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THE NUMBER OF SIMULTANEOUS CORE PARTITIONS

HUAN XIONG

ABsTRACT. Amdeberhan conjectured that the number of (¢,¢+ 1, ¢ + 2)-core
partitions is Zogkg[%] %H (th) (2:) In this paper, we obtain the generating
function of the numbers f; of (t,t+1,...,t+ p)-core partitions. In particular,
this verifies that Amdeberhan’s conjecture is true. We also prove that the num-
ber of (t1,t2,...,tm)-core partitions is finite if and only if ged(t1, t2, ..., tm) =
1, which extends Anderson’s result on the finiteness of the number of (¢1,t2)-
core partitions for coprime positive integers t; and t2 and thus rediscover a
result of Keith and Nath with a different proof.

1. INTRODUCTION

Partitions of positive integers are widely studied in number theory and combi-
natorics. As we know, a partition of a positive integer n is a finite non increasing
sequence of positive integers A = (A1, A2, ..., A) with >°; . A\; = n. In this case,
n is called the size of A, which is also be denoted by | A |. We can associate a parti-
tion A with its Young diagram, which is an array of boxes arranged in left-justified
rows with \; boxes in the i-th row. To the (i,j)-box of the Young diagram, let
h(i,j) be its hook length, which is the number of boxes directly to the right, di-
rectly below, or the box itself. Let ¢ be a positive integer. A partition A is called a
t-core partition if none of its hook lengths is a multiple of ¢. Finally, we say that
Ais a (t1,ta,...,ty)-core partition if it is simultaneously a ¢1-core, a to-core, ...,
a ty,-core partition. For instance, Figure 1 shows the Young diagram and hook
lengths of the partition (5,2,2). It is easy to see that, the partition (5,2,2) is a
(4,5)-core partition since non of its hook lengths is divisible by 4 or 5.
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FIGURE 1. The Young diagram and hook lengths of the partition (5,2, 2).

For t-core partitions, Granville and Ono [7] proved that there always exists a
t-core partition with size n for any ¢t > 4 and n > 1. A very important result in
the study of (¢1,ta,. .., t,;)-core partitions was given by Anderson [2], that is, there
are only finite (¢1,%2)-core partitions when ¢; and ¢2 are coprime to each other.
Actually, Anderson showed that the number of (¢1,ts)-core partitions is exactly
;(tﬁb) for relatively prime positive integers ¢; and t3. Anderson’s beautiful

t1+ta ty
result attracts much attention and motives a lot of work in the study of simultaneous
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core partitions. Stanley and Zanello [12] showed that the average size of a (t,t+1)-
core partition is (H;) /2. In 2007, Olsson and Stanton [I0] proved that the largest

2 2
size of (t,ta)-core partitions is % when t; and t, are coprime to each
other. Ford, Mai, and Sze [5] showed that the number of self-conjugate (¢, t2)-core
k2
partitions is ([ R []I[] 7]
o

denotes the largest integer not greater than x.

Anderson [2] proved the finiteness of the number of (¢1,ts)-core partitions for
coprime positive integers t; and to. We will extend Anderson’s this result to a
more general case and thus rediscover Theorem 1 in [9] with a different proof:

) for relatively prime positive integers ¢; and to, where [x]

Theorem 1.1. The number of (t1,t2,. .., ty)-core partitions is finite if and only if
ged(ty,ta, ... tm) = 1, where ged(ty, ta, . . ., tm) denotes the greatest common divisor
Oftl,tg, N ,tm.

For the number of (¢,¢+ 1,t + 2)-core partitions, Amdeberhan [I] gave the fol-
lowing conjecture, which we will prove in Section 3:

Theorem 1.2. (Cf. Conjecture 11.1 of [1|.) The number fi of (t,t + 1,t + 2)-

core partitions is the t—th Motzkin number Zogkg[g] ler1 (th) (Qkk). The generating
function of f; is
1—x—+v1—2x— 322
t __
Z Jea® = 222 :

t>0

2. PROOF OF THEOREM [ 1]

Suppose that A\; > Ay > -+~ > A\, > 1 and A = (A1, \2,..., ) is a partition.
The B-set of X is denoted by
BA) ={\i+r—i:1<i<r}

It is obvious that 0 ¢ B()). Actually S(A) is just the set of hook lengths of boxes
in the first column of the corresponding Young diagram. It is easy to see that a
partition A is uniquely determined by its S-set B(\). The following is a well-known
result on [-sets of ¢t-core partitions.

Lemma 2.1. ([8].) A partition X is a t-core partition if and only if for any x € S(X)
such that x > t, we have x —t € B(N).

By Lemma 2] we can easily deduce the following result:

Lemma 2.2. Let X be a (t1,ta,. ..,y )-core partition and a; be some non negative
integers. Then Y, .. ait; & B(N).

Proof. We will prove this result by induction on m. If m = 1, by Lemma 2.1] we
know a1ty ¢ B(A) since 0 ¢ 3(\). Now we assume that m > 2 and the result is true
for m — 1, 1€, Y cicm_q aiti ¢ B(A) if a; are some non negative integers. Then
by Lemma 1] we know Y oicicm Giti = Ambm + Y1 cicm_q @ili & B(N). O

Now we can prove Theorem [T1]
Proof of Theorem [I.Il =-: Suppose that ged(t1,ta,...,tm) = d > 1. For every
n € N, let A\, be the partition whose (-set is

B(An) ={1,14+d,1+2d,...,1+nd}.
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Then for any 1 <7 <m and 0 < j < n such that 1+ jd > t;, we have 1 + jd —t;, =
1+ 7'd € B(\,) for some non negative integer j' since d | t; and d > 1. Then by

Lemma 21l A, is a (t1,t2, ..., t;,)-core partition for every n € N. This means that
the number of (t1,ta, ..., tmy)-core partitions is infinite.

<: Suppose that ged(ty,ta,...,tm) =1l and 1 <t <ty < -+ < t,. To show
that the number of (t1,ts,...,t;,)-core partitions is finite, we just need to show
that for every (t1,t2,...,ty)-core partition A and > (t1 — 1) > 5, ,, ti, we have
z ¢ B(N):

First we know there exist some a; € Z such that x = Zl<i<m a;t; since
ged(ty,ta, ..., tym) = 1. Furthermore, we can assume that 0 < a; < t; — 1 for

2 <1 < m since
altl + aiti = (a1 — btl)tl + (CLl' + btl)tz
for every b € Z. Now we have
Z aitinZ(tl—l) Z ti
1<i<m 2<i<m
and 0 < a; <t; — 1 for 2 <i<m. It follows that
Cthl:I— Z aitiZI—(tl—l) Z tZZO
2<i<m 2<i<m

Thus we know a; > 0. Then by Lemma 2.2] we have

=Y ait; ¢ B(\).

1<i<m

This means that = ¢ S(X\) if A is a (t1,%2,...,t,)-core partition and =z > (¢t —
1) ocicm ti- Now we know for a (t1,t2,...,t,)-core partition A, its B-set B(\)
must be a subset of {1,2,...,(t; —1) > 5-,,, ti—1}. This implies that the number
of (t1,ta,...,tm)-core partitions must be finite. O

3. MAIN RESULTS

Throughout this section, let p be a given positive integer.
Let S;; ={x €Z:(—1)(t+p)+ 1<z <it—1}. The following result is a
characterization of S-sets of (¢,t 4+ 1,...,t + p)-core partitions.

Lemma 3.1. Suppose that X is a (t,t +1,...,t+ p)-core partition. Then

B(A) € U St

1<ig[He=2]
Proof. By Lemma 22 we have 37, ., ax(t + k) ¢ B(A) for non negative integers
ar. Let

Tt,i:{z ak(t"’k)-akeZ, ak;ZO, Z ak:i}'

0<k<p 0<k<p
Then T;; (N B(A) = 0 for ¢ > 0. It is easy too see that
Ti={zx€Z:it<z<i(t+p)}

and
t+p—2

Tii={zx€Z:x>
U Tu=1 L

i>[He=2]

Jt}



4 HUAN XIONG

since (i + 1)t — 1 < it + [%]p < i(t+p) for i > [%]. Thus S(A) must be a
subset of

{er:leS[#]t—l}\( U {zeZ:it<z<it+p)),

1<i[He=211

which equals to U1<z‘<[t“’*2] Sti- =
- = P

We can define a partial order relation on Ulgig[%] Si,i. That is, for every
x,y € Ulgig[%] Sti, we define y Z x ifand only if v —y = > o, ar(t + k) for
some non negative integers ay. It is easy to verify that < is indeed a partial order
relation. We say that a subset S of a partially ordered set T is good if for every

x €S,y €T such that y < 2 in T, we always have y € S.
By the definition of S;;, It is easy to see that

Sii={x—(t+k):x€Siit1, 0<k<p}
for 1 <i < [—t+’;_2] — 1. Then by Lemma 2Tl and Lemma 3] the following result is

obvious:

Lemma 3.2. A partition X is a (t,t+1,...,t+p)-core partition if and only if S(N\)
is a good subset of |, <;<(tto=2) Sti-
- - P

Let R;; be the set of (¢,t + 1,...,t + p)-core partitions whose (-sets contain
every positive integer smaller than j but don’t contain j. Let r;; = #R; ; be the
number of elements in Ry ;.

Now we can give the main result in this paper.

Theorem 3.3. Suppose that p is a given positive integer. The number fi of (t,t+
1,...,t+ p)-core partitions is computed recursively by

t—p

p—1
Je=0fort<0; fo=1 fi= th—i + ijft—p—j Jort > 1.
i=1 §=0
The generating function of fy is

. 1=3 cicp ' — \/(1 =D i<icp 1 &) —da?
S - |
2xP

t>0

Proof. For convenience, let f; =0 for t < 0 and fy = 1. Now suppose that ¢ > 1.
First we know 7 ; = 0 for j >t + 1 since t ¢ B(A) and thus f; = >, ;74,5

Step 1. We claim that 7, ; = fi—jfor 1 <j7<p—-1:

Notice that r¢; = fi—; = 0is true if t +1 < j < p — 1 since we already assume
that f; = 0 for t < 0. Now we can assume that 1 < j <p—1and j <t Let A
be a partition such that 1,2,...,j —1€ g(\) and j ¢ S(A\). f X € Ry, le, Ais a
(t,t+1,...,t+ p)-core partition, then by Lemma 2] we have x ¢ S()\) for i > 2
and (1—1)(t+p)+1 < x < (i—1)(t+p)+jsince j ¢ B(N) and t < t+p+1—7 < t+p.
Let

Sii = Spi\{r€Z:(i-1)(t+p)+1<z<(i-1)(t+p) +j}
= {z€Z:(i-1)(t+p +j+1<x<it—1}.
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Notice that Sj; = () when i > [#]. Thus it is easy to see that

{L2,....j-ncsnyc U soU2...i-1
1<i<[i=te=2)
if A € Ry;. We can define a partial order relation on (U, ;(t=stp-2, Sy ; induced
by the partial order relation < on Ulgig[t+p—2] St,i. That is, for every two integers
T,y in Uy gjpezite=2) Sp 5, we have y Z @ if and only if w —y =32 o ar(t + k)
== P ? — v =

for some non negative integers ay.
Let A be a partition such that

ﬂ()‘/) = B(/\) \ {1a27"'7j - 1}

By the definition of Sj ;, we know for 1 <4 < [_t*j;r)p%] _1,
Sii={—(t+k) €5, 0<k<p)
Then by Lemma [2] it is easy to see that A € R, ; if and only if X is a (¢t +

!

1,...,t 4 p)-core partition with (X)) C U, <;<(t=stp=2) Sf;, Which is equivalent to
<i<[*=IE :
B(X') is a good subset of (J; <, 1=sin-2) 5}

Notice that U1<i<[tﬂ-+p72] Si—j,i is a partially ordered set and for every two
- P

77"

integers 2,4y’ in U1<i<[t7j+p72] Si—ji, we know y' < 2’ if and only if ' —y' =
- - P

> o<k<p @k(t—j+Fk) for some non negative integers aj. Now we can build a function

¢ : U S,;J — U Stfjﬁi,

1< [ ite=2) 1< tte=2)

that is, for every x € S} ;, let ¢(x) = x —ij. Then it is obvious that ¢ is a bijection.
Let z € S}, and y € S{;. We have ¢(z) — ¢(y) = z —y — j. Thus we know
t—j<o¢(x)—odly) <t—j+pifand only if t <z —y <t + p, which implies that
d(y) = ¢(z) in Ulgig[tfj:p72] Si—j if and only if y < = in Ulgig[tﬂ-:pfz] S ;- This
means that ¢ is an isomorphism of partially ordered sets. Then Ulgig[tfji;p72] Séﬁi
and Ulgig[tfji;p72] S¢— ;i has the same number of good subsets and thus by Lemma
B2l we have ry ; = fi—;. We mention that if j =t < p—1, then 1y = fo =1 is
true since in this case, we have |J; ;< (t=i+p=2) S;; = 0 and the empty subset of a
partially ordered set is always a good subset.

Step 2. We claim that v, ; = fj_pfi—; forp < j <t:

Let A € Ry j,1e., ANisa (t,t+1,...,t+p)-core partition such that 1,2,...,j—-1 €
B(A) and j ¢ B(N). If i > 0 and it + j <z < i(t + p) + j, by Lemma [ZT] we have
x ¢ B(A). Let

Sii={reZ:it+p)+1<z<it+j—1}

and
Sli={reZ:(i-1)(t+p)+j+1<x<it—1}.
Then
StilUSli =St \{z€Zit+j <z <i(t+p)+j}
and

S;,O - {1527'-'7j - 1} C ﬂ(/\)



6 HUAN XIONG

Notice that Sf; = 0 when i > [%] and S{; = () when i > [#]. Thus it is
easy to see
svec U salUc U stalUste
1<i<[L2) 1<ig[=dte=2]
We can define partial order relations on Ulsis[% S;,; and Ulgig[pjzp%] Sy, in-
duced by the partial order relation < on U1<i<[t+p72] St,i as in Step 1.
- - P
Let A be the partition such that

BN =BNNC U stalUshe
1<i<[452

]
P
and )’ be the partition such that

sy =M U St

1Si§[%]

By the definition of S; ; and S};, we know
Sii={r—(t+k):xeS;, 0<k<p}

forOSig[%]—land

Sti={ex—(t+k):zeS i, 0<k<p}
for1<i< [%] — 1. Then by Lemma 2] it is easy to see that A’ and \” are

(t,t+1,...,t+ p)-core partitions since A is a (t,t+1,...,t -+ p)-core partition. On
the other hand, if A and N are (¢,t +1,...,t + p)-core partitions such that

1o © B) C( U S USLO
1<i<[22]
and
sane U s
1< dte=2)
by Lemma 2Tl we can reconstruct the (¢,t+1,...,t+ p)-core partition A € R; ; by
letting

B = B BA),
which implies that

BOOC U stolUsio=8W)

1<i<[432]

and
sONC U st =80,
1<ig[=HpE=2]
Thus the number of (t,¢t+1,...,t+ p)-core partitions in R; ; equals to the number
of pairs (X', \”) such that \" and A" are (t,t +1,...,t+ p)-core partitions, Sj ; C
BN) C (Ulgig[%] St )U St g, and B(N) C Ulgig[tszp%] Sy, which equals to
the product of the number of good subsets of J;;<(i=2) 5}, and the number of

good subsets of J; ;[t=stp-2) S7; by Lemma 2.1l
== I3 ?
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First we compute the number of good subsets of U1§ig[%} Si ;- Notice that

for every two integers z’,7 in Ulgig[%] Si_p.i, we have y' < 2/ if and only if
o . -

;:unct;igon_ > o<k<p @k(j — p + k) for some non negative integers ay. We define a
o: |J SLi— Si pi

1<i<[L2) 1<i<[52)

such that for every x € Si;, let ¢(x) = x —i(t +p — j) — j. Then it is easy to
see that ¢ is a bijection. Let z € S, ; and y € S;;. We have ¢(z) — ¢(y) =
x—y—(t+p—7). Thus ¢(y) =< ¢(x) if and only if y < x since both of them are
equivalent to t < x —y < t 4 p. This means that ¢ is an isomorphism of partially
ordered sets. Then Ulgig[%] S;,; and Ulgig[%] S;_p,i has the same number of
good subsets, which equals to f;_, by Lemma[3.2l We mention that Ulgig[ﬂ] S}
has f;_, good subsets is true for j —p = 0 since the empty subset of a paprtially
ordered set is always a good subset and we already assume that fo = 1.

Next we compute the number of good subsets of Ulgig[tszp72] SY;. Notice that

N2

for every two integers z’,y’ in U1<i<[tﬂ-+p72] Si—j.i, we have y' < 2’ if and only
- p
if o' —y' =) g<cp<pan(t —j + k) for some non negative integers ay. We define a

function
©: U Szi:z — U Stfjﬁi

1<i< [t =2) 1<i<[t= k2]

such that for every x € SY;, let p(z) = 2 — ij. Then it is easy to see that ¢ is a
bijection. Let z € S}, , and y € SY';. We have p(z)—p(y) = z—y—j. Thus p(y) =<
() if and only if y < « since both of them are equivalent to ¢t < z—y < t+p. This
means that ¢ is an isomorphism of partially ordered sets. Then Ulgig[tfj:p72] Sty
and Ulgig[tfji;p72] Si— ;i has the same number of good subsets, which equals to
fi—; by Lemma B2l We mention that Ulgig[tﬂ-:pfz] SY; has f;—; good subsets is
true for ¢t — j = 0 since the empty subset of a partially ordered set is always a good
subset and we already assume that fo = 1.

Now we have r; ; = fj_pfi—; for p < j <t by Lemma [B.2] and prove the claim.

Step 3. Put Step 1 and Step 2 together, we have

¢ p—1 t p—1 t—p
Ji= Zm,j = Z Je—i + Z fimpfi—j = Z fii+ Z fifopj
J=1 i=1 j=p i=1 i=0

for t > 1.
Let F(z) =) ,50 fix® be the generating function of f;. Then we have

p—1 t—p
Flz)-1 = thil?t = Z(Z Je—i+ ijftfp*j)xt
§=0

t>1 t>1 i=1
p—1 t—p
_ et . et
= § § fr—ix +§ 5 f]ft—p—]x
i=1 t>1 t>1 j=0

p—1
— Z 2 F(x) + 2P (F(z))2.
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Then F(z) = i PO iy PTAT  Gih the proof. O

2xP

Suppose that p = 1 in Theorem We can give a new proof of Anderson’s
result on the number of (t1,t2)-core partitions in [2] for the case to = t1 + 1.

Corollary 3.4. The number f; of (t,t+ 1)-core partitions is f; = ﬁ(zt:rl). The
generating function of f; is

thx _ \/1—4(17

2x
t>0

Proof. Let p =1 in Theorem B3] We have the generating function of f; is

thx _ \/1—4(17

2x
t>0

This is the generating function of Catalan numbers. Then it is easy to see that
f — 1 (Qt) — 1 (2t+1) |:|
T I\t 2t+1\ t /-

Suppose that p = 2 in Theorem B3l Then it is easy to see that Theorem is
a direct corollary of Theorem B3
Proof of Theorem Let p = 2 in Theorem We have the generating

function of f; is
thxtz 1—&6—\/1—2&[]—3&[:2'

222

>0
By A001006 in [II] we know this is the generating function of Motzkin numbers.
It is well- known that Bernhart [4] proved that the t—th Motzkin number equals to

20<k<[] 4] k+1 (52) (2,5). We finish the proof. O
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