THE NUMBER OF SIMULTANEOUS CORE PARTITIONS

HUAN XIONG

Abstract

Amdeberhan conjectured that the number of $(t, t+1, t+2)$-core partitions is $\sum_{0 \leq k \leq\left[\frac{t}{2}\right]} \frac{1}{k+1}\binom{t}{2 k}\binom{2 k}{k}$. In this paper, we obtain the generating function of the numbers f_{t} of $(t, t+1, \ldots, t+p)$-core partitions. In particular, this verifies that Amdeberhan's conjecture is true. We also prove that the number of $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partitions is finite if and only if $\operatorname{gcd}\left(t_{1}, t_{2}, \ldots, t_{m}\right)=$ 1 , which extends Anderson's result on the finiteness of the number of $\left(t_{1}, t_{2}\right)$ core partitions for coprime positive integers t_{1} and t_{2} and thus rediscover a result of Keith and Nath with a different proof.

1. Introduction

Partitions of positive integers are widely studied in number theory and combinatorics. As we know, a partition of a positive integer n is a finite non increasing sequence of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ with $\sum_{1 \leq i \leq r} \lambda_{i}=n$. In this case, n is called the size of λ, which is also be denoted by $|\lambda|$. We can associate a partition λ with its Young diagram, which is an array of boxes arranged in left-justified rows with λ_{i} boxes in the i-th row. To the (i, j)-box of the Young diagram, let $h(i, j)$ be its hook length, which is the number of boxes directly to the right, directly below, or the box itself. Let t be a positive integer. A partition λ is called a t-core partition if none of its hook lengths is a multiple of t. Finally, we say that λ is a $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partition if it is simultaneously a t_{1}-core, a t_{2}-core, \ldots, a t_{m}-core partition. For instance, Figure 1 shows the Young diagram and hook lengths of the partition $(5,2,2)$. It is easy to see that, the partition $(5,2,2)$ is a $(4,5)$-core partition since non of its hook lengths is divisible by 4 or 5 .

Figure 1. The Young diagram and hook lengths of the partition $(5,2,2)$.

For t-core partitions, Granville and Ono [7 proved that there always exists a t-core partition with size n for any $t \geq 4$ and $n \geq 1$. A very important result in the study of $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partitions was given by Anderson [2], that is, there are only finite $\left(t_{1}, t_{2}\right)$-core partitions when t_{1} and t_{2} are coprime to each other. Actually, Anderson showed that the number of $\left(t_{1}, t_{2}\right)$-core partitions is exactly $\frac{1}{t_{1}+t_{2}}\binom{t_{1}+t_{2}}{t_{1}}$ for relatively prime positive integers t_{1} and t_{2}. Anderson's beautiful result attracts much attention and motives a lot of work in the study of simultaneous

[^0]core partitions. Stanley and Zanello [12] showed that the average size of a $(t, t+1)$ core partition is $\binom{t+1}{3} / 2$. In 2007, Olsson and Stanton [10] proved that the largest size of $\left(t_{1}, t_{2}\right)$-core partitions is $\frac{\left(t_{1}{ }^{2}-1\right)\left(t_{2}{ }^{2}-1\right)}{24}$ when t_{1} and t_{2} are coprime to each other. Ford, Mai, and Sze [5] showed that the number of self-conjugate $\left(t_{1}, t_{2}\right)$-core partitions is $\binom{\left[\frac{t_{1}}{2}\right]+\left[\frac{t_{2}}{[}\right]}{\left[\frac{t_{1}}{2}\right]}$ for relatively prime positive integers t_{1} and t_{2}, where $[x]$ denotes the largest integer not greater than x.

Anderson [2] proved the finiteness of the number of $\left(t_{1}, t_{2}\right)$-core partitions for coprime positive integers t_{1} and t_{2}. We will extend Anderson's this result to a more general case and thus rediscover Theorem 1 in [9] with a different proof:

Theorem 1.1. The number of $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partitions is finite if and only if $\operatorname{gcd}\left(t_{1}, t_{2}, \ldots, t_{m}\right)=1$, where $g c d\left(t_{1}, t_{2}, \ldots, t_{m}\right)$ denotes the greatest common divisor of $t_{1}, t_{2}, \ldots, t_{m}$.

For the number of $(t, t+1, t+2)$-core partitions, Amdeberhan [1] gave the following conjecture, which we will prove in Section 3:
Theorem 1.2. (Cf. Conjecture 11.1 of [1].) The number f_{t} of $(t, t+1, t+2)$ core partitions is the $t-$ th Motzkin number $\sum_{0 \leq k \leq\left[\frac{t}{2}\right]} \frac{1}{k+1}\binom{t}{2 k}\binom{2 k}{k}$. The generating function of f_{t} is

$$
\sum_{t \geq 0} f_{t} x^{t}=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}}
$$

2. Proof of Theorem 1.1

Suppose that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r} \geq 1$ and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$ is a partition. The β-set of λ is denoted by

$$
\beta(\lambda)=\left\{\lambda_{i}+r-i: 1 \leq i \leq r\right\} .
$$

It is obvious that $0 \notin \beta(\lambda)$. Actually $\beta(\lambda)$ is just the set of hook lengths of boxes in the first column of the corresponding Young diagram. It is easy to see that a partition λ is uniquely determined by its β-set $\beta(\lambda)$. The following is a well-known result on β-sets of t-core partitions.

Lemma 2.1. (8].) A partition λ is a t-core partition if and only if for any $x \in \beta(\lambda)$ such that $x \geq t$, we have $x-t \in \beta(\lambda)$.

By Lemma 2.1 we can easily deduce the following result:
Lemma 2.2. Let λ be a $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partition and a_{i} be some non negative integers. Then $\sum_{1 \leq i \leq m} a_{i} t_{i} \notin \beta(\lambda)$.
Proof. We will prove this result by induction on m. If $m=1$, by Lemma 2.1 we know $a_{1} t_{1} \notin \beta(\lambda)$ since $0 \notin \beta(\lambda)$. Now we assume that $m \geq 2$ and the result is true for $m-1$, i.e., $\sum_{1 \leq i \leq m-1} a_{i} t_{i} \notin \beta(\lambda)$ if a_{i} are some non negative integers. Then by Lemma 2.1 we know $\sum_{1 \leq i \leq m} a_{i} t_{i}=a_{m} t_{m}+\sum_{1 \leq i \leq m-1} a_{i} t_{i} \notin \beta(\lambda)$.

Now we can prove Theorem 1.1 .
Proof of Theorem 1.1. \Rightarrow : Suppose that $\operatorname{gcd}\left(t_{1}, t_{2}, \ldots, t_{m}\right)=d>1$. For every $n \in \mathbf{N}$, let λ_{n} be the partition whose β-set is

$$
\beta\left(\lambda_{n}\right)=\{1,1+d, 1+2 d, \ldots, 1+n d\} .
$$

Then for any $1 \leq i \leq m$ and $0 \leq j \leq n$ such that $1+j d \geq t_{i}$, we have $1+j d-t_{i}=$ $1+j^{\prime} d \in \beta\left(\lambda_{n}\right)$ for some non negative integer j^{\prime} since $\bar{d} \mid t_{i}$ and $d>1$. Then by Lemma 2.1], λ_{n} is a $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partition for every $n \in \mathbf{N}$. This means that the number of $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partitions is infinite.
\Leftarrow : Suppose that $\operatorname{gcd}\left(t_{1}, t_{2}, \ldots, t_{m}\right)=1$ and $1 \leq t_{1}<t_{2}<\cdots<t_{m}$. To show that the number of $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partitions is finite, we just need to show that for every $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partition λ and $x \geq\left(t_{1}-1\right) \sum_{2 \leq i \leq m} t_{i}$, we have $x \notin \beta(\lambda)$:

First we know there exist some $a_{i} \in \mathbf{Z}$ such that $x=\sum_{1 \leq i \leq m} a_{i} t_{i}$ since $\operatorname{gcd}\left(t_{1}, t_{2}, \ldots, t_{m}\right)=1$. Furthermore, we can assume that $0 \leq a_{i} \leq t_{1}-1$ for $2 \leq i \leq m$ since

$$
a_{1} t_{1}+a_{i} t_{i}=\left(a_{1}-b t_{i}\right) t_{1}+\left(a_{i}+b t_{1}\right) t_{i}
$$

for every $b \in \mathbf{Z}$. Now we have

$$
\sum_{1 \leq i \leq m} a_{i} t_{i}=x \geq\left(t_{1}-1\right) \sum_{2 \leq i \leq m} t_{i}
$$

and $0 \leq a_{i} \leq t_{1}-1$ for $2 \leq i \leq m$. It follows that

$$
a_{1} t_{1}=x-\sum_{2 \leq i \leq m} a_{i} t_{i} \geq x-\left(t_{1}-1\right) \sum_{2 \leq i \leq m} t_{i} \geq 0
$$

Thus we know $a_{1} \geq 0$. Then by Lemma 2.2, we have

$$
x=\sum_{1 \leq i \leq m} a_{i} t_{i} \notin \beta(\lambda) .
$$

This means that $x \notin \beta(\lambda)$ if λ is a $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partition and $x \geq\left(t_{1}-\right.$ 1) $\sum_{2 \leq i \leq m} t_{i}$. Now we know for a $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partition λ, its β-set $\beta(\lambda)$ must be a subset of $\left\{1,2, \ldots,\left(t_{1}-1\right) \sum_{2 \leq i \leq m} t_{i}-1\right\}$. This implies that the number of $\left(t_{1}, t_{2}, \ldots, t_{m}\right)$-core partitions must be finite.

3. Main Results

Throughout this section, let p be a given positive integer.
Let $S_{t, i}=\{x \in \mathbf{Z}:(i-1)(t+p)+1 \leq x \leq i t-1\}$. The following result is a characterization of β-sets of $(t, t+1, \ldots, t+p)$-core partitions.

Lemma 3.1. Suppose that λ is a $(t, t+1, \ldots, t+p)$-core partition. Then

$$
\beta(\lambda) \subseteq \bigcup_{1 \leq i \leq\left[\frac{t+p-2}{p}\right]} S_{t, i}
$$

Proof. By Lemma 2.2 we have $\sum_{0 \leq k \leq p} a_{k}(t+k) \notin \beta(\lambda)$ for non negative integers a_{k}. Let

$$
T_{t, i}=\left\{\sum_{0 \leq k \leq p} a_{k}(t+k): a_{k} \in \mathbf{Z}, a_{k} \geq 0, \sum_{0 \leq k \leq p} a_{k}=i\right\} .
$$

Then $T_{t, i} \bigcap \beta(\lambda)=\emptyset$ for $i \geq 0$. It is easy too see that

$$
T_{t, i}=\{x \in \mathbf{Z}: i t \leq x \leq i(t+p)\}
$$

and

$$
\bigcup_{i \geq\left[\frac{t+p-2}{p}\right]} T_{t, i}=\left\{x \in \mathbf{Z}: x \geq\left[\frac{t+p-2}{p}\right] t\right\}
$$

since $(i+1) t-1 \leq i t+\left[\frac{t+p-2}{p}\right] p \leq i(t+p)$ for $i \geq\left[\frac{t+p-2}{p}\right]$. Thus $\beta(\lambda)$ must be a subset of

$$
\left\{x \in \mathbf{Z}: 1 \leq x \leq\left[\frac{t+p-2}{p}\right] t-1\right\} \backslash\left(\bigcup_{1 \leq i \leq\left[\frac{t+p-2}{p}\right]-1}\{x \in \mathbf{Z}: i t \leq x \leq i(t+p)\}\right)
$$

which equals to $\bigcup_{1 \leq i \leq\left[\frac{t+p-2}{p}\right]} S_{t, i}$.
We can define a partial order relation on $\bigcup_{1 \leq i \leq\left[\frac{t+p-2}{p}\right]} S_{t, i}$. That is, for every $x, y \in \bigcup_{1 \leq i \leq\left[\frac{t+p-2}{p}\right]} S_{t, i}$, we define $y \preceq x$ if and only if $x-y=\sum_{0 \leq k \leq p} a_{k}(t+k)$ for some non negative integers a_{k}. It is easy to verify that \preceq is indeed a partial order relation. We say that a subset S of a partially ordered set T is good if for every $x \in S, y \in T$ such that $y \preceq x$ in T, we always have $y \in S$.

By the definition of $S_{t, i}$, It is easy to see that

$$
S_{t, i}=\left\{x-(t+k): x \in S_{t, i+1}, 0 \leq k \leq p\right\}
$$

for $1 \leq i \leq\left[\frac{t+p-2}{p}\right]-1$. Then by Lemma 2.1] and Lemma 3.1] the following result is obvious:

Lemma 3.2. A partition λ is a $(t, t+1, \ldots, t+p)$-core partition if and only if $\beta(\lambda)$ is a good subset of $\bigcup_{1 \leq i \leq\left[\frac{t+p-2}{p}\right]} S_{t, i}$.

Let $R_{t, j}$ be the set of $(t, t+1, \ldots, t+p)$-core partitions whose β-sets contain every positive integer smaller than j but don't contain j. Let $r_{t, j}=\# R_{t, j}$ be the number of elements in $R_{t, j}$.

Now we can give the main result in this paper.
Theorem 3.3. Suppose that p is a given positive integer. The number f_{t} of $(t, t+$ $1, \ldots, t+p)$-core partitions is computed recursively by

$$
f_{t}=0 \text { for } t<0 ; f_{0}=1 ; f_{t}=\sum_{i=1}^{p-1} f_{t-i}+\sum_{j=0}^{t-p} f_{j} f_{t-p-j} \text { for } t \geq 1
$$

The generating function of f_{t} is

$$
\sum_{t \geq 0} f_{t} x^{t}=\frac{1-\sum_{1 \leq i \leq p-1} x^{i}-\sqrt{\left(1-\sum_{1 \leq i \leq p-1} x^{i}\right)^{2}-4 x^{p}}}{2 x^{p}}
$$

Proof. For convenience, let $f_{t}=0$ for $t<0$ and $f_{0}=1$. Now suppose that $t \geq 1$. First we know $r_{t, j}=0$ for $j \geq t+1$ since $t \notin \beta(\lambda)$ and thus $f_{t}=\sum_{1 \leq j \leq t} r_{t, j}$.

Step 1. We claim that $r_{t, j}=f_{t-j}$ for $1 \leq j \leq p-1$:
Notice that $r_{t, j}=f_{t-j}=0$ is true if $t+1 \leq j \leq p-1$ since we already assume that $f_{t}=0$ for $t<0$. Now we can assume that $1 \leq j \leq p-1$ and $j \leq t$. Let λ be a partition such that $1,2, \ldots, j-1 \in \beta(\lambda)$ and $j \notin \beta(\lambda)$. If $\lambda \in R_{t, j}$, i.e., λ is a $(t, t+1, \ldots, t+p)$-core partition, then by Lemma 2.1, we have $x \notin \beta(\lambda)$ for $i \geq 2$ and $(i-1)(t+p)+1 \leq x \leq(i-1)(t+p)+j$ since $j \notin \beta(\lambda)$ and $t \leq t+p+1-j \leq t+p$. Let

$$
\begin{aligned}
S_{t, i}^{\prime} & =S_{t, i} \backslash\{x \in \mathbf{Z}:(i-1)(t+p)+1 \leq x \leq(i-1)(t+p)+j\} \\
& =\{x \in \mathbf{Z}:(i-1)(t+p)+j+1 \leq x \leq i t-1\}
\end{aligned}
$$

Notice that $S_{t, i}^{\prime}=\emptyset$ when $i>\left[\frac{t-j+p-2}{p}\right]$. Thus it is easy to see that

$$
\{1,2, \ldots, j-1\} \subseteq \beta(\lambda) \subseteq\left(\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime}\right) \bigcup\{1,2, \ldots, j-1\}
$$

if $\lambda \in R_{t, j}$. We can define a partial order relation on $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime}$ induced by the partial order relation \preceq on $\bigcup_{1 \leq i \leq\left[\frac{t+p-2}{p}\right]} S_{t, i}$. That is, for every two integers x, y in $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime}$, we have $y \preceq x$ if and only if $x-y=\sum_{0 \leq k \leq p} a_{k}(t+k)$ for some non negative integers a_{k}.

Let λ^{\prime} be a partition such that

$$
\beta\left(\lambda^{\prime}\right)=\beta(\lambda) \backslash\{1,2, \ldots, j-1\}
$$

By the definition of $S_{t, i}^{\prime}$, we know for $1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]-1$,

$$
S_{t, i}^{\prime}=\left\{x-(t+k): x \in S_{t, i+1}^{\prime}, 0 \leq k \leq p\right\}
$$

Then by Lemma 2.1] it is easy to see that $\lambda \in R_{t, j}$ if and only if λ^{\prime} is a $(t, t+$ $1, \ldots, t+p)$-core partition with $\beta\left(\lambda^{\prime}\right) \subseteq \bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime}$, which is equivalent to $\beta\left(\lambda^{\prime}\right)$ is a good subset of $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime}$.

Notice that $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t-j, i}^{p}$ is a partially ordered set and for every two integers x^{\prime}, y^{\prime} in $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t-j, i}$, we know $y^{\prime} \preceq x^{\prime}$ if and only if $x^{\prime}-y^{\prime}=$ $\sum_{0 \leq k \leq p} a_{k}(t-j+k)$ for some non negative integers a_{k}. Now we can build a function

$$
\phi: \bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime} \rightarrow \bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t-j, i},
$$

that is, for every $x \in S_{t, i}^{\prime}$, let $\phi(x)=x-i j$. Then it is obvious that ϕ is a bijection. Let $x \in S_{t, i+1}^{\prime}$ and $y \in S_{t, i}^{\prime}$. We have $\phi(x)-\phi(y)=x-y-j$. Thus we know $t-j \leq \phi(x)-\phi(y) \leq t-j+p$ if and only if $t \leq x-y \leq t+p$, which implies that $\phi(y) \preceq \phi(x)$ in $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t-j, i}$ if and only if $y \preceq x$ in $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime}$. This means that ϕ is an isomorphism of partially ordered sets. Then $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime}$ and $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t-j, i}$ has the same number of good subsets and thus by Lemma 3.2 we have $r_{t, j}=f_{t-j}$. We mention that if $j=t \leq p-1$, then $r_{t, t}=f_{0}=1$ is true since in this case, we have $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime}=\emptyset$ and the empty subset of a partially ordered set is always a good subset.

Step 2. We claim that $r_{t, j}=f_{j-p} f_{t-j}$ for $p \leq j \leq t$:
Let $\lambda \in R_{t, j}$, i.e., λ is a $(t, t+1, \ldots, t+p)$-core partition such that $1,2, \ldots, j-1 \in$ $\beta(\lambda)$ and $j \notin \beta(\lambda)$. If $i \geq 0$ and $i t+j \leq x \leq i(t+p)+j$, by Lemma 2.1 we have $x \notin \beta(\lambda)$. Let

$$
S_{t, i}^{\prime}=\{x \in \mathbf{Z}: i(t+p)+1 \leq x \leq i t+j-1\}
$$

and

$$
S_{t, i}^{\prime \prime}=\{x \in \mathbf{Z}:(i-1)(t+p)+j+1 \leq x \leq i t-1\}
$$

Then

$$
S_{t, i}^{\prime} \bigcup S_{t, i+1}^{\prime \prime}=S_{t, i+1} \backslash\{x \in \mathbf{Z}: i t+j \leq x \leq i(t+p)+j\}
$$

and

$$
S_{t, 0}^{\prime}=\{1,2, \ldots, j-1\} \subseteq \beta(\lambda)
$$

Notice that $S_{t, i}^{\prime}=\emptyset$ when $i>\left[\frac{j-2}{p}\right]$ and $S_{t, i}^{\prime \prime}=\emptyset$ when $i>\left[\frac{t-j+p-2}{p}\right]$. Thus it is easy to see

$$
\beta(\lambda) \subseteq\left(\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime}\right) \bigcup\left(\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime}\right) \bigcup S_{t, 0}^{\prime}
$$

We can define partial order relations on $\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime}$ and $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime}$ induced by the partial order relation \preceq on $\bigcup_{1 \leq i \leq\left[\frac{t+p-2}{p}\right]} S_{t, i}$ as in Step 1 .

Let λ^{\prime} be the partition such that

$$
\beta\left(\lambda^{\prime}\right)=\left(\beta(\lambda) \bigcap\left(\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime}\right)\right) \bigcup S_{t, 0}^{\prime}
$$

and $\lambda^{\prime \prime}$ be the partition such that

$$
\beta\left(\lambda^{\prime \prime}\right)=\beta(\lambda) \bigcap\left(\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime}\right)
$$

By the definition of $S_{t, i}^{\prime}$ and $S_{t, i}^{\prime \prime}$, we know

$$
S_{t, i}^{\prime}=\left\{x-(t+k): x \in S_{t, i+1}^{\prime}, 0 \leq k \leq p\right\}
$$

for $0 \leq i \leq\left[\frac{j-2}{p}\right]-1$ and

$$
S_{t, i}^{\prime \prime}=\left\{x-(t+k): x \in S_{t, i+1}^{\prime \prime}, 0 \leq k \leq p\right\}
$$

for $1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]-1$. Then by Lemma 2.1] it is easy to see that λ^{\prime} and $\lambda^{\prime \prime}$ are $(t, t+1, \ldots, t+p)$-core partitions since λ is a $(t, t+1, \ldots, t+p)$-core partition. On the other hand, if λ^{\prime} and $\lambda^{\prime \prime}$ are $(t, t+1, \ldots, t+p)$-core partitions such that

$$
S_{t, 0}^{\prime} \subseteq \beta\left(\lambda^{\prime}\right) \subseteq\left(\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime}\right) \bigcup S_{t, 0}^{\prime}
$$

and

$$
\beta\left(\lambda^{\prime \prime}\right) \subseteq \bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime}
$$

by Lemma 2.1 we can reconstruct the $(t, t+1, \ldots, t+p)$-core partition $\lambda \in R_{t, j}$ by letting

$$
\beta(\lambda)=\beta\left(\lambda^{\prime}\right) \bigcup \beta\left(\lambda^{\prime \prime}\right)
$$

which implies that

$$
\left(\beta(\lambda) \bigcap\left(\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime}\right)\right) \bigcup S_{t, 0}^{\prime}=\beta\left(\lambda^{\prime}\right)
$$

and

$$
\left.\beta(\lambda) \bigcap_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime}\right)=\beta\left(\lambda^{\prime \prime}\right)
$$

Thus the number of $(t, t+1, \ldots, t+p)$-core partitions in $R_{t, j}$ equals to the number of pairs $\left(\lambda^{\prime}, \lambda^{\prime \prime}\right)$ such that λ^{\prime} and $\lambda^{\prime \prime}$ are $(t, t+1, \ldots, t+p)$-core partitions, $S_{t, 0}^{\prime} \subseteq$ $\beta\left(\lambda^{\prime}\right) \subseteq\left(\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime}\right) \bigcup S_{t, 0}^{\prime}$, and $\beta\left(\lambda^{\prime \prime}\right) \subseteq \bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime}$, which equals to the product of the number of good subsets of $\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime}$ and the number of good subsets of $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime}$ by Lemma 2.1.

First we compute the number of good subsets of $\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime}$. Notice that for every two integers x^{\prime}, y^{\prime} in $\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{j-p, i}$, we have $y^{\prime} \preceq x^{\prime}$ if and only if $x^{\prime}-y^{\prime}=\sum_{0 \leq k \leq p} a_{k}(j-p+k)$ for some non negative integers a_{k}. We define a function

$$
\phi: \bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime} \rightarrow \bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{j-p, i}
$$

such that for every $x \in S_{t, i}^{\prime}$, let $\phi(x)=x-i(t+p-j)-j$. Then it is easy to see that ϕ is a bijection. Let $x \in S_{t, i+1}^{\prime}$ and $y \in S_{t, i}^{\prime}$. We have $\phi(x)-\phi(y)=$ $x-y-(t+p-j)$. Thus $\phi(y) \preceq \phi(x)$ if and only if $y \preceq x$ since both of them are equivalent to $t \leq x-y \leq t+p$. This means that ϕ is an isomorphism of partially ordered sets. Then $\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime}$ and $\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{j-p, i}$ has the same number of good subsets, which equals to f_{j-p} by Lemma 3.2. We mention that $\bigcup_{1 \leq i \leq\left[\frac{j-2}{p}\right]} S_{t, i}^{\prime}$ has f_{j-p} good subsets is true for $j-p=0$ since the empty subset of a partially ordered set is always a good subset and we already assume that $f_{0}=1$.

Next we compute the number of good subsets of $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime}$. Notice that for every two integers x^{\prime}, y^{\prime} in $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t-j, i}$, we have $y^{\prime} \preceq x^{\prime}$ if and only if $x^{\prime}-y^{\prime}=\sum_{0 \leq k \leq p} a_{k}(t-j+k)$ for some non negative integers a_{k}. We define a function

$$
\varphi: \bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime} \rightarrow \bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t-j, i}
$$

such that for every $x \in S_{t, i}^{\prime \prime}$, let $\varphi(x)=x-i j$. Then it is easy to see that φ is a bijection. Let $x \in S_{t, i+1}^{\prime \prime}$ and $y \in S_{t, i}^{\prime \prime}$. We have $\varphi(x)-\varphi(y)=x-y-j$. Thus $\varphi(y) \preceq$ $\varphi(x)$ if and only if $y \preceq x$ since both of them are equivalent to $t \leq x-y \leq t+p$. This means that φ is an isomorphism of partially ordered sets. Then $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime}$ and $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t-j, i}$ has the same number of good subsets, which equals to f_{t-j} by Lemma 3.2. We mention that $\bigcup_{1 \leq i \leq\left[\frac{t-j+p-2}{p}\right]} S_{t, i}^{\prime \prime}$ has f_{t-j} good subsets is true for $t-j=0$ since the empty subset of a partially ordered set is always a good subset and we already assume that $f_{0}=1$.

Now we have $r_{t, j}=f_{j-p} f_{t-j}$ for $p \leq j \leq t$ by Lemma 3.2 and prove the claim.
Step 3. Put Step 1 and Step 2 together, we have

$$
f_{t}=\sum_{j=1}^{t} r_{t, j}=\sum_{i=1}^{p-1} f_{t-i}+\sum_{j=p}^{t} f_{j-p} f_{t-j}=\sum_{i=1}^{p-1} f_{t-i}+\sum_{j=0}^{t-p} f_{j} f_{t-p-j}
$$

for $t \geq 1$.
Let $F(x)=\sum_{t \geq 0} f_{t} x^{t}$ be the generating function of f_{t}. Then we have

$$
\begin{aligned}
F(x)-1 & =\sum_{t \geq 1} f_{t} x^{t}=\sum_{t \geq 1}\left(\sum_{i=1}^{p-1} f_{t-i}+\sum_{j=0}^{t-p} f_{j} f_{t-p-j}\right) x^{t} \\
& =\sum_{i=1}^{p-1} \sum_{t \geq 1} f_{t-i} x^{t}+\sum_{t \geq 1} \sum_{j=0}^{t-p} f_{j} f_{t-p-j} x^{t} \\
& =\sum_{i=1}^{p-1} x^{i} F(x)+x^{p}(F(x))^{2} .
\end{aligned}
$$

Then $F(x)=\frac{1-\sum_{1 \leq i \leq p-1} x^{i}-\sqrt{\left(1-\sum_{1 \leq i \leq p-1} x^{i}\right)^{2}-4 x^{p}}}{2 x^{p}}$. We finish the proof.
Suppose that $p=1$ in Theorem 3.3. We can give a new proof of Anderson's result on the number of $\left(t_{1}, t_{2}\right)$-core partitions in [2] for the case $t_{2}=t_{1}+1$.
Corollary 3.4. The number f_{t} of $(t, t+1)$-core partitions is $f_{t}=\frac{1}{2 t+1}\binom{2 t+1}{t}$. The generating function of f_{t} is

$$
\sum_{t \geq 0} f_{t} x^{t}=\frac{1-\sqrt{1-4 x}}{2 x}
$$

Proof. Let $p=1$ in Theorem 3.3. We have the generating function of f_{t} is

$$
\sum_{t \geq 0} f_{t} x^{t}=\frac{1-\sqrt{1-4 x}}{2 x}
$$

This is the generating function of Catalan numbers. Then it is easy to see that $f_{t}=\frac{1}{t+1}\binom{2 t}{t}=\frac{1}{2 t+1}\binom{2 t+1}{t}$.

Suppose that $p=2$ in Theorem 3.3. Then it is easy to see that Theorem 1.2 is a direct corollary of Theorem 3.3,
Proof of Theorem 1.2, Let $p=2$ in Theorem 3.3. We have the generating function of f_{t} is

$$
\sum_{t \geq 0} f_{t} x^{t}=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}}
$$

By $A 001006$ in 11 we know this is the generating function of Motzkin numbers. It is well-known that Bernhart [4] proved that the t-th Motzkin number equals to $\sum_{0 \leq k \leq\left[\frac{t}{2}\right]} \frac{1}{k+1}\binom{t}{2 k}\binom{2 k}{k}$. We finish the proof.

4. Acknowledgements

The author appreciates Prof. P. O. Dehaye's encouragement and help. I would also like to thank Prof. C. Krattenthaler for the useful comments and thank Prof. W. J. Keith and Prof. R. Nath for making me aware of 9. The author is supported by Forschungskredit of the University of Zurich, grant no. [FK-14-093].

References

[1] T. Amdeberhan, Theorems, problems and conjectures, 2013. Published electronically at www.math.tulane.edu/ ~tamdeberhan/conjectures.pdf.
[2] J. Anderson, Partitions which are simultaneously t_{1} - and t_{2}-core, Disc. Math. 248(2002), 237 243.
[3] C. Berge, Principles of combinatorics, Mathematics in Science and Engineering Vol. 72, Academic Press, New York, 1971.
[4] F. R. Bernhart, Catalan, Motzkin, and Riordan numbers, Discrete Math. 204(1999), 73-112.
[5] B. Ford, H. Mai, and L. Sze, Self-conjugate simultaneous p - and q-core partitions and blocks of A_{n}, J. Number Theory 129(4)(2009), $858-865$.
[6] F. Garvan, D. Kim, and D. Stanton, Cranks and t-cores, Inv. Math. 101(1990), 1 - 17.
[7] A. Granville and K. Ono, Defect zero p-blocks for finite simple groups, Trans. Amer. Math. Soc. 348 (1996), $331-347$.
[8] G. James, A. Kerber, The representation theory of the symmetric group, Addison-Wesley Publishing Company, Reading, MA, 1981.
[9] W. J. Keith and R. Nath, Partitions with prescribed hooksets, J. Comb. Number Theory $3(1)(2011), 39-50$.
[10] J. Olsson and D. Stanton, Block inclusions and cores of partitions, Aequationes Math. 74(12) (2007), $90-110$.
[11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2014. Published electronically at https: //oeis.org.
[12] R. P. Stanley and F. Zanello, The Catalan case of Armstrong's conjectures on simultaneous core partitions, arXiv: 1312.4352 .
[13] D. Stanton, Open positivity conjectures for integer partitions, Trends Math. 2(1999), 19 - 25.
I-Math, Universität Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland E-mail address: huan.xiong@math.uzh.ch

[^0]: 1991 Mathematics Subject Classification. 05A17, 11P81.
 Key words and phrases. partition, hook length, β-set, t-core.

