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THE 1/k-EULERIAN POLYNOMIALS AND k-STIRLING PERMUTATIONS

SHI-MEI MA AND TOUFIK MANSOUR

Abstract. In this paper, we establish a connection between the 1/k-Eulerian polynomials
introduced by Savage and Viswanathan (Electron. J. Combin. 19 (2012), #P9) and k-Stirling
permutations. We also introduce the dual set of Stirling permutations.
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1. Introduction

For k ≥ 1, the 1/k-Eulerian polynomials A
(k)
n (x) are defined by

∑

n≥0

A(k)
n (x)

zn

n!
=

(
1− x

ekz(x−1) − x

) 1

k

. (1)

Let e = (e1, e2, . . . , en) ∈ Z
n. Let In,k = {e|0 ≤ ei ≤ (i− 1)k}, which known as the set of

n-dimensional k-inversion sequences. The number of ascents of e is defined by

asc (e) = #

{
i : 1 ≤ i ≤ n− 1 |

ei
(i− 1)k + 1

<
ei+1

ik + 1

}
.

Savage and Viswanathan [12] showed that

A(k)
n (x) =

∑

e∈In,k

xasc (e). (2)

Let Sn be the symmetric group on the set [n] = {1, 2, . . . , n} and π = π1π2 · · · πn ∈ Sn. The
number of excedances of π is exc (π) := #{i : 1 ≤ i ≤ n − 1|πi > i}. Let cyc (π) be the number
of cycles in the disjoint cycle representation of π. In [5], Foata and Schützenberger introduced
a q-analog of the classical Eulerian polynomials defined by

An(x; q) =
∑

π∈Sn

xexc (π)qcyc (π). (3)

The polynomials An(x; q) satisfy the recurrence relation

An+1(x; q) = (nx+ q)An(x; q) + x(1− x)
d

dx
An(x; q), (4)

with the initial conditions A1(x; q) = 1 and A2(x; q) = q (see [2, Proposition 7.2]). Savage and
Viswanathan [12, Section 1.5] discovered that

A(k)
n (x) = knAn(x; 1/k) =

∑

π∈Sn

xexc (π)kn−cyc (π). (5)

Let A
(k)
n (x) =

∑n−1
j=0 a

(k)
n,jx

j. It follows from (4) and (5) that

a
(k)
n+1,j = (1 + kj)a

(k)
n,j + k(n − j + 1)a

(k)
n,j−1, (6)

with the initial condition a
(k)
1,0 = 1.
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Let
[n
k

]
be the Stirling number of the first kind, i.e., the number of permutations in Sn with

precisely k cycles. It is well known that

n∑

k=0

[
n

k

]
xk =

n−1∏

i=0

(x+ i).

Thus it follows from (5) that

A(k)
n (1) =

n−1∏

i=1

(ik + 1) for n ≥ 1.

Since
∏n−1

i=1 (ik + 1) also count k-Stirling permutations of order n (see [7, 8]), it is natural to

consider the following question: Is there existing a connection between A
(k)
n (x) and k-Stirling

permutations? The main object of this paper is to provide a solution to this problem.

2. k-Stirling permutations and their longest ascent-plateau

In the following discussion, we always let ji = j, j, . . . , j︸ ︷︷ ︸
i

for i, j ≥ 1. Stirling permutations

were defined by Gessel and Stanley [6]. A Stirling permutation of order n is a permutation
of the multiset {12, 22, . . . , n2} such that for each i, 1 ≤ i ≤ n, all entries between the two
occurrences of i are larger than i. We call a permutation of the multiset {1k, 2k, . . . , nk} a k-
Stirling permutation of order n if for each i, 1 ≤ i ≤ n, all entries between the two occurrences
of i are at least i. Denote by Qn(k) the set of k-Stirling permutation of order n. Clearly,
Qn(1) = Sn and Qn(2) is the set of ordinary Stirling permutations of order n.

For σ = σ1σ2 · · · σ2n ∈ Qn(2), an occurrence of an ascent (resp. plateau) is an index i such
that σi < σi+1 (resp. σi = σi+1). The reader is referred to [1, 7, 8, 11] for recent progress on
the study of patterns in Stirling permutations.

Definition 1. Let σ = σ1σ2 · · · σkn ∈ Qn(k). We say that an index i ∈ {2, 3, . . . , nk − k + 1} is

a longest ascent-plateau if

σi−1 < σi = σi+1 = σi+2 = · · · = σi+k−1.

Let ap (σ) be the number of the longest ascent-plateau of σ. For example, ap (112233321) = 1.
Now we present the main results of this paper.

Theorem 2. For n ≥ 1 and k ≥ 2, we have

A(k)
n (x) =

∑

σ∈Qn(k)

xap (σ).

Proof. Let

T (n, j; k) = #{σ ∈ Qn(k) : ap (σ) = j}.

There are two ways in which a permutation σ̃ ∈ Qn+1(k) with the number of the longest ascent-
plateau equals j can be obtained from a permutation σ ∈ Qn(k).

(a) If the number of the longest ascent-plateau of σ equals j, then we can insert k copies of
(n+1) into σ without increasing the number of the longest ascent-plateau. Let i be one
of the longest ascent-plateau of σ. Then we can insert k copies of (n + 1) before σi or
after σt, where i ≤ t ≤ i+ k − 2. Moreover, the k copies of (n + 1) can also be inserted
into the front of σ. This accounts for (1 + kj)T (n, j; k) possibilities.

(b) If the number of the longest ascent-plateau of σ equals j − 1, then we insert k copies of
(n + 1) into the remaining 1 + kn− (1 + k(j − 1)) = k(n − j + 1) positions. This gives
k(n− j + 1)T (n, j − 1; k) possibilities.
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Hence

T (n+ 1, j; k) = (1 + kj)T (n, j; k) + k(n− j + 1)T (n, j − 1; k).

Clearly, T (n, 0; k) = 1, corresponding to the permutation nk(n − 1)k · · · 1k. Therefore, the

numbers T (n, j; k) satisfy the same recurrence relation and initial conditions as a
(k)
n,j, so they

agree. �

Define

Q0
n(k) = {0σ : σ ∈ Qn(k)}.

Therefore, for σ ∈ Q0
n(k), we let σ0 = 0 and the indices of the longest ascent-plateau belong to

{1, 2, 3, . . . , nk − k + 1}. For example, ap (0112332) = 2.
Define

xnA(k)
n

(
1

x

)
=

n∑

j=1

b
(k)
n,jx

j.

Then b
(k)
n,j = a

(k)
n,n−j. It follows from (6) that

b
(k)
n+1,j = kjb

(k)
n,j + (kn − kj + k + 1)b

(k)
n,j−1.

Along the same lines of the proof of Theorem 2, we get the following result.

Theorem 3. For n ≥ 1 and k ≥ 2, we have

xnA(k)
n

(
1

x

)
=

∑

σ∈Q0
n(k)

xap (σ).

3. The dual set of Stirling permutations

For convenience, we let Qn = Qn(2). Let σ = σ1σ2 · · · σ2n ∈ Qn. Let Φ be the bijection which
map each first occurrence of letter j in σ to 2j and the second occurrence of letter j in σ to
2j − 1, where j ∈ [n]. For example, Φ(221331) = 432651. The dual set Φ(Qn) of Qn is defined
by

Φ(Qn) = {π : σ ∈ Qn,Φ(σ) = π}.

Clearly, Φ(Qn) is a subset of S2n. Let ab be an ascent in σ, so a < b. Using Φ, we see that
ab is maps into (2a − 1)(2b − 1), (2a − 1)(2b), (2a)(2b − 1) or (2a)(2b), and vice versa. Let
as (σ) (resp. as (π)) be the number of ascents of σ (resp. π). Then Φ preserving ascents, i.e.,
as (σ) = as (Φ(σ)) = as (π). Hence the well known Eulerian polynomial of second kind Pn(x)
(see [13, A008517]) has the expression

Pn(x) =
∑

π∈Φ(Qn)

xas (π).

Perhaps one of the most important permutation statistics is the peaks statistic; see, e.g., [4, 9]
and the references contained therein. Let π = π1π2 · · · πn ∈ Sn. An interior peak in π is an
index i ∈ {2, 3, . . . , n− 1} such that πi−1 < πi > πi+1. Let ipk (π) denote the number of interior
peaks in π. A left peak in π is an index i ∈ [n − 1] such that πi−1 < πi > πi+1, where we take
π0 = 0. Denote by lpk (π) the number of left peaks in π. For example, ipk (21435) = 1 and
lpk (21435) = 2.

As pointed out by Savage and Viswanathan [12, Section 4] that the numbers a
(2)
n,j appear as

A185410 in [13], and the numbers a
(2)
n,n−j appear as A156919 in [13]. We can now present a

unified characterization of these numbers.
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Theorem 4. For n ≥ 1, we have

A(2)
n (x) =

∑

π∈Φ(Qn)

xipk (π), (7)

xnA(2)
n

(
1

x

)
=

∑

π∈Φ(Qn)

xlpk (π). (8)

Proof. Recall that an occurrence of a pattern τ in a sequence π is defined as a subword in π
whose letters are in the same relative order as those in τ .

Let σ ∈ Qn and let Φ(σ) = π. Let

C = {112, 211, 122, 221, 213, 312, 123, 321}.

For all σ ∈ Qn, we see that all patterns of length three of σ are belong to C. Let abb be
an occurrence of the pattern 122 in σ, so a < b. Using Φ, we see that abb is maps to either
(2a− 1)(2b)(2b− 1) or (2a)(2b)(2b− 1), which is an interior peak of the pattern 132. Moreover,
one can easily verify that interior peaks can not be generated by the other patterns. Recall
that an occurrence of the longest ascent-plateau in Stirling permutations is an occurrence of the
pattern 122. Then we get (7) by using Theorem 2. Similarly, from Theorem 3, we get (8). �

For n ≥ 1, we define Cn(x) by

(1 + x)Cn(x) = xA(2)
n (x2) + x2nA(2)

n

(
1

x2

)
. (9)

Set C0(x) = 1. It follows from (1) that

C(x, z) =
∑

n≥0

Cn(x)
zn

n!
=

ez(x−1)(1+x) + x

1 + x

√
1− x2

e2 z(x−1)(1+x) − x2
.

The first few Cn(x) are given as follows:

C1(x) = x,

C2(x) = x+ x2 + x3,

C3(x) = x+ 3x2 + 7x3 + 3x4 + x5,

C4(x) = x+ 7x2 + 29x3 + 31x4 + 29x5 + 7x6 + x7,

C5(x) = x+ 15x2 + 101x3 + 195x4 + 321x5 + 195x6 + 101x7 + 15x8 + x9.

Let π = π1π2 · · · πn ∈ Sn. We say that π changes direction at position i if either πi−1 < πi >
πi+1, or πi−1 > πi < πi+1, where i ∈ {2, 3, . . . , n − 1}. We say that π has k alternating runs

if there are k − 1 indices i where π changes direction (see [13, A059427]). Let run (π) denote
the number of alternating runs of π. For example, run (214653) = 3. There is a large literature
devoted to the distribution of alternating runs. The reader is referred to [3, 10] for recent results
on this subject.

We can now conclude the following result.

Theorem 5. For n ≥ 1, we have

Cn(x) =
∑

π∈Φ(Qn)

xrun (π). (10)

Proof. Define

S1 = {π ∈ Φ(Qn) : lpk (π) = ipk (π)},

S2 = {π ∈ Φ(Qn) : lpk (π) = ipk (π) + 1}.

Then Φ(Qn) can be partitioned into subsets S1 and S2.
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From (9), we have

(1 + x)Cn(x) =
∑

π∈Φ(Qn)

x2ipk (π)+1 +
∑

π∈Φ(Qn)

x2lpk (π)

= x
∑

π∈S1

xipk (π)+lpk (π) +
∑

π∈S2

xipk (π)+lpk (π) +
∑

π∈S1

xipk (π)+lpk (π)+

x
∑

π∈S2

xipk (π)+lpk (π)

= (1 + x)
∑

π∈S1

xipk (π)+lpk (π) + (1 + x)
∑

π∈S2

xipk (π)+lpk (π).

Thus

Cn(x) =
∑

π∈Φ(Qn)

xipk (π)+lpk (π).

Note that all π ∈ Φ(Qn) ends with a descent, i.e., π2n−1 > π2n. Hence (10) follows from the fact
that run (π) = ipk (π) + lpk (π). �

4. Concluding remarks

It follows from (2) and Theorem 2, we have
∑

e∈In,k

xasc (e) =
∑

σ∈Qn(k)

xap (σ). (11)

Combining (5) and Theorem 2, we have
∑

π∈Sn

xexc (π)kn−cyc (π) =
∑

σ∈Qn(k)

xap (σ). (12)

It would be interesting to present a combinatorial proof of (11) or (12).

References
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