THE NUMBER OF SIMULTANEOUS CORE PARTITIONS

HUAN XIONG

ABSTRACT. Amdeberhan conjectured that the number of (t, t + 1, t + 2)-core partitions is $\sum_{0 \le k \le \left\lfloor \frac{t}{2} \right\rfloor} \frac{1}{k+1} {\binom{t}{2k}} {\binom{2k}{k}}$. In this paper, we obtain the generating function of the numbers f_t of $(t, t + 1, \ldots, t + p)$ -core partitions. In particular, this verifies that Amdeberhan's conjecture is true. We also prove that the number of (t_1, t_2, \ldots, t_m) -core partitions is finite if and only if $gcd(t_1, t_2, \ldots, t_m) = 1$, which extends Anderson's result on the finiteness of the number of (t_1, t_2) -core partitions for coprime positive integers t_1 and t_2 and thus rediscover a result of Keith and Nath with a different proof.

1. INTRODUCTION

Partitions of positive integers are widely studied in number theory and combinatorics. As we know, a partition of a positive integer n is a finite non increasing sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$ with $\sum_{1 \leq i \leq r} \lambda_i = n$. In this case, n is called the size of λ , which is also be denoted by $|\lambda|$. We can associate a partition λ with its Young diagram, which is an array of boxes arranged in left-justified rows with λ_i boxes in the *i*-th row. To the (i, j)-box of the Young diagram, let h(i, j) be its hook length, which is the number of boxes directly to the right, directly below, or the box itself. Let t be a positive integer. A partition λ is called a t-core partition if none of its hook lengths is a multiple of t. Finally, we say that λ is a (t_1, t_2, \ldots, t_m) -core partition if it is simultaneously a t_1 -core, a t_2 -core, \ldots , a t_m -core partition. For instance, Figure 1 shows the Young diagram and hook lengths of the partition (5, 2, 2). It is easy to see that, the partition (5, 2, 2) is a (4, 5)-core partition since non of its hook lengths is divisible by 4 or 5.

7	6	3	2	1
3	2			
2	1			

FIGURE 1. The Young diagram and hook lengths of the partition (5, 2, 2).

For t-core partitions, Granville and Ono [7] proved that there always exists a t-core partition with size n for any $t \ge 4$ and $n \ge 1$. A very important result in the study of (t_1, t_2, \ldots, t_m) -core partitions was given by Anderson [2], that is, there are only finite (t_1, t_2) -core partitions when t_1 and t_2 are coprime to each other. Actually, Anderson showed that the number of (t_1, t_2) -core partitions is exactly $\frac{1}{t_1+t_2} \binom{t_1+t_2}{t_1}$ for relatively prime positive integers t_1 and t_2 . Anderson's beautiful result attracts much attention and motives a lot of work in the study of simultaneous

¹⁹⁹¹ Mathematics Subject Classification. 05A17, 11P81.

Key words and phrases. partition, hook length, β -set, t-core.

HUAN XIONG

core partitions. Stanley and Zanello [12] showed that the average size of a (t, t+1)core partition is $\binom{t+1}{3}/2$. In 2007, Olsson and Stanton [10] proved that the largest
size of (t_1, t_2) -core partitions is $\frac{(t_1^2-1)(t_2^2-1)}{24}$ when t_1 and t_2 are coprime to each
other. Ford, Mai, and Sze [5] showed that the number of self-conjugate (t_1, t_2) -core
partitions is $\binom{[\frac{t_1}{2}]+[\frac{t_2}{2}]}{[\frac{t_1}{2}]}$ for relatively prime positive integers t_1 and t_2 , where [x]denotes the largest integer not greater than x.

Anderson [2] proved the finiteness of the number of (t_1, t_2) -core partitions for coprime positive integers t_1 and t_2 . We will extend Anderson's this result to a more general case and thus rediscover Theorem 1 in [9] with a different proof:

Theorem 1.1. The number of (t_1, t_2, \ldots, t_m) -core partitions is finite if and only if $gcd(t_1, t_2, \ldots, t_m) = 1$, where $gcd(t_1, t_2, \ldots, t_m)$ denotes the greatest common divisor of t_1, t_2, \ldots, t_m .

For the number of (t, t + 1, t + 2)-core partitions, Amdeberhan [1] gave the following conjecture, which we will prove in Section 3:

Theorem 1.2. (Cf. Conjecture 11.1 of [1].) The number f_t of (t, t + 1, t + 2)core partitions is the t-th Motzkin number $\sum_{0 \le k \le \lfloor \frac{t}{2} \rfloor} \frac{1}{k+1} {t \choose 2k} {2k \choose k}$. The generating
function of f_t is

$$\sum_{t \ge 0} f_t x^t = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2}$$

Suppose that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r \geq 1$ and $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ is a partition. The β -set of λ is denoted by

$$\beta(\lambda) = \{\lambda_i + r - i : 1 \le i \le r\}.$$

It is obvious that $0 \notin \beta(\lambda)$. Actually $\beta(\lambda)$ is just the set of hook lengths of boxes in the first column of the corresponding Young diagram. It is easy to see that a partition λ is uniquely determined by its β -set $\beta(\lambda)$. The following is a well-known result on β -sets of *t*-core partitions.

Lemma 2.1. ([8].) A partition λ is a t-core partition if and only if for any $x \in \beta(\lambda)$ such that $x \ge t$, we have $x - t \in \beta(\lambda)$.

By Lemma 2.1, we can easily deduce the following result:

Lemma 2.2. Let λ be a (t_1, t_2, \ldots, t_m) -core partition and a_i be some non negative integers. Then $\sum_{1 \le i \le m} a_i t_i \notin \beta(\lambda)$.

Proof. We will prove this result by induction on m. If m = 1, by Lemma 2.1 we know $a_1t_1 \notin \beta(\lambda)$ since $0 \notin \beta(\lambda)$. Now we assume that $m \ge 2$ and the result is true for m - 1, i.e., $\sum_{1 \le i \le m-1} a_i t_i \notin \beta(\lambda)$ if a_i are some non negative integers. Then by Lemma 2.1 we know $\sum_{1 \le i \le m} a_i t_i = a_m t_m + \sum_{1 \le i \le m-1} a_i t_i \notin \beta(\lambda)$. \Box

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. \Rightarrow : Suppose that $gcd(t_1, t_2, \ldots, t_m) = d > 1$. For every $n \in \mathbf{N}$, let λ_n be the partition whose β -set is

$$\beta(\lambda_n) = \{1, 1+d, 1+2d, \dots, 1+nd\}.$$

Then for any $1 \leq i \leq m$ and $0 \leq j \leq n$ such that $1 + jd \geq t_i$, we have $1 + jd - t_i = 1 + j'd \in \beta(\lambda_n)$ for some non negative integer j' since $d \mid t_i$ and d > 1. Then by Lemma 2.1, λ_n is a (t_1, t_2, \ldots, t_m) -core partition for every $n \in \mathbb{N}$. This means that the number of (t_1, t_2, \ldots, t_m) -core partitions is infinite.

 \Leftarrow : Suppose that gcd(t_1, t_2, \ldots, t_m) = 1 and 1 ≤ $t_1 < t_2 < \cdots < t_m$. To show that the number of (t_1, t_2, \ldots, t_m)-core partitions is finite, we just need to show that for every (t_1, t_2, \ldots, t_m)-core partition λ and $x ≥ (t_1 - 1) \sum_{2 \le i \le m} t_i$, we have $x \notin \beta(\lambda)$:

First we know there exist some $a_i \in \mathbf{Z}$ such that $x = \sum_{1 \le i \le m} a_i t_i$ since $gcd(t_1, t_2, \ldots, t_m) = 1$. Furthermore, we can assume that $0 \le a_i \le t_1 - 1$ for $2 \le i \le m$ since

$$a_1t_1 + a_it_i = (a_1 - bt_i)t_1 + (a_i + bt_1)t_i$$

for every $b \in \mathbf{Z}$. Now we have

$$\sum_{1 \le i \le m} a_i t_i = x \ge (t_1 - 1) \sum_{2 \le i \le m} t_i$$

and $0 \le a_i \le t_1 - 1$ for $2 \le i \le m$. It follows that

$$a_1 t_1 = x - \sum_{2 \le i \le m} a_i t_i \ge x - (t_1 - 1) \sum_{2 \le i \le m} t_i \ge 0.$$

Thus we know $a_1 \ge 0$. Then by Lemma 2.2, we have

$$x = \sum_{1 \le i \le m} a_i t_i \notin \beta(\lambda)$$

This means that $x \notin \beta(\lambda)$ if λ is a (t_1, t_2, \ldots, t_m) -core partition and $x \ge (t_1 - 1) \sum_{2 \le i \le m} t_i$. Now we know for a (t_1, t_2, \ldots, t_m) -core partition λ , its β -set $\beta(\lambda)$ must be a subset of $\{1, 2, \ldots, (t_1 - 1) \sum_{2 \le i \le m} t_i - 1\}$. This implies that the number of (t_1, t_2, \ldots, t_m) -core partitions must be finite. \Box

3. Main results

Throughout this section, let p be a given positive integer.

Let $S_{t,i} = \{x \in \mathbf{Z} : (i-1)(t+p) + 1 \le x \le it-1\}$. The following result is a characterization of β -sets of $(t, t+1, \ldots, t+p)$ -core partitions.

Lemma 3.1. Suppose that λ is a (t, t + 1, ..., t + p)-core partition. Then

$$\beta(\lambda) \subseteq \bigcup_{1 \le i \le \left[\frac{t+p-2}{p}\right]} S_{t,i}.$$

Proof. By Lemma 2.2, we have $\sum_{0 \le k \le p} a_k(t+k) \notin \beta(\lambda)$ for non negative integers a_k . Let

$$T_{t,i} = \{\sum_{0 \le k \le p} a_k(t+k) : a_k \in \mathbf{Z}, \ a_k \ge 0, \ \sum_{0 \le k \le p} a_k = i\}.$$

Then $T_{t,i} \bigcap \beta(\lambda) = \emptyset$ for $i \ge 0$. It is easy too see that

$$T_{t,i} = \{x \in \mathbf{Z} : it \le x \le i(t+p)\}$$

and

$$\bigcup_{i\geq \lfloor\frac{t+p-2}{p}\rfloor} T_{t,i} = \{x \in \mathbf{Z} : x \geq \lfloor\frac{t+p-2}{p}\rfloor \}$$

since $(i+1)t - 1 \le it + [\frac{t+p-2}{p}]p \le i(t+p)$ for $i \ge [\frac{t+p-2}{p}]$. Thus $\beta(\lambda)$ must be a subset of

$$\{x \in \mathbf{Z} : 1 \le x \le [\frac{t+p-2}{p}]t-1\} \setminus (\bigcup_{1 \le i \le [\frac{t+p-2}{p}]-1} \{x \in \mathbf{Z} : it \le x \le i(t+p)\}),\$$

which equals to $\bigcup_{1 \leq i \leq \left[\frac{t+p-2}{p}\right]} S_{t,i}$.

We can define a partial order relation on $\bigcup_{1 \le i \le [\frac{t+p-2}{p}]} S_{t,i}$. That is, for every $x, y \in \bigcup_{1 \le i \le [\frac{t+p-2}{p}]} S_{t,i}$, we define $y \preceq x$ if and only if $x - y = \sum_{0 \le k \le p} a_k(t+k)$ for some non negative integers a_k . It is easy to verify that \preceq is indeed a partial order relation. We say that a subset S of a partially ordered set T is good if for every $x \in S, y \in T$ such that $y \preceq x$ in T, we always have $y \in S$.

By the definition of $S_{t,i}$, It is easy to see that

$$S_{t,i} = \{x - (t+k) : x \in S_{t,i+1}, \ 0 \le k \le p\}$$

for $1 \le i \le \left[\frac{t+p-2}{p}\right] - 1$. Then by Lemma 2.1 and Lemma 3.1 the following result is obvious:

Lemma 3.2. A partition λ is a $(t, t+1, \ldots, t+p)$ -core partition if and only if $\beta(\lambda)$ is a good subset of $\bigcup_{1 \le i \le \lfloor \frac{t+p-2}{p} \rfloor} S_{t,i}$.

Let $R_{t,j}$ be the set of (t, t + 1, ..., t + p)-core partitions whose β -sets contain every positive integer smaller than j but don't contain j. Let $r_{t,j} = \#R_{t,j}$ be the number of elements in $R_{t,j}$.

Now we can give the main result in this paper.

Theorem 3.3. Suppose that p is a given positive integer. The number f_t of (t, t + 1, ..., t + p)-core partitions is computed recursively by

$$f_t = 0 \text{ for } t < 0; \ f_0 = 1; \ f_t = \sum_{i=1}^{p-1} f_{t-i} + \sum_{j=0}^{t-p} f_j f_{t-p-j} \text{ for } t \ge 1.$$

The generating function of f_t is

$$\sum_{t\geq 0} f_t x^t = \frac{1 - \sum_{1\leq i\leq p-1} x^i - \sqrt{(1 - \sum_{1\leq i\leq p-1} x^i)^2 - 4x^p}}{2x^p}.$$

Proof. For convenience, let $f_t = 0$ for t < 0 and $f_0 = 1$. Now suppose that $t \ge 1$. First we know $r_{t,j} = 0$ for $j \ge t + 1$ since $t \notin \beta(\lambda)$ and thus $f_t = \sum_{1 \le j \le t} r_{t,j}$.

Step 1. We claim that $r_{t,j} = f_{t-j}$ for $1 \le j \le p-1$:

Notice that $r_{t,j} = f_{t-j} = 0$ is true if $t + 1 \leq j \leq p - 1$ since we already assume that $f_t = 0$ for t < 0. Now we can assume that $1 \leq j \leq p - 1$ and $j \leq t$. Let λ be a partition such that $1, 2, \ldots, j - 1 \in \beta(\lambda)$ and $j \notin \beta(\lambda)$. If $\lambda \in R_{t,j}$, i.e., λ is a $(t, t + 1, \ldots, t + p)$ -core partition, then by Lemma 2.1, we have $x \notin \beta(\lambda)$ for $i \geq 2$ and $(i-1)(t+p)+1 \leq x \leq (i-1)(t+p)+j$ since $j \notin \beta(\lambda)$ and $t \leq t+p+1-j \leq t+p$. Let

$$S'_{t,i} = S_{t,i} \setminus \{x \in \mathbf{Z} : (i-1)(t+p) + 1 \le x \le (i-1)(t+p) + j\} \\ = \{x \in \mathbf{Z} : (i-1)(t+p) + j + 1 \le x \le it-1\}.$$

Notice that $S'_{t,i} = \emptyset$ when $i > [\frac{t-j+p-2}{p}]$. Thus it is easy to see that

$$\{1,2,\ldots,j-1\} \subseteq \beta(\lambda) \subseteq \left(\bigcup_{\substack{1 \le i \le [\frac{t-j+p-2}{p}]}} S'_{t,i}\right) \bigcup \{1,2,\ldots,j-1\}$$

if $\lambda \in R_{t,j}$. We can define a partial order relation on $\bigcup_{1 \le i \le \lfloor \frac{t-j+p-2}{p} \rfloor} S'_{t,i}$ induced by the partial order relation \preceq on $\bigcup_{1 \le i \le \lfloor \frac{t+p-2}{p} \rfloor} S_{t,i}$. That is, for every two integers x, y in $\bigcup_{1 \le i \le \lfloor \frac{t-j+p-2}{p} \rfloor} S'_{t,i}$, we have $y \preceq x$ if and only if $x - y = \sum_{0 \le k \le p} a_k(t+k)$ for some non negative integers a_k .

Let λ' be a partition such that

$$\beta(\lambda') = \beta(\lambda) \setminus \{1, 2, \dots, j-1\}.$$

By the definition of $S'_{t,i}$, we know for $1 \le i \le \left[\frac{t-j+p-2}{p}\right] - 1$,

$$S'_{t,i} = \{x - (t+k) : x \in S'_{t,i+1}, \ 0 \le k \le p\}$$

Then by Lemma 2.1, it is easy to see that $\lambda \in R_{t,j}$ if and only if λ' is a $(t, t + 1, \ldots, t + p)$ -core partition with $\beta(\lambda') \subseteq \bigcup_{1 \le i \le [\frac{t-j+p-2}{p}]} S'_{t,i}$, which is equivalent to $\beta(\lambda')$ is a good subset of $\bigcup_{1 \le i \le [\frac{t-j+p-2}{p}]} S'_{t,i}$.

Notice that $\bigcup_{1 \le i \le [\frac{t-j+p-2}{p}]} S_{t-j,i}$ is a partially ordered set and for every two integers x', y' in $\bigcup_{1 \le i \le [\frac{t-j+p-2}{p}]} S_{t-j,i}$, we know $y' \le x'$ if and only if $x' - y' = \sum_{0 \le k \le p} a_k(t-j+k)$ for some non negative integers a_k . Now we can build a function

$$\phi: \bigcup_{1 \le i \le \left\lfloor \frac{t-j+p-2}{p} \right\rfloor} S'_{t,i} \to \bigcup_{1 \le i \le \left\lfloor \frac{t-j+p-2}{p} \right\rfloor} S_{t-j,i}$$

that is, for every $x \in S'_{t,i}$, let $\phi(x) = x - ij$. Then it is obvious that ϕ is a bijection. Let $x \in S'_{t,i+1}$ and $y \in S'_{t,i}$. We have $\phi(x) - \phi(y) = x - y - j$. Thus we know $t - j \leq \phi(x) - \phi(y) \leq t - j + p$ if and only if $t \leq x - y \leq t + p$, which implies that $\phi(y) \preceq \phi(x)$ in $\bigcup_{1 \leq i \leq \lfloor \frac{t-j+p-2}{p} \rfloor} S_{t-j,i}$ if and only if $y \preceq x$ in $\bigcup_{1 \leq i \leq \lfloor \frac{t-j+p-2}{p} \rfloor} S'_{t,i}$. This means that ϕ is an isomorphism of partially ordered sets. Then $\bigcup_{1 \leq i \leq \lfloor \frac{t-j+p-2}{p} \rfloor} S'_{t,i}$ and $\bigcup_{1 \leq i \leq \lfloor \frac{t-j+p-2}{p} \rfloor} S_{t-j,i}$ has the same number of good subsets and thus by Lemma 3.2 we have $r_{t,j} = f_{t-j}$. We mention that if $j = t \leq p - 1$, then $r_{t,t} = f_0 = 1$ is true since in this case, we have $\bigcup_{1 \leq i \leq \lfloor \frac{t-j+p-2}{p} \rfloor} S'_{t,i} = \emptyset$ and the empty subset of a partially ordered set is always a good subset.

Step 2. We claim that $r_{t,j} = f_{j-p}f_{t-j}$ for $p \le j \le t$:

Let $\lambda \in R_{t,j}$, i.e., λ is a $(t, t+1, \ldots, t+p)$ -core partition such that $1, 2, \ldots, j-1 \in \beta(\lambda)$ and $j \notin \beta(\lambda)$. If $i \ge 0$ and $it + j \le x \le i(t+p) + j$, by Lemma 2.1 we have $x \notin \beta(\lambda)$. Let

$$S'_{t,i} = \{x \in \mathbf{Z} : i(t+p) + 1 \le x \le it + j - 1\}$$

and

$$S_{t,i}'' = \{x \in \mathbf{Z} : (i-1)(t+p) + j + 1 \le x \le it - 1\}.$$

Then

$$S'_{t,i} \bigcup S''_{t,i+1} = S_{t,i+1} \setminus \{ x \in \mathbf{Z} : it + j \le x \le i(t+p) + j \}$$

and

$$S'_{t,0} = \{1, 2, \dots, j-1\} \subseteq \beta(\lambda).$$

Notice that $S'_{t,i} = \emptyset$ when $i > [\frac{j-2}{p}]$ and $S''_{t,i} = \emptyset$ when $i > [\frac{t-j+p-2}{p}]$. Thus it is easy to see

$$\beta(\lambda) \subseteq \left(\bigcup_{1 \le i \le \left[\frac{j-2}{p}\right]} S'_{t,i}\right) \bigcup \left(\bigcup_{1 \le i \le \left[\frac{t-j+p-2}{p}\right]} S''_{t,i}\right) \bigcup S'_{t,0}.$$

We can define partial order relations on $\bigcup_{1 \le i \le [\frac{j-2}{p}]} S'_{t,i}$ and $\bigcup_{1 \le i \le [\frac{t-j+p-2}{p}]} S''_{t,i}$ induced by the partial order relation \preceq on $\bigcup_{1 \le i \le [\frac{t+p-2}{p}]} S_{t,i}$ as in Step 1.

Let λ' be the partition such that

$$\beta(\lambda') = (\beta(\lambda) \bigcap (\bigcup_{1 \le i \le [\frac{j-2}{p}]} S'_{t,i})) \bigcup S'_{t,0}$$

and λ'' be the partition such that

$$\beta(\lambda'') = \beta(\lambda) \bigcap (\bigcup_{1 \le i \le [\frac{t-j+p-2}{p}]} S''_{t,i}).$$

By the definition of $S'_{t,i}$ and $S''_{t,i}$, we know

$$S'_{t,i} = \{x - (t+k) : x \in S'_{t,i+1}, \ 0 \le k \le p\}$$

for $0 \le i \le \left[\frac{j-2}{p}\right] - 1$ and

$$S_{t,i}'' = \{x - (t+k) : x \in S_{t,i+1}'', \ 0 \le k \le p\}$$

for $1 \leq i \leq [\frac{t-j+p-2}{p}] - 1$. Then by Lemma 2.1 it is easy to see that λ' and λ'' are $(t, t+1, \ldots, t+p)$ -core partitions since λ is a $(t, t+1, \ldots, t+p)$ -core partition. On the other hand, if λ' and λ'' are $(t, t+1, \ldots, t+p)$ -core partitions such that

$$S_{t,0}' \subseteq \beta(\lambda') \subseteq (\bigcup_{1 \le i \le [\frac{j-2}{p}]} S_{t,i}') \bigcup S_{t,0}'$$

and

$$\beta(\lambda'') \subseteq \bigcup_{1 \le i \le [\frac{t-j+p-2}{p}]} S''_{t,i},$$

by Lemma 2.1 we can reconstruct the $(t, t+1, \ldots, t+p)$ -core partition $\lambda \in R_{t,j}$ by letting

$$\beta(\lambda) = \beta(\lambda') \bigcup \beta(\lambda''),$$

which implies that

$$(\beta(\lambda)\bigcap(\bigcup_{1\leq i\leq [\frac{j-2}{p}]}S'_{t,i}))\bigcup S'_{t,0}=\beta(\lambda')$$

and

$$\beta(\lambda) \bigcap (\bigcup_{1 \le i \le [\frac{t-j+p-2}{p}]} S''_{t,i}) = \beta(\lambda'')$$

Thus the number of $(t, t+1, \ldots, t+p)$ -core partitions in $R_{t,j}$ equals to the number of pairs (λ', λ'') such that λ' and λ'' are $(t, t+1, \ldots, t+p)$ -core partitions, $S'_{t,0} \subseteq \beta(\lambda') \subseteq (\bigcup_{1 \leq i \leq \lfloor \frac{j-2}{p} \rfloor} S'_{t,i}) \bigcup S'_{t,0}$, and $\beta(\lambda'') \subseteq \bigcup_{1 \leq i \leq \lfloor \frac{t-j+p-2}{p} \rfloor} S''_{t,i}$, which equals to the product of the number of good subsets of $\bigcup_{1 \leq i \leq \lfloor \frac{j-2}{p} \rfloor} S'_{t,i}$ and the number of good subsets of $\bigcup_{1 \leq i \leq \lfloor \frac{t-j+p-2}{p} \rfloor} S''_{t,i}$ by Lemma 2.1. First we compute the number of good subsets of $\bigcup_{1 \le i \le [\frac{j-2}{p}]} S'_{t,i}$. Notice that for every two integers x', y' in $\bigcup_{1 \le i \le [\frac{j-2}{p}]} S_{j-p,i}$, we have $y' \le x'$ if and only if $x' - y' = \sum_{0 \le k \le p} a_k(j - p + k)$ for some non negative integers a_k . We define a function

$$\phi: \bigcup_{1 \le i \le [\frac{j-2}{p}]} S'_{t,i} \to \bigcup_{1 \le i \le [\frac{j-2}{p}]} S_{j-p,i}$$

such that for every $x \in S'_{t,i}$, let $\phi(x) = x - i(t + p - j) - j$. Then it is easy to see that ϕ is a bijection. Let $x \in S'_{t,i+1}$ and $y \in S'_{t,i}$. We have $\phi(x) - \phi(y) = x - y - (t + p - j)$. Thus $\phi(y) \preceq \phi(x)$ if and only if $y \preceq x$ since both of them are equivalent to $t \leq x - y \leq t + p$. This means that ϕ is an isomorphism of partially ordered sets. Then $\bigcup_{1 \leq i \leq [\frac{j-2}{p}]} S'_{t,i}$ and $\bigcup_{1 \leq i \leq [\frac{j-2}{p}]} S_{j-p,i}$ has the same number of good subsets, which equals to f_{j-p} by Lemma 3.2. We mention that $\bigcup_{1 \leq i \leq [\frac{j-2}{p}]} S'_{t,i}$ has f_{j-p} good subsets is true for j - p = 0 since the empty subset of a partially ordered set is always a good subset and we already assume that $f_0 = 1$.

Next we compute the number of good subsets of $\bigcup_{1 \le i \le \lfloor \frac{t-j+p-2}{p} \rfloor} S''_{t,i}$. Notice that for every two integers x', y' in $\bigcup_{1 \le i \le \lfloor \frac{t-j+p-2}{p} \rfloor} S_{t-j,i}$, we have $y' \le x'$ if and only if $x' - y' = \sum_{0 \le k \le p} a_k(t-j+k)$ for some non negative integers a_k . We define a function

$$\varphi: \bigcup_{1 \le i \le \left[\frac{t-j+p-2}{p}\right]} S_{t,i}'' \to \bigcup_{1 \le i \le \left[\frac{t-j+p-2}{p}\right]} S_{t-j,i}$$

such that for every $x \in S''_{t,i}$, let $\varphi(x) = x - ij$. Then it is easy to see that φ is a bijection. Let $x \in S''_{t,i+1}$ and $y \in S''_{t,i}$. We have $\varphi(x) - \varphi(y) = x - y - j$. Thus $\varphi(y) \preceq \varphi(x)$ if and only if $y \preceq x$ since both of them are equivalent to $t \leq x - y \leq t + p$. This means that φ is an isomorphism of partially ordered sets. Then $\bigcup_{1 \leq i \leq \lfloor \frac{t-j+p-2}{p} \rfloor} S'_{t,i}$ and $\bigcup_{1 \leq i \leq \lfloor \frac{t-j+p-2}{p} \rfloor} S_{t-j,i}$ has the same number of good subsets, which equals to f_{t-j} by Lemma 3.2. We mention that $\bigcup_{1 \leq i \leq \lfloor \frac{t-j+p-2}{p} \rfloor} S''_{t,i}$ has f_{t-j} good subsets is true for t-j=0 since the empty subset of a partially ordered set is always a good subset and we already assume that $f_0 = 1$.

Now we have $r_{t,j} = f_{j-p}f_{t-j}$ for $p \le j \le t$ by Lemma 3.2 and prove the claim. Step 3. Put Step 1 and Step 2 together, we have

$$f_t = \sum_{j=1}^t r_{t,j} = \sum_{i=1}^{p-1} f_{t-i} + \sum_{j=p}^t f_{j-p} f_{t-j} = \sum_{i=1}^{p-1} f_{t-i} + \sum_{j=0}^{t-p} f_j f_{t-p-j}$$

for $t \geq 1$.

Let $F(x) = \sum_{t \ge 0} f_t x^t$ be the generating function of f_t . Then we have

$$F(x) - 1 = \sum_{t \ge 1} f_t x^t = \sum_{t \ge 1} (\sum_{i=1}^{p-1} f_{t-i} + \sum_{j=0}^{t-p} f_j f_{t-p-j}) x^t$$
$$= \sum_{i=1}^{p-1} \sum_{t \ge 1} f_{t-i} x^t + \sum_{t \ge 1} \sum_{j=0}^{t-p} f_j f_{t-p-j} x^t$$
$$= \sum_{i=1}^{p-1} x^i F(x) + x^p (F(x))^2.$$

HUAN XIONG

Then
$$F(x) = \frac{1 - \sum_{1 \le i \le p-1} x^i - \sqrt{(1 - \sum_{1 \le i \le p-1} x^i)^2 - 4x^p}}{2x^p}$$
. We finish the proof. \Box

Suppose that p = 1 in Theorem 3.3. We can give a new proof of Anderson's result on the number of (t_1, t_2) -core partitions in [2] for the case $t_2 = t_1 + 1$.

Corollary 3.4. The number f_t of (t, t+1)-core partitions is $f_t = \frac{1}{2t+1} {2t+1 \choose t}$. The generating function of f_t is

$$\sum_{t \ge 0} f_t x^t = \frac{1 - \sqrt{1 - 4x}}{2x}.$$

Proof. Let p = 1 in Theorem 3.3. We have the generating function of f_t is

$$\sum_{t \ge 0} f_t x^t = \frac{1 - \sqrt{1 - 4x}}{2x}.$$

This is the generating function of Catalan numbers. Then it is easy to see that $f_t = \frac{1}{t+1} \binom{2t}{t} = \frac{1}{2t+1} \binom{2t+1}{t}$.

Suppose that p = 2 in Theorem 3.3. Then it is easy to see that Theorem 1.2 is a direct corollary of Theorem 3.3.

Proof of Theorem 1.2. Let p = 2 in Theorem 3.3. We have the generating function of f_t is

$$\sum_{t>0} f_t x^t = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2}$$

By A001006 in [11] we know this is the generating function of Motzkin numbers. It is well-known that Bernhart [4] proved that the *t*-th Motzkin number equals to $\sum_{0 \le k \le \left\lfloor \frac{t}{2} \right\rfloor} \frac{1}{k+1} {t \choose 2k} {2k \choose k}$. We finish the proof.

4. Acknowledgements

The author appreciates Prof. P. O. Dehaye's encouragement and help. I would also like to thank Prof. C. Krattenthaler for the useful comments and thank Prof. W. J. Keith and Prof. R. Nath for making me aware of [9]. The author is supported by Forschungskredit of the University of Zurich, grant no. [FK-14-093].

References

- T. Amdeberhan, Theorems, problems and conjectures, 2013. Published electronically at www.math.tulane.edu/~tamdeberhan/conjectures.pdf.
- J. Anderson, Partitions which are simultaneously t₁- and t₂-core, Disc. Math. 248(2002), 237-243.
- [3] C. Berge, Principles of combinatorics, Mathematics in Science and Engineering Vol. 72, Academic Press, New York, 1971.
- [4] F. R. Bernhart, Catalan, Motzkin, and Riordan numbers, Discrete Math. 204(1999), 73-112.
- [5] B. Ford, H. Mai, and L. Sze, Self-conjugate simultaneous p- and q-core partitions and blocks of A_n, J. Number Theory 129(4)(2009), 858 – 865.
- [6] F. Garvan, D. Kim, and D. Stanton, Cranks and t-cores, Inv. Math. 101(1990), 1-17.
- [7] A. Granville and K. Ono, Defect zero p-blocks for finite simple groups, Trans. Amer. Math. Soc. 348(1996), 331 – 347.
- [8] G. James, A. Kerber, The representation theory of the symmetric group, Addison-Wesley Publishing Company, Reading, MA, 1981.
- [9] W. J. Keith and R. Nath, Partitions with prescribed hooksets, J. Comb. Number Theory 3(1)(2011), 39-50.

8

- [10] J. Olsson and D. Stanton, Block inclusions and cores of partitions, Aequationes Math. 74(1-2)(2007), 90-110.
- [11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2014. Published electronically at https: //oeis.org.
- [12] R. P. Stanley and F. Zanello, The Catalan case of Armstrong's conjectures on simultaneous core partitions, arXiv: 1312.4352.
- $[13] \ {\rm D. \ Stanton, \ Open \ positivity \ conjectures \ for \ integer \ partitions, \ Trends \ Math. \ 2(1999), \ 19-25.$

I-Math, Universität Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland E-mail address: huan.xiong@math.uzh.ch