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Abstract

In order theory, a rank function measures the vertical “level” of a poset element. It is an
integer-valued function on a poset which increments with the covering relation, and is only
available on a graded poset. Defining a vertical measure to an arbitrary finite poset can be
accomplished by extending a rank function to be interval-valued [10]. This establishes an order
homomorphism from a base poset to a poset over real intervals, and a standard (canonical)
specific interval rank function is available as an extreme case. Various ordering relations are
available over intervals, and we begin in this paper by considering conjugate orders which “par-
tition” the space of pairwise comparisons of order elements. For us, these elements are real
intervals, and we consider the weak and subset interval orders as (near) conjugates. It is also
natural to ask about interval rank functions applied reflexively on whatever poset of intervals
we have chosen, and thereby a general iterative strategy for interval ranks. We explore the
convergence properties of standard and conjugate interval ranks, and conclude with a discussion
of the experimental mathematics needed to support this work.
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1 Introduction

A characteristic of partial orders and partially ordered sets (posets) as used in order theory [6] is
that they are amongst the simplest structures which can be called “hierarchical” in the sense of
admitting to descriptions in terms of levels. These levels are typically identified via a rank function
as an integer-valued function on a poset which increments with the covering relation. But rank
functions are only available on graded posets, where all saturated chains connecting two elements
are the same length. Effectively, each element in a graded poset can be assigned a unique, singular
vertical level.

We have extended the concept of a rank function to all finite posets by making it interval-valued
[10], and establishing it as an order homomorphism from a base poset to a poset over real intervals,
for one of many possible order relations on intervals. An interval-valued rank reflects information
about chain lengths to an element dually from both the top and the bottom of the poset, and a
standard, or canonical, interval rank function is available as the largest such function, measuring
specifically the maximum length maximum chain from both top and bottom.

As mentioned above, various ordering relations are available over intervals. The order ordinarily
identified on intervals we call the strong order, where comparability is equivalent to disjointness. But
we have identified [10] two other orders as being much more useful for interval rank function available
on intervals: a weak order (actually the product order on endpoints) and ordering by subset. These
are (nearly) conjugate orders, in that they “partition” the space of pairwise comparisons of order
elements. We begin this paper by considering standard interval rank for the conjugate to the weak
order. And since interval rank functions are order homomorphisms to an interval order, it is also
natural to ask about interval rank functions applied reflexively on whatever poset of intervals we
have chosen. This motivates studying the structure of the homomorphic image of a poset under
the standard interval rank operator, both singly and in repeated iterations.

We close with a discussion of how the use of experimental mathematics, using computers as a
tool to explore problems and form conjectures, influenced this work.

2 Preliminaries

Throughout this paper we will use N to denote {0, 1, . . .}, the set of integers greater than or equal
to 0, and for N ∈ N, the set of integers between 0 and N will be denoted NN : = {0, 1, . . . , N}.

2.1 Ordered Sets

See e.g. [6, 16, 18] for the basics of order theory, the following is primarily for notational purposes.
Let P be a finite set of elements with |P | ≥ 2, and ≤ be a binary relation on P (a subset of P 2)

which is reflexive, transitive, and antisymmetric. Then ≤ is a partial order, and the structure
P = 〈P,≤〉 is a partially ordered set (poset). Denote a < b to mean that a ≤ b and a 6= b. < is
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its own binary relation, a strict order < on P , which is an irreflexive partial order. A strict order
< can be turned into a partial order through reflexive closure: ≤ : =< ∪{〈a, a〉 : a ∈ P}.

For any pair of elements a, b ∈ P , we say a ≤ b ∈ P to mean that a, b ∈ P and a ≤ b. And for
a ∈ P,Q ⊆ P , we say a ≤ Q to mean that ∀b ∈ Q, a ≤ b. If a ≤ b ∈ P or b ≤ a ∈ P then we say
that a and b are comparable, denoted a ∼ b. If not, then they are incomparable, denoted a‖b.
For a, b ∈ P , let a ≺ b be the covering relation where a ≤ b and @c ∈ P with a < c < b.

A set of elements C ⊆ P is a chain if ∀a, b ∈ C, a ∼ b. If P is a chain, then P is called a total
order. A chain C ⊆ P is maximal if there is no other chain C ′ ⊆ P with C ⊆ C ′. Naturally all

maximal chains are saturated, meaning that C = {ai}|C|i=1 ⊆ P can be sorted by ≤ and written as
C = a1 ≺ a2 ≺ . . . ≺ a|C|. The height H(P) of a poset is the size of its largest chain. Below we
will use H alone for H(P) when clear from context.

A set of elements A ⊆ P is an antichain if ∀a, b ∈ A, a‖b. The width W(P) of a poset is the
size of its largest antichain.

A partial order ≤ generates a unique dual partial order ≥, where a ≥ b ∈ P iff b ≤ a ∈ P .
Given P = 〈P,≤〉 we denote by P∗ = 〈P,≥〉 the dual of P. Two partial orders ≤1,≤2 on the same
set P are said to be conjugate if every pair of distinct elements of P are comparable in exactly
one of ≤1 or ≤2, i.e. that:

∀a 6= b ∈ P, (a ∼1 b and a‖2b) or (a‖1b and a ∼2 b).

For any subset of elements Q ⊆ P , let P|Q = 〈Q,≤Q〉 be the sub-poset determined by Q, so
that for a, b ∈ Q, a ≤Q b ∈ Q if a ≤ b ∈ P .

For any element a ∈ P , define the up-set or principal filter ↑ a : = {b ∈ P : b ≥ a}, down-
set or principal ideal ↓ a : = {b ∈ P : b ≤ a}, and hourglass Ξ(a) : = ↑ a∪ ↓ a. For a ≤ b ∈ P ,
define the interval [a, b] : = {c ∈ P : a ≤ c ≤ b} = ↑ a ∩ ↓ b.

For any subset of elements Q ⊆ P , define its maximal and minimal elements as

Max(Q) : = {a ∈ Q : @b ∈ Q, a < b} ⊆ Q

Min(Q) : = {a ∈ Q : @b ∈ Q, b < a} ⊆ Q,
called the roots and leaves respectively. Except where noted, in this paper we will assume that
our posets P are bounded, so that ⊥ ≤ > ∈ P with Max(P ) = {>},Min(P ) = {⊥}. Since we’ve
disallowed the degenerate case of |P | = 1, we have ⊥ < > ∈ P . All intervals [a, b] are bounded
sub-posets, and since P is bounded, ∀a ∈ P, ↑ a = [a,>], ↓ a = [⊥, a], and thus ⊥,> ∈ Ξ(a) ⊆
P = [⊥,>]. An example of a bounded poset and a sub-poset expressed as an hourglass is shown in
Fig. 1.

The following properties are prominent in lattice theory, and are available for some of the highly
regular lattices and posets that appear there (see e.g. Aigner [1]).

Definition 1: (Rank Function and Graded Posets) For a top-bounded poset P with > ∈ P ,
a function ρ : P → NH−1 is a rank function when ρ(>) = 0 and ∀a ≺ b ∈ P, ρ(a) = ρ(b) − 1. A
poset P is graded, or fully graded, if it has a rank function.

Let C(P) ⊆ 2P be the set of all maximal chains of P. We assume that P is bounded, therefore
∀C ∈ C(P),⊥,> ∈ C. We will refer to the spindle chains of a poset P as the set of its maximum
length chains

I(P) : = {C ∈ C(P) : |C| = H} .

3
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Figure 1: (Left) The Hasse diagram (canonical visual representation of the covering relation ≺) of
an example bounded poset P. (Right) The Hasse diagram of the sub-poset P|Ξ(J) for the hourglass
Ξ(J) = ↑ J ∪ ↓ J = [J,>] ∪ [⊥, J ] = {J,C,K,>} ∪ {⊥, J} = {⊥, C, J,K,>}.

The spindle set

I(P) : =
⋃

C∈I(P)

C ⊆ P

is then the set of spindle elements, including any elements which sit on a spindle chain. Note
that if P is nonempty then there is always at least one spindle chain and thus at least one spindle
element, so I(P), I(P) 6= ∅. In our example in Fig. 1, we have H = 5, |C(P)| = 6, I(P) = {⊥ ≺
A ≺ H ≺ K ≺ >}, and S(J) = H(↑ J) +H(↓ J)− 1 = 4.

Given two posets P1 = 〈P,≤P 〉 and P2 = 〈Q,≤Q〉, a function f : P → Q is an order embed-
ding if ∀a, b ∈ P we have a ≤P b ⇐⇒ f(a) ≤Q f(b). A weaker notion is that of f being an order
homomorphism if ∀a ≤P b ∈ P, f(a) ≤Q f(b). We can also say that f preserves the order
≤P into ≤Q, and is an isotone mapping from P1 to P2. If ∀a <P b ∈ P, f(a) <Q f(b) ∈ Q then
we say that f does all this strictly. If instead f is an order homomorphism from P1 to the dual
〈Q,≥Q〉, then we say that f reverses the order, or f is an antitone mapping. If f : P → Q is
an order homomorphism, then we can denote f(P1) : = 〈f(P ),≤f 〉 as the homomorphic image
of P1, with

f(P ) : = {f(a) : a ∈ P} ⊆ Q, ≤f : =≤Q

∣∣
f(P )×f(P )

When clear from context, we will simply re-use ≤ as the relevant order to its base set, e.g. for an
isotone f : P → Q, a ≤ b ∈ P =⇒ f(a) ≤ f(b) ∈ Q. A linear extension of a poset P is a chain,
C, for which there is an order homomorphism f : P → C.

The dimension [3, 18] of a poset P = 〈P,≤〉, denoted dim(P), is the minimum number, m, of
total orders, ≤T

i , such that there is an order embedding of ≤ into
⋂m

i=1 ≤T
i . Dimension is related to

width, in that dim(P) ≤ W(P), but is a fundamentally different concept. The following theorem
from [18], is taken to be the definition of dimension by some [14].

Theorem 2. [18] Let P = 〈P,≤〉 be a poset. Then dim(P) is the least t for which P is isomorphic
to an induced subposet of Rt = 〈R× · · · × R,≤ × · · ·× ≤〉.
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Finally, we recognize 〈N,≤〉 as a total order using the normal numeric order ≤, and observe
that for any bounded poset P, the functions H(↑ ·),H(↓ ·) : P → NH induce strict antitone and
isotone order morphisms, respectively. That is, if a ≺ b then

H(↑ a) ≥ H(↑ b) + 1 > H(↑ b) and H(↓ a) < H(↓ a) + 1 ≤ H(↓ b).

2.2 Interval Orders

Since our rank functions are interval-valued, we explicate the concepts surrounding the possible
ordering relations among intervals (see [10] for a full discussion). 〈R,≤〉 is a total order, so for any
x∗ ≤ x∗ ∈ R, we can denote the (real) interval x̄ = [x∗, x

∗], and R as the set of all real intervals
on R, so that x̄ ∈ R. Additionally, for N ∈ N let N be the set of all intervals whose endpoints are
nonnegative integers ≤ N .

We now define the two most common interval orders (strong, subset), and a third less common
order (weak) which we focus on in this paper.

Definition 3: (Strong Interval Order) Let <S be a strict order on R where x̄ <S ȳ iff x∗ < y∗.
Let ≤S be the reflexive closure of <S , so that x̄ ≤S ȳ iff x∗ < y∗ or x̄ = ȳ.

Definition 4: (Subset Interval Order [17]) Let ⊆ be a partial order on R where x̄ ⊆ ȳ iff
x∗ ≥ y∗ and x∗ ≤ y∗.
Definition 5: (Weak Interval Order) Let ≤W be a partial order on R where x̄ ≤W ȳ iff x∗ ≤ y∗
and x∗ ≤ y∗. This is equivalent to the product order ≤ × ≤ on R2.

Notice that the weak order ≤W and the subset order ⊆ are nearly conjugate orders [3, 7]. First,
Papadakis and Kaburlasos [15] observe that where our weak order ≤W on intervals is the product
order on the reals ≤ × ≤, the subset order ⊆ is also a product order, but conjugately as ≥ × ≤. But
≤W and ⊆ are not truly conjugate, since it is possible for two distinct intervals to be comparable
in both ≤ and ⊆ if there is equality at one of the endpoints. As an example, [3, 4] ⊆ [2, 4] and
[2, 4] ≤W [3, 4].

One can ask whether the strong order ≤S also has a conjugate, and the answer appears to be
yes, at least in small cases. We have experimentally identified numerous conjugates and pseudo-
conjugates (in the sense in which ≤W and ⊆ are pseudo-conjugates) for ≤S on the set of integer
intervals with endpoints between 1 and 4, but none appear to have a compactly expressible struc-
ture, as both ≤W and ⊆ do (see further discussion below in Sec. 6).

2.3 Interval Rank

For a full development of the concept of interval rank see [10], here we present the definitions needed
for the rest of this paper. We begin by defining general interval rank functions, strict interval rank
functions, and a standard interval rank function, a particularly significant strict interval rank
function.

Definition 6: (Interval Rank Function) Let P = 〈P,≤〉 be a poset and v an order on real
intervals. Then a function, Rv : P → N, with Rv(a) = [r∗(a), r∗(a)] for a ∈ P , is an interval rank
function for v if Rv is a strict order homomorphism P 7→

〈
N,v

〉
, i.e., for all a < b in P we have

Rv(a) @ Rv(b). Let Rv(P) be the set of all interval rank functions Rv for the interval order v on
a poset P.
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In [10] we showed that the endpoints of these interval rank functions are monotonic iff the
interval order is one of {≤W ,≥W ,⊆,⊇}. In order to ensure that both endpoints of the intervals
are strictly monotonic we must introduce the strict interval rank function.

Definition 7: (Strict Interval Rank Function) An interval rank function Rv ∈ Rv(P) is
strict if r∗ and r∗ are strictly monotonic. Let Sv(P) be the set of all strict interval rank functions
Rv for the interval order v on a poset P.

Strict interval rank functions have the distinction of being the only interval-valued functions
which are strictly monotonic on both interval endpoints. Each of the four types of monotonicity
corresponds to an interval order.

Proposition 8. [10] Let F : P → N be an interval-valued function on poset 〈P,≤〉, so that
F (a) = [F∗(a), F ∗(a)] ∈ N. Then, F∗ and F ∗ are strictly monotonic functions iff F is a strict
interval rank function for ≤W ,≥W ,⊆, or ⊇. In particular:

(i) F∗ and F ∗ are both strictly isotone iff v=≤W .

(ii) F∗ and F ∗ are both strictly antitone iff v=≥W .

(iii) F∗ is strictly antitone and F ∗ is strictly isotone iff v=⊆.

(iv) F∗ is strictly isotone and F ∗ is strictly antitone iff v=⊇.

We point out one particular strict interval rank function that is especially useful, and call it the
standard interval rank function.

Definition 9: (Standard Interval Rank) Let

R+(a) : = [H(↑ a)− 1,H−H(↓ a)] ∈ H − 1

be called the standard interval rank function. For convenience we also denote R+(a) =[
rt(a), rb(a)

]
, where rt(a) : = H(↑ a) − 1 is called the top rank and rb(a) : = H − H(↓ a) is

called the bottom rank.

The following proposition shows why we prefer R+ over any other strict interval rank function.

Proposition 10. [10] For a finite bounded poset P, R+ is maximal w.r.t. ⊆ in the sense that
∀R ∈ S≥W (P) with R(P) ⊆ H− 1, ∀a ∈ P,R(a) ⊆ R+(a).

3 Conjugate Interval Rank

Just as there is a privileged strict interval rank function for the weak interval order ≥W , there is
also one for the subset interval order ⊆. We will call this the conjugate standard interval rank
function because it is an interval rank function for the interval order ⊆, a conjugate interval order
to ≥W for which the standard interval rank is defined, and because its properties closely mirror
those of the standard interval rank function.

Definition 11: (Conjugate Standard Interval Rank) Let

R◦(a) = [̊r∗(a), r̊∗(a)] : = [H(↑ a)− 1,H+H(↓ a)− 2]

be called the conjugate standard interval rank function.

6



In Fig. 2 we show the standard interval rank values along with the conjugate standard interval
rank values for the same example poset. We can prove a result for R◦ analogous to that found in
Proposition 10 for R+, plus two other properties.

>[0, 0]

K[1, 1]

H[2, 2]

A[3, 3]

⊥[4, 4]

J [2, 3] E[2, 3]

C[1, 2]

B[1, 3]

(a) Example poset with R+(p) for each p ∈ P.

>[0, 8]

K[1, 7]

H[2, 6]

A[3, 5]

⊥[4, 4]

J [2, 5] E[2, 5]

C[1, 6]

B[1, 5]

(b) Example poset with R◦(p) for each p ∈ P.

Figure 2

Proposition 12. For a finite bounded poset P,

(i) R◦ ∈ S⊆(P) is a strict interval rank function for the subset interval order ⊆;

(ii) R◦(>) = [0, 2(H− 1)]; R◦(⊥) = [H− 1,H− 1];

(iii) R◦ is minimal w.r.t. ≤W in the sense that ∀R ∈ S⊆(P) with R(P) ⊆ 2(H− 1), ∀a ∈
P,R(a) ≥W R◦(a).

Proof.

(i) We first show that r̊∗(a) ≤ r̊∗(a) so that R◦ is an interval-valued function. We claim that
H(↑ a)− 1 ≤ H−H(↓ a). Indeed, ∀a ∈ P we have that

H(↓ a) +H(↑ a) ≤ H([0, 1]) + 1 = H+ 1

with equality iff a ∈ I(P) is a spindle element. Rearranging we have the desired H(↑ a)− 1 ≤
H−H(↓ a). Then, if we increase only the right side by a positive value we retain the inequality.
Since H(↓ a) ≥ 1 we can add 2H(↓ a)− 2 > 0 to the right side. This yields

H(↑ a)− 1 ≤ H−H(↓ a) + 2H(↓ a)− 2 = H+H(↓ a)− 2.

Therefore, R◦ is an interval-valued function.

Then, it is evident from H(↑ a) being strictly antitone, and H(↓ a) being strictly isotone that
r̊∗ is strictly antitone and r̊∗ is strictly isotone. Therefore, by Proposition 8 we have that R◦

is a strict interval rank function for ⊆.

7



(ii) Follows from H(↑>) = H(↓⊥) = 1 and H(↓>) = H(↑⊥) = H.

(iii) Since any R ∈ S⊆(P) is a strict interval rank function for ⊆ we know that if a < b ∈ P ,
R(a) ⊂ R(b). Therefore

r∗(a) > r∗(b) and r∗(a) < r∗(b)

so that r∗ is strictly antitone and r∗ is strictly isotone. In addition, we are restricting to the
case where 0 ≤ r∗ ≤ r∗ ≤ 2(H− 1). Under these assumptions we must show that ∀a ∈ P

r∗(a) ≥ H(↑ a)− 1

r∗(a) ≥ H+H(↓ a)− 2.

First notice that, by definition of H, there must be a chain CH ⊆ P of length H with greatest
element > and least element ⊥. Since R(P) ⊆ 2(H− 1), r∗ is strictly antitone, r∗ is strictly
isotone, and r∗ ≤ r∗ we must have R(⊥) = [H− 1,H− 1] (so that we can decrease r∗ by one
along CH and stay positive, and increase r∗ by one and stay less than 2(H− 1) as we go from
⊥ to >) and R(>) = [0, 2(H− 1)].

Now, let a ∈ P , by definition of H(·) we know that there must be a chain C ⊆ P of length
H(↑ a) with greatest element > and least element a. We already showed that r∗(>) = 0.
Then, in order for r∗ to be strictly antitone we need ∀c1 < c2 ∈ C, r∗(c1) > r∗(c2). Therefore
r∗(c) must be at least the chain distance from > to c along C, less one, for all c ∈ C. In
particular, r∗(a) ≥ H(↑ a)− 1.

Dually, there must be a chain D ⊆ P of length H(↓ a) with greatest element a and least
element ⊥. We already know r∗(⊥) = H− 1. In order for r∗ to be strictly isotone it must be
true that ∀d1 < d2 ∈ D, r∗(d1) < r∗(d2). Therefore, r∗(d) must be at least H − 1 plus the
chain distance from ⊥ to d along D, less one, for all d ∈ D. In particular

r∗(a) ≥ H− 1 + (H(↓ a)− 1) = H+H(↓ a)− 2.

One might ask why R+ is called “standard” when its conjugate R◦ is available. First, the
behavior of R+ is much more natural and meets our criteria of advancing monotonically with level,
where the intervals for R◦ “nest”. We will see in Proposition 13 below that the homomorphic image
under the conjugate interval rank R◦ is isomorphic to that of the standard interval rank R+, and
thus does not bring any particular value compared to R+. And finally, R◦ does not conform to our
desired criteria of ranks being in the set {0, 1, . . . ,H− 1}, but rather being in {0, 1, . . . , 2(H− 1)}.

4 The Homomorphic Image of Standard Interval Ranks

A general interval rank function R takes elements p ∈ P of a poset to intervals R(p) ∈ H − 1.
But from the discussion in Sec. 2.2, we know that these intervals R(p) can also be ordered. In this
section we consider the behavior and properties of standard interval rank R+ as an order morphism.

The rank intervals R+(a) are themselves elements in a poset, that is in the homomorphic image
R+(P) = 〈R+(P ),≤W 〉. Thus they also have an interval rank structure within R+(P). We can
analyze the structure of this homomorphic image, including changes in height, width, and dimension
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compared to the underlying poset 〈P,≤〉. And finally, R+ as an order morphism can be iteratively
applied to derive R+(R+(P)), etc., and we can examine the long-term properties of this iterated
application of R+.

4.1 The Interval Rank Poset

Recalling the definition of the homomorphic image of a poset given in Section 2.1, we will refer
to R+(P) as the interval rank poset of P. From Definition 6 we know that R+ is a strict order
homomorphism into

〈
N,≥W

〉
. Therefore, R+(P) is an induced subposet of H− 1 with ≥W as its

ordering. Fig. 3 shows the homomorphic image of the poset found in Fig. 1. It is easily verified
that there is a strict order homomorphism from P to R+(P). But notice that two of the elements
of P, J and E, had the same standard interval rank, so they collapse into a single element, [2, 3],
in R+(P). These behaviors will be considered in detail below in Sec. 4.3.

The structure of R+(P) allows us to identify elements a, b ∈ P which are either comparable
R+(a) ∼W R+(b) or noncomparable R+(a)‖WR+(b) in terms of the weak interval order relation
≤W between their interval ranks. If they are noncomparable in the weak order they are thereby
comparable in the conjugate subset order, so that R+(a) ⊆ R+(b) or R+(a) ⊇ R+(b).

Figure 3: The homomorphic image R+(P) induced from the example in Fig. 1 showing the weak
interval order ≤W on the standard interval ranks R+(a) ∈ N .

Fig. 4 now shows the example in Fig. 2 equipped with both standard interval rank and the
edges in the interval rank poset R+(P), shown in dashed lines, with J and E identified as a new
contracted element in R+(P) with a dashed oval. Note how the dashed edges of the interval rank
poset proceed vertically very tightly from top to bottom, linking elements with the closest standard
interval ranks, whether those element pairs are in P or not.

As mentioned in Section 3, we now prove that the homomorphic image of a poset, P, under the

9



Figure 4: Example poset from Fig. 1 equipped with interval ranks R+(a), homomorphic image
links in dashed lines, and separations and widths on all links.
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conjugate interval rank R◦ is isomorphic to that of the standard interval rank R+. Therefore, it is
enough to study the structure of just the homomorphic image of R+.

Proposition 13. R+(P) ∼= R◦(P).

Proof. To show that these two posets are isomorphic we will show that there is an order embedding,
ϕ : R+(P)→ R◦(P), that is surjective. Define

ϕ :R+(P)−→R◦(P)

[x, y] 7−→[x, 2(H− 1)− y].

We will first show that ϕ is surjective, i.e., that for every [a, b] ∈ R◦(P) there is an [x, y] ∈ R+(P)
so that ϕ([x, y]) = [a, b]. Consider [a, b] ∈ R◦(P). Then there is some p ∈ P such thatH(↑ p)−1 = a
and H+H(↓ p)− 2 = b. Let [x, y] = [H(↑ p)− 1,H−H(↓ p)]. Clearly this is an element of R+(P)
by the definition of the R+ operator; in fact, it is R+(p). Then the image of [x, y] under ϕ is

ϕ([x, y]) = ϕ([H(↑ p)− 1,H−H(↓ p)])
= [H(↑ p)− 1, 2(H− 1)− (H−H(↓ p))] = [a, b]

So, for every [a, b] ∈ R◦(P) we have an [x, y] ∈ R+(P) such that ϕ([x, y]) = [a, b]. Therefore, ϕ is
surjective.

To show that ϕ is an order embedding we must show that for all [x, y], [z, w] ∈ R+(P) we have
[x, y] ≥W [z, w] ⇐⇒ ϕ([x, y]) ⊆ ϕ([z, w]). First we show the forward direction. Assume we have
[x, y] ≥W [z, w], then x ≥ z and y ≥ w. We map these intervals to ϕ([x, y]) = [x, 2(H−1)−y] = [a, b]
and ϕ([z, w]) = [z, 2(H − 1) − w] = [c, d]. Obviously a ≥ c since a = x and c = z. Then, since
y ≥ w we have −y ≤ −w which means b ≤ d. Putting this together we have ϕ([x, y]) = [a, b] ⊆
[c, d] = ϕ([z, w]) which proves the forward implication.

Now, we assume that [a, b] = ϕ([x, y]) ⊆ ϕ([z, w]) = [c, d], so a ≥ c and b ≤ d. Because a = x
and z = c we have x ≥ z. Then, b = 2(H−1)−y ≤ 2(H−1)−w = d so −y ≤ −w and then y ≥ w.
Putting this together we get [x, y] ≥W [z, w] as desired.

4.2 Properties of the Interval Rank Poset

We now consider the interval rank structure of R+(P), the homomorphic image of P, itself, and
further iterations, R+(R+(. . . R+(P) . . .)), thereof.

First, when we compare P to its homomorphic image R+(P) we observe that the height always
increases while the width decreases.

Proposition 14. The height of the interval rank poset is greater than the height of the ordered set
itself, i.e., H(R+(P)) ≥ H(P).

Proof. Let S be a spindle chain in P. The elements in S have rank intervals [i, i] where i takes all
integer values between 0 and H(P)− 1 (inclusively). The image of this spindle chain S under R+

is a (not necessarily saturated) chain, S′, in R+(P). From the definition of the height of a poset
we have that

∀C ∈ C(R+(P)), H(R+(P)) ≥ |C|.
Thus, H(R+(P)) ≥ |S′| = |S| = H(P).
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Proposition 15. The width of the interval rank poset is less than the width of the ordered set itself,
i.e., W(R+(P)) ≤ W(P).

Proof. Let A be the set of all antichains in P, not necessarily maximal; and A+ the set of all
antichains in R+(P), also not necessarily maximal. Let A ∈ A+. Consider the set of preimages of
elements in A w.r.t. the map R+,

(R+)−1(A) = {p ∈ P : R+(p) ∈ A}.

Note that it is of course possible that |(R+)−1(A)| ≥ |A|. We claim that (R+)−1(A) ∈ A. If not
then there are two elements, p, q ∈ (R+)−1(A) such that p < q. Since R+ is an order homomorphism
we have that R+(p) < R+(q). But this is a contradiction to A being an antichain, so (R+)−1(A)
must be an antichain in P. Therefore we have the following chain of inequalities on width:

W(R+(P)) = max
A∈A+

|A| ≤ max
A∈A+

|(R+)−1(A)|

≤ max
A′∈A

|A′| =W(P).

Notice that in the proof of Proposition 14 we were able to start with a chain (namely the spindle
chain) in P and use the fact that its image in R+(P) is a chain. This is because R+ is an order
morphism to the reversed interval order, so the images of comparable elements are comparable.
However, there is no equivalent property that we could use in the proof of Proposition 15. Every
antichain in A+ must come from an antichain in A, but some antichains in A map to non-antichains
in R+(P).

Given Theorem 2, which states that an n dimensional poset is one which is an induced subposet
of Rn with ordering relation ≤n, but not an induced subposet of Rn−1, we can now easily see that
the dimension of R+(P) is at most 2.

Corollary 16. For any poset P = 〈P,≤〉 its homomorphic image under the standard interval rank
function, R+(P), has

dim(R+(P)) ≤ 2

Proof. By definition, R+(P) is a subposet of R2 with the reversed product order, so by Theorem 2
we see that R+(P)∗ (the dual of R+(P)) has dimension at most 2. It’s clear that a poset and its
dual have the same dimension, so we have that dim(R+(P)) ≤ 2.

Note that it may be the case that R+(P) has dimension one (i.e., it is a chain). For example,
the following proposition gives a particular sufficient condition on P for R+(P) to be a chain.

Proposition 17. If P is graded then R+(P) is a chain.

In order to prove this we must cite a part of a proposition proved in [10].

Proposition 18. Let P = 〈P,≤〉 be a poset such that P is bounded, and |P | ≥ 2. For an element
a ∈ P , the width of its standard interval rank is zero iff a is a spindle element. I.e., W (R+(a)) =
0 ⇐⇒ a ∈ I(P).
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Proof of Proposition 17. Every element in a graded poset sits on a spindle chain. This is simply
because in a graded poset every maximal chain is the same length. Now, from Proposition 18 we
know that if a ∈ I(P) then W (R+(a)) = 0. Therefore, the only elements of R+(P) are the trivial
intervals [i, i] for 0 ≤ i ≤ H − 1. This set forms a chain under ≥W (the dual of the product order
on R2).

However, there are ungraded posets, P, for which R+(P) is a chain. For example, the poset N5,
consisting of a length 4 chain and a length 3 chain which share their top and bottom elements, is
ungraded and R+(N5) is a chain. Also, whether the dimension of R+(P) is 2 or 1 does not depend
on the dimension of P. There are posets of dimension greater than 2 whose interval rank poset has
dimension 1: any boolean n-cube has dimension n and is graded, thus its interval rank poset is a
chain. In addition, there are posets of dimension 2 whose interval rank poset also has dimension 2.

4.3 Iterating R+

The fact that height is non-decreasing and width non-increasing from P to R+ leads us to ask the
following question: what happens when we repeatedly apply the R+ operator? If height strictly
increases and width strictly decreases then it’s clear that we end up with a chain if we apply R+

enough times. However, Propositions 14 and 15 cannot be reformulated with strict inequalities so
this chain conjecture is not obvious. Based on experimental evidence (see Section 5) it appeared
that when we apply R+ enough times the result is a chain. This turned out to be true, which we
now prove.

For Lemma 20 we will need to define the poset R+
All(P). See Fig. 5 for an example, and compare

to Figure 3 which contains R+(P) for the same P.

Definition 19: Given a poset P = 〈P,≤〉 define R+
All(P) = 〈P,≤RA

〉 where p <RA
q iff R+(p) >W

R+(q). Notice that <RA
is a strict order, so we must take its reflexive closure to create ≤A. This

is just R+(P) without identifying elements that have the same interval rank. So if R+(p) = R+(q)
for p, q ∈ P with p 6= q we retain both elements and make them incomparable.

Given this definition we will now prove two lemmas that will lead us to the proof that iterating
R+ enough times yields a chain.

Lemma 20. Given a poset, P = 〈P,≤〉, there exists an m such that (R+
All)

m(P) is graded.

Proof. Fix an ungraded poset, P, and consider the set of graded posets that extend P,

G(P) = {Q = 〈P,≤Q〉 : ≤ ⊂ ≤Q,Q graded}.

That is, if p ≤ q then p ≤Q q. Clearly this set is nonempty since there is at least one linear
extension of P (recall the definition of a linear extension from Section 2.1), and linear extensions,
being chains, are graded. Also, the number of comparisons (ordered pairs (a, b) such that a ≤ b)
in a total order only depends on the number of elements in the chain. All pairs of elements are
comparable, and we have the reflexive comparisons, so

max
Q∈G(P)

| ≤Q | =
(|P |

2

)
+ |P | = |P |

2 + |P |
2

.

Also, any poset L = 〈P,≤L〉 such that | ≤L | = |P |2+|P |
2 is a total order.
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⊥ [4, 4]

A [3, 3]

J [2, 3] E [2, 3]

B [1, 3] H [2, 2]

C [1, 2]

K [1, 1]

> [0, 0]

Figure 5: An example of R+
All(P) where P is the poset found in Fig. 1. Compare to R+(P) found

in Fig. 3.
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Now we claim that P being ungraded implies | ≤ | < | ≤RA
|. So when we apply the R+

All

operation we always end up with strictly more comparable pairs of elements. If this is true then
either

1. at some point, iterating R+
All yields a graded poset whose partial order has strictly less than

|P |2+|P |
2 elements, or

2. after iterating R+
All enough times we will get a partial order with exactly |P |

2+|P |
2 comparisons.

We will show that every time we iterate R+
All on an ungraded poset we add at least one comparison.

If we iterate R+
All and get to |P |

2+|P |
2 without hitting a graded poset up to this point, then we are

in case 2. Otherwise, we got to a graded poset with strictly less than |P |
2+|P |
2 elements, and are in

case 1. Either way, there is an m such that (R+
All)

m(P) is graded.
Finally, we must prove that P being ungraded implies | ≤ | < | ≤RA

|, i.e., that we gain at least
one comparison. Choose p ∈ P with R+(p) = [x, y] for some x, y ∈ N such that x 6= y. There must
be at least one p (if not, then P is graded). Then, choose q ∈ P with R+(q) = [x, x]. Again, there
must be at least one since 0 ≤ x ≤ H(P)− 1 and all [z, z] with 0 ≤ z ≤ H(P)− 1 are represented
on a spindle chain. Clearly, p � q in P because H(↑ p) = H(↑ q). But in R+

All(P) we have q >RA
p

since [x, x] ≤W [x, y]. So going from ≤ to ≤RA
we added at least one comparison.

Lemma 21. If (R+
All)

m(P) is graded then (R+)m(P) is graded.

Proof. Assume that (R+
All)

m(P) is graded. Then there is a rank function, r : P → N such that if
p ≺ q in (R+

All)
m(P) then r(p) = r(q) + 1. Now, there may be some elements, pi in P such that

(R+)m(pi) are all equal. So in (R+
All)

m(P) they all have the same immediate parents ({aj}) and
children ({ck}). Thus, r(pi) are all equal. So when we collapse all pi into one element, p, in R+(P)
we have a non-ambiguous rank, r(p) = r(pi) for all i, for p.

Proposition 22. Given a poset, P = 〈P,≤〉, there exists an n such that (R+)
n

(P) is a chain.

Proof. Fix a poset P = 〈P,≤〉. By Lemma 20 there is an m such that (R+
All)

m(P) is graded. Then
by Lemma 21, (R+)m(P) is graded. Finally, by Proposition 17, since (R+)m(P) is graded we have
that (R+)m+1(P) is a chain.

The chain that we arrive at can be thought of as a total preorder – a reflexive and transitive
relation in which every pair of elements is comparable [6] – which extends P. Preorders are not
antisymmetric, so when two elements p and q are identified in the final chain we will say that p ≤ q
and q ≤ p, but p 6= q. This resulting total preorder is easily computable, and clearly calls out our
concept of “levels” in an ungraded poset. Figure 6 shows the final total preorder for the example
from Fig. 1.

Now that we have established that we always end up with a chain after iterating R+(P) enough
times, three interesting questions arise: how many iterations does it take to end up with a chain,
what is the final chain length, and how much does the height increase. We were able to answer
these questions exactly for all bounded posets of size 3 to 9 (see Section 5 for more on this). The
averages1 are collected in Table 1.

1Note that there is only one bounded poset of height 9 when we restrict to posets of size between 3 and 9, the
chain of length 9. So, the average final height of chain for bounded posets of size 9 is the average taken over only one
sample.
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>

K

C

A

⊥

B H

J EJ E

Figure 6: The canonical total preorder for the poset found in Fig. 1. Notice that B and H are
identified as well as J and E. Looking at Fig. 1 it’s easy to see why J and E are identified, but
not clear why B and H are.

Bounded Poset Size 3 4 5 6 7 8 9

Avg. # of elements in chain 3 3.5 4.2 4.75 5.381 5.959 6.517

Avg. # of iterations to chain 0 0.5 0.8 1.00 1.127 1.236 1.335

Bounded Poset Height 3 4 5 6 7 8 9

Avg. final height of chain 3 4.348 6.068 7.092 7.806 8.409 9

Table 1: Averages of iteration data for all bounded posets of size 3 to 9. Note that we are only
looking here at posets of size between 3 and 9. In particular, there is only one poset of size ≤ 9
with height 9, the chain of length 9. This gives us a misleading average final height of chain when
the starting poset is height 9.

16



For bounded posets of size greater than 9 we cannot generate all posets with the computing
resources available (there are only 2045 bounded posets of size 9 but 16999 of size 10, see A000112
in [9] for values for larger posets). Therefore, we generated many random bounded posets of sizes
between 10 and 25 (200 posets of each size) to get similar data. See Section 5 for a discussion on
the method used to generate random posets.

Figures 7, 8, and 9 show the box plot and regression for the size of P vs. size of chain, size of
P vs. number of iterations to a chain, and height of P vs. height of chain respectively. From the
limited amount of data it appears that the the number of iterations that must be done to get to
the total preorder is roughly linear in the number of elements in the poset. The compression that
we get in the end is approximately ln(n).

5 Experimental Math

Throughout Section 4.1 we mentioned the use of experiments to make conjectures or gather data.
“Experimental mathematics” was once an oxymoron, however with the advent of computer algebra
systems (e.g., Maple and Mathematica) and more powerful computers, it has gained much more
acceptability. An article in the Notices of the American Mathematical Society [2] discusses the many
historical and current uses of experimentation in mathematics. In a list of eight interpretations of
experimental math [2, 4] we use it in our work as a tool to: (a) gain insight and intuition, (b) test
conjectures, and (c) suggest approaches for formal proof.

5.1 Generating Small Posets

As we began to investigate properties of the interval rank poset, R+(P), we found it necessary to
construct many examples. Rather than construct arbitrary posets we constructed the set of all
bounded posets of size less than or equal to 9 using the computer algebra system Maple on a laptop
with an Intel Core i5-2520M processor and 4GB RAM. We did this by first generating all reflexive
{0, 1}-matrices of size between 1 and 7. We considered these matrices as binary relations, i.e., if the
(i, j)th entry is 1 then xi ≤ xj . Then we checked each matrix for antisymmetry and transitivity: if
ai,j = aj,i = 1 then i = j, and if ai,j = aj,k = 1 then ai,k = 1. We then had to check for isomorphic
copies of the same poset, i.e., checking that permuting the rows and columns of one matrix didn’t
yield another matrix in the set. Lastly, we added a top and bottom bound (a row of all 1’s and a
column of all 1’s). We generated all of the posets of size up to 6 rather quickly, even checking for
isomorphic copies, there are only 318 of size 6. However, it took many days to generate the 2045
posets of size 7. Bounding each was then a trivial step. We then had a test set of all 2450 bounded
posets of size between 3 and 9. Of course, any real-world posets would be considerably larger than
size 9, however this test set allowed us to get some intuition about behavior of the R+ operator.

5.2 Generating Larger Posets

The test set of 2450 posets was enough for us to get a feeling for the structure of R+(P), and
formulate the conjectures that would become Propositions 14, 15, 17, and 22. However, for the
work in Section 4.3 we wanted to gather data for larger posets. Because the number of posets of
size n, Pn, is 2n

2/4+o(n2) [11] it is difficult to get a representative sample of posets of size n.
Our strategy was to generate random posets using two different algorithms, both found in [5].

The first is the random graph model. Given some n ∈ N and 0 ≤ p ≤ 1 generate the Erdős-Rényi
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(a) Box Plot

(b) Linear fit for average size of resulting chain as a function of
size of original poset: y = 0.7010x + 0.4854, R2 = 0.9964

Figure 7: Statistics for the “size of poset vs. size of resulting chain” data
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(a) Box Plot

(b) Logarithmic fit for average number of iterations as a function
of size of original poset: y = 0.8003 ln(x)− 0.4574, R2 = 0.9762

Figure 8: Statistics for the “size of poset vs. number of iterations to arrive at a chain” data
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(a) Box Plot

(b) Linear fit for height of resulting chain as a function of height
of original poset: y = 0.9463x + 2.1496, R2 = 0.9839

Figure 9: Statistics for the “height of poset vs. height of resulting chain” data
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random graph Gn,p. This is a graph on n labeled vertices where each edge, (i, j), is included with
probability p. We then create a directed graph by directing each edge from smaller to larger, i.e.,
if {1, 2} is an edge then we direct it from 1 to 2. Notice that this graph must be acyclic since there
can be no decreasing edge. From here we take the transitive closure to form a random partial order.

The second model is the random k-dimensional model. Here, we choose k random linear orders
(i.e., k random permutations of [n]) and take their intersection. By the definition of dimension, the
resulting partial order has dimension at most k.

6 Conclusion and Future Work

The results reported here point towards a number of continuing efforts.

Canonical Strong Conjugate: In this paper we did not pursue the problem of finding a canonical
conjugate order to the strong interval order (if one exists). While the weak interval order
≤W and the subset order ⊆ stand as conjugates, in Sec. 2.2 we discussed the availability
of conjugates for the strong interval order ≤S . We have identified a number of possibilities
experimentally, and would like to cast the question more generally. To do so we need to
consider the comparability graph of the strong order [8], that is, the graph G = 〈P,E〉 where
〈a, b〉 ∈ E ⊆ P 2 if a ∼S b. The complement of G should be the comparability graph for any
conjugate order to ≤S , if they exist. We also know that the complement of the comparability
graph of P must be an interval graph, that is, the intersection graph of the intervals a ∈ P .
So we are brought to the question of whether an interval graph can, or must, also be a
comparability graph. To our knowledge, this is an open question.

Characterizing Iterative Interval Rank Convergence: In Sec. 4.3 we analyzed the iterative
behavior of the R+ mapping, and determined that this converges to a chain. A natural open
question is how structural properties of P can affect the convergence of {(R+)n(P)} to a
chain. Another natural question is whether any of the resulting pre-order chains can be equal
(even with the same sets of elements to be identified), for two different order relations on the
set P.

It is known that the number of labeled partial orders on n elements is asymptotically Pn ∼
2

n2

4
+ 3n

2
+O(ln(n)) [12], and the number of labeled preorders is asymptotically Rn ∼ n!

2 ln(2)n+1

[13]. We deal more with unlabeled posets, but note that if there are two labeled posets,
P1 6= P2 with (R+)m(P1) = (R+)`(P2) then there are two unlabeled posets with the same
property. It’s clear that Pn > Rn as n goes to ∞ (2n

2
beats n!). Therefore, since there are

asymptotically more partial orders than preorders, we must have cases in which P1 6= P2 but
R+(P1) = R+(P2). Additionally, it’s not too difficult to show that for any preorder, E, there
is a corresponding poset, P, for which (R+)k(P) = E for k = 1. So, we ask, what structural
properties of P1 6= P2 would allow (R+)m(P1) = (R+)`(P2)?

Measures of Gradedness: Just as we hold that rank in posets is naturally and profitably ex-
tended to an interval-valued concept, so this work suggests that we should consider extending
gradedness from a qualitative to a quantitative concept. A graded poset is all spindle, with
all elements being precisely ranked with width 0, and vice versa. Therefore there should
be a concept of posets which fail that criteria to a greater or lesser extent, that is, being
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more or less graded. In fact, we have sought such measures of gradedness as non-decreasing
monotonically with iterations of R+. Candidate measures we have considered have included
the avarege interval rank width, the proportion of the spindle to the whole poset, and various
distributional properties of the set of the lengths of the maximal chains. While our efforts
have been so far unsuccessful, counterexamples were sometimes very difficult to find, and
exploring the possibilities has been greatly illuminating.
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