Congruence conditions on the number of terms in sums of consecutive squared integers equal to squared integers

Vladimir Pletser

July 12, 2018

European Space Research and Technology Centre, ESA-ESTEC P.O. Box 299, NL-2200 AG Noordwijk, The Netherlands; E-mail: Vladimir.Pletser@esa.int

Abstract

Considering the problem of finding all the integer solutions of the sum of M consecutive integer squares starting at a^{2} being equal to a squared integer s^{2}, it is shown that this problem has no solutions if $M \equiv 3,5,6,7,8$ or $10(\bmod 12)$ and has integer solutions if $M \equiv 0,9,24$ or $33(\bmod 72)$; or $M \equiv 1,2$ or $16(\bmod 24)$; or $M \equiv 11(\bmod 12)$. All the allowed values of M are characterized using necessary conditions. If M is a square itself, then $M \equiv 1(\bmod 24)$ and $(M-1) / 24$ are all pentagonal numbers, except the first two.

Keywords: Sum of consecutive squared integers ; Congruence
MSC2010 : 11E25 ; 11A07

1 Introduction

Lucas stated in 1873 [11] (see also [4]) that $\left(1^{2}+\ldots+n^{2}\right)$ is a square only for $n=$ 1 and 24. He proposed further in 1875 [12] the well known cannonball problem, namely to find a square number of cannonballs stacked in a square pyramid. This problem can clearly be written as a Diophantine equation $\sum_{i=1}^{M}\left(i^{2}\right)=$ $M(M+1)(2 M+1) / 6=s^{2}$. The only solutions are $s^{2}=1$ and 4900 , which correspond to the sum of the first M squared integers for $M=1$ and $M=24$. This was partially proven by Moret-Blanc [15] and Lucas [13], and entirely proven later on by Watson [24] (with elementary proofs in most cases and using elliptic functions for one case), Ljunggren [10], Ma [14] and Anglin [2] (both with only elementary proofs).
A more general problem is to find all values of a for which the sum of the M consecutive integer squares starting from $a^{2} \geq 1$ is itself an integer square s^{2}. Different approaches have been proposed to solve this problem. Alfred
studied [1] several necessary conditions on the values of M (with the notations of this paper), finding that $M=2,11,23,24,26, \ldots$ until $M=500$ by studying basic congruence equations of M, without being able to conclude if there were solutions for $M=107,193,227,275,457$. This was further addressed by Philipp [16] who showed that solutions exist for $M=107,193,457$ but not for $M=$ 227,275 , and proving that there are a finite or an infinite number of solutions depending on whether M is or not a square integer. Laub showed [8] that the set of values of M yielding the sum of M consecutive squared integers being a squared integer, is infinite and has density zero. Beeckmans demonstrated [3] eight necessary conditions on M and gave a list of values of $M<1000$ with the corresponding smallest value of $a>0$, indicating two cases for $M=25$ and 842 complying with the eight necessary conditions but not providing solutions to the problem.
In this paper, the method of determining the set of allowed values of M that yield the sum of M consecutive squared integers to be a squared integer is extended by expressing congruent ($\bmod 12$) conditions on M using Beeckmans' necessary conditions [3], showing that M cannot be congruent $(\bmod 12)$ to $3,5,6,7,8$ or 10 and must be congruent $(\bmod 12)$ to $0,1,2,4,9$ or 11 , yielding that $M \equiv 0,9,24$ or $33(\bmod 72)$; or $M \equiv 1,2$ or $16(\bmod 24)$; or $M \equiv 11(\bmod 12)$. It is shown also that if M is a square itself, then M must be congruent to $1(\bmod 24)$ and $(M-1) / 24$ are all pentagonal numbers, except the first two.
Throughout the paper, the notation $A(\bmod B) \equiv C$ is equivalent to $A \equiv$ $C(\bmod B)$ and $A \equiv C(\bmod B) \Rightarrow A=B k+C$ means that, if $A \equiv C(\bmod B)$, then $\exists k \in \mathbb{Z}^{+}$such that $A=B k+C$. By convention, $\sum_{j=i n f}^{s u p} f(j)=0$ if $\sup <i n f$.

2 Congruent $(\bmod 12)$ values of M

A first theorem specifies the congruent ($\bmod 12$) values that M cannot take. In the demonstration of this theorem, several numerical series are encountered and the following lemma shows that these series take integer values for the indicated conditions.

Lemma 1. For $n, \alpha \in \mathbb{Z}^{+}$and $i, \delta \in \mathbb{Z}^{*}$:
(i) $\left[\left(3^{2(n-1)}-1\right) / 4\right]$ and $\left[\left(3^{2 n-1}+1\right) / 4\right] \in \mathbb{Z}^{*}, \forall n$;
furthermore, $\left[\left(3^{2 n-1}+1\right) / 4\right] \equiv 1$ or $3(\bmod 4)$ for $n \equiv 1$ or $0(\bmod 2)$;
(ii) $\left[\left(3^{2 n-1}-2^{\alpha}+1\right) / 12\right]=\left[2\left(\sum_{i=0}^{n-2} 3^{2 i}\right)-\left(2^{\alpha-2}-1\right) / 3\right] \in \mathbb{Z}^{+}, \forall n \geq 2$,
$\forall \alpha \equiv 0(\bmod 2)$, and
$\left[\left(3^{2 n-1}-5 \times 2^{\alpha}+1\right) / 12\right]=\left[2\left(\sum_{i=0}^{n-2} 3^{2 i}\right)-\left(5 \times 2^{\alpha-2}-1\right) / 3\right] \in \mathbb{Z}^{+}$
$\forall n \geq 2, \forall \alpha \equiv 1(\bmod 2), \alpha>1$;
(iii) $\left[\left(3^{2 n-1} \times 13+1\right) / 16\right] \in \mathbb{Z}^{+}, \forall n \equiv 0(\bmod 2)$; $\left[\left(3^{2 n-1} \times 37+1\right) / 16\right] \in \mathbb{Z}^{+}, \forall n \equiv 1(\bmod 2) ;$
$\left[\left(3^{2 n-1} \times 25-11\right) / 16\right] \in \mathbb{Z}^{+}, \forall n \equiv 1(\bmod 2) ;$
(iv) $\left[\left(3^{2 n-1}(13+24 \delta)-23\right) / 32\right] \in \mathbb{Z}^{+}$for $\delta=0, \forall n \equiv 3(\bmod 4)$; for $\delta=1$,

$$
\forall n \equiv 0(\bmod 4) ; \text { for } \delta=2, \forall n \equiv 1(\bmod 4) ; \text { and for } \delta=3, \forall n \equiv 2(\bmod 4)
$$

Proof. For $n, n^{\prime}, \alpha \in \mathbb{Z}^{+}$and $i, \delta \in \mathbb{Z}^{*}$
(i) immediate as $\forall n, 3^{2(n-1)} \equiv 1(\bmod 8)$ and $3^{2 n-1} \equiv 3(\bmod 4)(1)$. Furthermore,
(i.1) if $n \equiv 1(\bmod 2) \Rightarrow n=2 n^{\prime}+1$, assume that $\left[\left(3^{2 n-1}+1\right) / 4\right] \equiv 1(\bmod 4)$, then $\left(3^{2 n-1}+1\right) \equiv 4(\bmod 16) \Rightarrow\left(3\left(3^{4 n^{\prime}}-1\right)\right) \equiv 0(\bmod 16)$, which is the case as $\forall n^{\prime},\left(3^{2 n^{\prime}}+1\right) \equiv 0(\bmod 2)$ and $\left(3^{2 n^{\prime}}-1\right) \equiv 0(\bmod 8)$;
(i.2) if now $n \equiv 0(\bmod 2) \Rightarrow n=2 n^{\prime}$, assume that $\left[\left(3^{2 n-1}+1\right) / 4\right] \equiv 3(\bmod 4)$, then $\left(3^{2 n-1}+1\right) \equiv 12(\bmod 16) \Rightarrow\left(3\left(3^{4 n^{\prime}-2}-1\right)\right) \equiv 8(\bmod 16)$, which is the case as $\forall n^{\prime},\left(3^{2 n^{\prime}-1}+1\right) \equiv 0(\bmod 4)$ and $\left(3^{2 n^{\prime}-1}-1\right) \equiv 0(\bmod 2)$.
(ii) As $\forall n \geq 2,\left[\left(3^{2(n-1)}-1\right) / 8\right]=\sum_{i=0}^{n-2} 3^{2 i}(\sqrt{2})$, then:

$$
\begin{align*}
\left(\frac{3^{2 n-1}-2^{\alpha}+1}{12}\right) & =\left(\frac{3^{2 n-1}-3}{12}\right)-\left(\frac{2^{\alpha}-4}{12}\right) \\
& =2\left(\sum_{i=0}^{n-2} 3^{2 i}\right)-\left(\frac{2^{\alpha-2}-1}{3}\right) \in \mathbb{Z}^{+} \tag{1}
\end{align*}
$$

as $\forall \alpha \equiv 0(\bmod 2), 2^{\alpha-2} \equiv 1(\bmod 3)$, and

$$
\begin{align*}
\left(\frac{3^{2 n-1}-5 \times 2^{\alpha}+1}{12}\right) & =\left(\frac{3^{2 n-1}-3}{12}\right)-\left(\frac{5 \times 2^{\alpha}-4}{12}\right) \\
& =2\left(\sum_{i=0}^{n-2} 3^{2 i}\right)-\left(\frac{5 \times 2^{\alpha-2}-1}{3}\right) \in \mathbb{Z}^{+} \tag{2}
\end{align*}
$$

as $\forall \alpha \equiv 1(\bmod 2), \alpha>1,2^{\alpha-2} \equiv 2(\bmod 3) \Rightarrow\left(5 \times 2^{\alpha-2}\right) \equiv 1(\bmod 3)$.
(iii) Immediate as $\forall n \equiv 0(\bmod 2), 3^{2 n} \equiv 1(\bmod 16)$ and $\forall n \equiv 1(\bmod 2)$, $3^{2 n-1} \equiv 3(\bmod 16) \Rightarrow\left(3^{2 n-1} \times 5\right) \equiv 15(\bmod 16)$, yielding:
(iii.1) $\left(3^{2 n-1} \times 13+1\right)(\bmod 16) \equiv\left(-3^{2 n}+1\right)(\bmod 16) \equiv 0$;
(iii.2) $\left(3^{2 n-1} \times 37+1\right)(\bmod 16) \equiv\left(3^{2 n-1} \times 5+1\right)(\bmod 16) \equiv 0$;
(iii.3) $\left(3^{2 n-1} \times 25-11\right)(\bmod 16) \equiv\left(5\left(3^{2 n-1} \times 5+1\right)\right)(\bmod 16) \equiv 0$.
(iv) As $\left(3^{2 n-1}(13+24 \delta)-23\right)(\bmod 32) \equiv 3^{2}\left(3^{2 n-3}(13+24 \delta)+1\right)(\bmod 32)$,
$\delta=0: 3^{2}\left(3^{2 n-3} \times 13+1\right)(\bmod 32) \equiv 0$ as $\forall n \equiv 3(\bmod 4), 3^{2 n-3} \equiv 27(\bmod 32)$
$\Rightarrow\left(3^{2 n-3} \times 13\right) \equiv 31(\bmod 32)$;
$\delta=1: 3^{2}\left(3^{2 n-3} \times 37+1\right)(\bmod 32) \equiv 3^{2}\left(3^{2 n-3} \times 5+1\right)(\bmod 32) \equiv 0$ as $\forall n \equiv$ $0(\bmod 4), 3^{2 n-3} \equiv 19(\bmod 32) \Rightarrow\left(3^{2 n-3} \times 5\right) \equiv 31(\bmod 32)$;
$\delta=2: 3^{2}\left(3^{2 n-3} \times 61+1\right)(\bmod 32) \equiv 3^{2}\left(-3^{2 n-2}+1\right)(\bmod 32) \equiv 0$ as $\forall n \equiv 1(\bmod 4), 3^{2 n-2} \equiv 1(\bmod 32)$;
$\delta=3: 3^{2}\left(3^{2 n-3} \times 85+1\right)(\bmod 32) \equiv 3^{2}\left(3^{2 n-2} \times 7+1\right)(\bmod 32) \equiv 0$ as $\forall n \equiv$ $2(\bmod 4), 3^{2 n-2} \equiv 9(\bmod 32) \Rightarrow\left(3^{2 n-2} \times 7\right) \equiv 31(\bmod 32)$.

[^0]The following theorem can now be demonstrated with the eight necessary conditions given by Beeckmans [3] on the value of M for (24) to hold, that can be summarized as follows, with the notations of this paper and where $e, \alpha \in \mathbb{Z}^{+}$:

1) If $M \equiv 0\left(\bmod 2^{e}\right)$ or if $M \equiv 0\left(\bmod 3^{e}\right)$ or if $M \equiv-1\left(\bmod 3^{e}\right)$, then $e \equiv$ $1(\bmod 2) ;(\mathrm{C} 1.1, \mathrm{C} 1.2, \mathrm{C} 1.3)$
2) If $p>3$ is prime, $M \equiv 0\left(\bmod p^{e}\right), e \equiv 1(\bmod 2)$, then $p \equiv \pm 1(\bmod 12)$; (C2)
3) If $p \equiv 3(\bmod 4), p>3$ is prime, $M \equiv-1\left(\bmod p^{e}\right)$, then $e \equiv 0(\bmod 2)$; $(\mathrm{C} 3)$
4) $M \neq 3(\bmod 9), M \neq\left(2^{\alpha}-1\right)\left(\bmod 2^{\alpha+2}\right)$ and $M \neq 2^{\alpha}\left(\bmod 2^{\alpha+2}\right) \forall \alpha \geq 2$. (C4.1, C4.2, C4.3)

Theorem 2. For $M>1, \in \mathbb{Z}^{+}$, the sum of squares of M consecutive integers cannot be an integer square if $M \equiv 3,5,6,7,8$ or $10(\bmod 12)$.

The demonstration is made in the order $M \equiv 5,7,6,10,8$ and $3(\bmod 12)$.
Proof. For $M, \mu, i, k, K, m, m_{i}, e_{i}, p_{i}, n, \alpha, \beta, \epsilon, \gamma_{n}, \kappa, \xi, A, B \in \mathbb{Z}^{+}, \eta \in \mathbb{Z}, M>$ $1,3 \leq \mu \leq 10$, let $M \equiv \mu(\bmod 12) \Rightarrow M=12 m+\mu$.
(i) For $\mu=5$ or $7, M=12 m+5$ or $12 m+7$, let $\prod\left(p_{i}^{e_{i}}\right)$ be the decomposition of M in i prime factors p_{i}, with $\prod\left(p_{i}^{e_{i}}\right) \equiv 5$ or $7(\bmod 12)$. Then one of the prime factors is $p_{j} \equiv 5$ or $7(\bmod 12)$ with an exponent $e_{j} \equiv 1(\bmod 2)$ (the remaining co-factor is $\left(\prod\left(p_{i}^{e_{i}}\right) / p_{j}^{e_{j}}\right) \equiv 1$ or $\left.11(\bmod 12)\right)$, contradicting $(\mathrm{C} 2)$ and these values of M must be rejected.
(ii) For $\mu=6$ or $10, M=12 m+6$ or $12 m+10, M+1=4(3 m+1)+3$ or $4(3 m+2)+3$, i.e. in both cases $(M+1) \equiv 3(\bmod 4)$. Let $\prod\left(p_{i}^{e_{i}}\right)$ be the decomposition of $(M+1)$ in i prime factors p_{i}. Then one of the prime factors is $p_{j} \equiv 3(\bmod 4)$ with an exponent $e_{j} \equiv 1(\bmod 2)$ (the remaining co-factor being $\left.\left(\prod\left(p_{i}^{e_{i}}\right) / p_{j}^{e_{j}}\right) \equiv 1(\bmod 4)\right)$, contradicting (C3).
(iv) For $\mu=8, M=12 m+8$ and $M+1=3(4 m+3)$, cases appear cyclically with values of $(M+1)$ having either a factor 3 with an even exponent or a factor f such as $f \equiv 3(\bmod 4)$. Indeed, let first $m \neq 0(\bmod 3)$ and second $m \equiv 0(\bmod 3) \Rightarrow m=3 m_{1}$. Let then first $m_{1} \neq 2(\bmod 3)$ and second $m_{1} \equiv$ $2(\bmod 3) \Rightarrow m_{1}=3 m_{2}+2$. Let then again first $m_{2} \neq 0(\bmod 3)$ and second $m_{2} \equiv 0(\bmod 3) \Rightarrow m_{2}=3 m_{3}$, and so on, yielding:
$M+1=3(4 m+3)$,
\Rightarrow if $m \neq 0(\bmod 3) \Rightarrow(M+1) \equiv 3(\bmod 4)$,
\Rightarrow if $m \equiv 0(\bmod 3) \Rightarrow m=3 m_{1} \Rightarrow M+1=3^{2}\left(4 m_{1}+1\right)$,
\Rightarrow if $m_{1} \neq 2(\bmod 3) \Rightarrow(M+1) \equiv 0\left(\bmod 3^{2}\right)$,
\Rightarrow if $m_{1} \equiv 2(\bmod 3) \Rightarrow m_{1}=3 m_{2}+2 \Rightarrow M+1=3^{3}\left(4 m_{2}+3\right)$,
\Rightarrow if $m_{2} \neq 0(\bmod 3) \Rightarrow(M+1) \equiv 3(\bmod 4)$,
\Rightarrow if $m_{2} \equiv 0(\bmod 3) \Rightarrow m_{2}=3 m_{3} \Rightarrow M+1=3^{4}\left(4 m_{3}+1\right)$,
and so on. After n iterations, $\exists m_{n} \in \mathbb{Z}^{+}$such as either $M+1=3^{n}\left(4 m_{n}+1\right)$ if $n \equiv 0(\bmod 2)$, contradicting $(\mathrm{C} 1.3)$, or $M+1=3^{n}\left(4 m_{n}+3\right)$ if $n \equiv 1(\bmod 2)$. Then let $\prod\left(p_{i}^{e_{i}}\right)$ be the decomposition of $\left[(M+1) / 3^{n}\right]$ in i prime factors p_{i}, with $\prod\left(p_{i}^{e_{i}}\right) \equiv 3(\bmod 4)$. Then one of the prime factors is $p_{j} \equiv 3(\bmod 4)$ with an exponent e_{j} such as $e_{j} \equiv 1(\bmod 2)$ (the remaining co-factor being such as $\left.\left(\prod\left(p_{i}^{e_{i}}\right) / p_{j}^{e_{j}}\right) \equiv 1(\bmod 4)\right)$, contradicting $(\mathrm{C} 3)$. Therefore, these values of M must be rejected in both cases.
(v) For $\mu=3, M=3(4 m+1)$, cases appear cyclically with values of M being the product of a power of 3 and a factor which is ($\bmod 12$) congruent to either $1,5,7$ or 11 .
(v.1) Let m be successively $(\bmod 3)$ congruent to 0,1 and 2 , and the $m \equiv$ $2(\bmod 3)$ step is subdivided in $m \equiv 5,8$ and $2(\bmod 9)$ sub-steps; the process is then repeated, yielding respectively:

$$
\begin{aligned}
M= & 3(4 m+1) \\
& \Rightarrow \text { if } m=3 m_{1} \Rightarrow M=3\left(12 m_{1}+1\right), \\
& \Rightarrow \text { if } m=3 m_{1}+1 \Rightarrow M=3\left(12 m_{1}+5\right), \\
& \Rightarrow \text { if } m=3^{2} m_{1}+5 \Rightarrow M=3^{2}\left(12 m_{1}+7\right), \\
& \Rightarrow \text { if } m=3^{2} m_{1}+8 \Rightarrow M=3^{2}\left(12 m_{1}+11\right), \\
& \Rightarrow \text { if } m=3^{2} m_{1}+2 \Rightarrow M=3^{3}\left(4 m_{1}+1\right), \\
& \Rightarrow \text { if } m_{1}=3 m_{2} \Rightarrow m=3^{3} m_{2}+2 \Rightarrow M=3^{3}\left(12 m_{2}+1\right), \\
& \Rightarrow \text { if } m_{1}=3 m_{2}+1 \Rightarrow m=3^{3} m_{2}+11 \Rightarrow M=3^{3}\left(12 m_{2}+5\right), \\
& \Rightarrow \text { if } m_{1}=3^{2} m_{2}+5 \Rightarrow m=3^{4} m_{2}+47 \Rightarrow M=3^{4}\left(12 m_{2}+7\right), \\
& \Rightarrow \text { if } m_{1}=3^{2} m_{2}+8 \Rightarrow m=3^{4} m_{2}+74 \Rightarrow M=3^{4}\left(12 m_{2}+11\right), \\
& \Rightarrow \text { if } m_{1}=3^{2} m_{2}+2 \Rightarrow m=3^{4} m_{2}+20 \Rightarrow M=3^{5}\left(4 m_{2}+1\right)
\end{aligned}
$$

Taking again $(\bmod 3)$ and $(\bmod 9)$ congruent values of m_{2} yield new expressions of M as a product of a power of 3 and a factor $(\bmod 12)$ congruent to either $1,5,7$ or 11 . One obtains then after n iterations, with $\left[\left(3^{2(n-1)}-1\right) / 4\right] \in \mathbb{Z}^{+}$ (see Lemma 1):
if $m=3^{2 n-1} m_{n}+\left[\left(3^{2(n-1)}-1\right) / 4\right] \Rightarrow M=3^{2 n-1}\left(12 m_{n}+1\right)$,
if $m=3^{2 n-1} m_{n}+\left[3^{2(n-1)}+\left(3^{2(n-1)}-1\right) / 4\right] \Rightarrow M=3^{2 n-1}\left(12 m_{n}+5\right)$,
if $m=3^{2 n} m_{n}+\left[5 \times 3^{2(n-1)}+\left(3^{2(n-1)}-1\right) / 4\right] \Rightarrow M=3^{2 n}\left(12 m_{n}+7\right)$,
if $m=3^{2 n} m_{n}+\left[8 \times 3^{2(n-1)}+\left(3^{2(n-1)}-1\right) / 4\right] \Rightarrow M=3^{2 n}\left(12 m_{n}+11\right)$.
(v.2) For $M=3^{2 n-1}\left(12 m_{n}+5\right)$, let $\prod\left(p_{i}^{e_{i}}\right)$ be the decomposition of $\left(M / 3^{2 n-1}\right)$ in i prime factors p_{i}, with $\prod\left(p_{i}^{e_{i}}\right) \equiv 5(\bmod 12)$. Then one of the prime factors is either $p_{j} \equiv 5$ or $7(\bmod 12)$ (the remaining co-factor being respectively either $\left(\prod\left(p_{i}^{e_{i}}\right) / p_{j}\right) \equiv 1$ or $\left.11(\bmod 12)\right)$, contradicting $(\mathrm{C} 2)$.
(v.3) For $M=3^{2 n}\left(12 m_{n}+7\right)$ and $M=3^{2 n}\left(12 m_{n}+11\right)$, both contradict (C 1.2$)$ as $\left(12 m_{n}+7\right)$ and $\left(12 m_{n}+11\right)$ cannot be $(\bmod 3)$ congruent to 0 .
(v.4) For $M=3^{2 n-1}\left(12 m_{n}+1\right)$, if $n=1, M=3\left(12 m_{1}+1\right)$ contradicts (C4.1). For $n \geq 2,(\mathrm{C} 4.2)$ is used first in (v.4.1) to reject some values of M, then (C.3) is used in (v.4.2) to reject those values of M that were not rejected by (C4.2). (v.4.1) Condition $(\mathrm{C} 4.2)$ for $M \equiv 3(\bmod 12)$ and $\alpha \geq 2$ yields
$M \neq\left(2^{\alpha}-1\right)\left(\bmod \left(3 \times 2^{\alpha+2}\right)\right)$ if $2^{\alpha} \equiv 1(\bmod 3)$, i.e. $\alpha \equiv 0(\bmod 2)$, and
$M \neq\left(5 \times 2^{\alpha}-1\right)\left(\bmod \left(3 \times 2^{\alpha+2}\right)\right)$ if $2^{\alpha} \neq 1(\bmod 3)$, i.e. $\alpha \equiv 1(\bmod 2)$.
Those values of m_{n} yielding $M=3^{2 n-1}\left(12 m_{n}+1\right)$ to be rejected are

$$
\begin{equation*}
\left(3^{2 n-1} m_{n}\right) \equiv-\beta\left(\bmod 2^{\alpha}\right) \tag{3}
\end{equation*}
$$

with, for $\alpha \equiv 0(\bmod 2)$ and Lemma 1 ,

$$
\begin{equation*}
\beta=\left(\frac{3^{2 n-1}-2^{\alpha}+1}{12}\right)=2\left(\sum_{i=0}^{n-2} 3^{2 i}\right)-\left(\frac{2^{\alpha-2}-1}{3}\right) \tag{4}
\end{equation*}
$$

Table 1: Values of $m_{n 0}$

	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$
$\alpha=2$	2	0	2	0	2
$\alpha=3$	3	5	7	1	3
$\alpha=4$	13	15	1	3	5
$\alpha=5$	17	3	5	23	25
$\alpha=6$	57	11	13	63	33
$\alpha=7$	73	27	93	15	49
$\alpha=8$	105	59	253	47	81

and, for $\alpha \equiv 1(\bmod 2)$ and Lemma 1,

$$
\begin{equation*}
\beta=\left(\frac{3^{2 n-1}-5 \times 2^{\alpha}+1}{12}\right)=2\left(\sum_{i=0}^{n-2} 3^{2 i}\right)-\left(\frac{5 \times 2^{\alpha-2}-1}{3}\right) \tag{5}
\end{equation*}
$$

Then the values of m_{n} yielding $M=3^{2 n-1}\left(12 m_{n}+1\right)$ to be rejected are

$$
\begin{equation*}
m_{n} \equiv m_{n 0}\left(\bmod 2^{\alpha}\right) \Rightarrow m_{n}=2^{\alpha} i+m_{n 0} \tag{6}
\end{equation*}
$$

where $m_{n 0}$ is the smallest value of m_{n} for (3) to hold, i.e. $\exists m_{n 0} \in \mathbb{Z}^{*}$ such as

$$
\begin{equation*}
K=\left(\frac{3^{2 n-1} m_{n 0}+\beta}{2^{\alpha}}\right) \in \mathbb{Z}^{+} \tag{7}
\end{equation*}
$$

Table 1 shows the first values of $m_{n 0}$. For $\alpha=2$ and $\alpha=3$, the values of $m_{n 0}$ repeat themselves. Taking the $\left(\bmod 2^{\alpha}\right)$ congruence of $3^{2 n-1}$ and β in (77) yield $\left[\left(\left(3^{2 n-1}\left(\bmod 2^{\alpha}\right)\right) m_{n 0}+\beta\left(\bmod 2^{\alpha}\right)\right) / 2^{\alpha}\right] \in \mathbb{Z}^{+}$, meaning that for $\alpha=2$ and 3 and $\forall n, 3^{2 n-1} \equiv 3(\bmod 4)$ and $3(\bmod 8)$. Furthermore, from (4), for $\alpha=2, \beta=2\left(\sum_{i=0}^{n-2} 3^{2 i}\right) \equiv 2$ or $0(\bmod 4)$ for $n \equiv 0$ or $1(\bmod 2)$, while for $\alpha=3, \beta=2\left(\sum_{i=0}^{n-2} 3^{2 i}\right)-3 \equiv 7,1,3$ or $5(\bmod 8)$ respectively for $n \equiv 2,3,0$ or $1(\bmod 4)$. Therefore, the values of $m_{n 0}$ for $\alpha=2$ and $\alpha=3$ appear cyclically, respectively $m_{n 0}=2$ and 0 for $n \equiv 0$ and $1(\bmod 2)$, and $m_{n 0}=3,5,7$ and 1 for $n \equiv 2,3,0$ and $1(\bmod 4)$.
(v.4.2) Those values of $M=3^{2 n-1}\left(12 m_{n}+1\right)$ with $n \geq 2$ that are not rejected by (C4.2) in the previous section (v.4), can be rejected by (C3). It is sufficient to show as above that $(M+1)$ has a factor f such as $f \equiv 3(\bmod 4)$, as the decomposition of f in product of prime factors includes then a prime factor $p_{j}^{e_{j}}$ such as $p_{j}^{e_{j}} \equiv 3(\bmod 4)$ with $e_{j} \equiv 1(\bmod 2)$. One has then generally

$$
\begin{equation*}
M+1=3^{2 n-1}\left(12 m_{n}+1\right)+1=4\left(3^{2 n} m_{n}+\frac{3^{2 n-1}+1}{4}\right) \tag{8}
\end{equation*}
$$

with $\left[\left(3^{2 n-1}+1\right) / 4\right] \equiv 1$ or $3(\bmod 4)$ for $n \equiv 1 \operatorname{or} 0(\bmod 2)($ see Lemma 1$)$. Let then $\left[\left(3^{2 n-1}+1\right) / 4\right]=4 \gamma_{n}+1$ or $4 \gamma_{n}+3$ for $n \equiv 1$ or $0(\bmod 2)$.
(v.4.2.1) For an even number of iterations, i.e. $n \equiv 0(\bmod 2)$, as the values of m_{n} from (6) yielding $M=3^{2 n-1}\left(12 m_{n}+1\right)$ to be rejected for $\alpha=2$ are $m_{n} \equiv 2(\bmod 4)$, let us show that $M=3^{2 n-1}\left(12 m_{n}+1\right)$ can also be rejected by $(\mathrm{C} .3)$ for $m_{n} \equiv 0,3$ and $1(\bmod 4)$.
(v.4.2.1.1) Let first $m_{n} \equiv 0(\bmod 4) \Rightarrow m_{n}=4 m_{n}^{\prime}$ and (8) yields $M+1=$ $4\left[4\left(3^{2 n} m_{n}^{\prime}+\gamma_{n}\right)+3\right]$, contradicting (C3).
(v.4.2.1.2) Let now $m_{n} \equiv 3(\bmod 4)$ and two cases are considered.

First, as the values of m_{n} to be rejected for $\alpha=3$ and $\forall n \equiv 0(\bmod 4)$ are $m_{n} \equiv 7(\bmod 8)$, let $m_{n} \equiv 3(\bmod 8) \Rightarrow m_{n}=8 m_{n}^{\prime}+3$, yielding with Lemma 1 ,

$$
\begin{align*}
M+1 & =4\left(3^{2 n} \times 8 m_{n}^{\prime}+3^{2 n+1}+\frac{3^{2 n-1}+1}{4}\right) \\
& =8\left[4\left(3^{2 n} m_{n}^{\prime}+\frac{3^{2 n-1} \times 37-23}{32}\right)+3\right] \tag{9}
\end{align*}
$$

contradicting again (C3).
Second, as the values of m_{n} to be rejected for $\alpha=3$ and $\forall n \equiv 0(\bmod 4)$ are $m_{n} \equiv 3(\bmod 8)$, let $m_{n} \equiv 7(\bmod 8) \Rightarrow m_{n}=8 m_{n}^{\prime}+7$, yielding with Lemma 1 ,

$$
\begin{align*}
M+1 & =4\left(3^{2 n} \times 8 m_{n}^{\prime}+7 \times 3^{2 n}+\frac{3^{2 n-1}+1}{4}\right) \\
& =8\left[4\left(3^{2 n} m_{n}^{\prime}+\frac{3^{2 n-1} \times 85-23}{32}\right)+3\right] \tag{10}
\end{align*}
$$

contradicting again (C3).
(v.4.2.1.3) Let now $m_{n} \equiv 1(\bmod 4)$ and consider more generally the case

$$
\begin{equation*}
m_{n}=4\left(2^{\kappa} m_{n}^{\prime}+\xi\right)+1=2^{\kappa+2} m_{n}^{\prime}+(4 \xi+1) \tag{11}
\end{equation*}
$$

with $\kappa \geq 2$ and $0 \leq \xi \leq 2^{\kappa}-1$, yielding from (8)

$$
\begin{equation*}
M+1=2^{\kappa+2}\left[4\left(3^{2 n} m_{n}^{\prime}+A\right)+3\right] \tag{12}
\end{equation*}
$$

with $A=\left(3^{2 n-1}(48 \xi+13)-\left(3 \times 2^{\kappa+2}-1\right)\right) / 2^{\kappa+4}$. The values of $\xi \in \mathbb{Z}^{+}$that renders $A \in \mathbb{Z}^{+} \forall \kappa \geq 2$ and $n \equiv 0(\bmod 2)$ are, with Lemma 1,

$$
\begin{equation*}
\xi=\left((A+3) 2^{\kappa-2}-\left(\frac{3^{2 n-1} \times 13+1}{16}\right)\right) 3^{-2 n} \tag{13}
\end{equation*}
$$

and shown in Table 2. These values of ξ can be represented as polynomials in $n^{\prime}=n / 2$ with the independent term (i.e. the value of ξ for $n \equiv 0\left(\bmod 2^{\kappa+1}\right)$) being either $\sum_{i=0}^{(\kappa-4) / 2}\left(2^{2 i}\right)$ if $\kappa \equiv 0(\bmod 2)$ or $\left(2^{\kappa-2}+\sum_{i=0}^{(\kappa-3) / 2}\left(2^{2 i}\right)\right)$ if $\kappa \equiv$ $1(\bmod 2)$. The coefficients c_{i} of the powers of n^{\prime} in the polynomials $P\left(n^{\prime}\right)=$ $\sum c_{i} n^{\prime i}$ can be chosen to fit the congruence $\xi \equiv P\left(n^{\prime}\right)\left(\bmod 2^{\kappa}\right)$ and the polynomials with the smallest $c_{i} \in \mathbb{Z}^{+}$are shown in Table 3. Replacing these values of ξ in $m_{n}=2^{\kappa+2} m_{n}^{\prime}+(4 \xi+1)$ yields $(M+1)$ to have a factor f such as

Table 2: Values of ξ for $0 \leq n<32$ with $n \equiv 0(\bmod 2)$ and $2 \leq \kappa \leq 10$

n	κ								
	2	3	4	5	6	7	8	9	10
0	0	3	1	13	5	53	21	213	85
2	1	0	6	2	58	42	138	74	970
4	2	5	11	7	31	15	111	47	943
6	3	2	0	28	52	100	196	388	260
8	0	7	5	1	57	41	137	329	201
10	1	4	10	22	46	94	190	126	1022
12	2	1	15	27	19	3	99	35	931
14	3	6	4	16	40	24	120	312	184
16	0	3	9	21	45	29	253	189	61
18	1	0	14	10	34	18	242	434	818
20	2	5	3	15	7	119	87	279	663
22	3	2	8	4	28	76	44	492	876
24	0	7	13	9	33	17	113	305	689
26	1	4	2	30	22	70	38	486	358
28	2	1	7	3	59	107	75	267	139
30	3	6	12	24	16	0	224	416	288

Table 3: Polynomials $P\left(n^{\prime}\right)$ such as $\xi \equiv P\left(n^{\prime}\right)\left(\bmod 2^{\kappa}\right)$ with $n^{\prime}=n / 2$

κ	$P\left(n^{\prime}\right)\left(\bmod 2^{\kappa}\right)$
2	$\left(n^{\prime}\right)(\bmod 4)$
3	$\left(5 n^{\prime}+3\right)(\bmod 8)$
4	$\left(5 n^{\prime}+1\right)(\bmod 16)$
5	$\left(8 n^{\prime 2}+13 n^{\prime}+13\right)(\bmod 32)$
6	$\left(24 n^{\prime 2}+29 n^{\prime}+15\right)(\bmod 64)$
7	$\left(56 n^{\prime 2}+61 n^{\prime}+53\right)(\bmod 128)$
8	$\left(56 n^{\prime 2}+61 n^{\prime}+21\right)(\bmod 256)$
9	$\left(384 n^{\prime 3}+440 n^{\prime 2}+61 n^{\prime}+213\right)(\bmod 512)$
10	$\left(384 n^{\prime 3}+952 n^{\prime 2}+573 n^{\prime}+85\right)(\bmod 1024)$

$f \equiv 3(\bmod 4)$, contradicting again $(\mathrm{C} 3)$. Therefore, all values of $n \equiv 0(\bmod 2)$ yield M to be rejected.
(v.4.2.2) For an odd number of iterations, i.e. $n \equiv 1(\bmod 2)$, as the values of m_{n} from (6) yielding $M=3^{2 n-1}\left(12 m_{n}+1\right)$ to be rejected for $\alpha=2$ are $m_{n} \equiv 0(\bmod 4)$, let us show that $M=3^{2 n-1}\left(12 m_{n}+1\right)$ can also be rejected by $(\mathrm{C} .3)$ for $m_{n} \equiv 2,1$ and $3(\bmod 4)$.
(v.4.2.2.1) Let first $m_{n} \equiv 2(\bmod 4) \Rightarrow m_{n}=4 m_{n}^{\prime}+2$ and (8) yields then

$$
\begin{align*}
M+1 & =4\left(3^{2 n} m_{n}+\gamma_{n}+1\right) \\
& =4\left[4\left(3^{2 n} m_{n}^{\prime}+\frac{3^{2 n-1} \times 25-11}{16}\right)+3\right] \tag{14}
\end{align*}
$$

with Lemma 1, contradicting again (C3).
(v.4.2.2.2) Let now $m_{n} \equiv 1(\bmod 4)$ and two cases are again considered.

First, as the values of m_{n} to be rejected for $\alpha=3$ and $\forall n \equiv 3(\bmod 4)$ are $m_{n} \equiv 5(\bmod 8)$, let $m_{n} \equiv 1(\bmod 8) \Rightarrow m_{n}=8 m_{n}^{\prime}+1$, yielding with Lemma 1 ,

$$
\begin{align*}
M+1 & =4\left(3^{2 n} \times 8 m_{n}^{\prime}+3^{2 n}+\frac{3^{2 n-1}+1}{4}\right) \\
& =8\left[4\left(3^{2 n} m_{n}^{\prime}+\frac{3^{2 n-1} \times 13-23}{32}\right)+3\right] \tag{15}
\end{align*}
$$

contradicting again (C3).
Second, as the values of m_{n} to be rejected for $\alpha=3$ and $\forall n \equiv 1(\bmod 4)$ are $m_{n} \equiv 1(\bmod 8)$, let $m_{n} \equiv 5(\bmod 8) \Rightarrow m_{n}=8 m_{n}^{\prime}+5$, yielding with Lemma 1 ,

$$
\begin{align*}
M+1 & =4\left(3^{2 n} \times 8 m_{n}^{\prime}+5 \times 3^{2 n}+\frac{3^{2 n-1}+1}{4}\right) \\
& =8\left[4\left(3^{2 n} m_{n}^{\prime}+\frac{3^{2 n-1} \times 61-23}{32}\right)+3\right] \tag{16}
\end{align*}
$$

contradicting again (C3).
(v.4.2.2.3) Let now $m_{n} \equiv 3(\bmod 4)$ and consider more generally the case

$$
\begin{equation*}
m_{n}=4\left(2^{\kappa} m_{n}^{\prime}+\xi\right)+3=2^{\kappa+2} m_{n}^{\prime}+(4 \xi+3) \tag{17}
\end{equation*}
$$

with $\kappa \geq 2$ and $0 \leq \xi \leq 2^{\kappa}-1$, yielding

$$
\begin{equation*}
M+1=2^{\kappa+2}\left[4\left(3^{2 n} m_{n}^{\prime}+B\right)+3\right] \tag{18}
\end{equation*}
$$

with $B=\left(3^{2 n-1}(48 \xi+37)-\left(3 \times 2^{\kappa+2}-1\right)\right) / 2^{\kappa+4}$. The values of $\xi \in \mathbb{Z}^{+}$that renders $B \in \mathbb{Z}^{+} \forall \kappa \geq 2$ and $n \equiv 1(\bmod 2)$ are, with Lemma 1 ,

$$
\begin{equation*}
\xi=\left((B+3) 2^{\kappa-2}-\left(\frac{3^{2 n-1} \times 37+1}{16}\right)\right) 3^{-2 n} \tag{19}
\end{equation*}
$$

and shown in Table 4. These values of ξ can be represented as polynomials

Table 4: Values of ξ for $0<n<32$ with $n \equiv 1(\bmod 2)$ and $2 \leq \kappa \leq 10$

n	κ								
	2	3	4	5	6	7	8	9	10
1	0	7	13	9	33	81	49	497	881
3	1	4	10	22	46	94	62	254	638
5	2	1	7	19	43	91	59	251	635
7	3	6	4	0	24	72	40	232	104
9	0	3	1	29	53	37	5	453	325
11	1	0	14	10	2	114	210	146	530
13	2	5	11	7	63	47	143	79	975
15	3	2	8	20	44	92	60	508	892
17	0	7	5	17	9	121	217	153	537
19	1	4	2	30	22	6	102	294	166
21	2	1	15	27	19	3	227	163	35
23	3	6	12	8	0	112	80	16	400
25	0	3	9	5	29	77	173	109	493
27	1	0	6	18	42	26	250	186	570
29	2	5	3	15	39	87	55	503	887
31	3	2	0	28	20	4	100	292	676

in $n^{\prime}=(n-1) / 2$ with the independent term (i.e. the value of ξ for $n \equiv$ $\left.1\left(\bmod 2^{\kappa+1}\right)\right)$ being either $\left(\sum_{i=0}^{(\kappa-4) / 2}\left(2^{2 i}\right)+4 \sigma_{\kappa / 2}\right)\left(\bmod 2^{\kappa}\right)$ or $\left(\sum_{i=0}^{(\kappa-3) / 2}\left(2^{2 i}\right)+4 \sigma_{(\kappa-1) / 2}+2^{\kappa-2}\right)\left(\bmod 2^{\kappa}\right)$ if respectively $\kappa \equiv 0$ or $1(\bmod 2)$, where the integer sequence $\sigma_{j}=1,3,7,71,199, \ldots$ is given in 66, 21. The coefficients c_{i} of the powers of n^{\prime} in the polynomials $P\left(n^{\prime}\right)=\sum c_{i} n^{\prime i}$ can also be chosen to fit the congruence $\xi \equiv P\left(n^{\prime}\right)\left(\bmod 2^{\kappa}\right)$ and the polynomials with the smallest $c_{i} \in \mathbb{Z}^{+}$are shown in Table 5 . Replacing these values of ξ in $m_{n}=2^{\kappa+2} m_{n}^{\prime}+(4 \xi+3)$ yields $(M+1)$ to have a factor f such as $f \equiv 3(\bmod 4)$, contradicting again (C3).
Therefore, all values of $n \equiv 1(\bmod 2)$ yield M to be rejected.
(v.5) It follows that the sum of squares of M consecutive integers cannot be an integer square if $M \equiv 3,5,6,7,8$ or $10(\bmod 12)$.

Example 3. For an even number of iterations $n \equiv 0(\bmod 2)$ in the case (v.4.2.1.3) above, the following example for $n=2$ shows that there are no $m_{n} \equiv 1(\bmod 4)$ values such that the sum of squares of $M=\left(12 m_{n}+3\right)$ consecutive integers can be an integer square as the following values of m_{n} have to be rejected:
$m_{n} \equiv 1(\bmod 32)$, i.e, $1,33,65, \ldots$, by $(\mathrm{C} 3), \kappa=3, \xi=0$ in (11);
$m_{n} \equiv 5(\bmod 16)$, i.e. $5,21,37, \ldots$, by $(\mathrm{C} 3), \kappa=2, \xi=1$ in (11);
$m_{n} \equiv 9(\bmod 128)$, i.e. $9,137,245, \ldots$, by $(\mathrm{C} 3), \kappa=5, \xi=2$ in (11);
$m_{n} \equiv 13(\bmod 16)$, i.e. $13,29,45, \ldots$, by $(\mathrm{C} 4.2), \alpha=4, m_{n 0}=13$ in (6);

Table 5: Polynomials $P\left(n^{\prime}\right)$ such as $\xi \equiv P\left(n^{\prime}\right)\left(\bmod 2^{\kappa}\right)$ with $n^{\prime}=(n-1) / 2$

κ	$P\left(n^{\prime}\right)\left(\bmod 2^{\kappa}\right)$
2	$\left(n^{\prime}\right)(\bmod 4)$
3	$\left(5 n^{\prime}+7\right)(\bmod 8)$
4	$\left(13 n^{\prime}+13\right)(\bmod 16)$
5	$\left(8 n^{\prime 2}+5 n^{\prime}+9\right)(\bmod 32)$
6	$\left(24 n^{\prime 2}+53 n^{\prime}+33\right)(\bmod 64)$
7	$\left(56 n^{\prime 2}+85 n^{\prime}+81\right)(\bmod 128)$
8	$\left(120 n^{\prime 2}+149 n^{\prime}+49\right)(\bmod 256)$
9	$\left(384 n^{\prime 3}+504 n^{\prime 2}+405 n^{\prime}+457\right)(\bmod 512)$
10	$\left(384 n^{\prime 3}+1016 n^{\prime 2}+425 n^{\prime}+881\right)(\bmod 1024)$

$m_{n} \equiv 17(\bmod 32)$, i.e. $17,49,81, \ldots$, by $(\mathrm{C} 4.2), \alpha=5, m_{n 0}=17$ in (6);
$m_{n} \equiv 25(\bmod 64)$, i.e. $25,89,153, \ldots$, by (C3), $\kappa=4, \xi=6$ in (11);
$m_{n} \equiv 41(\bmod 1024)$, i.e. $41,1065, \ldots$, by $(\mathrm{C} 4.2), \alpha=10, m_{n 0}=41$ in (6);
$m_{n} \equiv 57(\bmod 64)$, i.e. $57,121,185, \ldots$, by $(\mathrm{C} 4.2), \alpha=6, m_{n 0}=57$ in (6); etc.
For an odd number of iterations (i.e. $n \equiv 1(\bmod 2)$) in the case (v.4.2.2.3) above, the following example for $n=3$ shows that there are no $m_{n} \equiv 3(\bmod 4)$ values such that the sum of squares of $M=\left(12 m_{n}+3\right)$ consecutive integers can be an integer square as the following values of m_{n} have to be rejected:
$m_{n} \equiv 3(\bmod 32)$, i.e. $3,35,67, \ldots$, by $(\mathrm{C} 4.2), \alpha=5, m_{n 0}=3$ in (6);
$m_{n} \equiv 7(\bmod 16)$, i.e. $7,23,39, \ldots$, by $(\mathrm{C} 3), \kappa=2, \xi=1$ in (17);
$m_{n} \equiv 11(\bmod 64)$, i.e. $11,75,139, \ldots$, by $(\mathrm{C} 4.2), \alpha=6, m_{n 0}=11$ in (6);
$m_{n} \equiv 15(\bmod 16)$, i.e. $15,31,47, \ldots$, by $(\mathrm{C} 4.2), \alpha=4, m_{n 0}=15$ in (6);
$m_{n} \equiv 19(\bmod 32)$, i.e. $19,51,83, \ldots$, by $(\mathrm{C} 3), \kappa=3, \xi=4$ in (17);
$m_{n} \equiv 27(\bmod 128)$, i.e. $27,155,283, \ldots$, by $(\mathrm{C} 4.2), \alpha=7, m_{n 0}=27$ in (6);
$m_{n} \equiv 43(\bmod 64)$, i.e. $43,107,171, \ldots$, by $(\mathrm{C} 3), \kappa=4, \xi=10$ in (17); etc.
Remark 4. Note that the values of $m_{n 0}$ in section (v.4.1) above are not independent and within the same $n^{t h}$ iteration, the value $m_{n 0, \alpha}$ of $m_{n 0}$ for a given value of α is related to the preceding value $m_{n 0,(\alpha-1)}$ for $(\alpha-1)$ by

$$
\begin{equation*}
m_{n 0, \alpha}\left(\bmod 2^{\alpha}\right) \equiv\left(m_{n 0,(\alpha-1)}+\epsilon \times 2^{\alpha-1}+2^{\alpha-3}\right) \tag{20}
\end{equation*}
$$

with either $\epsilon=-1$, or 0 , or +1 . From (7), $m_{n 0}=\left(2^{\alpha} K-\beta\right) / 3^{2 n-1}$ and one has respectively

$$
\begin{align*}
& m_{n 0}=\frac{2^{\alpha} K-2\left(\sum_{i=0}^{n-2} 3^{2 i}\right)+\left(\frac{2^{\alpha-2}-1}{3}\right)}{3^{2 n-1}} \text { if } \alpha \equiv 0(\bmod 2) \tag{21}\\
& m_{n 0}=\frac{2^{\alpha} K-2\left(\sum_{i=0}^{n-2} 3^{2 i}\right)+\left(\frac{5 \times 2^{\alpha-2}-1}{3}\right)}{3^{2 n-1}} \text { if } \alpha \equiv 1(\bmod 2) \tag{22}
\end{align*}
$$

Forming now the difference $m_{n 0, \alpha}-m_{n 0,(\alpha-1)}$, one obtains $m_{n 0, \alpha}-m_{n 0,(\alpha-1)}=$
$\epsilon \times 2^{\alpha-1}+2^{\alpha-3}$ with

$$
\begin{equation*}
\epsilon=\frac{\left(2 K_{\alpha}-K_{(\alpha-1)}\right)-\left(\frac{3^{2 n-1}+1}{4}+\eta\right)}{3^{2 n-1}} \tag{23}
\end{equation*}
$$

with $\eta=0$ or -1 if $\alpha \equiv 0$ or $1(\bmod 2)$ and where K_{α} and $K_{(\alpha-1)}$ are the values of K corresponding to $m_{n 0, \alpha}$ and $m_{n 0,(\alpha-1)}$ in (77). $\epsilon=1$ or 0 or -1 if $2 K_{\alpha}-$ $K_{(\alpha-1)}=\left(\eta+\left(5 \times 3^{2 n-1}+1\right) / 4\right)$ or $\left(\eta+\left(3^{2 n-1}+1\right) / 4\right)$ or $\left(\eta+\left(1-3^{2 n}\right) / 4\right)$ (see also Lemma 1).
The next theorem gives additional conditions on the allowed (mod 12) congruent values that M can take.

Theorem 5. For $M>1, a, s \in \mathbb{Z}^{+}, i \in \mathbb{Z}^{*}$, there exist M satisfying $M \equiv$ $0,1,2,4,9$ or $11(\bmod 12)$ such as the sums of M consecutive squared integers $(a+i)^{2}$ equal integer squares s^{2}. Furthermore, if $M \equiv 0(\bmod 12)$, then $M \equiv 0$ or $24(\bmod 72)$; if $M \equiv 1(\bmod 12)$, then $M \equiv 1(\bmod 24)$; if $M \equiv 2(\bmod 12)$, then $M \equiv 2(\bmod 24)$; if $M \equiv 4(\bmod 12)$, then $M \equiv 16(\bmod 24)$; if $M \equiv$ $9(\bmod 12)$, then $M \equiv 9$ or $33(\bmod 72)$; and the corresponding congruent values of a and s are given in Table 6.

Proof. For $M>1, m, a, s \in \mathbb{Z}^{+}$and $\mu, i \in \mathbb{Z}^{*}, 0 \leq \mu \leq 11$, let $M \equiv \mu(\bmod 12)$ $\Rightarrow M=12 m+\mu$.
Expressing the sum of M consecutive integer squares starting from a^{2} equal to an integer square s^{2} as

$$
\begin{equation*}
\sum_{i=0}^{M-1}(a+i)^{2}=M\left[\left(a+\frac{M-1}{2}\right)^{2}+\frac{M^{2}-1}{12}\right]=s^{2} \tag{24}
\end{equation*}
$$

and replacing M by $12 m+\mu$ in (24) yields

$$
\begin{equation*}
(12 m+\mu)\left[a^{2}+a(12 m+\mu-1)+48 m^{2}+2 m(4 \mu-3)+\frac{2 \mu^{2}-3 \mu+1}{6}\right]=s^{2} \tag{25}
\end{equation*}
$$

Recalling that integer squares are congruent to either $0,1,4$ or $9(\bmod 12)$, replacing the values of $\mu=0,1,2,4,9,11$ in (25) and reducing ($\bmod 12$) yield:
(i) for $\mu=0,\left(2 m\left(6 a^{2}-6 a+1\right)-s^{2}\right) \equiv 0(\bmod 12)$.

As $\forall a,\left(6 a^{2}-6 a\right) \equiv 0(\bmod 12)$, it yields $\left(2 m-s^{2}\right) \equiv 0(\bmod 12) \Rightarrow s \equiv$ $0(\bmod 6)$ for $m \equiv 0(\bmod 6)$ and $s \equiv 2$ or $4(\bmod 6)$ for $m \equiv 2(\bmod 6)$.
Therefore, $M \equiv 0(\bmod 72)$ with $s \equiv 0(\bmod 6)$ or $M \equiv 24(\bmod 72)$ with $s \equiv 2$ or $4(\bmod 6)$ and a can take any value.
(ii) for $\mu=1,\left(a^{2}+2 m-s^{2}\right) \equiv 0(\bmod 12)$.

For $a^{2} \equiv\{0,1,4,9\}(\bmod 12), 2 m \equiv\{(0$ or 4$),(0$ or 8$),(0$ or 8$),(0$ or 4$)\}(\bmod 12)$ respectively for $s^{2} \equiv\{(0$ or 4$),(1$ or 9$),(4$ or 0$),(9$ or 1$)\}(\bmod 12)$, yielding $m \equiv 0(\bmod 2)$ and $M \equiv 1(\bmod 24)$. Furthermore,

- if $m \equiv 0(\bmod 6), a$ and s can take any values;

Table 6: Congruent values of M, m, a, and s

μ	$M \equiv$	$m \equiv$	$a \equiv$	$s \equiv$
0	$0(\bmod 72)$	$0(\bmod 6)$	\forall	$0(\bmod 6)$
	$24(\bmod 72)$	$2(\bmod 6)$	\forall	2 or $4(\bmod 6)$
1	$1(\bmod 24)$	$0(\bmod 6)$	\forall	\forall
		$2(\bmod 6)$	$0(\bmod 6)$	2 or $4(\bmod 6)$
			$3(\bmod 6)$	1 or $5(\bmod 6)$
		$4(\bmod 6)$	$1(\bmod 2)$	$3(\bmod 6)$
			$0(\bmod 2)$	$0(\bmod 6)$
2	$2(\bmod 24)$	$0(\bmod 6)$	$0,2(\bmod 3)$	1 or $5(\bmod 6)$
		$2(\bmod 6)$	$1(\bmod 3)$	$3(\bmod 6)$
		$4(\bmod 6)$	\forall	$1(\bmod 2)$
4	$16(\bmod 24)$	$1(\bmod 6)$	$0(\bmod 3)$	2 or $4(\bmod 6)$
		$3(\bmod 6)$	$1,2(\bmod 3)$	$0(\bmod 6)$
		$5(\bmod 6)$	\forall	$0(\bmod 2)$
9	$9(\bmod 72)$	$0(\bmod 6)$	$0(\bmod 2)$	$0(\bmod 6)$
			$1(\bmod 2)$	$3(\bmod 6)$
	$33(\bmod 72)$	$2(\bmod 6)$	$0(\bmod 2)$	2 or $4(\bmod 6)$
			$1(\bmod 2)$	1 or $5(\bmod 6)$
11	$11(\bmod 12)$	$0(\bmod 6)$	$0,2(\bmod 6)$	1 or $5(\bmod 6)$
		$1(\bmod 6)$	$1(\bmod 6)$	2 or $4(\bmod 6)$
			3, $5(\bmod 6)$	$0(\bmod 6)$
		$2(\bmod 6)$	$4(\bmod 6)$	$3(\bmod 6)$
		$3(\bmod 6)$	3,5 $\bmod 6)$	2 or $4(\bmod 6)$
		$4(\bmod 6)$	$0,2(\bmod 6)$	$3(\bmod 6)$
			$4(\bmod 6)$	1 or $5(\bmod 6)$
		$5(\bmod 6)$	$1(\bmod 6)$	$0(\bmod 6)$

- if $m \equiv 2(\bmod 6)$, either $a \equiv 0(\bmod 6)$ and $s \equiv 2$ or $4(\bmod 6)$, or $a \equiv 3(\bmod 6)$ and $s \equiv 1$ or $5(\bmod 6)$; and
- if $m \equiv 4(\bmod 6)$, either $a \equiv 1(\bmod 2)$ and $s \equiv 3(\bmod 6)$, or $a \equiv 0(\bmod 2)$ and $s \equiv 0(\bmod 6)$.
(iii) for $\mu=2,\left(2\left(a^{2}+a\right)+2 m+1-s^{2}\right) \equiv 0(\bmod 12)$.

For $\left(2\left(a^{2}+a\right)+1\right) \equiv\{1,5\}(\bmod 12), 2 m \equiv\{(0$ or 8$),(4 \operatorname{or} 8)\}(\bmod 12)$ respectively for $s^{2} \equiv\{(1 \operatorname{or} 9),(9$ or 1$)\}(\bmod 12)$, yielding $m \equiv 0(\bmod 2)$ and $M \equiv 2(\bmod 24)$. Furthermore,

- if $m \equiv 0(\bmod 6), a \equiv 0$ or $2(\bmod 3)$ and $s \equiv 1$ or $5(\bmod 6)$;
- if $m \equiv 2(\bmod 6), a \equiv 1(\bmod 3)$ and $s \equiv 3(\bmod 6)$; and
- if $m \equiv 4(\bmod 6), a$ can take any value and $s \equiv 1(\bmod 2)$.
(iv) for $\mu=4,\left(2\left(2 a^{2}+1\right)+2 m-s^{2}\right) \equiv 0(\bmod 12)$.

For $\left(2\left(2 a^{2}+1\right)\right) \equiv\{2,6\}(\bmod 12), 2 m \equiv\{(2$ or 10$),(6$ or 10$)\}(\bmod 12)$ respectively for $s^{2} \equiv\{(4 \operatorname{or} 0),(0$ or 4$)\}(\bmod 12)$, yielding $m \equiv 1(\bmod 2)$ and $M \equiv 16(\bmod 24)$. Furthermore,

- if $m \equiv 1(\bmod 6), a \equiv 0(\bmod 3)$ and $s \equiv 2$ or $4(\bmod 6)$;
- if $m \equiv 3(\bmod 6), a \equiv 1$ or $2(\bmod 3)$ and $s \equiv 0(\bmod 6)$; and
- if $m \equiv 5(\bmod 6), a$ can take any value and $s \equiv 0(\bmod 2)$.
(v) for $\mu=9,\left(9 a^{2}+2 m-s^{2}\right) \equiv 0(\bmod 12)$.

For $\left(9 a^{2}\right) \equiv\{0,9\}(\bmod 12), 2 m \equiv\{(0$ or 4$),(0$ or 4$)\}(\bmod 12)$ respectively for $s^{2} \equiv\{(0$ or 4$),(9$ or 1$)\}(\bmod 12)$, yielding $m \equiv 0$ or $2(\bmod 6)$ and $M \equiv 9$ or $33(\bmod 72)$. Furthermore,

- if $m \equiv 0(\bmod 6)$, either $a \equiv 0(\bmod 2)$ and $s \equiv 0(\bmod 6)$, or $a \equiv 1(\bmod 2)$ and $s \equiv 3(\bmod 6) ;$ and
- if $m \equiv 2(\bmod 6)$, either $a \equiv 0(\bmod 2)$ and $s \equiv 2$ or $4(\bmod 6)$, or $a \equiv 1(\bmod 2)$ and $s \equiv 1$ or $5(\bmod 6)$.
(vi) for $\mu=11,\left(11 a^{2}+2 a+1+2 m-s^{2}\right) \equiv 0(\bmod 12)$.

For $\left(11 a^{2}+2 a+1\right) \equiv\{1,2,5,10\}(\bmod 12), 2 m \equiv\{(0$ or 8$),(2$ or 10$),(4$ or 8$)$,
$(2$ or 6$)\}(\bmod 12)$ respectively for $s^{2} \equiv\{(1$ or 9$),(4$ or 0$),(9$ or 1$),(0$ or 4$)\}(\bmod 12)$ yielding

- if $m \equiv 0(\bmod 6), a \equiv 0$ or $2(\bmod 6)$ and $s \equiv 1$ or $5(\bmod 6)$;
- if $m \equiv 1(\bmod 6)$, either $a \equiv 1(\bmod 6)$ and $s \equiv 2$ or $4(\bmod 6)$, or $a \equiv 3$ or $5(\bmod 6)$ and $s \equiv 0(\bmod 6)$;
- if $m \equiv 2(\bmod 6), a \equiv 4(\bmod 6)$ and $s \equiv 3(\bmod 6)$;
- if $m \equiv 3(\bmod 6), a \equiv 3$ or $5(\bmod 6)$ and $s \equiv 2$ or $4(\bmod 6)$;
- if $m \equiv 4(\bmod 6)$, either $a \equiv 0$ or $2(\bmod 6)$ and $s \equiv 3(\bmod 6)$, or $a \equiv 4(\bmod 6)$ and $s \equiv 1$ or $5(\bmod 6)$; and
- if $m \equiv 5(\bmod 6), a \equiv 1(\bmod 6)$ and $s \equiv 0(\bmod 6)$.

Therefore, the congruences of Table 6 hold.
Additional necessary conditions can be found using Beeckmans' necessary conditions and are given in [17]. Theorem 5 yields also that M can only be congruent to $0,1,2,9,11,16,23,24,25,26,33,35,40,47,49,50,59,64$ or $71(\bmod 72)$.
The values of M yielding solutions to (24) are given in [19].

3 Case of M being square

An interesting case occurs when M is itself a squared integer as shown in the following theorem.

Theorem 6. For $M>1 \in \mathbb{Z}^{+}, n \in \mathbb{Z}$, if M is a square integer, then there exist M satisfying $M \equiv 1(\bmod 24)$ such as the sums of M consecutive squared integers $(a+i)^{2}$ equal integer squares s^{2}; furthermore $M=(6 n-1)^{2}$, i.e $(M-1) / 24$ are all generalized pentagonal numbers $n(3 n-1) / 2$.

Proof. For $M>1, m, m_{1}, m_{2} \in \mathbb{Z}^{+}, n \in \mathbb{Z}$, let $M=m^{2}$; then $m \neq 0(\bmod 2)$ and $m \neq 0(\bmod 3)$ by $(\mathrm{C} 1.1)$ and $(\mathrm{C} 1.2)$. Therefore, $m \equiv \pm 1(\bmod 6) \Rightarrow m=$ $6 m_{1} \pm 1$, yielding $M=12 m_{1}\left(3 m_{1} \pm 1\right)+1$ or $M \equiv 1(\bmod 12)$. Then, by Theorem $5, M \equiv 1(\bmod 24) \Rightarrow M=24 m_{2}+1$, and $24 m_{2}+1=\left(6 m_{1} \pm 1\right)^{2}$, or $m_{2}=m_{1}\left(3 m_{1} \pm 1\right) / 2$ which is equivalent to $n(3 n-1) / 2, \forall n \in \mathbb{Z}$.

The generalized pentagonal numbers $n(3 n-1) / 2$ [5, 25] take the values $0,1,2,5,7,12,15,22,26,35,40,51,57, \ldots[22]$, which then yields $M=1,25,49,121,169,289,361,529,625,841,961,1225,1369, \ldots$ The first two values, $M=1,25$, should be rejected, the first one because M must be greater than 1 , and the second one because for $M=25$, one finds the unique solution $a=0$ and $s=70$ and a must be positive, although it is obviously equivalent to the solution with $a=1$ and $s=70$ for $M=24$ of Lucas' cannonball problem (see also [18]).

4 Conclusions

It was shown that the problem of finding all the integer solutions of the sum of M consecutive integer squares starting at $a^{2} \geq 1$ being equal to a squared integer s^{2} has no solutions if M is congruent to $3,5,6,7,8$ or $10(\bmod 12)$ using Beeckmans necessary conditions. It was further proven that the problem has integer solutions if M is congruent to $0,9,24$ or $33(\bmod 72)$; or to 1,2 or $16(\bmod 24)$; or to $11(\bmod 12)$. If M is a square itself, then M must be congruent to $1(\bmod 24)$ and $(M-1) / 24$ are all pentagonal numbers, except the first two.
In a second paper [18], the Diophantine quadratic equation (24) in variables a and s with M as a parameter is solved generally.

5 Acknowledgment

The author acknowledges Dr C. Thiel for the help brought throughout this paper.

References

[1] U. Alfred, Consecutive integers whose sum of squares is a perfect square, Mathematics Magazine, 19-32, 1964.
[2] W.S. Anglin, The Square Pyramid Puzzle, American Mathematical Monthly, 97, 120-124, 1990.
[3] L. Beeckmans, Squares Expressible as Sum of Consecutive Squares, The American Mathematical Monthly, Vol. 101, No. 5, 437-442, May 1994.
[4] L.E. Dickson, Polygonal, Pyramidal and Figurate Numbers, Ch. 1 in History of the Theory of Numbers, Vol. 2: Diophantine Analysis, Dover, New York, p.25, 2005.
[5] L. Euler, De mirabilis proprietatibus numerorum pentagonalium, Acta Academiae Scientarum Imperialis Petropolitinae 4, no. 1, 56-75, 1783; reprinted in "Leonhard Euler, Opera Omnia", Series 1: Opera mathematica, Volume 3, Birkh"auser, 1992 (see http://www.eulerarchive.org). See also translation in http://arxiv.org/pdf/math/0505373v1.pdf, last accessed 10 August 2014.
[6] A. Jasinski, $a(n)=a(n-1)+2^{\wedge}$ A047240(n) for $n>1$, $a(1)=1$, Sequence A113841 in The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, last accessed 30 March 2014.
[7] Z. Lajos, Numbers whose base 9 representation is $22222222 \ldots . . .2$, Sequence A125857 in The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, last accessed 30 March 2014.
[8] M. Laub, Squares Expressible as a Sum of n Consecutive Squares, Advanced Problem 6552, American Mathematical Monthly, 97, 622-625, 1990.
[9] J.W. Layman, Number of distinct paths of length $2 n+1$ along edges of a unit cube between two fixed adjacent vertices, Sequence A066443 in The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, last accessed 30 March 2014.
[10] W. Ljunggren, New solution of a problem proposed by E. Lucas, Norsk Mat. Tid. 34, 65-72, 1952.
[11] E. Lucas, Recherches sur l'Analyse Indeterminée, Moulins, p. 90, 1873.
[12] E. Lucas, Question 1180, Nouvelles Annales de Mathématiques, Série 2, 14, 336, 1875.
[13] E. Lucas, Solution de la Question 1180, Nouvelles Annales de Mathématiques, Série 2, 15, 429-432, 1877.
[14] D.G. Ma, An Elementary Proof of the Solutions to the Diophantine Equation $6 y^{2}=x(x+1)(2 x+1)$, Sichuan Daxue Xuebao, No. 4, 107-116, 1985.
[15] M. Moret-Blanc, Question 1180, Nouvelles Annales de Mathématiques, Série $2,15,46-48,1876$.
[16] S. Philipp, Note on consecutive integers whose sum of squares is a perfect square, Mathematics Magazine, 218-220, 1964.
[17] V. Pletser, Additional congruence conditions on the number of terms in sums of consecutive squared integers equal to squared integers, ArXiv, http://arxiv.org/pdf/1409.6261v1.pdf, 20 August 2014.
[18] V. Pletser, Finding all squared integers expressible as the sum of consecutive squared integers using generalized Pell equation solutions with Chebyshev polynomials, submitted, August 2014.
[19] N.J.A. Sloane, Numbers n such that sum of squares of n consecutive integers $>=1$ is a square, Sequence A001032 in The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, last accessed 17 May 2014.
[20] N.J.A. Sloane, $\left(9^{\wedge} \mathrm{n}-1\right) / 8$, Sequence A002452 in The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, last accessed 30 March 2014.
[21] N.J.A. Sloane, Numbers that are congruent to $\{0,1,2\} \bmod 6$, Sequence A047240 in The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, last accessed 30 March 2014.
[22] N. J. A. Sloane, Generalized pentagonal numbers: $\mathrm{n}^{*}\left(3^{*} \mathrm{n}-1\right) / 2, \mathrm{n}=0,+-$ $1,+-2,+-3, \ldots$, Sequence A001318 in The On-line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, last accessed 10 August 2014.
[23] J. Spanier and K.B. Oldham, An Atlas of Functions, Springer-Verlag, 193207, 1987.
[24] G. N. Watson, The Problem of the Square Pyramid, Messenger of Mathematics, 48, 1-22, 1918.
[25] E.W. Weisstein, Pentagonal Number, From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/PentagonalNumber.html, last accessed 10 August 2014.

[^0]: ${ }^{1}$ For increasing n, the series $\left[\left(3^{2 n}-1+1\right) / 4\right]=1,7,61,547,4921, \ldots$ is given in 9$]$.
 ${ }^{2}$ For increasing n, the series $\left[\left(3^{2(n-1)}-1\right) / 8\right]=1,10,91,820,7381, \ldots$ is given in [7] 20 .

