begin{aligned}
(1+x) C_{n}(x) & =\sum_{\pi \in \Phi\left(\mathcal{Q}_{n}\right)} x^{2 \operatorname{ipk}(\pi)+1}+\sum_{\pi \in \Phi\left(\mathcal{Q}_{n}\right)} x^{2 \operatorname{lpk}(\pi)} \\
& =x \sum_{\pi \in S_{1}} x^{\operatorname{ipk}(\pi)+\operatorname{lpk}(\pi)}+\sum_{\pi \in S_{2}} x^{\operatorname{ipk}(\pi)+\operatorname{lpk}(\pi)}+\sum_{\pi \in S_{1}} x^{\operatorname{ipk}(\pi)+\operatorname{lpk}(\pi)}+ \\
& x \sum_{\pi \in S_{2}} x^{\operatorname{ipk}(\pi)+\operatorname{lpk}(\pi)} \\
& =(1+x) \sum_{\pi \in S_{1}} x^{\operatorname{ipk}(\pi)+\operatorname{lpk}(\pi)}+(1+x) \sum_{\pi \in S_{2}} x^{\operatorname{ipk}(\pi)+\operatorname{lpk}(\pi)} .
\end{aligned}
$$

Thus

$$
C_{n}(x)=\sum_{\pi \in \Phi\left(\mathcal{Q}_{n}\right)} x^{\operatorname{ipk}(\pi)+\operatorname{lpk}(\pi)}
$$

Note that all $\pi \in \Phi\left(\mathcal{Q}_{n}\right)$ ends with a descent, i.e., $\pi_{2 n-1}>\pi_{2 n}$. Hence (10) follows from the fact that $\operatorname{run}(\pi)=\operatorname{ipk}(\pi)+\operatorname{lpk}(\pi)$.

4. Concluding remarks

It follows from (2) and Theorem 2, we have

$$
\begin{equation*}
\sum_{e \in I_{n, k}} x^{\operatorname{asc}(e)}=\sum_{\sigma \in \mathcal{Q}_{n}(k)} x^{\operatorname{ap}(\sigma)} . \tag{11}
\end{equation*}
$$

Combining (5) and Theorem 2, we have

$$
\begin{equation*}
\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{exc}(\pi)} k^{n-\operatorname{cyc}(\pi)}=\sum_{\sigma \in \mathcal{Q}_{n}(k)} x^{\operatorname{ap}(\sigma)} \tag{12}
\end{equation*}
$$

It would be interesting to present a combinatorial proof of (11) or (12).

References

[1] M. Bóna,Real zeros and normal distribution for statistics on Stirling permutations defined by Gessel and Stanley, SIAM J. Discrete Math, 23 (2008) 401-406.
[2] F. Brenti,A class of q-symmetric functions arising from plethysm, J. Combin. Theory Ser. A, 91 (2000) 137-170.
[3] E.R. Canfield, H. Wilf, Counting permutations by their alternating runs, J. Combin. Theory Ser. A 115 (2008), 213-225.
[4] K. Dilks, T.K. Petersen, J.R. Stembridge, Affine descents and the Steinberg torus, Adv. in Appl. Math. 42 (2009), 423-444.
[5] D. Foata, M. Schützenberger, Théorie Géométrique des Polynômes Euleriens, Lecture Notes in Mathematics, vol. 138, Springer-Verlag, Berlin-New York, 1970.
[6] I. Gessel and R.P. Stanley, Stirling polynomials, J. Combin. Theory Ser. A, 24 (1978) 25-33.
[7] S. Janson, M. Kuba and A. Panholzer, Generalized Stirling permutations, families of increasing trees and urn models, J. Combin. Theory Ser. A, 118 (2011) 94-114.
[8] M. Kuba, A. Panholzer, Enumeration formulae for pattern restricted Stirling permutations, Discrete Math. 312 (2012) 3179-3194.
[9] S.-M. Ma, Derivative polynomials and enumeration of permutations by number of interior and left peaks, Discrete Math. 312 (2012), 405-412.
[10] S.-M. Ma, Enumeration of permutations by number of alternating runs, Discrete Math. 313 (2013), 18161822.
[11] J.B. Remmel, A.T. Wilson, Block patterns in Stirling permutations, http://arxiv.org/abs/arXiv:1402.3358.
[12] C.D. Savage and G. Viswanathan, The $1 / k$-Eulerian polynomials, Electronic J. Combinatorics, 19 (2012) \#P9.
[13] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.

School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Hebei 066004,
P. R. China

E-mail address: shimeimapapers@163.com (S.-M. Ma)
Department of Mathematics, University of Haifa, 3498838 Haifa, Israel
E-mail address: toufik@math.haifa.ac.il (T. Mansour)

