1409.8566v3 [math.CO] 8 May 2017

arxXiv

THE POLYTOPE OF TESLER MATRICES

KAROLA MESZAROS, ALEJANDRO H. MORALES, AND BRENDON RHOADES

ABSTRACT. We introduce the Tesler polytope Tesy(a), whose integer points
are the Tesler matrices of size n with hook sums aj,az,...,an € Z>g. We
show that Tesp(a) is a flow polytope and therefore the number of Tesler
matrices is counted by the type A,, Kostant partition function evaluated at
(a1,a2,...,an, — 1=y a;). We describe the faces of this polytope in terms
of “Tesler tableaux” and characterize when the polytope is simple. We prove
that the h-vector of Tes, (a) when all a; > 0 is given by the Mahonian numbers
and calculate the volume of Tes,(1,1,...,1) to be a product of consecutive
Catalan numbers multiplied by the number of standard Young tableaux of
staircase shape.

1. INTRODUCTION

Tesler matrices have played a major role in the works [2][13][14][15][19][27] in the
context of diagonal harmonics. We examine them from a different perspective in
this paper: we study the polytope, which we call the Tesler polytope, consisting of
upper triangular matrices with nonnegative real entries with the same restriction
as Tesler matrices on the hook sums: sum of the elements of a row minus the sum
of the elements of a column. Then the integer points of this polytope are all Tesler
matrices of given hook sums. We show that these polytopes are flow polytopes and
are faces of transportation polytopes. We characterize the Tesler polytopes with
nonnegative hook sums that are simple and we calculate their h-vectors. If the hook
sums are all 1 the volume is the product of consecutive Catalan numbers multiplied
by the number of standard Young tableaux of staircase shape. This result raises the
question of the Tesler polytope’s connection to the Chan-Robbins-Yuen polytope,
a flow polytope whose volume is the product of consecutive Catalan numbers.

We now proceed to give the necessary definitions and state our main results.
This section is broken down into three subsections for ease of reading: introduction
to Tesler matrices and polytopes, introduction to flow polytopes and transportation
polytopes, and our main results regarding Tesler polytopes. Section 2 and Section 3
are independent of each other, the first one is about the face structure and the other
is about the volume of Tesler polytopes. Finally, in Section 4 we discuss some final
remarks and questions.

1.1. Tesler matrices and polytopes. Let U,(R>() be the set of n x n upper

th
triangular matrices with nonnegative real entries. The k& hook sum of a matrix
(xi,;) in Up(R>) is the sum of all the elements of the E*? row minus the sum of
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FIGURE 1. The seven 3x3 Tesler matrices with hook sums (1, 1,1).
Six of them are vertices of the graph (depicted in gray) of the Tesler
polytope Tes, (1,1,1).

the elements in the &' column excluding the term in the diagonal:
Tk + o1+ + T — (@16 + T2k + -+ Tho1.k)

Given a length n vector a = (a1, aq,...,a,) € (Z>o)" of nonnegative integers, the
Tesler polytope Tes,(a) with hook sums a is the set of matrices in U, (R>¢)
where the k*® hook sum equals ay, for k =1,..., n: -
n k—1
Tes,(a) = {(z;;) € Upn(R>0) : zpp + Zx;w' — in,k =ap, 1 <k<n}.
j=k+1 i=1

The lattice points of Tes,(a) are called Tesler matrices with hook sums a.
These are n x n upper triangular matrices B = (b; ;) with nonnegative integer
entries such that for k =1,..., 7, bpk+ 3741 bej— Yty bik = ax. The set and
number of such matrices are denoted by 7, (a) and T}, (a) respectively. See Figure 1
for an example of the seven Tesler matrices in T3(1,1,1).

Tesler matrices appeared recently in Haglund’s study of diagonal harmonics [15]
and their combinatorics and further properties were explored in [2][13][22][27]. The
flavor of the results obtained for Tesler matrices in connection with diagonal har-
monics is illustrated by the following example. Let H(DH,,q,t) denote the bi-
graded Hilbert series of the space of diagonal harmonics DH,,. For more details
regarding this polynomial in N[g, ] we refer the reader to [16, Ch. 5].

Example 1.1. When a=1:=(1,1,...,1) € Z", Haglund [15] showed that

(1.1) H(DH,,q,t) = > wt(A),
AET(1,1,...,1)

where

(1.2)
wtd) = I Mlala M= (-1 -0, By = Lt
(=M)» R ) q, —t

1,5 :a;;>0

The starting point for our investigation is the observation stated in the next
lemma.

Lemma 1.2. The Tesler polytope Tes,(a) is a flow polytope Flow, (a),
(1.3) Tes,, (a) = Flow, (a).
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1 i " < = (L1L1,-3) = 1(er —e2) + 1(er — &) +

: ; i (e2 —e3) + 1(ex —eq) + Ues — eq)

FIGURE 2. Correspondence between a 3 x 3 Tesler matrix with
hook sums (1,1,1), an integer flow in the complete graph k4 and
a vector partition of (1,1,1,—-3) intoe; —e; 1 <i<j <4

We now define flow polytopes to make Lemma 1.2 clear. For an illustration of
the correspondence of polytopes in Lemma 1.2 see Figure 2.

1.2. Flow polytopes. Given a = (a1, as,...,ay), let Flow,(a) be the flow poly-
tope of the complete graph k,,; with netflow a; on vertex ¢ for i = 1,...,n
and the netflow on vertex n + 1 is —>."" ; a;. This polytope is the set of func-
tions f : E — Rxg, called flows, from the edge set E = {(3,5) : 1 <i < j <
n+ 1} of kp41 to the set of nonnegative real numbers such that for k = 1,...,n,
djss (k. g) = 22ich flisk) = ax. This forces S fli,n+1) =31 a;. We

n+1
can write Flow,(a) = {x € R(ZOZ )|Akn+1x = (a,— Y1, a;)T}, where Ay, . is the
matrix with columns e; — e; for each edge (i,7) of kpy1, 1 <i<j<n+1 Itis

then evident that the vertices of Flow, (a) are integral, since Ay, ., is unimodular.

Proof of Lemma 1.2. Let ® : Tes,(a) — Flow,(a) defined by ® : X = (z; ;) — fx
i if g 1
where fx(i,j) = {”“" siHi#ns

Ti; ifj=n+1
simply permutes the coordinates of Tes,(a). Therefore the determinant of ® is 41
and it follows that ® is a volume preserving bijection between the polytopes. [

. The map @ is a linear transformation that

The type A,, Kostant partition function K4, (a’) is the number of ways of
writing &’ := (a,— > ., a;) as an N-combination of the type A, positive roots
e; —ej, 1 <i < j < n+1 without regard to order. Kostant partition functions
are very useful in representation theory for calculations of weight multiplicities
and tensor product multiplicities. The value K 4, (a’) is also the number of lattice
points of the polytope Flow,(a), i.e. integral flows in the complete graph k,, 1 with
netflow a; on vertex i (see Figure 2 for an example). Thus the following lemma is
immediate from Lemma 1.2.

Lemma 1.3. The number of Tesler matrices with hook sums (ai,as,...,a,) is
given by the value of the Kostant partition function at (ay,...,an, — Y oy i),
(1.4) T.(a) = Ka, (a).

In the next example we include a brief discussion of another flow polytope of the
complete graph, namely, Flow, (1,0, ...,0).

Example 1.4. The polytope Flow,(1,0,...,0) is known as the Chan-Robbins-
Yuen polytope. It has dimension (g) and 2"~1 vertices. Stanley-Postnikov (un-
published), and Baldoni-Vergne [4, 5] proved that the normalized volume of this
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polytope is given by a value of the Kostant partition function (see (3.2))

vol Flow,, (1,0,...,0) = K4, ,(0,1,2,...,n—2,—(";")).

Then Zeilberger [28] used a variant of the Morris constant term identity [23] to
compute this value of the Kostant partiton function as the product of the first
n — 2 Catalan numbers, proving a conjecture of Chan, Robbins and Yuen [9, 10].

n—2 .
o (n-1\\ _ 1 (2
(15) KAn,—1(0’1727"'7n 2> ( 2 ))Z]_:[)Z+1<Z)

A Tesler polytope or flow polytope is itself a face of a well known kind of polytope
called a transportation polytope which we define next.

1.3. Transportation polytopes. Given a vector s = (s1, S2,...,S,) of nonneg-
ative integers, the transportation polytope' Trans,(s) is the set of all n x n
matrices M = (m; ;) with nonnegative real entries whose i*® row and i*® column
respectively sum to s;, for ¢ = 1,...,n. When all the s; equal one, the polytope
Trans, (1,1,...,1) is better known as the Birkhoff polytope. Next we show that
the flow polytope Flow,(a) is isomorphic to a face of the transportation polytope

Trans, (a1,a1 + az,...,> ., a;); see Figure 3.

Proposition 1.5. For a= (ai,...,a,) € (Z>0)"™ with a1 > 0 we have that
(1.6) Tes,(a) = {(m, ;) € Trans,(a1,a1 + az, .. .,Zai) cmy ;=0 ifi—j>2}
i=1

For example, the Chan-Robbins Yuen polytope Tes,(1,0,...,0) is isomorphic
to a face of the Birkhoff polytope Trans,(1,1,...,1) [4, Lemma 18] and the Tesler
polytope Tes,(1,1,...,1) is isomorphic to a face of the transportation polytope
Trans,(1,2,...,n). To prove the proposition we need the following characterization
of the facets of transportation polytopes [21, Theorem 2] by Klee and Witzgall.

Lemma 1.6. [21] Let s = (s1,82,.-.,8n). The facets of Trans, (s) are of the form
F; j(s) :={M € Trans,(s) : m;; = 0} provided s; + s; < Y i, Si.

Proof of Proposition 1.5. Fix s = (a1,a1 + ag,...,y ., a;) and let F,, denote the
set on the right-hand-side of (1.6). We claim that F, is a face of Trans,(s). If
n = 1,2 then F,, = Trans,(a) so the claim follows. For n > 3 we have that F,, =
Mi_j>2 Fij(s). Since each s; > a; > 0 then s; +s; < 31", s; and by Lemma 1.6
each F; j(s) is a facet of Trans, (s). Thus F,, is a face of this transportation polytope
settling the claim.

Next, we build an isomorphism between Flow,(a) and F,. Then the result will

follow by Lemma 1.2. Let ¥ : Flow,(a) — F,, be defined by ¥ : f — (m;;)

fli,5+1) if1<i<j<n
where m; j =< > jar—>7_ f(t,j+1) ifj=i—1, . See Figure 3 for an
0 ifi—j>2.

example. ‘
We check that (m;;) = ¥(f) is in Trans,(s). We have that mjiq1; =Y 7_; ax —
71 f(k,j+1) > 0since > 7_; f(k,j + 1) is at most the total flow introduced

n the literature transportation polytopes are more general [21]. The matrices can be rectan-
gular and the i*" row sum and the i*" column sum can differ.
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FiGURE 3. Correspondence among: a point X in the Tesler
polytope Tesy(a), a flow f on the complete graph ks with net-
flow a’, and a point M = (m,;) of the transportation polytope
Transs(a1,a1 + as, .. .,Z?zl a;) with ms; = my; = mys = 0 (the
entries marked * are determined by the others).

at vertices 1,2,...,7, which is Zi:l ar. Therefore all the entries of W(f) are
nonnegative. By construction, for ¥ = 1,...,n — 1 the sum of the k' column
is Zf Lai. The sum of the n'® column equals the netflow on vertex n + 1 of
the complete graph, >0 | m; ., Z? L fli,n+1) = 3"  a;. For the rows, the
netflow on vertex k, for k = 1,...,n, is a, which implies that 377, f(k,j +1) —

Z;:ll f(i, k) = ag. Thus the kth row sum equals

n k—1 k—1
Mg e—1 +ka,j = (Zai—Zf(iak ) +Zf k,j+1)
i=k i=1 i=1 j=k

k— k—1 k—1
:Z ka]+1 SO k)| = ai+ap.
=1 =1 =1

Therefore U(f) is in Trans,(s). By construction m; ; = 01if ¢ —j > 2, so U(f) is
also in F,, and so ¥ is well defined. Finally, we leave to the reader to check that ¥
is a bijection with inverse ¥=! : F,, — Flow,,(a), (m;;) — f where f(i,j) = m; j_1
for1<i<j<n+1.

1.4. The study of Tes,(a). Examples 1.1 and 1.4 served as our inspiration for
studying the Tesler polytope Tes,(a) = Flow,(a). In Section 2 we prove that for
any vector a € (Zx()" of nonnegative integers, the polytope Tes, (a) has dimension
(5) and at most n! vertices, all of which are integral. When a € (Zs()" consists
entirely of positive entries, we prove that Tes,(a) has exactly n! vertices. In this
case, these vertices are the permutation Tesler matrices of order n, which are
the n x n Tesler matrices with at most one nonzero entry in each row.

Recall that if P is a d-dimensional polytope, the f-vector f(P) = (fo, f1,-.., fd)
of P is given by letting f; equal the number of faces of P of dimension ¢. The f-
polynomial of P is the corresponding generating function Zg:() fizt. A polytope
P is simple if each of its vertices is incident to dim(P) edges. If P is a simple
polytope, the h-polynomial of P is the polynomial Z?:o h;z! which is related to
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the f-polynomial of P by the equation Z?:o filz—1)t = Zj:o hizt. The coefficient
sequence (hg, h1,...,hq) of the h-polynomial of P is called the h-vector of P.

In Section 2 we characterize the vectors a € (Z>()™ for which the Tesler polytope
Tes,,(a) is simple (Theorem 2.7). In particular, we show that Tes,(a) is simple
whenever a € (Zs)". In this case, the sum of its h-vector entries is given by

(3)

YiZohi = fo. Since Tes,(a) for a € (Zs()™ has n! vertices, this implies that
2(22) h; = nl. One might expect that the h-polynomial Zl(i% h;x® of Tes,(a) is the

=
generating function of some interesting statistic on permutations. Indeed, we show
in Section 2 that the h-polynomial of the Tesler polytope is the generating function

for Coxeter length.

Theorem 1.7. (Theorem 2.7, Corollary 2.9) Let a € (Zso)™ be a vector of positive
integers. The polytope Tesy(a) is a simple polytope and its h-vector is given by the
Mahonian numbers, that is, h; is the number of permutations of {1,2,...,n} with
i inversions. We have

(3)
S file -1 =3 hat =[]l
i=0 =0
where [n)ly = [[\m,(1+x+2*+ -+ 2°71) and the f; are the f-vector entries of
Tes, (1).

Just as Tes,, (1,0, ...,0), i.e. the Chan-Robbins-Yuen polytope, Flow,(1,0,...,0),
has a product formula for its normalized volume involving Catalan numbers, so does
the Tesler polytope Tes, (1) := Tes,(1,1,...,1). The following result is proven in
Section 3 using a new iterated constant term identity (Lemma 3.5).

Theorem 1.8. (Corollary 3.6) The normalized volume of the Tesler polytope Tes, (1),
or equivalently of the flow polytope Flow,(1,1,...,1) equals
()20

vol Tes,, (1) = vol Flow,,(1,1,...,1) = 5

[[i=, 4!
n—1
(17) — f(n—l,n—Z,...,l) . H Cat(z),
=0

where Cat(i) = H%(Qf) is the i Catalan number and f*=11=2-1) s the number
of Standard Young Tableaux of staircase shape (n —1,n—2,...,1).

2. THE FACE STRUCTURE OF Tes,(a)

Let a € (Z>0)™. The aim of this section is to describe the face poset of Tes, (a).
It will turn out that the combinatorial isomorphism type of Tes,(a) only depends
on the positions of the zeros in the integer vector a.
Let rstc,, denote the reverse staircase of size n; the Ferrers diagram of rstcy is
shown below.
|
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We use the “matrix coordinates” {(i,7) : 1 <i < j < n} to describe the cells of
rstc,. An a-Tesler tableau T is a 0, 1-filling of rstc,, which satisfies the following
three conditions:

(1) for 1 <4 <m, if a; > 0, there is at least one 1 in row i of T,
(2) for 1 <i<j<n,if T(i,j) =1, then there is at least one 1 in row j of T,
and
(3) for1 < j<mn,ifa; =0and T(i,j) =0 for all 1 <i < j, then T(j, k) =0
for all j < k <n.
For example, if n = 4 and a = (7,0, 3,0), then three a-Tesler tableaux are shown
below. We write the entries of a in a column to the left of a given a-Tesler tableau.

7iol1]1]1] 7{1]o]1]o] 7[1]1]1]0

o [ofo]i] o TJoJofo] o [1]1]o
3 1[1] 3 of1] 3 1[0
0 1] o 1 o 0]

The dimension dim(7T') of an a-Tesler tableau 7" is Y, (r; — 1), where

the number of 1’s in row ¢ of T if row ¢ of T is nonzero,
Ty = . . .
1 if row ¢ of T is zero.

From left to right, the dimensions of the tableaux shown above are 3,1, and 3.
Given two a-Tesler tableaux T and Ty, we write T3 < T, to mean that for
all 1 < i < j < n we have Ty(4,5) < Ts(4,5). Moreover, we define a 0, 1-filling
max(T1,T5) of rste, by max (T, T2)(i, ) = max(T41 (i, ), Ta(Z, §)).
We start with two lemmas on a-Tesler tableaux. Our first lemma states that any
two zero-dimensional a-Tesler tableaux are componentwise incomparable.

Lemma 2.1. Let a € (Z>0)" and let T1 and Ty be two a-Tesler tableauz with
dlm(Tl) = dlm(TQ) =0. Ile S TQ, then T1 = T2.

Proof. Since dim(T}) = dim(73) = 0, for all 1 <4 < n we have that row i of either
Ty or T, consists entirely of 0’s, with the possible exception of a single 1. Since
Ty < T, it is enough to show that if row i of T5 contains a 1, then row ¢ of T3 also
contains a 1. To prove this, we induct on . If i = 1, then row 1 of T contains a 1
if and only if a7 > 0, in which case row 1 of T} contains a 1. If ¢ > 1, suppose that
row ¢ of Ty contains a 1. Then either a; > 0 (in which case row 4 of T} also contains
a 1) or a; = 0 and there exists ¢/ < 4 such that T5(¢/,4) = 1. But in the latter
case we have that row ¢’ of T7 contains a 1 by induction. This combined with the
condition T} < T, and the fact that 77 and T5 contain a unique 1 in row 4’ forces
Ty(i',i) = 1. Therefore, row i of T contains a 1. We conclude that Ty = Ts. ]

Our next lemma, states that the operation of componentwise maximum preserves
the property of being an a-Tesler tableau.

Lemma 2.2. Let a € (Z>o)" and let Ty and Ty be two a-Tesler tableauz. Then
T := max(Ty1,Ts) is also an a-Tesler tableau.

Proof. If a; > 0 for some 1 < ¢ < n, then row i of T is nonzero because row 1
of Ty is nonzero. If 1 < i < j < n and T(i,j) = 1, then either T1(i,j) = 1 or
T5(i,7) = 1. In turn, row j of either T7 or T% is nonzero, forcing row j of T to
be nonzero. Finally, if 1 < j < n, a; =0, and T(¢,7j) = 0 for all 1 <4 < j, then
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Ty(i,7) = T2(i,5) = 0 for all 1 <4 < j. This means that row j of 77 and T5 is zero,
so row j of T is also zero. ([

The analogue of Lemma 2.2 for min(77,T3) is false; the componentwise minimum
of two a-Tesler tableaux is not in general an a-Tesler tableau. Faces of the Tesler
polytope Tes, (a) and a-Tesler tableaux are related by taking supports.

Lemma 2.3. Let a € (Z>o)" and let F be a face of the Tesler polytope Tes,(a).
Define a function T : rste, — {0,1} by T'(4, ) = 0 if the coordinate equality z; j; = 0
is satisfied on the face F' and T(i,j) = 1 otherwise. Then T is an a-Tesler tableau.

Proof. If a; > 0 for some 1 <14 < n, we have ; ; + =; ;41 + -+ + Z;,, > a; on the
face F', so that row ¢ of T' is nonzero. Suppose T'(i,j) = 1 for some 1 <i < j < n.
Then x;; > 0 holds for some point in F, so that z;; + ;41 + - + x5 >
x;; > 0 at that point. In particular, row j of T' is nonzero. Finally, suppose that
a; = 0 and for all 1 < ¢ < j we have T'(¢,j) = 0. Then on the face F' we have
i+ Tjj41 + -+ i =0, forcing x;; = x5 41 =+ = 2jn = 0 on F. This
means that row j of T is zero. [

Lemma 2.3 shows that every face F' of Tes,(a) gives rise to an a-Tesler tableaux
T. We denote by ¢ : F — T the corresponding map from faces of Tes,(a) to
a-Tesler tableaux; we will see that ¢ is a bijection. We begin by showing that ¢
bijects vertices of Tes, (a) with zero-dimensional a-Tesler tableaux.

Lemma 2.4. Let a € (Z>o)". The map ¢ bijects the vertices of Tes,(a) with
zero-dimensional a-Tesler tableauz.

Proof. Let T be an a-Tesler tableau with dim(7") = 0. Then T contains at most
a single 1 in every row. There exists a unique point By € Tes,(a) such that the
support of the matrix By equals the set of nonzero entries of T. (Indeed, the vector
a can be used to construct the matrix By row by row, from top to bottom.) By
Lemma 2.1, we have that By, # Br, for distinct zero-dimensional a-Tesler tableaux
Ty and T>. We argue that the set

{Br : T an a-Tesler tableau with dim(7") = 0}

is precisely the set of vertices of Tes,(a). Since this implies that ¢(By) = T, the
lemma will follow.

To begin, we argue that Tes,(a) = conv{Br : dim(T) = 0}. To facilitate this
inductive argument, given any matrix B = (b; ;) € Tes,(a), define the dimension
dim(B) to be dim(T), where T is the a-Tesler tableau whose entries are

. 0 bi;=0
T(Z,J)Z{l b<j47é0
3 .

Fix a matrix B € Tes, (a). We want to show that B € conv{Byr : dim(T) = 0}.
We induct on dim(B). If dim(B) = 0, then B = Br for some a-Tesler tableau T
with dim(7") = 0 and the result follows, so assume dim(B) > 0. Since dim(B) > 0,
at least one row of B has more than one positive entry. Let 1 < ig < n — 1 be
maximal such that row ig of B has more than one positive entry.

For any ig < j < n with b;, ; > 0, we define a subset P; = {(p1,q1), (p2,42),-.-}
of the matrix coordinates of B (called the positive path at j) as follows. Let
(p1,q1) = (40,7). Given (pr,¢,) € P; with p, < n, we define (py41,¢r4+1) by letting
pr+1 = ¢ and letting ¢, 11 be the column of the unique nonzero entry in row g, of
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B. We also set P;, = {(40,j0)}. For example, if a = (4,3,1,1,1,2) and B is the
point in Tesg(a) shown below, we have ig = 2 and P3 = {(2,3),(3,5),(5,5)}, Py =
{(2,4),(4,4)}, and Ps = {(2,6),(6,6)}. In general, for any distinct j,j’ we have
Pj N Pj/ = 0.

(el V]

o NN O

=~ O N =
O WO -
W o oo~ OoO

Let ig < jo < j1 < n be such that ¢ := b;, j, and d := b;, j, are positive. We
define two new upper triangular n x n matrices B’ = (b; ;) and B” = (b} ;) by the
rules

bi,j +d (Z,j) c Pjo
(2.1) b;’j = bi,j —d (’L,j) € le
b ; otherwise

and
bij—c (i,j) € Pj,
(22) b;t] = bi,j +c (17‘7) € le
b ; otherwise.

For example, if B is as above with iy = 2, if we make the choices jo = 3 and j; = 6
the matrices B’ and B” are as follows.

020110 020110
03 2 00 0 0 20 3
0 0 40 0 01 0

’_ "n_
B = 4 0 0 B = 4 0 0
6 0 3 0
2 5

It is straightforward to verify that both B’ and B” lie in Tes,(a). Since B’ and
B" have one fewer positive entry than B in row iy, we have dim(B’) < dim(B)
and dim(B”) < dim(B), so that inductively B’ € conv{Br : dim(7T) = 0} and
B" € conv{Br : dim(T) = 0}. Since B = Cid(cB/ + dB"), we conclude that
B € conv{Br : dim(T) = 0}.

Since Tes,(a) = conv{Br : dim(T) = 0}, every vertex of Tes,(a) is of the form
Br for some a-Tesler tableau T with dim(7T) = 0. We argue that every matrix
Br is actually a vertex of Tes,(a). For otherwise, there would exist some a-Tesler
tableau T' with dim(7") = 0 such that

Br = Z cr' By,
dim(T")=0
T'2T

for some ¢y > 0 with Y ¢ = 1. But this is impossible by Lemma 2.1. We
conclude that By is a vertex of Tes,(a). O

We are ready to characterize the face poset of Tes,(a).
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Theorem 2.5. Leta € (Z>o)". The support map ¢ : F — T gives an isomorphism
from the face poset of Tes,(a) to the set of a-Tesler tableauz, partially ordered by
<. For any face F, we have that dim(F') = dim(¢(F)).

Proof. For any a-Tesler tableau T, define a face F'(T) C Tes,(a) by letting F'(T')
be the intersection of the hyperplanes {z; ; =0 : T'(4,j) = 0} within the ambient
affine subspace

ﬂ{xu + Tiip1 o F T =@+ T+ T )

i=1
of {(x;;) : xi; € R,1 <i<j<n}. Itisevident that dim(F (7)) = dim(7") and
that ¢(F(T')) = T. Moreover, we have that Ty < T if and only if F(T7) C F(T3).
It therefore suffices to show that every face of Tes, (a) is of the form F(T) for some
a-Tesler tableau 7'

Let F be a face of Tes,(a). By Lemma 2.4, there exist zero-dimensional a-
Tesler tableaux 17,...,T) such that Bp,..., By, are the vertices of F'. Let T' =
max(T1,...,Tx). By Lemma 2.2 we have that 7" is an a-Tesler tableau. It is clear
that F C F(T). We argue that F(T) C F. To see this, suppose that 1 <i < j<mn
and the defining hyperplane z; ; = 0 of Tes,(a) contains F. Then in particular

we have that x; ; = 0 contains Br,, ..., Br,, so that T1(4,j) = --- = Ty (4,j) = 0.
This means that T'(¢,j) = 0, so that x; ; = 0 contains F(T'). We conclude that
F = F(T). O

Given any vector a € (Z>()", we let €(a) € {0, +}™ be the associated signature;
for example, €(7,0,3,0) = (+,0,+,0). Theorem 2.5 implies that the combinatorial
isomorphism type of Tes,(a) depends only on the signature €(a).

As a first application of Theorem 2.5, we determine the dimension of Tes,(a)
and give an upper bound on the number of its vertices. When a € ZZ, the result
about the dimensionality also follows from [1]. Observe that if a; = 0, the first
rows of the matrices in Tes,(a) vanish and we have the identification Tes,(a) =
Tes,—1(az,as,...,a,). We may therefore restrict to the case where a; > 0.

Corollary 2.6. Let a = (a1,...,ayn) € (Z>0)" and assume ay; > 0. The polytope
Tes,,(a) has dimension (3) and at most n! vertices. Moreover, the polytope Tes, (a)
has ezxactly n! vertices if and only if as,as,...,an—1 > 0.

Proof. The claim about dimension follows from the fact that the mapping T'(z, j) =
1for 1 <i<j<mnisan aTesler tableau of dimension (}) (since a; > 0).

Recall that a file rook is a rook which can attack horizontally, but not vertically
(see for example [7, Definition 1]). There is an injective mapping from the set of
zero-dimensional a-Tesler tableaux to the set of maximal file rook placements on
rstc, by placing a file rook in the position of every 1 in T', together with a file rook
on the main diagonal of any zero row of T'. Since there are n! maximal file rook
placements on rstc,, by Theorem 2.5 we have that Tes, (a) has at most n! vertices.

If as,as,...,a,_1 > 0, then a zero-dimensional a-Tesler tableau T' contains a
unique 1 in every row, with the possible exception of row n (which consists of a
single cell). Thus, every maximal file rook placement on rstc,, arises from a zero-
dimensional a-Tesler tableau. It follows that Tes, (a) has n! vertices. On the other
hand, if a; = 0 for some 1 < i < n, then for any zero-dimensional a-Tesler tableau
T we have that T'(j,k) = 0 for all j < k implies T'(¢,4) = 0. In terms of the



THE POLYTOPE OF TESLER MATRICES 11

corresponding file rook placements, this means that if the file rooks in every row
other than 7 are on the main diagonal, then the file rook in row ¢ is also on the
main diagonal. In particular, the mapping from zero-dimensional a-Tesler tableaux
to maximal file rook placements on rstc,, is not surjective and the polytope Tes, (a)
has < n! vertices. (I

Theorem 2.5 can also be used to characterize when Tes,,(a) is a simple polytope.

Theorem 2.7. Leta = (a1,...,ay) € (Z>0)" and let e(a) = (e1,...,€,) € {0, +}"
be the associated signature. Assume that €1 = +. The polytope Tes,(a) is a simple
polytope if and only if n < 3 or e(a) is one of +™,+" 10, +0+""2 or +0 +""3 0.

Proof. When n = 1 the polytope Tes; (a) is a single point. When n = 2 the polytope
Teso(a) is an interval. When n = 3 the polytope Tesz(a) is a 3-simplex Az if eg =0
and the triangular prism A; X Ay if e = 4. In either case, we have that Tesz(a)
is simple.
In general, the vertices of Tes,,(a) correspond to zero-dimensional a-Tesler tableaux

T. We may therefore speak of “adjacent” zero-dimensional a-Tesler tableaux T and
T, to mean that the corresponding vertices By, and By, are connected by an edge
of Tes,(a). Given two distinct a-Tesler tableau Ty, Tz with dim(7}) = dim(7») = 0,
by Theorem 2.5 we know that T} and 75 are adjacent if and only if for all 1 < i < n,
row ¢ of T5 can be obtained from row ¢ of 17 by

(1) leaving row i of Ty unchanged,

(2) changing the unique 1 in row ¢ of T} to a 0,

(3) changing a single 0 in row ¢ to Ty to a 1 (if row ¢ of T} is a zero row), or

(4) moving the unique 1 in row i of T} to a different position in row 4.
Moreover, the Operation (4) must take place in precisely one row of 7.

Given a fixed a-Tesler tableau T with dim(T") = 0, we can replace the 0’s in T
with entries in the set {(i) : i € Zso} to keep track of some of the adjacent zero-
dimensional a-Tesler tableaux. In particular, we define a new filling 7° of rstc,
using the alphabet {1,(0),(1),(®2),...} as follows.

o If T(i,j) =1, set T°(i,j) = 1.
e If T(i,§) = 0 and row i of T is zero, then set T°(i, j) = (0).
e If T'(i,5) = 0, row ¢ of T is nonzero, and row j of T is nonzero, then set
T° (i, j) = @.
o If T(i,j) = 0, row i of T is nonzero, and row j of T is zero, then set
T°(i,j) = @, where j/ =n — 5 + 1 is the number of boxes in row j.
Observe that in the first case we necessarily have ¢; = 0 and in the third case we nec-
essarily have ¢; = 0. For example, suppose n = 5 and (e1,...,€5) = (+,0,0,0,+).
Applying the above rules to the zero-dimensional a-Tesler tableau T' shown below
yields the given T°.

+[oJofo]1]0 + OB 1|0

0 |oflofo]o 0000
T=0 ojoflo]~ o0 (0Y0)0) = T°

0 01 0 (1) 1

+ |1 + 1]

For any a-Tesler tableau T' with dim(7") = 0, we claim that the number of
adjacent zero-dimensional a-Tesler tableaux is at least the sum of the circled entries
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in the associated tableau T°. For example, the number of adjacent tableaux in the
case shown above is > 1+44-3+141 = 10. To see this, observe that for any adjacent
zero-dimensional a-Tesler tableau T, there is precisely one row i such that both
T and T contain a 1 in row ¢, but this 1 is in a different position (corresponding
to Operation (4) above). We can view T’ as being obtained from T by moving
this 1 in row 4, and then possibly changing entries in lower rows (corresponding to
Operations (2) and (3) above). If this 1 is moved to a position (i, j) such that row
j of T is zero, then one of the 7 =n —j+1 0’s in row j of T’ must be changed to
a 1. In the example above, if the 1 in position (1,4) is moved to (1,2), then one of
the four 0’s in positions (2, 2), (2, 3), (2,4), and (2, 5) must be changed to a 1, which
corresponds to the circled 4 in position (1,2) of T°. We emphasize that this lower
bound on the number of adjacent tableaux is not tight in general; for example, if
we move the 1 in row 1 in the above tableau from (1,4) to (1,2) and change the 0
in position (2,3) to a 1, then we must change one of the three 0’s in row 3 to a 1,
leading to more options for adjacent tableaux. In particular, the number of adjacent
tableaux to the tableau T shown above is > 10 = (g) = dim(Tes5(+,0,+,0,+,+))
and the polytope Tess(+,0, 4,0, 4, +) is not simple.

Suppose that n > 3 and there exist indices 1 < i < j < n such that ¢, = 4+ and
e; = 0. We argue that Tes, (a) is not simple by exhibiting an a-Tesler tableau T
such that T has > () = dim(Tes, (a)) adjacent zero-dimensional a-Tesler tableaux.
Indeed, let T" be the “diagonal” a-Tesler tableau defined by T'(k,¢) = 0 whenever
1<k<t<n,T(i)=1if ¢ =+, and T(i,i) = 0 if ¢, = 0. Perform the above
circling procedure to T to get the tableau 7°°; the example € = (+,0,+4,0, 4+, +) is
shown below.

+[1]o]o]o]o]o NN 0000
0 (o]ojo]o]o 0 (00)0)0)0)
+ 1[0]0]0]~ + 19000
0 0[ofo 0 (0)(0)(0)
+ 1/0 + 1|
+ 1] + 1]

We claim that the sum of the circled entries in row 1 of T°, plus the number of
circled positive entries in the remaining rows of 7°, equals (g) Indeed, since €; > 0,
we have the entry in position (1, k) of T° is a positive circled number for 2 < k < n.
If T°(1, k) = (1), then row k of T is nonzero, so that row k of T° consists of precisely
one 1, together with n — k (1)’s. If T°(1,k) = @ for some k' > 1, we must have
that ¥ =n —k+ 1, ¢ = 0, and row k of T° consists entirely of @’s. In either
case, the circled entry in 7°(1, k), plus the number of positive circled entries in row
k of T°, is one plus the number of boxes in row k of T°. On the other hand, the
entry in position (7,7) of T° is a circled number > 1 because €; = 0 and j < n.
This means that the sum of the circled entries is > (g), the tableau 7" has > (g)
adjacent zero-dimensional tableaux, and the polytope Tes,(a) is not simple.
Suppose that n > 3 and € has the form e = +0°+""*"! for some 1 < i < n. Let
T be the “near-diagonal” zero-dimensional a-Tesler tableau defined by T'(1,2) =
T(2,2)=1,T(j,j) = 1fori < j <n,and T(k,¢) = 0 otherwise. Perform the above
circling procedure to T to get T7°; the case ¢ = (+,0,0,0,+, +) is shown below.
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+lol1]o]o]o]o0 HOHN0000
0 [1]0]0]o]0 0 [1[B3)DQO)
0 0[0]0[0]~ 0 0 [(0}(0)0)
0 0[0|0 0 0 [(0)0)
+ 1/0 + 1)
+ 1] + 1]

A similar argument as in the last paragraph shows that the sum of the circled
entries in row 1 of T°, plus the number of positive circled entries in the remaining
rows of T°, equals (;) On the other hand, since 1 < ¢ < n and n > 3, at least one
of the circled entries in row 2 of 7° is > 1. We conclude that the sum of all the
circled entries is > (}), so that Tes,(a) is not simple.

Ife, =+, leta’ = (a1, az,...,a,-1,0). We claim that the polytopes Tes, (a) and
Tes,,(a’) are affine isomorphic: Tes,(a) = Tes,(a’). Indeed, an isomorphism B +—
B’ is obtained by subtracting a,, from the (n,n)-entry of any matrix B € Tes,(a).
By this fact and the last two paragraphs, the polytope Tes,,(a) is not simple unless
e(a) has one of the four forms given in the statement of the theorem. Also by this
fact, to complete the proof we need only show that Tes,(a) is simple when e(a) has
one of the two forms +" or +0+""2,

If e(a) = 4", then any zero-dimensional a-Tesler tableau has a unique 1 in every
row. Given an a-Tesler tableau 7' with dim(7) = 0, the tableaux adjacent to T'
can be obtained by moving a single 1 to a different position in its row. There are
(n—1)+(n—2)+---+1=(3) = dim(Tes,(a)) ways to do this, so the polytope
Tes,,(a) is simple.

If e(a) = +04+"2, then any zero-dimensional a-Tesler tableau T has a unique
1 in every row, with the possible exception of row 2. In particular, row 2 of T
contains a 1 if and only if the 1 in row 1 of T is in position (1,2). In either case,
we see that T' is adjacent to precisely (g) tableaux, so that Tes,(a) is simple. O

We now focus on the case of greatest representation theoretic interest in the
context of diagonal harmonics: where e(a) = +™, so that every entry of a is a
positive integer. The combinatorial isomorphism type of Tes,(a) is immediate
from Theorem 2.5. We denote by Ay the d-dimensional simplex in R%*! defined by
Ad = {(xl,...7.rd+1) S RdJrl LI +--~+.’Ed+1 = 171'1 2 0,...,{Ed+1 Z 0}

Corollary 2.8. Let a € (Zso)™ be a vector of positive integers. The face poset of
the Tesler polytope Tes, (a) is isomorphic to the face poset of the Cartesian product
of simplices Ay X Ag X -+ X Ap_1.

Corollary 2.9. Let a € (Zs()"™ be a vector of positive integers. The h-polynomial
of the Tesler polytope Tes, (a) is the Mahonian distribution

(3)
Zhﬂ:i:[n}!x:(1+x)(1+x+x2)~~(1+:c+z2+~~+x”71).
i=0

Proof. We give two proofs of this result, one relying on Corollary 2.8 and one relying
on generic linear forms.

First proof: Let P and @ be arbitrary simple polytopes and let P x @ be their
Cartesian product. The polytope P x @ is simple and the h-polynomial of P x @
is the product of the h-polynomials of P and ). To see this, observe that a typical
i-dimensional face of P x @ is given by the product of an j-dimensional face of
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P and a i — j-dimensional face of @, for some 0 < j < 4. Therefore, the f-
vectors (P) = (o(P)u i (P)....) and F(Q) = (fol@) f1(Q)...) are related to

the f-vector of the product f(P x Q) by fi(P x Q) = Z _o fi(P)fi—;(Q). The
h-polynomials are therefore related by:

dim(P)+dim(Q) ‘ dim(P)+dim(Q) ‘
Yo PxQat= Y fi(PxQ)(z—1)
1=0 1=0
dim(P)+dim(Q) '
= Z fi(P)(@ = 1) fij(Q)(x — 1)
=0

dim(P) dim(Q)

= Y i@e-v | Y H@E@-17],
i=0 j=0

which equals the product of the h-polynomials of P and . This multiplicative
property of h-polynomials is surely well known, but the authors could not find a
reference.

It remains to observe that the hA-polynomial of the d-dimensional simplex Ay is
given by ZZ o hi(Ag)z' = Zd_ (‘fill) (r =1 =142+ -+ 2% where we used
the fact that A4 has (Z +1) faces of dimension 1.

Second proof: Let A be any generic linear form on the vector space spanned by
Tes,,(1). Then X induces an orientation on the 1-skeleton of Tes,(a) by requiring
that the value of X increase along each oriented edge. It follows (see for example
[29, §8.3]) that the h-vector entry h;(Tes,(a)) equals the number of vertices in this
oriented 1-skeleton with outdegree i.

By Theorem 2.5, the vertices of Tes,(a) are the permutation Tesler matrices
of size n and the edges of Tes,(a) emanating from a fixed vertex correspond to
changing the support of the corresponding permutation Tesler matrix of the vertex
in exactly two positions belonging the the same row. Let A be any linear form such
that moving from one to another permutation Tesler matrix by shifting the support
to the right in a single row corresponds to an increase in A. Then if the support of
a permutation Tesler matrix is given by {(i,b;) : 1 < i < n}, its outdegree in the
orientation induced by X is .7 ;(n — b;). The corresponding generating function

for outdegree is Zz(i% hi(Tes,(a))z’ = [Tiey (On.—; 2" %) = [n]'s. O

Corollaries 2.8 and 2.9 are also true for Tesler polytopes Tes, (a), where ¢(a) =
+7=10. In light of Theorem 2.7, it is natural to ask for an analog to these results
when ¢(a) is of the form +0+"~2 or +0 +"~3 0. Such an analog is provided by the
following corollary.

Corollary 2.10. Let a € (Z>o)" and assume that e(a) has one of the forms
+0+772 or +0 +"730. Let P be the quotient polytope (Ap_2 X A, _1)/ ~, where
we declare (p,q) ~ (p',q) whenever q € A,_1 belongs to the facet of A,,_1 defined
by o =0 and p,p’ € A, _».

The face poset of the polytope Tes,(a) is isomorphic to the face poset of the
Cartesian product Ay X Ag X -+ A,,_3 X P. Moreover, we have that Tes,(a) has
2(n — 1)! vertices and h-polynomial (1 + 2™ 1)[n — 1]!,.
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Proof. (Sketch.) The second row of any a-Tesler tableau T is nonzero if and only if
T(1,2) = 1. All other rows of any a-Tesler tableau are nonzero. By Theorem 2.5,
we get the claimed Cartesian product decomposition of Tes,(a). The fact that
Tes,, (a) has 2(n — 1)! vertices arises from the fact that the quotient polytope P has
2(n — 1) vertices. The fact that Tes,(a) has h-polynomial (1 + 2"~ 1)[n — 1]!, can
be deduced from the multiplicative property of h-polynomials of the first proof of
Corollary 2.9 and the fact that P has h-polynomial (1 + 2"~ 1)[n — 1],. O

Remark 2.11. All of the results of this section are still true when one considers
the “generalized” Tesler polytopes polytopes Tes,(a) defined for real vectors a;
one simply replaces (Z>)™ and (Zso)"™ with (R>0)™ and (Rs¢)" throughout. The
proofs are identical.

Remark 2.12. When a € (Z-o)" is a vector of positive integers, Theorem 2.5
can be deduced from results of Hille [20]. In particular, if @ denotes the quiver on
the vertex set Qo = [n + 1] with arrows ¢ — j for all 1 < i < j < n+1 and if
0 : Qo — R denotes the weight function defined by (i) = a; for 1 < ¢ < n and
f(n+1) = —a; —- - - — ay, then the Tesler polytope Tes,, (a) is precisely the polytope
A(0) considered in [20, Theorem 2.2]. By the argument in the last paragraph of
[20, Theorem 2.2] and [20, Proposition 2.3], the genericity condition on # in the
hypotheses of [20, Theorem 2.2] is equivalent to every entry of a being positive.
The conclusion of [20, Theorem 2.2] is essentially the same as the special case of
Theorem 2.5 when a € (Z~()". When some entries of a are zero, in the terminology
of [20] the weight function 6 lies on a wall, and the results of [20] do not apply to
Tes,(a).

Remark 2.13. When a € (Z~()" is a vector of positive integers, the simplicity of
Tes,,(a) guaranteed by Theorem 2.7 had been observed previously in the context
of flow polytopes. The condition that every entry in a is positive is equivalent to
a lying in the “nice chamber” defined by Baldoni and Vergne in [4, p. 458]. In [0,
p. 798], Brion and Vergne observe that this condition on a implies the simplicity
of Tes,(a). The simplicity of Tes,(a) in this case can also be derived from Hille’s
characterization of the face poset [20] using exactly the same argument as in the
proof of Theorem 2.7.

3. VOLUME OF THE TESLER POLYTOPE Tes, (1)

The aim of this section is to prove Theorem 1.8 through a sequence of results.
For ease of reading the section is broken down into several subsections. We start
by stating previous results on volumes and Ehrhart polynomials of flow polytopes
and then prove specific lemmas regarding Tes, (1).

In this section we work in the field of iterated formal Laurent series with m vari-
ables as discussed by Haglund, Garsia and Xin in [13, §4]. We choose a total order
of the variables: x1,z9,...,z, to extract iteratively coefficients, constant coeffi-
cients, and residues of an element f(x) in this field. We denote these respectively
by

Csz t CTQ:1 f’ [Xa] = [‘rEam e xtlll].ﬂ Reswm o Resw1 f

m

For more on these iterative coefficient extractions see [26, §2].
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3.1. Generating function of K 4, (a’) and the Lidskii formulas. Recall that
by Lemmas 1.2 and 1.3 we have that the normalized volume vol Tes,,(a) equals the
normalized volume vol Flow,,(a) and that the number T, (a) of Tesler matrices is
given by the Kostant partition function K 4, (a’). By definition, the latter is given
by the following iterated coefficient extraction.

(3.1) Ka(@)=x*] [] @-wza;H) ™"
1<i<j<n+1

In addition, the Kostant partition function is invariant under reversing the order
and sign of the netflow vector.

Proposition 3.1.

n n
Ky, (a1,az, ... an, — Z a;) = KATL(Z Qi, —Qn, ..., —A2, —Q1).
i=1 i=1
Proof. Reversing an (integer) flow on the complete graph k, gives an involution
between (integer) flows with netflow (ay,as,...,an, — > 1, a;) and (integer) flows
with netflow (37, ai, —an, ..., —az, —a1). O
Assume that a = (aj,as,...,a,) satisfies a; > 0 for ¢ = 1,...,n. Then the

Lidskii formulas [1, Proposition 34, Theorem 37] state that

(3.2)
vol Flowy, (a) = ) (2) al'-oalr  Ka, (ih—n4 1l —n+2,.. . 0p)
n - il,ig,...,in 1 n n—1 ) gy ln)y
and
(3.3)
ar+n—1\[as+n—2 an . . )
KAn(a’):Z( 1 . )( 2 . )( )-KAn1(21—n+1712_n+2’”.’zn)7
: 21 12 in
where both sums are over weak compositions i = (41,42, ..,%,) of (g) with n parts

which we denote as i = (3), £(i) = n.
Example 3.2. The Tesler polytope Tes3(1,1,1) = Flows(1,1,1) has normalized
volume 4 since by (3.2)
3 3
Ka,(1,-1,0
3,0,0) 4, (L, =1, )+<2,1,0

And this polytope has T3(1,1,1) = K4,(1,1,1,—3) = 7 lattice points (the seven
3 x 3 Tesler matrices with hook sums (1,1,1); see Figure 1). Indeed by (3.3)

142 1+1 1+2\/1+1
KA3<1,171,3>( ! )( ' )KA2<1,1,0>+( ! )( 1 )m(o,o,mr

vol Flows(1,1,1) = ( )KA2(0,0,0)+0 =11+31=4.

Example 3.3. [1] If one uses (3.2) on the Chan-Robbins-Yuen polytope Tes, (e;)
one obtains

vol Tes, (1,0,...,0) = Ka, ,(—(";"),—n+2,...,-1,0),

since the only composition i that does not vanish is 7; = (72’) yi9 =0,...,i, = 0. By

Proposition 3.1 this is equivalent to the first identity in Example 1.4.
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3.2. Volume of Tes, (1) as a constant term. In this short section we use (3.2)
and the generating series (3.1) of Kostant partition functions to write the volume
of Tes,, (1) as an iterated constant term of a formal Laurent series.

Lemma 3.4.

(34)  volTes,(1) = CT,, -+ CTy, (w1 4+ +a,)3) [ (25— 27",

1<i<j<n
where CT,, ---CT,, f denotes the iterated constant term of f.

Proof. By (3.2) and Proposition 3.1 we have that

vol Tes,, (1) = Z (
i=(%).L0)=n
i=(5).L0)=n (
We use (3.1) to rewrite this as
_ (3) i 1
vol Tes,, (1) = Z <i1,i2,...,in> [x»7] H (1—zz; )7,
ip(g),z(i):n 1<i<j<n

where 4, = (0,1,2...,n —1). Since [x?]f = CT,, ---CT,, x 2f then

s, (5) 1
vol Tes, (1) = CT,, -+ - CTy, Z x 5( 2 i H (1—z;z; hH-t

] in,ia, ... 11
i=(3).6()=n 1Si<isn

Using H (1- xixjfl)_l = x%n H (z; — ;)" we get

1<i<j<n 1<i<j<n

vol Tes, (1) = CT,, ---CTy, H (zj—xi) ! Z (1 ; (=) ; )xi.
1)025--+50n

1<i<j<n i\:(g),e(i):n

n
i (2) _>'KAn_l(i1Tl+1,i2n+2,...,in)
11,225+ -.4,1n

n
. (2) . >~KAn1(—1'7“1—in_1,2—in_2,...,n—1—2’1).
11,225 --51n

An application of the multinomial theorem yields the desired result. ([l

3.3. A Morris-type constant term identity. Let e, = ex(z1, o, ...,z,) denote
the k' elementary symmetric polynomial. In particular e; = 1 +x9+---+2,. For
n > 2 and nonnegative integers a, ¢ we define L, (a,c) to be the following iterated
constant term:
n

-1 n .

(3.5) Ly(a,c) :=CT,, - CTy, eia nake() Hm;““ H (i —aj)"°.
i=1 1<i<j<n
Note that by Lemma 3.4 we have that

(3.6) vol Tes,, (1) = L, (1,1).

Next we give a product formula for L, (a,c) that for a = ¢ = 1 yields (1.7). We
postpone the proof to the next section.

Lemma 3.5. For n > 2 and nonnegative integers a,c we have that

i I'(1+c¢/2)

(3.7) Ly(a,c) = ((a—1)n+c(3))! E) L(1+ i+ 1)c/2)T(a +ic/2)’
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where T'(+) is the Gamma function.
Corollary 3.6.

(™) 2(%)
3.8 L,(1,1)= 2)n7
(3.5) (11) = 2
Proof. Set a =1 and ¢ =1 in (3.7) and obtain

n—1

n r'(3/2)
L,(1,1) = ! - —,
(1) (2) E) M1+ (i+1)/2)T(1+4/2)
since I'(3/2) = /7 /2 and by the duplication formula of T'(-) this becomes
n—1 i ny . 2(2)
L.(1,1) = ()] 2 :(2)n >
2) 4 i+ 1! | J g
as desired. g

Drew Armstrong (private communication) noted the resemblance of the product
in the RHS (3.8) with the number of standard Young tableaux of staircase shape.
Indeed, if we let f(*=1:n=2--1) be the number of standard Young tableaux of shape
(n—1,n—2,...,1) which by the hook-length formula equals

(5)!

f(nfl,n72,.“,1) _ ,
i (2 — 1)k

then one can show that L,(1,1) is divisible by this number. The ratio of these
numbers is a product of consecutive Catalan numbers.

Proposition 3.7.

BIE o(5)

2

T

Proof. The identity is easily verified using the formula for f(»=1n=2.--1) and for

Cat(i) = = (%), 0

n—1
(3.9) — fotn=2e ) TT Cat(i).
i=1

Remark 3.8. When we set a =1 and ¢ = 2 in (3.7) one can also show that

(3.10) L,(1,2)= w = fln=D". 1:[ (Z J; 1Cat(i)2> )
L= v i=1

where f(®=1" is the number of standard Young tableaux of rectangular shape

(n — 1) which equals (n(n — D)) TTi—g k!'/ TTf—e(n + k — 1)!. We were unable to
find similar identities relating L, (1, ¢), ¢ > 3 with the number of SYT of shape .

Remark 3.9. A similar iterated constant term identity to (3.7) is Zeilberger’s
variation of the Morris constant term identity [28] used to prove (1.5). We state
the version in [26, §3.5]: for n > 2 and nonnegative integers a, b, ¢ let

(3.11)  My(a,b,c) :=CTy, -+ CTy, [[a; ' —2)™" [ (@i—=)°

i=1 1<i<j<n
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then

n—1

(@b, H F1+c¢/2)T(a+b—1+(n+j—1)c/2)
T+ 5+ De/2)T(a+ je/2)T(b+ jc/2)’

j=0

[

and in particular

M, (1,1 1)—71]:[1 ! (m)
i:0i+1 i

Moreover, let hg(z1,...,2,) denote the k'™ complete symmetric polynomial in
the variables z1,...,z,. Since [, (1 — z;)™' = >, o0 hu(z1,...,2,) then by
linearity of CT,, ---CT,, and degree considerations, M, (a,1,c) can be expressed

as a sum of iterated constant term extractions all except one are zero. Thus
(3.12)

n

My(a,1,¢) = CT,, ---CT,, h((a71)n+c(g))($1v e Ty) H xi_‘”'l H (x;j—z4) "¢

i=1 1<i<j<n

This alternate description of M, (a, 1, ¢) resembles the original definition of L, (a, ¢)
n (3.5). Conversely, one can show using (1—e1)~! = Y, ., e}, linearity, and degree
considerations that L, (a,c) equals the following iterated constant term

n

(3.13) Ln(a,c) =CTy, - CTy, (1—e)) ' [[z7*™ ] (@i—a)~

i=1 1<i<j<n
which resembles the original description of M, (a, 1, ¢).

3.4. Proof of Lemma 3.5 via Baldoni-Vergne recurrence approach. To
prove Lemma 3.5 we follow Xin’s [26, §3.5] simplified recursion approach of the
proof by Baldoni-Vergne [5] of the Morris identity (3.11).

Outline of the proof: First, for nonnegative integers n > 2,a,cand £ =0,...,n
we introduce the constants

Pyeq(xq,... ,xn)(“’l)"“(g)*z
H?:l x;'z_l H?:l(xi —x5)° ’

where P, = /(n — £)leg(xq,...,2,). Note that Cp(0,a,¢) = nlL,(a,c). Sec-
ond, we show that C,(¢,a,c) satisfy certain linear relations (Proposition 3.10).
Third, we show that these relations uniquely determine the constants C,, (¢, a,c)
(Proposition 3.11). Lastly, in Proposition 3.12 we define C/,(¢, a, c¢) as certain prod-
ucts of Gamma functions such that C7,(0,a,c)/n! coincides with the expression on
the right-hand-side of (3.7). We then show that C/ (¢, a,c) satisfy the same rela-
tions as C,, (¢, a,c¢) and since these relations determine uniquely the constants then
Cl (L a,c) = Cp(¢,a,c). This completes the proof of the Lemma.

Cnll,a,c):=CT,, - CT,

The C, (¢, a, ¢) satisty the following relations.
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Proposition 3.10. Let C, (¢, a,c) be defined as above then for 1 < £ < n we have:

Cn(l,a,c) a—1+cn—12)/2
(3:14) Cn(f—1,a,c) (a—l)nJrc()—KJrl7
(3.15) Cn(n,a,c) =C,(0,a—1,c¢),
(3.16) Cp(n—1,1,¢) = Cy— 1(0,0, c), (if n > 1)
(3.17) C(0,1,0) = nl,
(3.18) Cn(£,0,¢) =

Proof. The relations (3.15)-(3.18) follow from the same proof as in [26, Theorem
3.5.2] C, (¢, a,c).
(a—1)n+c

We now prove (3.14). Let Uy = e
CTy g(y) = Resy yg(y) then

(3.19) Cn(l,a,c) =Res,, - Res,, PUy,

) e/(H?:l o [T (@ — 2;)¢), since

Next we calculate the following derivative with respect to ;.
(3.20)

0
8761-$1$2 coexoUp = ((a —1)n+ c(g) — 0+ 1) 21 xpUpH(1—a)ze - - 2oUp_1+
1

Ui

—C-T1- "Xy ﬁ
— 1 J

If ¢ is odd then Uy is anti-symmetric. If we anti-symmetrize (3.20) over the
symmetric group &,,, we get

) 0
Z (_1)znv(w)w . ({mel S T1To erg) =

weS,,

((af 1)n+c(g) — 0+ 1) PUi+(1—a)Py—1Up_1—c Z w-T - ..xez Up—s ‘
wes, j=2

One can check that

2 Z w- T LEgle_x (n—0)Pp_1.
j

wes,

So putting everything together for ¢ odd we obtain

, 0
(3.21) Z (—1)““’(1“)11) . (8%161 S T1Tg ngg) =

weS,
((a=Dn+c(l) —€+1) PUsr— (a—1+c(n—0)/2)Pr—1Up_1.

Next, if ¢ is even, Uy is symmetric. If we symmetrize (3.20) over &,, and do similar
simplifications as in the previous case we get

0
(3.22) Z w - (%elxlxg e l'gUg) =

wesG,
((a —1n+ c(;) —/+ 1) PUp—(a—1+¢(n—20)/2)Pr—1Up_1.



THE POLYTOPE OF TESLER MATRICES 21

Finally, we take the iterated residue Res,, ---Res,, of (3.21) and (3.22). Since the
left-hand-side of these two equations consist of sums of derivatives with respect to
Z1,...,Tn, then their iterated residues Resx are zero [5, Remark 3(c), p. 15]. This
combined with (3.19) yields

0= ((a=1)n+c(3) —L+1)Cp(l,a,¢) — (a—1+c(n—0)/2)Cp (£ — 1,a,c),
which proves (3.14) for ¢ even or odd. O

We now show that the recurrences (3.14)-(3.18) determine entirely the constants
Crn(¢,a,c) (same algorithm as in [5, p. 10]).

Proposition 3.11. [5, p. 10] The recurrences (3.14)-(3.18) determine uniquely the
constants Cp (£, a,c).

Proof. We give an algorithm to compute the constants Cy, (¢, a, ¢) recursively using
(3.14)-(3.18). The algorithm has the following three cases:

Case 1. If ¢ =0 and a > 1 we use (3.14) repeatedly to increase ¢ up to n. We can
use this recursion since a — 1 +¢(n —¢) = a—1> 0. If £ = n then we can apply
(3.15) and go from C,(n,a,0) to C,(0,a — 1,0):

Cot,a,0) 2 o0 1,0,00 = FE L cnmya,0) 2 600,a — 1,0).

Thus computing Cy, (¢, a, 0) reduces to finding C,,(0,1,0) which equals n! by (3.17).

Case 2. If ¢ > 0 and a > 1 we use (3.14) repeatedly to increase ¢ up to n. We can
use this recursion since a —1+c¢(n —¥¢) =a—1> 0. If £ = n then we apply (3.15)
and go from Cy,(n,a,c) to Cp(0,a — 1,¢):

Cn(¢,a,c) ﬁ) Cn(l+1,a,c)— B -+ Cp(n,a,c) 3—) Cn(0,a—1,¢).

Thus computing C, (¢, a, ¢) reduces to finding C, (0, 1, c).

Case 3. To compute Cp(0,1,¢) with ¢ > 0, we use (3.14) repeatedly to increase
¢ from 0 up to n — 1. Then we can apply (3.16) and go from C,(n — 1,1,¢) to
Crn-1(0,¢,c¢):

(3.14) (3.14)*

Co(0,1,0) S 01,10 - <Y Lot —1,1,0) 12

— Cpr-1(0,¢,¢).

Thus by iterating this reduction with Case 2 we see that computing C,(0,1,c¢)
reduces to finding C4 (¢, a,c). Having n = 1 guarantees there is no term

H (.’EZ — xj)fc.
1<i<j<n
So C1(¢,a,c) = Cy(¢,a,0) which we can compute with Case 1. O
Next we give an explicit product formula for C,, (¢, a, ¢). We prove this by showing

that the formula satisfies relations (3.14)-(3.18) which by Proposition 3.11 deter-
mine uniquely C, (¢, a, c).

Proposition 3.12. Ifc> 0 orifa > 1 then for 1 < ¢ <n then

¢
(3.23) Cn(,a,c) =Cp(0,a,c) H a1+ n—j)e/?

i1 a—ln—i—c()—]—i—l.
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if a > 1 then

I'(1+4¢/2)
i+ 1)c/2)[(a+ic/2)

Proof. By Proposition 3.11 it suffices to check that the formulas for C, (¢, a, c) and
Cr(0,a,c) in (3.23), (3.24) satisfy the relations (3.14)-(3.18).

Let CJ,(¢,a,c) and C)(0,a,c) be the formulas in the right-hand-side of (3.23)
and (3.24) respectively.

Relation (3.14) is apparent from the definition of C”, (¢, a,c).

Next we check that C/ (¢, a, c) satisfies (3.15). Using I'(t 4+ 1) = tI'(¢) repeatedly
we obtain:

(3:24) Co(0,a,¢) =n!-T(1+(a—Dn+e(3)) [] T(1+(
=0

C,(n—1,a,c)
C!(0,a—1,¢)
_I‘(1+(a—1n+c “oa—1+(—75)c/2 rT(a—1+ic/2)
ST+ (a—2)n+ Jl;Il a—1n+c()—j+1H I'(a +ic/2)
= ) oa—14+(n—j5)c/2 + 1
jl;[l((a—l)n—l—C( )_J+1)j1;[1 (a—1)n+c(h) —j+1ga—1+ic/2
=1,
as desired.
Next we verify (3.16). Again, using I'(t + 1) = tI'(t) repeatedly we obtain:
C,(n—1,1,¢)
07/171(0’07 C)
I e-de2  arGees)
1= (s )f]+1r(1+c( ) —(n—1))
) D(1+c/2) L1 (el +2)/2)
L1+ (n—1)¢/2)T(1+nc/2) T[F-2T(1 +ic/2)
IS d)e/2 LS e(s) L D)
IT;= fc( ) —j+1 1 FLL(+je/2)
- . 1
= ng(n—j)c/ng =1,
as desired.

Finally, it is trivial to check that C/ (¢, a, c) satisfy (3.17) and (3.18). Thus since
C} (L, a,c) satisty relations (3.14)-(3.18) and by Proposition 3.11 these relations
uniquely determine the constants C,, (¢, a,c) then C/ (¢,a,c) = C,(¢, a,c). O

To conclude, since C,,(0,a,c¢) = n!- L,(a,c) then Lemma 3.5 follows from (3.24)
in Proposition 3.12. By Corollary 3.6 and Proposition 3.7 L, (1,1) yields the desired
formula for the volume of Tes, (1) which completes the proof of Theorem 1.8.

4. FINAL REMARKS

4.1. Diagonal harmonics and polytopes. Example 1.1 states Haglund’s result
from [15] showing that the bigraded Hilbert series of the space DH,, is given by a
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weighted sum over Tesler matrices in 7,,(1,1,...,1). The space DH,, has dimension
(n+1)""1, the number of parking functions of size n. A conjecture of Haglund and
Loehr [18], settled by Carlsson and Mellit [8] with their proof of the more general
shuffle conjecture [17], expresses the LHS as

(41) ’H(DHT“ q, t) — Z qdinv(7r)tarea,(ﬂ—)7

where the sum is over parking functions 7. For definitions of the statistics dinv and
area see [16]. By definition H(DH,,q,t) is a polynomial in NJg,t] and symmetric
in ¢ and t. The right-hand sides of (4.1) and (1.1) give different combinatorial
models for this Hilbert series where the (g, ¢ positivity, ¢,¢ symmetry) are (trivial,
non-trivial) and (non-trivial, trivial) respectively. It remains open to prove directly
the equality of these models:

(42) Z qdinv(w)tarea(ﬂ) — Z wt(A),

AET(L,1,...,1)

for wt(A) as defined in (1.2). Levande [22] verified this identity for (g, 0) and (1,%).
In particular, when ¢ = 1,t = 1, wt(A) |q=1,1=1= 0 for any n x n Tesler matrix A
with more than n nonzero entries and the matrices that survive are the permutation
Tesler matrices each with n nonzero entries. Thus (4.2) at ¢ = 1,¢ = 1 becomes

et =3 ] ay

A i,5:a4;>0

where the sum is over the n! permutation Tesler matrices in 7,(1); the vertices
of polytope Tes,(a). This curious identity was proved combinatorially in [2, §5]
extending a function from Levande [22] from Tesler matrices to permutations.

Analogously, an important subspace of the space DH,, is the alternant DHS
that has dimension Cat(n) = %—l—l (277) The bigraded Hilbert series of DHE has the
following combinatorial model by Garsia and Haglund [11, 12]

(43) H(DHZ, q, t) — Z qarea(P)tbounce(P),

P
where the sum is over Dyck paths P of size n, see [16, §3] for the definition of
bounce. Gorsky and Negut [11] also expressed this Hilbert series as a weighted sum
over Tesler matrices:
(4.4) H(DH;,q,t)= > wi'(4),

AeT,(1,1,...,1)
where

w'(A) = [I (aipr + o = lasiraler) [ (=M)lailes
aii4+1>0 j>i+1l:a;;>0
for M = (1 —q)(1 —¢) and [b]g: = (¢® —t*)/(¢ — t) as in (1.2). When we set
qg=1,t =1 in (4.4), by the definition of wt’(A) only the Tesler matrices A with
support in the diagonals a;; and a1 survive each with weight 1. So (4.4) becomes

(4.5) ni1(2:> = #{AeT(1,1,...,1) 1 a;; =0,j > i+ 1},
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T | a c cl+a a
yl| d|e a el+y d
z| f fl+ =
w

FI1GURE 4. Illustration of the projection 7 used in the proof of Proposition 4.1.

This identity can be proved in the context of flow polytopes. Namely, translating
from flow polytopes (see Lemma 1.2) Baldoni-Vergne [4] noticed that the polytope
{(m;,;) € Tes,(a) : m; ; =0, >i+1}
is the Pitman-Stanley polytope [24] and when a = 1, this polytope has #(2")

n+1\n
lattice points, explaining (4.5), and volume (n + 1)"~1 (see [24, §1, §5]).

4.2. Enumeration of Tesler matrices. There is no known explicit formula for
the number T, (1) of Tesler matrices of size n. More than 20 terms of the sequence
{T,(1) }=1 have been computed in the OEIS [25, A008608]:

1, 2, 7, 40, 357, 4820, 96030, 2766572, 113300265, 6499477726,
515564231770, 55908184737696, . ..

Regarding asymptotic of this sequence we give some preliminary lower and upper
bounds that follows from a recursive construction by Drew Armstrong [1].

Proposition 4.1. n! <T,(1) < 2(3),

Proof. Let 7 : Tp(a1,...,an—1,an) = Tn-1(a1,...,an—1) defined by 7 : (a; ;) —

a;; + a; if i =4, .

(bi,;) where b; ; =< " +Gin o j . See Figure 4 for an example of w. The
;. j ifi#j

map 7 is surjective and for each B € T,_1(a1,...,a,_1), the size of the preimage

is 77H(B) = [1'5 (1 + bi;). Thus

(4.6) Toay,... an) = > 1:[ (14 biy).

BET(al,...,an_l) =1

For the case a = 1 one can show that if B € 7,,_1(1) then n < 7~ 1(B) < 2"~L
Using these bounds for 7=1(B) in (4.6) yields

n-Th_1(1) <T,(1) <2 - T, 1(1).

Iterating these bounds give the desired result.
An alternative proof of the lower bound is as follows: the matrices in 7,(1)
include the n! permutation Tesler matrices of size n. O

4.3. Combinatorial proof volume of CRY and Tesler polytopes. The prod-
uct formulas (1.5) and (1.7) for the volumes of the CRY and the Tesler polytopes
involving Catalan numbers and number of SYT suggest a combinatorial proof that
has been elusive since Zeilberger’s proof of (1.5). The current proofs of the formu-
las use the Lidskii formula (3.2) for the volume of flow polytopes to translate the
problem to evaluations of Kostant partition functions via constant term identities.


http://oeis.org/A008608
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It is also not clear why the volume of the CRY polytope divides the volume
of the Tesler polytope in terms of operations on polytopes. Curiously, using con-
stant term identities it is possible to express the volume of the Tesler polytope
as a nonnegative sum of terms two of which are f(=1n=2--1) and H?;()l Cat(7).
Namely, by (3.4) the volume of the Tesler polytope Tes, (1) is the constant term
of (e1(x1, ... ,xn))(;) [licicjcn(®i— z;)~ 1. Since e$2) = Z/\,_(g> fs\ where sy is
the Schur function of A, then by linearity of CT, ---CT,,

n—1
f(n_17n_2,m71) H Cat(l) = Z f)\ CTIn CTCEl S)\(l'l,...,fﬂn) H (irl_xj)_l

i=0 A-(2) 1<i<j<n

First, when A = (n — 1,n — 2,...,1) then we get fr=1n=2.1) and by degree
considerations and (3.1) one can show that

CTx” .. CTwl S(nfl,nfl...,l) H (.I'z — l‘j)_l =

1<i<j<n

CT,, -+ CTy, woa3--- 2! H (z; —z;)" ' = Ka, ,(0)=1.

1<i<j<n

Second, when A = ((})) then #U5) = 1 and by the version (3.12) of the Morris
identity we get

n—1
CT,, ---CT,, S((2)) H (zi — ;)" = M,(1,1,1) = l—IO Cat(s).

1<i<j<n

This of course this still leaves the question of why the nonnegative sum ends up
being the product f*—1m=2-1) . H;L:_Ol Cat(i) unanswered.
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