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THE NUMBER OF SIMULTANEOUS CORE PARTITIONS

HUAN XIONG

Abstract. Amdeberhan conjectured that the number of (t, t+ 1, t+ 2)-core

partitions is
∑

0≤k≤[ t
2
]

1
k+1

(

t

2k

)(2k
k

)

. In this paper, we obtain the generating

function of the numbers ft of (t, t+1, . . . , t+ p)-core partitions. In particular,
this verifies that Amdeberhan’s conjecture is true. We also prove that the num-
ber of (t1, t2, . . . , tm)-core partitions is finite if and only if gcd(t1, t2, . . . , tm) =
1, which extends Anderson’s result on the finiteness of the number of (t1, t2)-
core partitions for coprime positive integers t1 and t2 and thus rediscover a
result of Keith and Nath with a different proof.

1. Introduction

Partitions of positive integers are widely studied in number theory and combi-
natorics. As we know, a partition of a positive integer n is a finite non increasing
sequence of positive integers λ = (λ1, λ2, . . . , λr) with

∑

1≤i≤r λi = n. In this case,

n is called the size of λ, which is also be denoted by | λ |. We can associate a parti-
tion λ with its Young diagram, which is an array of boxes arranged in left-justified
rows with λi boxes in the i-th row. To the (i, j)-box of the Young diagram, let
h(i, j) be its hook length, which is the number of boxes directly to the right, di-
rectly below, or the box itself. Let t be a positive integer. A partition λ is called a
t-core partition if none of its hook lengths is a multiple of t. Finally, we say that
λ is a (t1, t2, . . . , tm)-core partition if it is simultaneously a t1-core, a t2-core, . . .,
a tm-core partition. For instance, Figure 1 shows the Young diagram and hook
lengths of the partition (5, 2, 2). It is easy to see that, the partition (5, 2, 2) is a
(4, 5)-core partition since non of its hook lengths is divisible by 4 or 5.

7 6 3 2 1
3 2
2 1

Figure 1. The Young diagram and hook lengths of the partition (5, 2, 2).

For t-core partitions, Granville and Ono [7] proved that there always exists a
t-core partition with size n for any t ≥ 4 and n ≥ 1. A very important result in
the study of (t1, t2, . . . , tm)-core partitions was given by Anderson [2], that is, there
are only finite (t1, t2)-core partitions when t1 and t2 are coprime to each other.
Actually, Anderson showed that the number of (t1, t2)-core partitions is exactly

1
t1+t2

(

t1+t2
t1

)

for relatively prime positive integers t1 and t2. Anderson’s beautiful
result attracts much attention and motives a lot of work in the study of simultaneous
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2 HUAN XIONG

core partitions. Stanley and Zanello [12] showed that the average size of a (t, t+1)-
core partition is

(

t+1
3

)

/2. In 2007, Olsson and Stanton [10] proved that the largest

size of (t1, t2)-core partitions is (t1
2−1)(t2

2−1)
24 when t1 and t2 are coprime to each

other. Ford, Mai, and Sze [5] showed that the number of self-conjugate (t1, t2)-core

partitions is
([

t1
2
]+[

t2
2
]

[
t1
2
]

)

for relatively prime positive integers t1 and t2, where [x]

denotes the largest integer not greater than x.
Anderson [2] proved the finiteness of the number of (t1, t2)-core partitions for

coprime positive integers t1 and t2. We will extend Anderson’s this result to a
more general case and thus rediscover Theorem 1 in [9] with a different proof:

Theorem 1.1. The number of (t1, t2, . . . , tm)-core partitions is finite if and only if
gcd(t1, t2, . . . , tm) = 1, where gcd(t1, t2, . . . , tm) denotes the greatest common divisor
of t1, t2, . . . , tm.

For the number of (t, t + 1, t+ 2)-core partitions, Amdeberhan [1] gave the fol-
lowing conjecture, which we will prove in Section 3:

Theorem 1.2. (Cf. Conjecture 11.1 of [1].) The number ft of (t, t + 1, t + 2)-

core partitions is the t−th Motzkin number
∑

0≤k≤[ t
2
]

1
k+1

(

t

2k

)(

2k
k

)

. The generating

function of ft is
∑

t≥0

ftx
t =

1− x−
√
1− 2x− 3x2

2x2
.

2. Proof of Theorem 1.1

Suppose that λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1 and λ = (λ1, λ2, . . . , λr) is a partition.
The β-set of λ is denoted by

β(λ) = {λi + r − i : 1 ≤ i ≤ r}.
It is obvious that 0 /∈ β(λ). Actually β(λ) is just the set of hook lengths of boxes
in the first column of the corresponding Young diagram. It is easy to see that a
partition λ is uniquely determined by its β-set β(λ). The following is a well-known
result on β-sets of t-core partitions.

Lemma 2.1. ([8].) A partition λ is a t-core partition if and only if for any x ∈ β(λ)
such that x ≥ t, we have x− t ∈ β(λ).

By Lemma 2.1, we can easily deduce the following result:

Lemma 2.2. Let λ be a (t1, t2, . . . , tm)-core partition and ai be some non negative
integers. Then

∑

1≤i≤m aiti /∈ β(λ).

Proof. We will prove this result by induction on m. If m = 1, by Lemma 2.1 we
know a1t1 /∈ β(λ) since 0 /∈ β(λ). Now we assume that m ≥ 2 and the result is true
for m − 1, i.e.,

∑

1≤i≤m−1 aiti /∈ β(λ) if ai are some non negative integers. Then

by Lemma 2.1 we know
∑

1≤i≤m aiti = amtm +
∑

1≤i≤m−1 aiti /∈ β(λ). �

Now we can prove Theorem 1.1.
Proof of Theorem 1.1. ⇒: Suppose that gcd(t1, t2, . . . , tm) = d > 1. For every
n ∈ N, let λn be the partition whose β-set is

β(λn) = {1, 1 + d, 1 + 2d, . . . , 1 + nd}.
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Then for any 1 ≤ i ≤ m and 0 ≤ j ≤ n such that 1+ jd ≥ ti, we have 1+ jd− ti =
1 + j′d ∈ β(λn) for some non negative integer j′ since d | ti and d > 1. Then by
Lemma 2.1, λn is a (t1, t2, . . . , tm)-core partition for every n ∈ N. This means that
the number of (t1, t2, . . . , tm)-core partitions is infinite.

⇐: Suppose that gcd(t1, t2, . . . , tm) = 1 and 1 ≤ t1 < t2 < · · · < tm. To show
that the number of (t1, t2, . . . , tm)-core partitions is finite, we just need to show
that for every (t1, t2, . . . , tm)-core partition λ and x ≥ (t1 − 1)

∑

2≤i≤m ti, we have

x /∈ β(λ):
First we know there exist some ai ∈ Z such that x =

∑

1≤i≤m aiti since

gcd(t1, t2, . . . , tm) = 1. Furthermore, we can assume that 0 ≤ ai ≤ t1 − 1 for
2 ≤ i ≤ m since

a1t1 + aiti = (a1 − bti)t1 + (ai + bt1)ti

for every b ∈ Z. Now we have
∑

1≤i≤m

aiti = x ≥ (t1 − 1)
∑

2≤i≤m

ti

and 0 ≤ ai ≤ t1 − 1 for 2 ≤ i ≤ m. It follows that

a1t1 = x−
∑

2≤i≤m

aiti ≥ x− (t1 − 1)
∑

2≤i≤m

ti ≥ 0.

Thus we know a1 ≥ 0. Then by Lemma 2.2, we have

x =
∑

1≤i≤m

aiti /∈ β(λ).

This means that x /∈ β(λ) if λ is a (t1, t2, . . . , tm)-core partition and x ≥ (t1 −
1)

∑

2≤i≤m ti. Now we know for a (t1, t2, . . . , tm)-core partition λ, its β-set β(λ)

must be a subset of {1, 2, . . . , (t1−1)
∑

2≤i≤m ti−1}. This implies that the number

of (t1, t2, . . . , tm)-core partitions must be finite. �

3. Main results

Throughout this section, let p be a given positive integer.
Let St,i = {x ∈ Z : (i − 1)(t + p) + 1 ≤ x ≤ it − 1}. The following result is a

characterization of β-sets of (t, t+ 1, . . . , t+ p)-core partitions.

Lemma 3.1. Suppose that λ is a (t, t+ 1, . . . , t+ p)-core partition. Then

β(λ) ⊆
⋃

1≤i≤[ t+p−2

p
]

St,i.

Proof. By Lemma 2.2, we have
∑

0≤k≤p ak(t+ k) /∈ β(λ) for non negative integers
ak. Let

Tt,i = {
∑

0≤k≤p

ak(t+ k) : ak ∈ Z, ak ≥ 0,
∑

0≤k≤p

ak = i}.

Then Tt,i

⋂

β(λ) = ∅ for i ≥ 0. It is easy too see that

Tt,i = {x ∈ Z : it ≤ x ≤ i(t+ p)}
and

⋃

i≥[ t+p−2

p
]

Tt,i = {x ∈ Z : x ≥ [
t+ p− 2

p
]t}
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since (i + 1)t− 1 ≤ it+ [ t+p−2
p

]p ≤ i(t+ p) for i ≥ [ t+p−2
p

]. Thus β(λ) must be a

subset of

{x ∈ Z : 1 ≤ x ≤ [
t+ p− 2

p
]t− 1} \ (

⋃

1≤i≤[ t+p−2

p
]−1

{x ∈ Z : it ≤ x ≤ i(t+ p)}),

which equals to
⋃

1≤i≤[ t+p−2

p
] St,i. �

We can define a partial order relation on
⋃

1≤i≤[ t+p−2

p
] St,i. That is, for every

x, y ∈ ⋃

1≤i≤[ t+p−2

p
] St,i, we define y � x if and only if x− y =

∑

0≤k≤p ak(t+ k) for

some non negative integers ak. It is easy to verify that � is indeed a partial order
relation. We say that a subset S of a partially ordered set T is good if for every
x ∈ S, y ∈ T such that y � x in T , we always have y ∈ S.

By the definition of St,i, It is easy to see that

St,i = {x− (t+ k) : x ∈ St,i+1, 0 ≤ k ≤ p}
for 1 ≤ i ≤ [ t+p−2

p
]− 1. Then by Lemma 2.1 and Lemma 3.1 the following result is

obvious:

Lemma 3.2. A partition λ is a (t, t+1, . . . , t+p)-core partition if and only if β(λ)
is a good subset of

⋃

1≤i≤[ t+p−2

p
] St,i.

Let Rt,j be the set of (t, t + 1, . . . , t + p)-core partitions whose β-sets contain
every positive integer smaller than j but don’t contain j. Let rt,j = #Rt,j be the
number of elements in Rt,j.

Now we can give the main result in this paper.

Theorem 3.3. Suppose that p is a given positive integer. The number ft of (t, t+
1, . . . , t+ p)-core partitions is computed recursively by

ft = 0 for t < 0; f0 = 1; ft =

p−1
∑

i=1

ft−i +

t−p
∑

j=0

fjft−p−j for t ≥ 1.

The generating function of ft is

∑

t≥0

ftx
t =

1−∑

1≤i≤p−1 x
i −

√

(1−∑

1≤i≤p−1 x
i)2 − 4xp

2xp
.

Proof. For convenience, let ft = 0 for t < 0 and f0 = 1. Now suppose that t ≥ 1.
First we know rt,j = 0 for j ≥ t+ 1 since t /∈ β(λ) and thus ft =

∑

1≤j≤t rt,j .
Step 1. We claim that rt,j = ft−j for 1 ≤ j ≤ p− 1 :
Notice that rt,j = ft−j = 0 is true if t+ 1 ≤ j ≤ p− 1 since we already assume

that ft = 0 for t < 0. Now we can assume that 1 ≤ j ≤ p − 1 and j ≤ t. Let λ
be a partition such that 1, 2, . . . , j − 1 ∈ β(λ) and j /∈ β(λ). If λ ∈ Rt,j , i.e., λ is a
(t, t+ 1, . . . , t+ p)-core partition, then by Lemma 2.1, we have x /∈ β(λ) for i ≥ 2
and (i−1)(t+p)+1 ≤ x ≤ (i−1)(t+p)+j since j /∈ β(λ) and t ≤ t+p+1−j ≤ t+p.
Let

S′
t,i = St,i \ {x ∈ Z : (i− 1)(t+ p) + 1 ≤ x ≤ (i− 1)(t+ p) + j}

= {x ∈ Z : (i − 1)(t+ p) + j + 1 ≤ x ≤ it− 1}.
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Notice that S′
t,i = ∅ when i > [ t−j+p−2

p
]. Thus it is easy to see that

{1, 2, . . . , j − 1} ⊆ β(λ) ⊆ (
⋃

1≤i≤[ t−j+p−2

p
]

S′
t,i)

⋃

{1, 2, . . . , j − 1}

if λ ∈ Rt,j . We can define a partial order relation on
⋃

1≤i≤[ t−j+p−2

p
] S

′
t,i induced

by the partial order relation � on
⋃

1≤i≤[ t+p−2

p
] St,i. That is, for every two integers

x, y in
⋃

1≤i≤[ t−j+p−2

p
] S

′
t,i, we have y � x if and only if x − y =

∑

0≤k≤p ak(t + k)

for some non negative integers ak.
Let λ′ be a partition such that

β(λ′) = β(λ) \ {1, 2, . . . , j − 1}.
By the definition of S′

t,i, we know for 1 ≤ i ≤ [ t−j+p−2
p

]− 1,

S′
t,i = {x− (t+ k) : x ∈ S′

t,i+1, 0 ≤ k ≤ p}.
Then by Lemma 2.1, it is easy to see that λ ∈ Rt,j if and only if λ′ is a (t, t +
1, . . . , t+ p)-core partition with β(λ′) ⊆ ⋃

1≤i≤[ t−j+p−2

p
] S

′
t,i, which is equivalent to

β(λ′) is a good subset of
⋃

1≤i≤[ t−j+p−2

p
] S

′
t,i.

Notice that
⋃

1≤i≤[ t−j+p−2

p
] St−j,i is a partially ordered set and for every two

integers x′, y′ in
⋃

1≤i≤[ t−j+p−2

p
] St−j,i, we know y′ � x′ if and only if x′ − y′ =

∑

0≤k≤p ak(t−j+k) for some non negative integers ak. Now we can build a function

φ :
⋃

1≤i≤[ t−j+p−2

p
]

S′
t,i →

⋃

1≤i≤[ t−j+p−2

p
]

St−j,i,

that is, for every x ∈ S′
t,i, let φ(x) = x− ij. Then it is obvious that φ is a bijection.

Let x ∈ S′
t,i+1 and y ∈ S′

t,i. We have φ(x) − φ(y) = x − y − j. Thus we know

t− j ≤ φ(x) − φ(y) ≤ t− j + p if and only if t ≤ x− y ≤ t+ p, which implies that
φ(y) � φ(x) in

⋃

1≤i≤[ t−j+p−2

p
] St−j,i if and only if y � x in

⋃

1≤i≤[ t−j+p−2

p
] S

′
t,i. This

means that φ is an isomorphism of partially ordered sets. Then
⋃

1≤i≤[ t−j+p−2

p
] S

′
t,i

and
⋃

1≤i≤[ t−j+p−2

p
] St−j,i has the same number of good subsets and thus by Lemma

3.2 we have rt,j = ft−j . We mention that if j = t ≤ p − 1, then rt,t = f0 = 1 is
true since in this case, we have

⋃

1≤i≤[ t−j+p−2

p
] S

′
t,i = ∅ and the empty subset of a

partially ordered set is always a good subset.
Step 2. We claim that rt,j = fj−pft−j for p ≤ j ≤ t :
Let λ ∈ Rt,j , i.e., λ is a (t, t+1, . . . , t+p)-core partition such that 1, 2, . . . , j−1 ∈

β(λ) and j /∈ β(λ). If i ≥ 0 and it+ j ≤ x ≤ i(t + p) + j, by Lemma 2.1 we have
x /∈ β(λ). Let

S′
t,i = {x ∈ Z : i(t+ p) + 1 ≤ x ≤ it+ j − 1}

and

S′′
t,i = {x ∈ Z : (i− 1)(t+ p) + j + 1 ≤ x ≤ it− 1}.

Then

S′
t,i

⋃

S′′
t,i+1 = St,i+1 \ {x ∈ Z : it+ j ≤ x ≤ i(t+ p) + j}

and

S′
t,0 = {1, 2, . . . , j − 1} ⊆ β(λ).
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Notice that S′
t,i = ∅ when i > [ j−2

p
] and S′′

t,i = ∅ when i > [ t−j+p−2
p

]. Thus it is
easy to see

β(λ) ⊆ (
⋃

1≤i≤[ j−2

p
]

S′
t,i)

⋃

(
⋃

1≤i≤[ t−j+p−2

p
]

S′′
t,i)

⋃

S′
t,0.

We can define partial order relations on
⋃

1≤i≤[ j−2

p
] S

′
t,i and

⋃

1≤i≤[ t−j+p−2

p
] S

′′
t,i in-

duced by the partial order relation � on
⋃

1≤i≤[ t+p−2

p
] St,i as in Step 1.

Let λ′ be the partition such that

β(λ′) = (β(λ)
⋂

(
⋃

1≤i≤[ j−2

p
]

S′
t,i))

⋃

S′
t,0

and λ′′ be the partition such that

β(λ′′) = β(λ)
⋂

(
⋃

1≤i≤[ t−j+p−2

p
]

S′′
t,i).

By the definition of S′
t,i and S′′

t,i, we know

S′
t,i = {x− (t+ k) : x ∈ S′

t,i+1, 0 ≤ k ≤ p}
for 0 ≤ i ≤ [ j−2

p
]− 1 and

S′′
t,i = {x− (t+ k) : x ∈ S′′

t,i+1, 0 ≤ k ≤ p}
for 1 ≤ i ≤ [ t−j+p−2

p
]− 1. Then by Lemma 2.1 it is easy to see that λ′ and λ′′ are

(t, t+1, . . . , t+ p)-core partitions since λ is a (t, t+1, . . . , t+ p)-core partition. On
the other hand, if λ′ and λ′′ are (t, t+ 1, . . . , t+ p)-core partitions such that

S′
t,0 ⊆ β(λ′) ⊆ (

⋃

1≤i≤[ j−2

p
]

S′
t,i)

⋃

S′
t,0

and

β(λ′′) ⊆
⋃

1≤i≤[ t−j+p−2

p
]

S′′
t,i,

by Lemma 2.1 we can reconstruct the (t, t+1, . . . , t+ p)-core partition λ ∈ Rt,j by
letting

β(λ) = β(λ′)
⋃

β(λ′′),

which implies that

(β(λ)
⋂

(
⋃

1≤i≤[ j−2

p
]

S′
t,i))

⋃

S′
t,0 = β(λ′)

and

β(λ)
⋂

(
⋃

1≤i≤[ t−j+p−2

p
]

S′′
t,i) = β(λ′′).

Thus the number of (t, t+1, . . . , t+ p)-core partitions in Rt,j equals to the number
of pairs (λ′, λ′′) such that λ′ and λ′′ are (t, t+ 1, . . . , t+ p)-core partitions, S′

t,0 ⊆
β(λ′) ⊆ (

⋃

1≤i≤[ j−2

p
] S

′
t,i)

⋃

S′
t,0, and β(λ′′) ⊆ ⋃

1≤i≤[ t−j+p−2

p
] S

′′
t,i, which equals to

the product of the number of good subsets of
⋃

1≤i≤[ j−2

p
] S

′
t,i and the number of

good subsets of
⋃

1≤i≤[ t−j+p−2

p
] S

′′
t,i by Lemma 2.1.
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First we compute the number of good subsets of
⋃

1≤i≤[ j−2

p
] S

′
t,i. Notice that

for every two integers x′, y′ in
⋃

1≤i≤[ j−2

p
] Sj−p,i, we have y′ � x′ if and only if

x′ − y′ =
∑

0≤k≤p ak(j − p + k) for some non negative integers ak. We define a
function

φ :
⋃

1≤i≤[ j−2

p
]

S′
t,i →

⋃

1≤i≤[ j−2

p
]

Sj−p,i

such that for every x ∈ S′
t,i, let φ(x) = x − i(t + p − j) − j. Then it is easy to

see that φ is a bijection. Let x ∈ S′
t,i+1 and y ∈ S′

t,i. We have φ(x) − φ(y) =

x − y − (t + p− j). Thus φ(y) � φ(x) if and only if y � x since both of them are
equivalent to t ≤ x − y ≤ t+ p. This means that φ is an isomorphism of partially
ordered sets. Then

⋃

1≤i≤[ j−2

p
] S

′
t,i and

⋃

1≤i≤[ j−2

p
] Sj−p,i has the same number of

good subsets, which equals to fj−p by Lemma 3.2. We mention that
⋃

1≤i≤[ j−2

p
] S

′
t,i

has fj−p good subsets is true for j − p = 0 since the empty subset of a partially
ordered set is always a good subset and we already assume that f0 = 1.

Next we compute the number of good subsets of
⋃

1≤i≤[ t−j+p−2

p
] S

′′
t,i. Notice that

for every two integers x′, y′ in
⋃

1≤i≤[ t−j+p−2

p
] St−j,i, we have y′ � x′ if and only

if x′ − y′ =
∑

0≤k≤p ak(t − j + k) for some non negative integers ak. We define a
function

ϕ :
⋃

1≤i≤[ t−j+p−2

p
]

S′′
t,i →

⋃

1≤i≤[ t−j+p−2

p
]

St−j,i

such that for every x ∈ S′′
t,i, let ϕ(x) = x − ij. Then it is easy to see that ϕ is a

bijection. Let x ∈ S′′
t,i+1 and y ∈ S′′

t,i. We have ϕ(x)−ϕ(y) = x−y−j. Thus ϕ(y) �
ϕ(x) if and only if y � x since both of them are equivalent to t ≤ x−y ≤ t+p. This
means that ϕ is an isomorphism of partially ordered sets. Then

⋃

1≤i≤[ t−j+p−2

p
] S

′′
t,i

and
⋃

1≤i≤[ t−j+p−2

p
] St−j,i has the same number of good subsets, which equals to

ft−j by Lemma 3.2. We mention that
⋃

1≤i≤[ t−j+p−2

p
] S

′′
t,i has ft−j good subsets is

true for t− j = 0 since the empty subset of a partially ordered set is always a good
subset and we already assume that f0 = 1.

Now we have rt,j = fj−pft−j for p ≤ j ≤ t by Lemma 3.2 and prove the claim.
Step 3. Put Step 1 and Step 2 together, we have

ft =

t
∑

j=1

rt,j =

p−1
∑

i=1

ft−i +

t
∑

j=p

fj−pft−j =

p−1
∑

i=1

ft−i +

t−p
∑

j=0

fjft−p−j

for t ≥ 1.
Let F (x) =

∑

t≥0 ftx
t be the generating function of ft. Then we have

F (x) − 1 =
∑

t≥1

ftx
t =

∑

t≥1

(

p−1
∑

i=1

ft−i +

t−p
∑

j=0

fjft−p−j)x
t

=

p−1
∑

i=1

∑

t≥1

ft−ix
t +

∑

t≥1

t−p
∑

j=0

fjft−p−jx
t

=

p−1
∑

i=1

xiF (x) + xp(F (x))2.
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Then F (x) =
1−

∑
1≤i≤p−1

xi−
√

(1−
∑

1≤i≤p−1
xi)2−4xp

2xp . We finish the proof. �

Suppose that p = 1 in Theorem 3.3. We can give a new proof of Anderson’s
result on the number of (t1, t2)-core partitions in [2] for the case t2 = t1 + 1.

Corollary 3.4. The number ft of (t, t+1)-core partitions is ft =
1

2t+1

(

2t+1
t

)

. The
generating function of ft is

∑

t≥0

ftx
t =

1−
√
1− 4x

2x
.

Proof. Let p = 1 in Theorem 3.3. We have the generating function of ft is

∑

t≥0

ftx
t =

1−
√
1− 4x

2x
.

This is the generating function of Catalan numbers. Then it is easy to see that
ft =

1
t+1

(

2t
t

)

= 1
2t+1

(

2t+1
t

)

. �

Suppose that p = 2 in Theorem 3.3. Then it is easy to see that Theorem 1.2 is
a direct corollary of Theorem 3.3.
Proof of Theorem 1.2. Let p = 2 in Theorem 3.3. We have the generating
function of ft is

∑

t≥0

ftx
t =

1− x−
√
1− 2x− 3x2

2x2
.

By A001006 in [11] we know this is the generating function of Motzkin numbers.
It is well-known that Bernhart [4] proved that the t−th Motzkin number equals to
∑

0≤k≤[ t
2
]

1
k+1

(

t

2k

)(

2k
k

)

. We finish the proof. �
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