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Abstract. We introduce the Tesler polytope Tesn(a), whose integer points

are the Tesler matrices of size n with hook sums a1, a2, . . . , an ∈ Z≥0. We
show that Tesn(a) is a flow polytope and therefore the number of Tesler

matrices is counted by the type An Kostant partition function evaluated at

(a1, a2, . . . , an,−
∑n

i=1 ai). We describe the faces of this polytope in terms
of “Tesler tableaux” and characterize when the polytope is simple. We prove

that the h-vector of Tesn(a) when all ai > 0 is given by the Mahonian numbers

and calculate the volume of Tesn(1, 1, . . . , 1) to be a product of consecutive
Catalan numbers multiplied by the number of standard Young tableaux of

staircase shape.

1. Introduction

Tesler matrices have played a major role in the works [2][13][14][15][19][27] in the
context of diagonal harmonics. We examine them from a different perspective in
this paper: we study the polytope, which we call the Tesler polytope, consisting of
upper triangular matrices with nonnegative real entries with the same restriction
as Tesler matrices on the hook sums: sum of the elements of a row minus the sum
of the elements of a column. Then the integer points of this polytope are all Tesler
matrices of given hook sums. We show that these polytopes are flow polytopes and
are faces of transportation polytopes. We characterize the Tesler polytopes with
nonnegative hook sums that are simple and we calculate their h-vectors. If the hook
sums are all 1 the volume is the product of consecutive Catalan numbers multiplied
by the number of standard Young tableaux of staircase shape. This result raises the
question of the Tesler polytope’s connection to the Chan-Robbins-Yuen polytope,
a flow polytope whose volume is the product of consecutive Catalan numbers.

We now proceed to give the necessary definitions and state our main results.
This section is broken down into three subsections for ease of reading: introduction
to Tesler matrices and polytopes, introduction to flow polytopes and transportation
polytopes, and our main results regarding Tesler polytopes. Section 2 and Section 3
are independent of each other, the first one is about the face structure and the other
is about the volume of Tesler polytopes. Finally, in Section 4 we discuss some final
remarks and questions.

1.1. Tesler matrices and polytopes. Let Un(R≥0) be the set of n × n upper

triangular matrices with nonnegative real entries. The k
th

hook sum of a matrix
(xi,j) in Un(R≥0) is the sum of all the elements of the kth row minus the sum of
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Figure 1. The seven 3×3 Tesler matrices with hook sums (1, 1, 1).
Six of them are vertices of the graph (depicted in gray) of the Tesler
polytope Tesn(1, 1, 1).

the elements in the kth column excluding the term in the diagonal:

xk,k + xk,k+1 + · · ·+ xk,n − (x1,k + x2,k + · · ·+ xk−1,k)

Given a length n vector a = (a1, a2, . . . , an) ∈ (Z≥0)n of nonnegative integers, the
Tesler polytope Tesn(a) with hook sums a is the set of matrices in Un(R≥0)
where the kth hook sum equals ak, for k = 1, . . . , n:

Tesn(a) = {(xi,j) ∈ Un(R≥0) : xk,k +

n∑

j=k+1

xk,j −
k−1∑

i=1

xi,k = ak, 1 ≤ k ≤ n}.

The lattice points of Tesn(a) are called Tesler matrices with hook sums a.
These are n × n upper triangular matrices B = (bi,j) with nonnegative integer

entries such that for k = 1, . . . , n, bk,k+
∑n
j=k+1 bk,j−

∑k−1
i=1 bi,k = ak. The set and

number of such matrices are denoted by Tn(a) and Tn(a) respectively. See Figure 1
for an example of the seven Tesler matrices in T3(1, 1, 1).

Tesler matrices appeared recently in Haglund’s study of diagonal harmonics [15]
and their combinatorics and further properties were explored in [2][13][22][27]. The
flavor of the results obtained for Tesler matrices in connection with diagonal har-
monics is illustrated by the following example. Let H(DHn, q, t) denote the bi-
graded Hilbert series of the space of diagonal harmonics DHn. For more details
regarding this polynomial in N[q, t] we refer the reader to [16, Ch. 5].

Example 1.1. When a = 1 := (1, 1, . . . , 1) ∈ Zn, Haglund [15] showed that

(1.1) H(DHn, q, t) =
∑

A∈Tn(1,1,...,1)

wt(A),

where
(1.2)

wt(A) =
1

(−M)n

∏

i,j : aij>0

(−M)[aij ]q,t, M = (1− q)(1− t), [b]q,t =
qb − tb
q − t .

The starting point for our investigation is the observation stated in the next
lemma.

Lemma 1.2. The Tesler polytope Tesn(a) is a flow polytope Flown(a),

(1.3) Tesn(a) ∼= Flown(a).
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(1, 1, 1,−3) = 1(e1 − e2) + 1(e1 − e4) +
1(e2 − e3) + 1(e2 − e4) + 2(e3 − e4)

Φ

Figure 2. Correspondence between a 3 × 3 Tesler matrix with
hook sums (1, 1, 1), an integer flow in the complete graph k4 and
a vector partition of (1, 1, 1,−3) into ei − ej 1 ≤ i < j ≤ 4.

We now define flow polytopes to make Lemma 1.2 clear. For an illustration of
the correspondence of polytopes in Lemma 1.2 see Figure 2.

1.2. Flow polytopes. Given a = (a1, a2, . . . , an), let Flown(a) be the flow poly-
tope of the complete graph kn+1 with netflow ai on vertex i for i = 1, . . . , n
and the netflow on vertex n + 1 is −∑n

i=1 ai. This polytope is the set of func-
tions f : E → R≥0, called flows, from the edge set E = {(i, j) : 1 ≤ i < j ≤
n + 1} of kn+1 to the set of nonnegative real numbers such that for k = 1, . . . , n,∑
j>s f(k, j) −∑i<k f(i, k) = ak. This forces

∑n
i=1 f(i, n + 1) =

∑n
i=1 ai. We

can write Flown(a) = {x ∈ R(n+1
2 )

≥0 |Akn+1
x = (a,−∑n

i=1 ai)
T }, where Akn+1

is the

matrix with columns ei − ej for each edge (i, j) of kn+1, 1 ≤ i < j ≤ n + 1. It is
then evident that the vertices of Flown(a) are integral, since Akn+1 is unimodular.

Proof of Lemma 1.2. Let Φ : Tesn(a) → Flown(a) defined by Φ : X = (xi,j) 7→ fX

where fX(i, j) =

{
xi,j if j 6= n+ 1

xi,i if j = n+ 1
. The map Φ is a linear transformation that

simply permutes the coordinates of Tesn(a). Therefore the determinant of Φ is ±1
and it follows that Φ is a volume preserving bijection between the polytopes. �

The type An Kostant partition function KAn
(a′) is the number of ways of

writing a′ := (a,−∑n
i=1 ai) as an N-combination of the type An positive roots

ei − ej , 1 ≤ i < j ≤ n + 1 without regard to order. Kostant partition functions
are very useful in representation theory for calculations of weight multiplicities
and tensor product multiplicities. The value KAn

(a′) is also the number of lattice
points of the polytope Flown(a), i.e. integral flows in the complete graph kn+1 with
netflow ai on vertex i (see Figure 2 for an example). Thus the following lemma is
immediate from Lemma 1.2.

Lemma 1.3. The number of Tesler matrices with hook sums (a1, a2, . . . , an) is
given by the value of the Kostant partition function at (a1, . . . , an,−

∑n
i=1 ai),

(1.4) Tn(a) = KAn
(a′).

In the next example we include a brief discussion of another flow polytope of the
complete graph, namely, Flown(1, 0, . . . , 0).

Example 1.4. The polytope Flown(1, 0, . . . , 0) is known as the Chan-Robbins-
Yuen polytope. It has dimension

(
n
2

)
and 2n−1 vertices. Stanley-Postnikov (un-

published), and Baldoni-Vergne [4, 5] proved that the normalized volume of this
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polytope is given by a value of the Kostant partition function (see (3.2))

volFlown(1, 0, . . . , 0) = KAn−1(0, 1, 2, . . . , n− 2,−
(
n−1

2

)
).

Then Zeilberger [28] used a variant of the Morris constant term identity [23] to
compute this value of the Kostant partiton function as the product of the first
n− 2 Catalan numbers, proving a conjecture of Chan, Robbins and Yuen [9, 10].

(1.5) KAn−1(0, 1, 2, . . . , n− 2,−
(
n−1

2

)
) =

n−2∏

i=0

1

i+ 1

(
2i

i

)
.

A Tesler polytope or flow polytope is itself a face of a well known kind of polytope
called a transportation polytope which we define next.

1.3. Transportation polytopes. Given a vector s = (s1, s2, . . . , sn) of nonneg-
ative integers, the transportation polytope1 Transn(s) is the set of all n × n
matrices M = (mi,j) with nonnegative real entries whose ith row and ith column
respectively sum to si, for i = 1, . . . , n. When all the si equal one, the polytope
Transn(1, 1, . . . , 1) is better known as the Birkhoff polytope. Next we show that
the flow polytope Flown(a) is isomorphic to a face of the transportation polytope
Transn(a1, a1 + a2, . . . ,

∑n
i=1 ai); see Figure 3.

Proposition 1.5. For a = (a1, . . . , an) ∈ (Z≥0)n with a1 > 0 we have that

(1.6) Tesn(a) ∼= {(mi,j) ∈ Transn(a1, a1 + a2, . . . ,

n∑

i=1

ai) : mi,j = 0 if i− j ≥ 2}.

For example, the Chan-Robbins Yuen polytope Tesn(1, 0, . . . , 0) is isomorphic
to a face of the Birkhoff polytope Transn(1, 1, . . . , 1) [4, Lemma 18] and the Tesler
polytope Tesn(1, 1, . . . , 1) is isomorphic to a face of the transportation polytope
Transn(1, 2, . . . , n). To prove the proposition we need the following characterization
of the facets of transportation polytopes [21, Theorem 2] by Klee and Witzgall.

Lemma 1.6. [21] Let s = (s1, s2, . . . , sn). The facets of Transn(s) are of the form
Fi,j(s) := {M ∈ Transn(s) : mi,j = 0} provided si + sj <

∑n
i=1 si.

Proof of Proposition 1.5. Fix s = (a1, a1 + a2, . . . ,
∑n
i=1 ai) and let Fn denote the

set on the right-hand-side of (1.6). We claim that Fn is a face of Transn(s). If
n = 1, 2 then Fn = Transn(a) so the claim follows. For n ≥ 3 we have that Fn =⋂
i−j≥2 Fi,j(s). Since each si ≥ a1 > 0 then si + sj <

∑n
i=1 si and by Lemma 1.6

each Fi,j(s) is a facet of Transn(s). Thus Fn is a face of this transportation polytope
settling the claim.

Next, we build an isomorphism between Flown(a) and Fn. Then the result will
follow by Lemma 1.2. Let Ψ : Flown(a) → Fn be defined by Ψ : f 7→ (mi,j)

where mi,j =





f(i, j + 1) if 1 ≤ i ≤ j ≤ n∑j
t=1 at −

∑j
t=1 f(t, j + 1) if j = i− 1,

0 if i− j ≥ 2.

. See Figure 3 for an

example.

We check that (mij) = Ψ(f) is in Transn(s). We have that mj+1,j =
∑j
k=1 ak −∑j

k=1 f(k, j + 1) ≥ 0 since
∑j
k=1 f(k, j + 1) is at most the total flow introduced

1In the literature transportation polytopes are more general [21]. The matrices can be rectan-
gular and the ith row sum and the ith column sum can differ.
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Figure 3. Correspondence among: a point X in the Tesler
polytope Tes4(a), a flow f on the complete graph k5 with net-
flow a′, and a point M = (mij) of the transportation polytope

Trans4(a1, a1 + a2, . . . ,
∑4
i=1 ai) with m31 = m41 = m42 = 0 (the

entries marked ∗ are determined by the others).

at vertices 1, 2, . . . , j, which is
∑j
k=1 ak. Therefore all the entries of Ψ(f) are

nonnegative. By construction, for k = 1, . . . , n − 1 the sum of the kth column

is
∑k
i=1 ai. The sum of the nth column equals the netflow on vertex n + 1 of

the complete graph,
∑n
i=1mi,n =

∑n
i=1 f(i, n + 1) =

∑n
i=1 ai. For the rows, the

netflow on vertex k, for k = 1, . . . , n, is ak which implies that
∑n
j=k f(k, j + 1) −

∑k−1
i=1 f(i, k) = ak. Thus the kth row sum equals

mk,k−1 +

n∑

j=k

mk,j =

(
k−1∑

i=1

ai −
k−1∑

i=1

f(i, k)

)
+

n∑

j=k

f(k, j + 1)

=

k−1∑

i=1

ai +




n∑

j=k

f(k, j + 1)−
k−1∑

i=1

f(i, k)


 =

k−1∑

i=1

ai + ak.

Therefore Ψ(f) is in Transn(s). By construction mi,j = 0 if i − j ≥ 2, so Ψ(f) is
also in Fn and so Ψ is well defined. Finally, we leave to the reader to check that Ψ
is a bijection with inverse Ψ−1 : Fn → Flown(a), (mij) 7→ f where f(i, j) = mi,j−1

for 1 ≤ i < j ≤ n+ 1. �

1.4. The study of Tesn(a). Examples 1.1 and 1.4 served as our inspiration for
studying the Tesler polytope Tesn(a) ∼= Flown(a). In Section 2 we prove that for
any vector a ∈ (Z≥0)n of nonnegative integers, the polytope Tesn(a) has dimension(
n
2

)
and at most n! vertices, all of which are integral. When a ∈ (Z>0)n consists

entirely of positive entries, we prove that Tesn(a) has exactly n! vertices. In this
case, these vertices are the permutation Tesler matrices of order n, which are
the n× n Tesler matrices with at most one nonzero entry in each row.

Recall that if P is a d-dimensional polytope, the f-vector f(P ) = (f0, f1, . . . , fd)
of P is given by letting fi equal the number of faces of P of dimension i. The f-

polynomial of P is the corresponding generating function
∑d
i=0 fix

i. A polytope
P is simple if each of its vertices is incident to dim(P ) edges. If P is a simple

polytope, the h-polynomial of P is the polynomial
∑d
i=0 hix

i which is related to
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the f -polynomial of P by the equation
∑d
i=0 fi(x−1)i =

∑d
i=0 hix

i. The coefficient
sequence (h0, h1, . . . , hd) of the h-polynomial of P is called the h-vector of P .

In Section 2 we characterize the vectors a ∈ (Z≥0)n for which the Tesler polytope
Tesn(a) is simple (Theorem 2.7). In particular, we show that Tesn(a) is simple
whenever a ∈ (Z>0)n. In this case, the sum of its h-vector entries is given by
∑(n

2)
i=0 hi = f0. Since Tesn(a) for a ∈ (Z>0)n has n! vertices, this implies that

∑(n
2)
i=0 hi = n!. One might expect that the h-polynomial

∑(n
2)
i=0 hix

i of Tesn(a) is the
generating function of some interesting statistic on permutations. Indeed, we show
in Section 2 that the h-polynomial of the Tesler polytope is the generating function
for Coxeter length.

Theorem 1.7. (Theorem 2.7, Corollary 2.9) Let a ∈ (Z>0)n be a vector of positive
integers. The polytope Tesn(a) is a simple polytope and its h-vector is given by the
Mahonian numbers, that is, hi is the number of permutations of {1, 2, . . . , n} with
i inversions. We have

(n
2)∑

i=0

fi(x− 1)i =

(n
2)∑

i=0

hix
i = [n]!x,

where [n]!x =
∏n
i=1(1 + x+ x2 + · · ·+ xi−1) and the fi are the f -vector entries of

Tesn(1).

Just as Tesn(1, 0, . . . , 0), i.e. the Chan-Robbins-Yuen polytope, Flown(1, 0, . . . , 0),
has a product formula for its normalized volume involving Catalan numbers, so does
the Tesler polytope Tesn(1) := Tesn(1, 1, . . . , 1). The following result is proven in
Section 3 using a new iterated constant term identity (Lemma 3.5).

Theorem 1.8. (Corollary 3.6) The normalized volume of the Tesler polytope Tesn(1),
or equivalently of the flow polytope Flown(1, 1, . . . , 1) equals

volTesn(1) = volFlown(1, 1, . . . , 1) =

(
n
2

)
! · 2(n

2)
∏n
i=1 i!

= f (n−1,n−2,...,1) ·
n−1∏

i=0

Cat(i),(1.7)

where Cat(i) = 1
i+1

(
2i
i

)
is the ith Catalan number and f (n−1,n−2,...,1) is the number

of Standard Young Tableaux of staircase shape (n− 1, n− 2, . . . , 1).

2. The face structure of Tesn(a)

Let a ∈ (Z≥0)n. The aim of this section is to describe the face poset of Tesn(a).
It will turn out that the combinatorial isomorphism type of Tesn(a) only depends
on the positions of the zeros in the integer vector a.

Let rstcn denote the reverse staircase of size n; the Ferrers diagram of rstc4 is
shown below.
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We use the “matrix coordinates” {(i, j) : 1 ≤ i ≤ j ≤ n} to describe the cells of
rstcn. An a-Tesler tableau T is a 0, 1-filling of rstcn which satisfies the following
three conditions:

(1) for 1 ≤ i ≤ n, if ai > 0, there is at least one 1 in row i of T ,
(2) for 1 ≤ i < j ≤ n, if T (i, j) = 1, then there is at least one 1 in row j of T ,

and
(3) for 1 ≤ j ≤ n, if aj = 0 and T (i, j) = 0 for all 1 ≤ i < j, then T (j, k) = 0

for all j ≤ k ≤ n.

For example, if n = 4 and a = (7, 0, 3, 0), then three a-Tesler tableaux are shown
below. We write the entries of a in a column to the left of a given a-Tesler tableau.

7 0 1 1 1

0 0 0 1

3 1 1

0 1

7 1 0 1 0

0 0 0 0

3 0 1

0 1

7 1 1 1 0

0 1 1 0

3 1 0

0 0

The dimension dim(T ) of an a-Tesler tableau T is
∑n
i=1(ri − 1), where

ri =

{
the number of 1’s in row i of T if row i of T is nonzero,

1 if row i of T is zero.

From left to right, the dimensions of the tableaux shown above are 3, 1, and 3.
Given two a-Tesler tableaux T1 and T2, we write T1 ≤ T2 to mean that for

all 1 ≤ i ≤ j ≤ n we have T1(i, j) ≤ T2(i, j). Moreover, we define a 0, 1-filling
max(T1, T2) of rstcn by max(T1, T2)(i, j) = max(T1(i, j), T2(i, j)).

We start with two lemmas on a-Tesler tableaux. Our first lemma states that any
two zero-dimensional a-Tesler tableaux are componentwise incomparable.

Lemma 2.1. Let a ∈ (Z≥0)n and let T1 and T2 be two a-Tesler tableaux with
dim(T1) = dim(T2) = 0. If T1 ≤ T2, then T1 = T2.

Proof. Since dim(T1) = dim(T2) = 0, for all 1 ≤ i ≤ n we have that row i of either
T1 or T2 consists entirely of 0’s, with the possible exception of a single 1. Since
T1 ≤ T2, it is enough to show that if row i of T2 contains a 1, then row i of T1 also
contains a 1. To prove this, we induct on i. If i = 1, then row 1 of T2 contains a 1
if and only if a1 > 0, in which case row 1 of T1 contains a 1. If i > 1, suppose that
row i of T2 contains a 1. Then either ai > 0 (in which case row i of T1 also contains
a 1) or ai = 0 and there exists i′ < i such that T2(i′, i) = 1. But in the latter
case we have that row i′ of T1 contains a 1 by induction. This combined with the
condition T1 ≤ T2 and the fact that T1 and T2 contain a unique 1 in row i′ forces
T1(i′, i) = 1. Therefore, row i of T1 contains a 1. We conclude that T1 = T2. �

Our next lemma states that the operation of componentwise maximum preserves
the property of being an a-Tesler tableau.

Lemma 2.2. Let a ∈ (Z≥0)n and let T1 and T2 be two a-Tesler tableaux. Then
T := max(T1, T2) is also an a-Tesler tableau.

Proof. If ai > 0 for some 1 ≤ i ≤ n, then row i of T is nonzero because row i
of T1 is nonzero. If 1 ≤ i < j ≤ n and T (i, j) = 1, then either T1(i, j) = 1 or
T2(i, j) = 1. In turn, row j of either T1 or T2 is nonzero, forcing row j of T to
be nonzero. Finally, if 1 ≤ j ≤ n, aj = 0, and T (i, j) = 0 for all 1 ≤ i < j, then
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T1(i, j) = T2(i, j) = 0 for all 1 ≤ i < j. This means that row j of T1 and T2 is zero,
so row j of T is also zero. �

The analogue of Lemma 2.2 for min(T1, T2) is false; the componentwise minimum
of two a-Tesler tableaux is not in general an a-Tesler tableau. Faces of the Tesler
polytope Tesn(a) and a-Tesler tableaux are related by taking supports.

Lemma 2.3. Let a ∈ (Z≥0)n and let F be a face of the Tesler polytope Tesn(a).
Define a function T : rstcn → {0, 1} by T (i, j) = 0 if the coordinate equality xi,j = 0
is satisfied on the face F and T (i, j) = 1 otherwise. Then T is an a-Tesler tableau.

Proof. If ai > 0 for some 1 ≤ i ≤ n, we have xi,i + xi,i+1 + · · · + xi,n ≥ ai on the
face F , so that row i of T is nonzero. Suppose T (i, j) = 1 for some 1 ≤ i < j ≤ n.
Then xi,j > 0 holds for some point in F , so that xj,j + xj,j+1 + · · · + xj,n ≥
xi,j > 0 at that point. In particular, row j of T is nonzero. Finally, suppose that
aj = 0 and for all 1 ≤ i < j we have T (i, j) = 0. Then on the face F we have
xj,j + xj,j+1 + · · · + xj,n = 0, forcing xj,j = xj,j+1 = · · · = xj,n = 0 on F . This
means that row j of T is zero. �

Lemma 2.3 shows that every face F of Tesn(a) gives rise to an a-Tesler tableaux
T . We denote by φ : F 7→ T the corresponding map from faces of Tesn(a) to
a-Tesler tableaux; we will see that φ is a bijection. We begin by showing that φ
bijects vertices of Tesn(a) with zero-dimensional a-Tesler tableaux.

Lemma 2.4. Let a ∈ (Z≥0)n. The map φ bijects the vertices of Tesn(a) with
zero-dimensional a-Tesler tableaux.

Proof. Let T be an a-Tesler tableau with dim(T ) = 0. Then T contains at most
a single 1 in every row. There exists a unique point BT ∈ Tesn(a) such that the
support of the matrix BT equals the set of nonzero entries of T . (Indeed, the vector
a can be used to construct the matrix BT row by row, from top to bottom.) By
Lemma 2.1, we have that BT1

6= BT2
for distinct zero-dimensional a-Tesler tableaux

T1 and T2. We argue that the set

{BT : T an a-Tesler tableau with dim(T ) = 0}
is precisely the set of vertices of Tesn(a). Since this implies that φ(BT ) = T , the
lemma will follow.

To begin, we argue that Tesn(a) = conv{BT : dim(T ) = 0}. To facilitate this
inductive argument, given any matrix B = (bi,j) ∈ Tesn(a), define the dimension
dim(B) to be dim(T ), where T is the a-Tesler tableau whose entries are

T (i, j) =

{
0 bi,j = 0

1 bi,j 6= 0.

Fix a matrix B ∈ Tesn(a). We want to show that B ∈ conv{BT : dim(T ) = 0}.
We induct on dim(B). If dim(B) = 0, then B = BT for some a-Tesler tableau T
with dim(T ) = 0 and the result follows, so assume dim(B) > 0. Since dim(B) > 0,
at least one row of B has more than one positive entry. Let 1 ≤ i0 ≤ n − 1 be
maximal such that row i0 of B has more than one positive entry.

For any i0 < j ≤ n with bi0,j > 0, we define a subset Pj = {(p1, q1), (p2, q2), . . . }
of the matrix coordinates of B (called the positive path at j) as follows. Let
(p1, q1) = (i0, j). Given (pr, qr) ∈ Pj with pr < n, we define (pr+1, qr+1) by letting
pr+1 = qr and letting qr+1 be the column of the unique nonzero entry in row qr of
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B. We also set Pi0 = {(i0, j0)}. For example, if a = (4, 3, 1, 1, 1, 2) and B is the
point in Tes6(a) shown below, we have i0 = 2 and P3 = {(2, 3), (3, 5), (5, 5)}, P4 =
{(2, 4), (4, 4)}, and P6 = {(2, 6), (6, 6)}. In general, for any distinct j, j′ we have
Pj ∩ Pj′ = ∅.

B =




0 2 0 1 1 0
0 2 2 0 1

0 0 3 0
4 0 0

5 0
3




Let i0 ≤ j0 < j1 ≤ n be such that c := bi0,j0 and d := bi0,j1 are positive. We
define two new upper triangular n× n matrices B′ = (b′i,j) and B′′ = (b′′i,j) by the
rules

(2.1) b′i,j =





bi,j + d (i, j) ∈ Pj0
bi,j − d (i, j) ∈ Pj1
bi,j otherwise

and

(2.2) b′′i,j =





bi,j − c (i, j) ∈ Pj0
bi,j + c (i, j) ∈ Pj1
bi,j otherwise.

For example, if B is as above with i0 = 2, if we make the choices j0 = 3 and j1 = 6
the matrices B′ and B′′ are as follows.

B′ =




0 2 0 1 1 0
0 3 2 0 0

0 0 4 0
4 0 0

6 0
2




B′′ =




0 2 0 1 1 0
0 0 2 0 3

0 0 1 0
4 0 0

3 0
5




It is straightforward to verify that both B′ and B′′ lie in Tesn(a). Since B′ and
B′′ have one fewer positive entry than B in row i0, we have dim(B′) < dim(B)
and dim(B′′) < dim(B), so that inductively B′ ∈ conv{BT : dim(T ) = 0} and
B′′ ∈ conv{BT : dim(T ) = 0}. Since B = 1

c+d (cB′ + dB′′), we conclude that

B ∈ conv{BT : dim(T ) = 0}.
Since Tesn(a) = conv{BT : dim(T ) = 0}, every vertex of Tesn(a) is of the form

BT for some a-Tesler tableau T with dim(T ) = 0. We argue that every matrix
BT is actually a vertex of Tesn(a). For otherwise, there would exist some a-Tesler
tableau T with dim(T ) = 0 such that

BT =
∑

dim(T ′)=0
T ′ 6=T

cT ′BT ′ ,

for some cT ′ ≥ 0 with
∑
cT ′ = 1. But this is impossible by Lemma 2.1. We

conclude that BT is a vertex of Tesn(a). �

We are ready to characterize the face poset of Tesn(a).
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Theorem 2.5. Let a ∈ (Z≥0)n. The support map φ : F 7→ T gives an isomorphism
from the face poset of Tesn(a) to the set of a-Tesler tableaux, partially ordered by
≤. For any face F , we have that dim(F ) = dim(φ(F )).

Proof. For any a-Tesler tableau T , define a face F (T ) ⊆ Tesn(a) by letting F (T )
be the intersection of the hyperplanes {xi,j = 0 : T (i, j) = 0} within the ambient
affine subspace

n⋂

i=1

{xi,i + xi,i+1 + · · ·+ xi,n = ai + x1,i + · · ·+ xi−1,i}

of {(xi,j) : xi,j ∈ R, 1 ≤ i ≤ j ≤ n}. It is evident that dim(F (T )) = dim(T ) and
that φ(F (T )) = T . Moreover, we have that T1 ≤ T2 if and only if F (T1) ⊆ F (T2).
It therefore suffices to show that every face of Tesn(a) is of the form F (T ) for some
a-Tesler tableau T .

Let F be a face of Tesn(a). By Lemma 2.4, there exist zero-dimensional a-
Tesler tableaux T1, . . . , Tk such that BT1 , . . . , BTk

are the vertices of F . Let T =
max(T1, . . . , Tk). By Lemma 2.2 we have that T is an a-Tesler tableau. It is clear
that F ⊆ F (T ). We argue that F (T ) ⊆ F . To see this, suppose that 1 ≤ i ≤ j ≤ n
and the defining hyperplane xi,j = 0 of Tesn(a) contains F . Then in particular
we have that xi,j = 0 contains BT1

, . . . , BTk
, so that T1(i, j) = · · · = Tk(i, j) = 0.

This means that T (i, j) = 0, so that xi,j = 0 contains F (T ). We conclude that
F = F (T ). �

Given any vector a ∈ (Z≥0)n, we let ε(a) ∈ {0,+}n be the associated signature;
for example, ε(7, 0, 3, 0) = (+, 0,+, 0). Theorem 2.5 implies that the combinatorial
isomorphism type of Tesn(a) depends only on the signature ε(a).

As a first application of Theorem 2.5, we determine the dimension of Tesn(a)
and give an upper bound on the number of its vertices. When a ∈ Zn>0 the result
about the dimensionality also follows from [4]. Observe that if a1 = 0, the first
rows of the matrices in Tesn(a) vanish and we have the identification Tesn(a) =
Tesn−1(a2, a3, . . . , an). We may therefore restrict to the case where a1 > 0.

Corollary 2.6. Let a = (a1, . . . , an) ∈ (Z≥0)n and assume a1 > 0. The polytope
Tesn(a) has dimension

(
n
2

)
and at most n! vertices. Moreover, the polytope Tesn(a)

has exactly n! vertices if and only if a2, a3, . . . , an−1 > 0.

Proof. The claim about dimension follows from the fact that the mapping T (i, j) =
1 for 1 ≤ i ≤ j ≤ n is an a-Tesler tableau of dimension

(
n
2

)
(since a1 > 0).

Recall that a file rook is a rook which can attack horizontally, but not vertically
(see for example [7, Definition 1]). There is an injective mapping from the set of
zero-dimensional a-Tesler tableaux to the set of maximal file rook placements on
rstcn by placing a file rook in the position of every 1 in T , together with a file rook
on the main diagonal of any zero row of T . Since there are n! maximal file rook
placements on rstcn, by Theorem 2.5 we have that Tesn(a) has at most n! vertices.

If a2, a3, . . . , an−1 > 0, then a zero-dimensional a-Tesler tableau T contains a
unique 1 in every row, with the possible exception of row n (which consists of a
single cell). Thus, every maximal file rook placement on rstcn arises from a zero-
dimensional a-Tesler tableau. It follows that Tesn(a) has n! vertices. On the other
hand, if ai = 0 for some 1 < i < n, then for any zero-dimensional a-Tesler tableau
T we have that T (j, k) = 0 for all j < k implies T (i, i) = 0. In terms of the
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corresponding file rook placements, this means that if the file rooks in every row
other than i are on the main diagonal, then the file rook in row i is also on the
main diagonal. In particular, the mapping from zero-dimensional a-Tesler tableaux
to maximal file rook placements on rstcn is not surjective and the polytope Tesn(a)
has < n! vertices. �

Theorem 2.5 can also be used to characterize when Tesn(a) is a simple polytope.

Theorem 2.7. Let a = (a1, . . . , an) ∈ (Z≥0)n and let ε(a) = (ε1, . . . , εn) ∈ {0,+}n
be the associated signature. Assume that ε1 = +. The polytope Tesn(a) is a simple
polytope if and only if n ≤ 3 or ε(a) is one of +n,+n−10,+0+n−2 or +0 +n−3 0.

Proof. When n = 1 the polytope Tes1(a) is a single point. When n = 2 the polytope
Tes2(a) is an interval. When n = 3 the polytope Tes3(a) is a 3-simplex ∆3 if ε2 = 0
and the triangular prism ∆1 ×∆2 if ε2 = +. In either case, we have that Tes3(a)
is simple.

In general, the vertices of Tesn(a) correspond to zero-dimensional a-Tesler tableaux
T . We may therefore speak of “adjacent” zero-dimensional a-Tesler tableaux T1 and
T2 to mean that the corresponding vertices BT1

and BT2
are connected by an edge

of Tesn(a). Given two distinct a-Tesler tableau T1, T2 with dim(T1) = dim(T2) = 0,
by Theorem 2.5 we know that T1 and T2 are adjacent if and only if for all 1 ≤ i ≤ n,
row i of T2 can be obtained from row i of T1 by

(1) leaving row i of T1 unchanged,
(2) changing the unique 1 in row i of T1 to a 0,
(3) changing a single 0 in row i to T1 to a 1 (if row i of T1 is a zero row), or
(4) moving the unique 1 in row i of T1 to a different position in row i.

Moreover, the Operation (4) must take place in precisely one row of T1.
Given a fixed a-Tesler tableau T with dim(T ) = 0, we can replace the 0’s in T

with entries in the set { i : i ∈ Z≥0} to keep track of some of the adjacent zero-
dimensional a-Tesler tableaux. In particular, we define a new filling T ◦ of rstcn
using the alphabet {1, 0 , 1 , 2 , . . . } as follows.

• If T (i, j) = 1, set T ◦(i, j) = 1.
• If T (i, j) = 0 and row i of T is zero, then set T ◦(i, j) = 0 .
• If T (i, j) = 0, row i of T is nonzero, and row j of T is nonzero, then set
T ◦(i, j) = 1 .
• If T (i, j) = 0, row i of T is nonzero, and row j of T is zero, then set

T ◦(i, j) = j’ , where j′ = n− j + 1 is the number of boxes in row j.

Observe that in the first case we necessarily have εi = 0 and in the third case we nec-
essarily have εj = 0. For example, suppose n = 5 and (ε1, . . . , ε5) = (+, 0, 0, 0,+).
Applying the above rules to the zero-dimensional a-Tesler tableau T shown below
yields the given T ◦.

T =

+ 0 0 0 1 0

0 0 0 0 0

0 0 0 0

0 0 1

+ 1

;

+ 1 4 3 1 1

0 0 0 0 0

0 0 0 0

0 1 1

+ 1

= T ◦

For any a-Tesler tableau T with dim(T ) = 0, we claim that the number of
adjacent zero-dimensional a-Tesler tableaux is at least the sum of the circled entries
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in the associated tableau T ◦. For example, the number of adjacent tableaux in the
case shown above is ≥ 1+4+3+1+1 = 10. To see this, observe that for any adjacent
zero-dimensional a-Tesler tableau T ′, there is precisely one row i such that both
T and T ′ contain a 1 in row i, but this 1 is in a different position (corresponding
to Operation (4) above). We can view T ′ as being obtained from T by moving
this 1 in row i, and then possibly changing entries in lower rows (corresponding to
Operations (2) and (3) above). If this 1 is moved to a position (i, j) such that row
j of T is zero, then one of the j′ = n− j + 1 0’s in row j of T ′ must be changed to
a 1. In the example above, if the 1 in position (1, 4) is moved to (1, 2), then one of
the four 0’s in positions (2, 2), (2, 3), (2, 4), and (2, 5) must be changed to a 1, which
corresponds to the circled 4 in position (1, 2) of T ◦. We emphasize that this lower
bound on the number of adjacent tableaux is not tight in general; for example, if
we move the 1 in row 1 in the above tableau from (1, 4) to (1, 2) and change the 0
in position (2, 3) to a 1, then we must change one of the three 0’s in row 3 to a 1,
leading to more options for adjacent tableaux. In particular, the number of adjacent
tableaux to the tableau T shown above is > 10 =

(
5
2

)
= dim(Tes5(+, 0,+, 0,+,+))

and the polytope Tes5(+, 0,+, 0,+,+) is not simple.
Suppose that n > 3 and there exist indices 1 < i < j < n such that εi = + and

εj = 0. We argue that Tesn(a) is not simple by exhibiting an a-Tesler tableau T
such that T has >

(
n
2

)
= dim(Tesn(a)) adjacent zero-dimensional a-Tesler tableaux.

Indeed, let T be the “diagonal” a-Tesler tableau defined by T (k, `) = 0 whenever
1 ≤ k < ` ≤ n, T (i, i) = 1 if εi = +, and T (i, i) = 0 if εi = 0. Perform the above
circling procedure to T to get the tableau T ◦; the example ε = (+, 0,+, 0,+,+) is
shown below.

+ 1 0 0 0 0 0

0 0 0 0 0 0

+ 1 0 0 0

0 0 0 0

+ 1 0

+ 1

;

+ 1 5 1 3 1 1

0 0 0 0 0 0

+ 1 3 1 1

0 0 0 0

+ 1 1

+ 1

We claim that the sum of the circled entries in row 1 of T ◦, plus the number of
circled positive entries in the remaining rows of T ◦, equals

(
n
2

)
. Indeed, since ε1 > 0,

we have the entry in position (1, k) of T ◦ is a positive circled number for 2 ≤ k ≤ n.
If T ◦(1, k) = 1 , then row k of T is nonzero, so that row k of T ◦ consists of precisely

one 1, together with n − k 1 ’s. If T ◦(1, k) = k′ for some k′ > 1, we must have

that k′ = n − k + 1, εk = 0, and row k of T ◦ consists entirely of 0 ’s. In either
case, the circled entry in T ◦(1, k), plus the number of positive circled entries in row
k of T ◦, is one plus the number of boxes in row k of T ◦. On the other hand, the
entry in position (i, j) of T ◦ is a circled number > 1 because εj = 0 and j < n.
This means that the sum of the circled entries is >

(
n
2

)
, the tableau T has >

(
n
2

)

adjacent zero-dimensional tableaux, and the polytope Tesn(a) is not simple.
Suppose that n > 3 and ε has the form ε = +0i+n−i−1 for some 1 < i < n. Let

T be the “near-diagonal” zero-dimensional a-Tesler tableau defined by T (1, 2) =
T (2, 2) = 1, T (j, j) = 1 for i < j ≤ n, and T (k, `) = 0 otherwise. Perform the above
circling procedure to T to get T ◦; the case ε = (+, 0, 0, 0,+,+) is shown below.
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+ 0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0

0 0 0 0

+ 1 0

+ 1

;

+ 1 1 4 3 1 1

0 1 4 3 1 1

0 0 0 0 0

0 0 0 0

+ 1 1

+ 1

A similar argument as in the last paragraph shows that the sum of the circled
entries in row 1 of T ◦, plus the number of positive circled entries in the remaining
rows of T ◦, equals

(
n
2

)
. On the other hand, since 1 < i < n and n > 3, at least one

of the circled entries in row 2 of T ◦ is > 1. We conclude that the sum of all the
circled entries is >

(
n
2

)
, so that Tesn(a) is not simple.

If εn = +, let a′ = (a1, a2, . . . , an−1, 0). We claim that the polytopes Tesn(a) and
Tesn(a′) are affine isomorphic: Tesn(a) ∼= Tesn(a′). Indeed, an isomorphism B 7→
B′ is obtained by subtracting an from the (n, n)-entry of any matrix B ∈ Tesn(a).
By this fact and the last two paragraphs, the polytope Tesn(a) is not simple unless
ε(a) has one of the four forms given in the statement of the theorem. Also by this
fact, to complete the proof we need only show that Tesn(a) is simple when ε(a) has
one of the two forms +n or +0+n−2.

If ε(a) = +n, then any zero-dimensional a-Tesler tableau has a unique 1 in every
row. Given an a-Tesler tableau T with dim(T ) = 0, the tableaux adjacent to T
can be obtained by moving a single 1 to a different position in its row. There are
(n− 1) + (n− 2) + · · ·+ 1 =

(
n
2

)
= dim(Tesn(a)) ways to do this, so the polytope

Tesn(a) is simple.
If ε(a) = +0+n−2, then any zero-dimensional a-Tesler tableau T has a unique

1 in every row, with the possible exception of row 2. In particular, row 2 of T
contains a 1 if and only if the 1 in row 1 of T is in position (1, 2). In either case,
we see that T is adjacent to precisely

(
n
2

)
tableaux, so that Tesn(a) is simple. �

We now focus on the case of greatest representation theoretic interest in the
context of diagonal harmonics: where ε(a) = +n, so that every entry of a is a
positive integer. The combinatorial isomorphism type of Tesn(a) is immediate
from Theorem 2.5. We denote by ∆d the d-dimensional simplex in Rd+1 defined by
∆d := {(x1, . . . , xd+1) ∈ Rd+1 : x1 + · · ·+ xd+1 = 1, x1 ≥ 0, . . . , xd+1 ≥ 0}.
Corollary 2.8. Let a ∈ (Z>0)n be a vector of positive integers. The face poset of
the Tesler polytope Tesn(a) is isomorphic to the face poset of the Cartesian product
of simplices ∆1 ×∆2 × · · · ×∆n−1.

Corollary 2.9. Let a ∈ (Z>0)n be a vector of positive integers. The h-polynomial
of the Tesler polytope Tesn(a) is the Mahonian distribution

(n
2)∑

i=0

hix
i = [n]!x = (1 + x)(1 + x+ x2) · · · (1 + x+ x2 + · · ·+ xn−1).

Proof. We give two proofs of this result, one relying on Corollary 2.8 and one relying
on generic linear forms.

First proof: Let P and Q be arbitrary simple polytopes and let P ×Q be their
Cartesian product. The polytope P ×Q is simple and the h-polynomial of P ×Q
is the product of the h-polynomials of P and Q. To see this, observe that a typical
i-dimensional face of P × Q is given by the product of an j-dimensional face of



14 KAROLA MÉSZÁROS, ALEJANDRO H. MORALES, AND BRENDON RHOADES

P and a i − j-dimensional face of Q, for some 0 ≤ j ≤ i. Therefore, the f -
vectors f(P ) = (f0(P ), f1(P ), . . . ) and f(Q) = (f0(Q), f1(Q), . . . ) are related to

the f -vector of the product f(P × Q) by fi(P × Q) =
∑i
j=0 fi(P )fi−j(Q). The

h-polynomials are therefore related by:

dim(P )+dim(Q)∑

i=0

hi(P ×Q)xi =

dim(P )+dim(Q)∑

i=0

fi(P ×Q)(x− 1)i

=

dim(P )+dim(Q)∑

i=0




i∑

j=0

fj(P )(x− 1)jfi−j(Q)(x− 1)i−j




=




dim(P )∑

i=0

fi(P )(x− 1)i






dim(Q)∑

j=0

fj(Q)(x− 1)j


 ,

which equals the product of the h-polynomials of P and Q. This multiplicative
property of h-polynomials is surely well known, but the authors could not find a
reference.

It remains to observe that the h-polynomial of the d-dimensional simplex ∆d is

given by
∑d
i=0 hi(∆d)x

i =
∑d
i=0

(
d+1
i+1

)
(x − 1)i = 1 + x + · · · + xd, where we used

the fact that ∆d has
(
d+1
i+1

)
faces of dimension i.

Second proof: Let λ be any generic linear form on the vector space spanned by
Tesn(1). Then λ induces an orientation on the 1-skeleton of Tesn(a) by requiring
that the value of λ increase along each oriented edge. It follows (see for example
[29, §8.3]) that the h-vector entry hi(Tesn(a)) equals the number of vertices in this
oriented 1-skeleton with outdegree i.

By Theorem 2.5, the vertices of Tesn(a) are the permutation Tesler matrices
of size n and the edges of Tesn(a) emanating from a fixed vertex correspond to
changing the support of the corresponding permutation Tesler matrix of the vertex
in exactly two positions belonging the the same row. Let λ be any linear form such
that moving from one to another permutation Tesler matrix by shifting the support
to the right in a single row corresponds to an increase in λ. Then if the support of
a permutation Tesler matrix is given by {(i, bi) : 1 ≤ i ≤ n}, its outdegree in the
orientation induced by λ is

∑n
i=1(n − bi). The corresponding generating function

for outdegree is
∑(n

2)
i=0 hi(Tesn(a))xi =

∏n
i=1

(∑n
ai=i

xn−bi
)

= [n]!x. �

Corollaries 2.8 and 2.9 are also true for Tesler polytopes Tesn(a), where ε(a) =
+n−10. In light of Theorem 2.7, it is natural to ask for an analog to these results
when ε(a) is of the form +0+n−2 or +0 +n−3 0. Such an analog is provided by the
following corollary.

Corollary 2.10. Let a ∈ (Z≥0)n and assume that ε(a) has one of the forms
+0+n−2 or +0 +n−3 0. Let P be the quotient polytope (∆n−2 ×∆n−1)/ ∼, where
we declare (p, q) ∼ (p′, q) whenever q ∈ ∆n−1 belongs to the facet of ∆n−1 defined
by x2 = 0 and p, p′ ∈ ∆n−2.

The face poset of the polytope Tesn(a) is isomorphic to the face poset of the
Cartesian product ∆1 × ∆2 × · · ·∆n−3 × P . Moreover, we have that Tesn(a) has
2(n− 1)! vertices and h-polynomial (1 + xn−1)[n− 1]!x.
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Proof. (Sketch.) The second row of any a-Tesler tableau T is nonzero if and only if
T (1, 2) = 1. All other rows of any a-Tesler tableau are nonzero. By Theorem 2.5,
we get the claimed Cartesian product decomposition of Tesn(a). The fact that
Tesn(a) has 2(n− 1)! vertices arises from the fact that the quotient polytope P has
2(n− 1) vertices. The fact that Tesn(a) has h-polynomial (1 + xn−1)[n− 1]!x can
be deduced from the multiplicative property of h-polynomials of the first proof of
Corollary 2.9 and the fact that P has h-polynomial (1 + xn−1)[n− 1]x. �

Remark 2.11. All of the results of this section are still true when one considers
the “generalized” Tesler polytopes polytopes Tesn(a) defined for real vectors a;
one simply replaces (Z≥0)n and (Z>0)n with (R≥0)n and (R>0)n throughout. The
proofs are identical.

Remark 2.12. When a ∈ (Z>0)n is a vector of positive integers, Theorem 2.5
can be deduced from results of Hille [20]. In particular, if Q denotes the quiver on
the vertex set Q0 = [n + 1] with arrows i → j for all 1 ≤ i < j ≤ n + 1 and if
θ : Q0 → R denotes the weight function defined by θ(i) = ai for 1 ≤ i ≤ n and
θ(n+1) = −a1−· · ·−an, then the Tesler polytope Tesn(a) is precisely the polytope
∆(θ) considered in [20, Theorem 2.2]. By the argument in the last paragraph of
[20, Theorem 2.2] and [20, Proposition 2.3], the genericity condition on θ in the
hypotheses of [20, Theorem 2.2] is equivalent to every entry of a being positive.
The conclusion of [20, Theorem 2.2] is essentially the same as the special case of
Theorem 2.5 when a ∈ (Z>0)n. When some entries of a are zero, in the terminology
of [20] the weight function θ lies on a wall, and the results of [20] do not apply to
Tesn(a).

Remark 2.13. When a ∈ (Z>0)n is a vector of positive integers, the simplicity of
Tesn(a) guaranteed by Theorem 2.7 had been observed previously in the context
of flow polytopes. The condition that every entry in a is positive is equivalent to
a lying in the “nice chamber” defined by Baldoni and Vergne in [4, p. 458]. In [6,
p. 798], Brion and Vergne observe that this condition on a implies the simplicity
of Tesn(a). The simplicity of Tesn(a) in this case can also be derived from Hille’s
characterization of the face poset [20] using exactly the same argument as in the
proof of Theorem 2.7.

3. Volume of the Tesler polytope Tesn(1)

The aim of this section is to prove Theorem 1.8 through a sequence of results.
For ease of reading the section is broken down into several subsections. We start
by stating previous results on volumes and Ehrhart polynomials of flow polytopes
and then prove specific lemmas regarding Tesn(1).

In this section we work in the field of iterated formal Laurent series with m vari-
ables as discussed by Haglund, Garsia and Xin in [13, §4]. We choose a total order
of the variables: x1, x2, . . . , xm to extract iteratively coefficients, constant coeffi-
cients, and residues of an element f(x) in this field. We denote these respectively
by

CTxm
· · ·CTx1

f, [xa] := [xamm · · ·xa11 ]f, Resxm
· · ·Resx1

f.

For more on these iterative coefficient extractions see [26, §2].
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3.1. Generating function of KAn
(a′) and the Lidskii formulas. Recall that

by Lemmas 1.2 and 1.3 we have that the normalized volume volTesn(a) equals the
normalized volume volFlown(a) and that the number Tn(a) of Tesler matrices is
given by the Kostant partition function KAn

(a′). By definition, the latter is given
by the following iterated coefficient extraction.

(3.1) KAn
(a′) = [xa′ ]

∏

1≤i<j≤n+1

(1− xix−1
j )−1.

In addition, the Kostant partition function is invariant under reversing the order
and sign of the netflow vector.

Proposition 3.1.

KAn(a1, a2, . . . , an,−
n∑

i=1

ai) = KAn(

n∑

i=1

ai,−an, . . . ,−a2,−a1).

Proof. Reversing an (integer) flow on the complete graph kn gives an involution
between (integer) flows with netflow (a1, a2, . . . , an,−

∑n
i=1 ai) and (integer) flows

with netflow (
∑n
i=1 ai,−an, . . . ,−a2,−a1). �

Assume that a = (a1, a2, . . . , an) satisfies ai ≥ 0 for i = 1, . . . , n. Then the
Lidskii formulas [4, Proposition 34, Theorem 37] state that

(3.2)

volFlown(a) =
∑

i

( (
n
2

)

i1, i2, . . . , in

)
ai11 · · · ainn ·KAn−1

(i1 − n+ 1, i2 − n+ 2, . . . , in),

and
(3.3)

KAn(a′) =
∑

i

(
a1 + n− 1

i1

)(
a2 + n− 2

i2

)
· · ·
(
an
in

)
·KAn−1(i1−n+1, i2−n+2, . . . , in),

where both sums are over weak compositions i = (i1, i2, . . . , in) of
(
n
2

)
with n parts

which we denote as i |=
(
n
2

)
, `(i) = n.

Example 3.2. The Tesler polytope Tes3(1, 1, 1) ∼= Flow3(1, 1, 1) has normalized
volume 4 since by (3.2)

volFlow3(1, 1, 1) =

(
3

3, 0, 0

)
KA2(1,−1, 0)+

(
3

2, 1, 0

)
KA2(0, 0, 0)+0 = 1·1+3·1 = 4.

And this polytope has T3(1, 1, 1) = KA3
(1, 1, 1,−3) = 7 lattice points (the seven

3× 3 Tesler matrices with hook sums (1, 1, 1); see Figure 1). Indeed by (3.3)

KA3(1, 1, 1,−3) =

(
1 + 2

3

)(
1 + 1

0

)
KA2(1,−1, 0)+

(
1 + 2

2

)(
1 + 1

1

)
KA2(0, 0, 0) = 7.

Example 3.3. [4] If one uses (3.2) on the Chan-Robbins-Yuen polytope Tesn(e1)
one obtains

volTesn(1, 0, . . . , 0) = KAn−1
(−
(
n−1

2

)
,−n+ 2, . . . ,−1, 0),

since the only composition i that does not vanish is i1 =
(
n
2

)
, i2 = 0, . . . , in = 0. By

Proposition 3.1 this is equivalent to the first identity in Example 1.4.
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3.2. Volume of Tesn(1) as a constant term. In this short section we use (3.2)
and the generating series (3.1) of Kostant partition functions to write the volume
of Tesn(1) as an iterated constant term of a formal Laurent series.

Lemma 3.4.

(3.4) volTesn(1) = CTxn · · ·CTx1 (x1 + · · ·+ xn)(
n
2)

∏

1≤i<j≤n

(xj − xi)−1,

where CTxn
· · ·CTx1

f denotes the iterated constant term of f .

Proof. By (3.2) and Proposition 3.1 we have that

volTesn(1) =
∑

i|=(n
2),`(i)=n

( (
n
2

)

i1, i2, . . . , in

)
·KAn−1

(i1 − n+ 1, i2 − n+ 2, . . . , in)

=
∑

i|=(n
2),`(i)=n

( (
n
2

)

i1, i2, . . . , in

)
·KAn−1

(−in, 1− in−1, 2− in−2, . . . , n− 1− i1).

We use (3.1) to rewrite this as

volTesn(1) =
∑

i|=(n
2),`(i)=n

( (
n
2

)

i1, i2, . . . , in

)
[xδn−i]

∏

1≤i<j≤n

(1− xix−1
j )−1,

where δn = (0, 1, 2 . . . , n− 1). Since [xa]f = CTxn · · ·CTx1 x−af then

volTesn(1) = CTxn
· · ·CTx1

∑

i|=(n
2),`(i)=n

xi−δn
( (

n
2

)

i1, i2, . . . , in

) ∏

1≤i<j≤n

(1−xix−1
j )−1.

Using
∏

1≤i<j≤n

(1− xix−1
j )−1 = xδn

∏

1≤i<j≤n

(xj − xi)−1 we get

volTesn(1) = CTxn
· · ·CTx1

∏

1≤i<j≤n

(xj − xi)−1
∑

i|=(n
2),`(i)=n

( (
n
2

)

i1, i2, . . . , in

)
xi.

An application of the multinomial theorem yields the desired result. �

3.3. A Morris-type constant term identity. Let ek = ek(x1, x2, . . . , xn) denote
the kth elementary symmetric polynomial. In particular e1 = x1 +x2 + · · ·+xn. For
n ≥ 2 and nonnegative integers a, c we define Ln(a, c) to be the following iterated
constant term:

(3.5) Ln(a, c) := CTxn
· · ·CTx1

e
(a−1)n+c(n

2)
1

n∏

i=1

x−a+1
i

∏

1≤i<j≤n

(xi − xj)−c.

Note that by Lemma 3.4 we have that

(3.6) volTesn(1) = Ln(1, 1).

Next we give a product formula for Ln(a, c) that for a = c = 1 yields (1.7). We
postpone the proof to the next section.

Lemma 3.5. For n ≥ 2 and nonnegative integers a, c we have that

(3.7) Ln(a, c) =
(
(a− 1)n+ c

(
n
2

))
!

n−1∏

i=0

Γ(1 + c/2)

Γ(1 + (i+ 1)c/2)Γ(a+ ic/2)
,
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where Γ(·) is the Gamma function.

Corollary 3.6.

(3.8) Ln(1, 1) =

(
n
2

)
! · 2(n

2)
∏n
i=1 i!

.

Proof. Set a = 1 and c = 1 in (3.7) and obtain

Ln(1, 1) =

(
n

2

)
!

n−1∏

i=0

Γ(3/2)

Γ(1 + (i+ 1)/2)Γ(1 + i/2)
,

since Γ(3/2) =
√
π/2 and by the duplication formula of Γ(·) this becomes

Ln(1, 1) =

(
n

2

)
!

n−1∏

i=0

2i

(i+ 1)!
=

(
n
2

)
! · 2(n

2)
∏n
i=1 i!

,

as desired. �

Drew Armstrong (private communication) noted the resemblance of the product
in the RHS (3.8) with the number of standard Young tableaux of staircase shape.
Indeed, if we let f (n−1,n−2,...,1) be the number of standard Young tableaux of shape
(n− 1, n− 2, . . . , 1) which by the hook-length formula equals

f (n−1,n−2,...,1) =

(
n
2

)
!

∏n−1
k=1(2k − 1)n−k

,

then one can show that Ln(1, 1) is divisible by this number. The ratio of these
numbers is a product of consecutive Catalan numbers.

Proposition 3.7.

(3.9)

(
n
2

)
! · 2(n

2)
∏n
i=1 i!

= f (n−1,n−2,...,1) ·
n−1∏

i=1

Cat(i).

Proof. The identity is easily verified using the formula for f (n−1,n−2,...,1) and for
Cat(i) = 1

i+1

(
2i
i

)
. �

Remark 3.8. When we set a = 1 and c = 2 in (3.7) one can also show that

(3.10) Ln(1, 2) =
(n(n− 1))!

n!(
∏n−1
i=1 i!)

2
= f (n−1)n ·

n−1∏

i=1

(
i+ 1

2
Cat(i)2

)
,

where f (n−1)n is the number of standard Young tableaux of rectangular shape
(n− 1)n which equals (n(n− 1))!

∏n−1
k=0 k! /

∏n−1
k=0(n+ k − 1)!. We were unable to

find similar identities relating Ln(1, c), c ≥ 3 with the number of SYT of shape λ.

Remark 3.9. A similar iterated constant term identity to (3.7) is Zeilberger’s
variation of the Morris constant term identity [28] used to prove (1.5). We state
the version in [26, §3.5]: for n ≥ 2 and nonnegative integers a, b, c let

(3.11) Mn(a, b, c) := CTxn · · ·CTx1

n∏

i=1

x−a+1
i (1− xi)−b

∏

1≤i<j≤n

(xi − xj)−c
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then

Mn(a, b, c) =

n−1∏

j=0

Γ(1 + c/2)Γ(a+ b− 1 + (n+ j − 1)c/2)

Γ(1 + (j + 1)c/2)Γ(a+ jc/2)Γ(b+ jc/2)
,

and in particular

Mn(1, 1, 1) =

n−1∏

i=0

1

i+ 1

(
2i

i

)
.

Moreover, let hk(x1, . . . , xn) denote the kth complete symmetric polynomial in
the variables x1, . . . , xn. Since

∏n
i=1(1 − xi)

−1 =
∑
k≥0 hk(x1, . . . , xn) then by

linearity of CTxn
· · ·CTx1

and degree considerations, Mn(a, 1, c) can be expressed
as a sum of iterated constant term extractions all except one are zero. Thus
(3.12)

Mn(a, 1, c) = CTxn
· · ·CTx1

h((a−1)n+c(n
2))(x1, . . . , xn)

n∏

i=1

x−a+1
i

∏

1≤i<j≤n

(xi−xj)−c.

This alternate description of Mn(a, 1, c) resembles the original definition of Ln(a, c)
in (3.5). Conversely, one can show using (1−e1)−1 =

∑
k≥0 e

k
1 , linearity, and degree

considerations that Ln(a, c) equals the following iterated constant term

(3.13) Ln(a, c) = CTxn · · ·CTx1 (1− e1)−1
n∏

i=1

x−a+1
i

∏

1≤i<j≤n

(xi − xj)−c,

which resembles the original description of Mn(a, 1, c).

3.4. Proof of Lemma 3.5 via Baldoni-Vergne recurrence approach. To
prove Lemma 3.5 we follow Xin’s [26, §3.5] simplified recursion approach of the
proof by Baldoni-Vergne [5] of the Morris identity (3.11).

Outline of the proof: First, for nonnegative integers n ≥ 2, a, c and ` = 0, . . . , n
we introduce the constants

Cn(`, a, c) := CTxn
· · ·CTx1

P` · e1(x1, . . . , xn)(a−1)n+c(n
2)−`

∏n
i=1 x

a−1
i

∏n
i=1(xi − xj)c

,

where P` = `!(n − `)!e`(x1, . . . , xn). Note that Cn(0, a, c) = n!Ln(a, c). Sec-
ond, we show that Cn(`, a, c) satisfy certain linear relations (Proposition 3.10).
Third, we show that these relations uniquely determine the constants Cn(`, a, c)
(Proposition 3.11). Lastly, in Proposition 3.12 we define C ′n(`, a, c) as certain prod-
ucts of Gamma functions such that C ′n(0, a, c)/n! coincides with the expression on
the right-hand-side of (3.7). We then show that C ′n(`, a, c) satisfy the same rela-
tions as Cn(`, a, c) and since these relations determine uniquely the constants then
C ′n(`, a, c) = Cn(`, a, c). This completes the proof of the Lemma.

The Cn(`, a, c) satisfy the following relations.
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Proposition 3.10. Let Cn(`, a, c) be defined as above then for 1 ≤ ` ≤ n we have:

Cn(`, a, c)

Cn(`− 1, a, c)
=

a− 1 + c(n− `)/2
(a− 1)n+ c

(
n
2

)
− `+ 1

,(3.14)

Cn(n, a, c) = Cn(0, a− 1, c),(3.15)

Cn(n− 1, 1, c) = Cn−1(0, c, c), (if n > 1)(3.16)

Cn(0, 1, 0) = n!,(3.17)

Cn(`, 0, c) = 0.(3.18)

Proof. The relations (3.15)-(3.18) follow from the same proof as in [26, Theorem
3.5.2] Cn(`, a, c).

We now prove (3.14). Let U` = e
(a−1)n+c(n

2)−`
1 /(

∏n
i=1 x

a
i

∏n
i=1(xi − xj)c), since

CTy g(y) = Resy yg(y) then

(3.19) Cn(`, a, c) = Resxn
· · ·Resx1

P`U`,

Next we calculate the following derivative with respect to x1.

(3.20)
∂

∂x1
e1·x1x2 · · ·x`U` =

(
(a− 1)n+ c

(
n
2

)
− `+ 1

)
x1 · · ·x`U`+(1−a)x2 · · ·x`U`−1+

− c · x1 · · ·x`
n∑

j=2

U`−1

x1 − xj
.

If c is odd then U` is anti-symmetric. If we anti-symmetrize (3.20) over the
symmetric group Sn, we get

∑

w∈Sn

(−1)inv(w)w ·
(

∂

∂x1
e1 · x1x2 · · ·x`U`

)
=

(
(a− 1)n+ c

(
n
2

)
− `+ 1

)
P`U`+(1−a)P`−1U`−1−c

∑

w∈Sn

w ·x1 · · ·x`
n∑

j=2

U`−1

x1 − xj

One can check that

2
∑

w∈Sn

w · x1 · · ·x`
n∑

j=2

1

x1 − xj
= (n− `)P`−1.

So putting everything together for c odd we obtain

(3.21)
∑

w∈Sn

(−1)inv(w)w ·
(

∂

∂x1
e1 · x1x2 · · ·x`U`

)
=

(
(a− 1)n+ c

(
n
2

)
− `+ 1

)
P`U` − (a− 1 + c(n− `)/2)P`−1U`−1.

Next, if c is even, U` is symmetric. If we symmetrize (3.20) over Sn and do similar
simplifications as in the previous case we get

∑

w∈Sn

w ·
(

∂

∂x1
e1x1x2 · · ·x`U`

)
=(3.22)

(
(a− 1)n+ c

(
n
2

)
− `+ 1

)
P`U` − (a− 1 + c(n− `)/2)P`−1U`−1.



THE POLYTOPE OF TESLER MATRICES 21

Finally, we take the iterated residue Resxn
· · ·Resx1

of (3.21) and (3.22). Since the
left-hand-side of these two equations consist of sums of derivatives with respect to
x1, . . . , xn, then their iterated residues Resx are zero [5, Remark 3(c), p. 15]. This
combined with (3.19) yields

0 =
(
(a− 1)n+ c

(
n
2

)
− `+ 1

)
Cn(`, a, c)− (a− 1 + c(n− `)/2)Cn(`− 1, a, c),

which proves (3.14) for c even or odd. �

We now show that the recurrences (3.14)-(3.18) determine entirely the constants
Cn(`, a, c) (same algorithm as in [5, p. 10]).

Proposition 3.11. [5, p. 10] The recurrences (3.14)-(3.18) determine uniquely the
constants Cn(`, a, c).

Proof. We give an algorithm to compute the constants Cn(`, a, c) recursively using
(3.14)-(3.18). The algorithm has the following three cases:

Case 1. If c = 0 and a > 1 we use (3.14) repeatedly to increase ` up to n. We can
use this recursion since a − 1 + c(n − `) = a − 1 > 0. If ` = n then we can apply
(3.15) and go from Cn(n, a, 0) to Cn(0, a− 1, 0):

Cn(`, a, 0)
(3.14)

// Cn(`+ 1, a, 0)
(3.14)∗

// Cn(n, a, 0)
(3.15)

// Cn(0, a− 1, 0).

Thus computing Cn(`, a, 0) reduces to finding Cn(0, 1, 0) which equals n! by (3.17).

Case 2. If c > 0 and a > 1 we use (3.14) repeatedly to increase ` up to n. We can
use this recursion since a− 1 + c(n− `) = a− 1 > 0. If ` = n then we apply (3.15)
and go from Cn(n, a, c) to Cn(0, a− 1, c):

Cn(`, a, c)
(3.14)

// Cn(`+ 1, a, c)
(3.14)∗

// Cn(n, a, c)
(3.15)

// Cn(0, a− 1, c).

Thus computing Cn(`, a, c) reduces to finding Cn(0, 1, c).

Case 3. To compute Cn(0, 1, c) with c > 0, we use (3.14) repeatedly to increase
` from 0 up to n − 1. Then we can apply (3.16) and go from Cn(n − 1, 1, c) to
Cn−1(0, c, c):

Cn(0, 1, c)
(3.14)

// Cn(1, 1, c)
(3.14)∗

// Cn(n− 1, 1, c)
(3.16)

// Cn−1(0, c, c).

Thus by iterating this reduction with Case 2 we see that computing Cn(0, 1, c)
reduces to finding C1(`, a, c). Having n = 1 guarantees there is no term

∏

1≤i<j≤n

(xi − xj)−c.

So C1(`, a, c) = C1(`, a, 0) which we can compute with Case 1. �

Next we give an explicit product formula for Cn(`, a, c). We prove this by showing
that the formula satisfies relations (3.14)-(3.18) which by Proposition 3.11 deter-
mine uniquely Cn(`, a, c).

Proposition 3.12. If c > 0 or if a > 1 then for 1 ≤ ` ≤ n then

(3.23) Cn(`, a, c) = Cn(0, a, c)
∏̀

j=1

a− 1 + (n− j)c/2
(a− 1)n+ c

(
n
2

)
− j + 1

.
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if a ≥ 1 then

(3.24) Cn(0, a, c) = n! · Γ
(
1 + (a− 1)n+ c

(
n
2

)) n−1∏

i=0

Γ(1 + c/2)

Γ(1 + (i+ 1)c/2)Γ(a+ ic/2)
.

Proof. By Proposition 3.11 it suffices to check that the formulas for Cn(`, a, c) and
Cn(0, a, c) in (3.23), (3.24) satisfy the relations (3.14)-(3.18).

Let C ′n(`, a, c) and C ′n(0, a, c) be the formulas in the right-hand-side of (3.23)
and (3.24) respectively.

Relation (3.14) is apparent from the definition of C ′n(`, a, c).
Next we check that C ′n(`, a, c) satisfies (3.15). Using Γ(t+ 1) = tΓ(t) repeatedly

we obtain:

C ′n(n− 1, a, c)

C ′n(0, a− 1, c)
=

=
Γ(1 + (a− 1)n+ c

(
n
2

)
)

Γ(1 + (a− 2)n+ c
(
n
2

)
)

n∏

j=1

a− 1 + (n− j)c/2
(a− 1)n+ c

(
n
2

)
− j + 1

n∏

i=0

Γ(a− 1 + ic/2)

Γ(a+ ic/2)

=

n∏

j=1

((a− 1)n+ c
(
n
2

)
− j + 1)

n∏

j=1

a− 1 + (n− j)c/2
(a− 1)n+ c

(
n
2

)
− j + 1

n∏

i=0

1

a− 1 + ic/2

= 1,

as desired.
Next we verify (3.16). Again, using Γ(t+ 1) = tΓ(t) repeatedly we obtain:

C ′n(n− 1, 1, c)

C ′n−1(0, c, c)
=

=

∏n−1
j=1 (n− j)c/2

∏n−1
j=1 c

(
n
2

)
− j + 1

nΓ(1 + c
(
n
2

)
)

Γ(1 + c
(
n
2

)
− (n− 1))

×

× Γ(1 + c/2)

Γ(1 + (n− 1)c/2)Γ(1 + nc/2)

∏n−2
i=0 Γ(c(i+ 2)/2)
∏n−2
i=0 Γ(1 + ic/2)

=

∏n−1
j=1 (n− j)c/2

∏n−1
j=1 c

(
n
2

)
− j + 1

n
∏n−1
j=1 c

(
n
2

)
− j + 1

1

n∏

j=2

Γ(jc/2)

Γ(1 + jc/2)

= n

n−1∏

j=1

(n− j)c/2
n∏

j=2

1

jc/2
= 1,

as desired.
Finally, it is trivial to check that C ′n(`, a, c) satisfy (3.17) and (3.18). Thus since

C ′n(`, a, c) satisfy relations (3.14)-(3.18) and by Proposition 3.11 these relations
uniquely determine the constants Cn(`, a, c) then C ′n(`, a, c) = Cn(`, a, c). �

To conclude, since Cn(0, a, c) = n! ·Ln(a, c) then Lemma 3.5 follows from (3.24)
in Proposition 3.12. By Corollary 3.6 and Proposition 3.7 Ln(1, 1) yields the desired
formula for the volume of Tesn(1) which completes the proof of Theorem 1.8.

4. Final remarks

4.1. Diagonal harmonics and polytopes. Example 1.1 states Haglund’s result
from [15] showing that the bigraded Hilbert series of the space DHn is given by a
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weighted sum over Tesler matrices in Tn(1, 1, . . . , 1). The space DHn has dimension
(n+1)n−1, the number of parking functions of size n. A conjecture of Haglund and
Loehr [18], settled by Carlsson and Mellit [8] with their proof of the more general
shuffle conjecture [17], expresses the LHS as

(4.1) H(DHn, q, t) =
∑

π

qdinv(π)tarea(π),

where the sum is over parking functions π. For definitions of the statistics dinv and
area see [16]. By definition H(DHn, q, t) is a polynomial in N[q, t] and symmetric
in q and t. The right-hand sides of (4.1) and (1.1) give different combinatorial
models for this Hilbert series where the (q, t positivity, q, t symmetry) are (trivial,
non-trivial) and (non-trivial, trivial) respectively. It remains open to prove directly
the equality of these models:

(4.2)
∑

π

qdinv(π)tarea(π) =
∑

A∈Tn(1,1,...,1)

wt(A),

for wt(A) as defined in (1.2). Levande [22] verified this identity for (q, 0) and (1, t).
In particular, when q = 1, t = 1, wt(A) |q=1,t=1= 0 for any n × n Tesler matrix A
with more than n nonzero entries and the matrices that survive are the permutation
Tesler matrices each with n nonzero entries. Thus (4.2) at q = 1, t = 1 becomes

(n+ 1)n−1 =
∑

A

∏

i,j : aij>0

aij

where the sum is over the n! permutation Tesler matrices in Tn(1); the vertices
of polytope Tesn(a). This curious identity was proved combinatorially in [2, §5]
extending a function from Levande [22] from Tesler matrices to permutations.

Analogously, an important subspace of the space DHn is the alternant DHε
n

that has dimension Cat(n) = 1
n+1

(
2n
n

)
. The bigraded Hilbert series of DHε

n has the

following combinatorial model by Garsia and Haglund [11, 12]

(4.3) H(DHε
n, q, t) =

∑

P

qarea(P )tbounce(P ),

where the sum is over Dyck paths P of size n, see [16, §3] for the definition of
bounce. Gorsky and Negut [14] also expressed this Hilbert series as a weighted sum
over Tesler matrices:

(4.4) H(DHε
n, q, t) =

∑

A∈Tn(1,1,...,1)

wt′(A),

where

wt′(A) =
∏

aii+1>0

([aii+1 + 1]q,t − [aii+1]q,t)
∏

j>i+1 : aij>0

(−M)[aij ]q,t,

for M = (1 − q)(1 − t) and [b]q,t = (qb − tb)/(q − t) as in (1.2). When we set
q = 1, t = 1 in (4.4), by the definition of wt′(A) only the Tesler matrices A with
support in the diagonals aii and aii+1 survive each with weight 1. So (4.4) becomes

(4.5)
1

n+ 1

(
2n

n

)
= #{A ∈ Tn(1, 1, . . . , 1) : aij = 0, j > i+ 1}.
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Figure 4. Illustration of the projection π used in the proof of Proposition 4.1.

This identity can be proved in the context of flow polytopes. Namely, translating
from flow polytopes (see Lemma 1.2) Baldoni-Vergne [4] noticed that the polytope

{(mi,j) ∈ Tesn(a) : mi,j = 0, j > i+ 1}
is the Pitman-Stanley polytope [24] and when a = 1, this polytope has 1

n+1

(
2n
n

)

lattice points, explaining (4.5), and volume (n+ 1)n−1 (see [24, §1, §5]).

4.2. Enumeration of Tesler matrices. There is no known explicit formula for
the number Tn(1) of Tesler matrices of size n. More than 20 terms of the sequence
{Tn(1)}n=1 have been computed in the OEIS [25, A008608]:

1, 2, 7, 40, 357, 4820, 96030, 2766572, 113300265, 6499477726,
515564231770, 55908184737696, . . .

Regarding asymptotic of this sequence we give some preliminary lower and upper
bounds that follows from a recursive construction by Drew Armstrong [1].

Proposition 4.1. n! ≤ Tn(1) ≤ 2(n
2).

Proof. Let π : Tn(a1, . . . , an−1, an) → Tn−1(a1, . . . , an−1) defined by π : (ai,j) 7→

(bi,j) where bi,j =

{
ai,i + ai,n if i = j,

ai,j if i 6= j
. See Figure 4 for an example of π. The

map π is surjective and for each B ∈ Tn−1(a1, . . . , an−1), the size of the preimage

is π−1(B) =
∏n−1
i=1 (1 + bi,i). Thus

(4.6) Tn(a1, . . . , an) =
∑

B∈T (a1,...,an−1)

n−1∏

i=1

(1 + bi,i).

For the case a = 1 one can show that if B ∈ Tn−1(1) then n ≤ π−1(B) ≤ 2n−1.
Using these bounds for π−1(B) in (4.6) yields

n · Tn−1(1) ≤ Tn(1) ≤ 2n−1 · Tn−1(1).

Iterating these bounds give the desired result.
An alternative proof of the lower bound is as follows: the matrices in Tn(1)

include the n! permutation Tesler matrices of size n. �

4.3. Combinatorial proof volume of CRY and Tesler polytopes. The prod-
uct formulas (1.5) and (1.7) for the volumes of the CRY and the Tesler polytopes
involving Catalan numbers and number of SYT suggest a combinatorial proof that
has been elusive since Zeilberger’s proof of (1.5). The current proofs of the formu-
las use the Lidskii formula (3.2) for the volume of flow polytopes to translate the
problem to evaluations of Kostant partition functions via constant term identities.

http://oeis.org/A008608
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It is also not clear why the volume of the CRY polytope divides the volume
of the Tesler polytope in terms of operations on polytopes. Curiously, using con-
stant term identities it is possible to express the volume of the Tesler polytope
as a nonnegative sum of terms two of which are f (n−1,n−2,...,1) and

∏n−1
i=0 Cat(i).

Namely, by (3.4) the volume of the Tesler polytope Tesn(1) is the constant term

of (e1(x1, . . . , xn))(
n
2)
∏

1≤i<j≤n(xi − xj)−1. Since e
(n
2)

1 =
∑
λ`(n

2)
fλsλ where sλ is

the Schur function of λ, then by linearity of CTxn · · ·CTx1

f (n−1,n−2,...,1)
n−1∏

i=0

Cat(i) =
∑

λ`(n
2)

fλ CTxn
· · ·CTx1

sλ(x1, . . . , xn)
∏

1≤i<j≤n

(xi−xj)−1.

First, when λ = (n − 1, n − 2, . . . , 1) then we get f (n−1,n−2,...,1) and by degree
considerations and (3.1) one can show that

CTxn · · ·CTx1 s(n−1,n−2,...,1)

∏

1≤i<j≤n

(xi − xj)−1 =

CTxn
· · ·CTx1

x2x
2
3 · · ·xn−1

n

∏

1≤i<j≤n

(xi − xj)−1 = KAn−1
(0) = 1.

Second, when λ = (
(
n
2

)
) then f ((n

2)) = 1 and by the version (3.12) of the Morris
identity we get

CTxn
· · ·CTx1

s((n
2))

∏

1≤i<j≤n

(xi − xj)−1 = Mn(1, 1, 1) =

n−1∏

i=0

Cat(i).

This of course this still leaves the question of why the nonnegative sum ends up
being the product f (n−1,n−2,...,1) ·∏n−1

i=0 Cat(i) unanswered.
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