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Abstract

For a non-square integer x ∈ N, let kx denote the distance between x3 and the perfect
square closest to x3. A conjecture of Marshall Hall states that the ratios rx =

√
x/kx, are

bounded above. (Elkies has shown that any such bound must exceed 46.6.) Let {xn} be the
sequence of ”Hall numbers”: positive non-square integers for which rxn

exceeds 1. Extensive
computer searches have identified approximately 50 Hall numbers. (It can be proved that
infinitely many exist.) In this paper we study the minimum gap between consecutive Hall

numbers. We prove that for all n, xn+1 − xn > 1
5x

1
6
n , with stronger gaps applying when

xn is close to perfect even or odd squares (≈ x
1
3
n or ≈ x

1
4
n , respectively). This result has

obvious implications for the minimum ”horizontal gap” (and hence straight line and arc
distance) between integer points (whose x-coordinates exceed k2) on the Mordell elliptic
curves x3 − y2 = k , a question that does not appear to have been addressed.

1 Introduction

[Appendix A includes a detailed expository coverage of interesting and relevant history

and background on Hall’s conjecture, its relationship to other math questions/conjectures,

topics, and techniques; and some key applications of these techniques.]

For a non-square integer x ∈ N, let kx denote the distance between x3 and the perfect square
closest to x3. A conjecture of Marshall Hall states that the ratios rx =

√
x/kx, are bounded

above. (Elkies [HTTP7] has shown that any such bound must exceed 46.6.) Extensive computer
searches and several articles ([Aand], [Calv], [Elks1]) have focused on finding non-square x ∈ N
for which rx > 1, and only about 50 such numbers, which we shall refer to as Hall numbers,
are known to date (see [HTTP1] for a listing of some of these numbers). The first three such
numbers are 2, 5234, and 8158. All members d of the Danilov-Elkies infinite sequence ([Danl],
[HTTP6],[Elks1]) have rd slightly greater than 1, and there is no other such infinite sequence
known. The highest r-value so far has been found by Elkies (x = 5853886516781223, for which
rx = 46.6).

Hence, if Hall’s bound does exist, it must be greater than 46.6. Hall had surmised that the
bound was 5, based on results obtained from the limited computing power available at the time.
The fact that 46.6 is many times larger than 5 has led to skepticism about the tenability of
Hall’s conjecture. On the other hand, since no number with r-value greater than 46.6 has been
found since Elkies’ 1999 discovery, it might be premature to entertain serious doubts that the
conjecture is true. A weaker form of the conjecture which replaces

√
x with x0.5−ε (for any ε
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between 0 and 0.5) is also unresolved.

No known research appears to have focused on the minimum gap between members of the
sequence {xn} of Hall numbers. Estimating these gaps would be of interest not only in the con-
text of Hall’s conjecture, but also in the context of the ”horizontal” (x-value) separation between
integer points (whose x-coordinates exceed k2) on Mordell elliptic curves x3 − y2 = k, a topic
that also does not seem to have been addressed in the literature. It appears that investigations
of gaps related to points on Mordell curves have focused on using height or canonical height as
the metric for separation.

It would seem very natural and intuitive to ask what pattern the x-gaps of integer points dis-
plays. Obviously, knowing the x-gap between two integer points on the curve would also provide
estimates of the straight-line (and arc) distance gap between them.

This paper proves the following theorem:

Theorem: Let {xn} be the sequence of Hall numbers. Then

xn+1 − xn >
1

5
x

1
6
n for all n ≥ 1.

We show that stronger gaps hold when xn is close to a perfect even or odd square (≈ x
1
3
n or ≈ x

1
4
n ,

respectively). Since all Hall numbers below 3 ·1018 are known and meet these gap requirements,
we will assume throughout this paper that xn is a very large number (greater than 1018).

2 A Few Preliminary Lemmas and Considerations

In this section, we prove a few simple lemmas and explain the strategy for proving the main
result.

Lemma 1 : Suppose x
3
2 = y + f , where x and y are positive integers and 0 < f < 1. Then

k = x3 − y2 = 2fx
3
2 - f2. Also,

r =

√
x

k
=

1

2fx− f2

√
x

Proof: Squaring both sides of x
3
2 = y+f yields x3 = (y+f)2 = y2+2yf+f2 = y2+2f(y+f)−f2

= y2 +2fx
3
2 −f2. Subtracting y2 from both sides then yields the value of k. Calculating r using

this value of k and dividing numerator and denominator by
√
x yields the second part of the

lemma.

Lemma 2 : Suppose x
3
2 = y − f , where x and y are positive integers and 0 < f < 1. Then

k = y2 − x3 = 2fx
3
2 + f2. Also,

r =

√
x

k
=

1

2fx +
f2

√
x

Proof: The proof is almost identical to that of Lemma 1 (noting that y2 − 2yf + f2 = y2 −
2f(y − f)− f2).
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Lemma 3 : If x is a Hall number (rx > 1) and x
3
2 = y ± f (0 < f < 0.5), then 2fx < 1 + 1

4
√
x

(or f is less than ≈ 1
2x).

Proof: The proof follows directly from the preceding two lemmas, noting that f2 will always be
less than 1

4 .

Before proving the next set of lemmas, a key step that enables the proof of the main result
needs to be introduced. This step requires that x

3
2 be estimated by first finding the even perfect

square closest to x. To that end, note that as m ranges over the positive integers, the values
n2 + a (1 ≤ a ≤ 2n) and n2 - a (1 ≤ a ≤ 2n−2), where n = 2m, range over all non-square x ∈ N.

The logic is simple: for non-square x > 2, n2 is the even square which is closest to x. If x
is to the right of n2, then the first n2 + a expression applies, and if to the left of n2, then the
n2 – a expression applies. For example, when m = 2, the intervals (9,16) and (16,25) exhaust
all the non-square integers between 32 and 52. This is depicted in the figure below, where the
ranges marked by the dark horizontal lines (excluding the points on the dotted lines) exhaust
all non-square x ∈ N.

FIGURE - 1

The requirement that n be even makes for convenience in some of the calculations that follow.
With x expressed as n2 ± a (as above), the Taylor expansion about a = 0 (or, equivalently, the

generalized binomial theorem) can be used to expand x3/2 = (n2 ± a)
3
2 = (n2)

3
2 (1 ± a

n2 )
3
2 =

(n3)(1± a
n2 )

3
2 . This yields:

n3 +
3na

2
+

3a2

8n
− a3

16n3
+

3a4

128n5
− 3a5

256n7
...... (for n2 + a: Case I)

n3 − 3na

2
+

3a2

8n
+

a3

16n3
+

3a4

128n5
+

3a5

256n7
...... (for n2 − a: Case II)

Let q1(a) =
a3

16n3
− 3a4

128n5
+

3a5

256n7
− ...... (Case I);

and q2(a) =
a3

16n3
+

3a4

128n5
+

3a5

256n7
+ ...... (Case II).
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It is easy to see that both q1(a) and q2(a) are positive increasing functions of a (their first
derivatives are positive, n held constant), the absolute values of the terms in q1(a) and q2(a)
are decreasing, the numeric coefficients in the denominators of each term increase by a factor of
at least two, and that the difference in the exponents of a and n increases by exactly one from
one term to the next. Hence, because a ≤ 2n in Case I, q1(a) ≤ q1(2n) < 0.5. Similarly, q2(a)

<
(a + 1)3

16n3
< 0.5 in Case II (because (1 ≤ a ≤ 2n− 2).

Suppose 3a2 ≡ L (mod 8n), 0 6 L < 8n. Then 3a2 = 8nt + L, t being a non-negative in-

teger. Since n is even, W = n3 ± 3na

2
is always an integer. Hence,

x
3
2 =


W + t + L

8n − q1(a) (Case I), 0 < q1(a) < 0.5

W + t + L
8n + q2(a) (Case II), 0 < q2(a) < 0.5

Now, suppose that x is a Hall number. Then, in both cases, L 6= 0 because that would im-
ply 3a2 > 8n or a >

√
n, which makes 1

16
a3

n3 (the first term of both q1(a) and q2(a)) greater

than 1/(16n
3
2 ), requiring that q1(a) and q2(a) are greater than 1/(32n

3
2 ) > 1/n2 > 1/x (for

n > 1, 024), which is impossible by Lemma 3. So, assume L 6= 0 in the two paragraphs below.

For Case 1: L
8n < 1 and, because x is not a perfect square, L

8n cannot equal q1(a). Clearly,

if L
8n > q1(a), then [x

3
2 ] is W + t, with L

8n − q1(a) being the fractional part of x
3
2 ; and if L

8n

< q1(a), then [x
3
2 ] is W + t − 1, with 1 + L

8n − q1(a) = 1 − (q1(a) − L
8n) being the fractional

part of x
3
2 . Thus, from Lemma 3, for x to be a Hall number, | L8n − q1(a)| would need to be

less than
1+ 1

4
√
x

2x . Note that large values (close to 1) of L
8n would not make x a Hall number be-

cause q1(a) < 0.5, and so x
3
2 would remain at least a distance of 1

8n > 1
x from the nearest integer.

For Case 2: Logic similar to that in the last sentence of the previous paragraph implies
that for x to be a Hall number in this case, L

8n + q2(a) would have to be very close to 1, which

would require that | L8n + q2(a) − 1| would have to be less than
1+ 1

4
√
x

2x (by Lemma 3). We have
thus completed the proof of Lemma 4 below.

Lemma 4 : If x is a Hall number, then, L 6= 0, and in Case I,

| L
8n
− q1(a)| <

1 + 1
4
√
x

2x

must hold; whereas in Case II,

| L
8n
− (1− q2(a))| <

1 + 1
4
√
x

2x

must hold.

It is clear from the considerations leading to Lemma 4 that the distance from x
3
2 to the nearest

integer depends on two quantities: L and q1(a) (or q2(a) in Case II), both of which depend on
a of course. As a varies from 1 to 2n (1 to 2n − 2 in Case II), q1(a) and q2(a) behave very
predictably (being continuous functions of a), but L is the wild card which takes on discrete

and somewhat unpredictable values, and thus makes the distance between x
3
2 and the nearest

integer difficult to pin down. A very key part of the strategy in the proof is to contain the effects
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of this unpredictability.

To keep the proofs concise and tidy, we will not prove the lemmas and results separately for
each of the two cases (Case I and Case II). We will only address Case I, and point out any note-
worthy differences in the proofs for Case II. The logic for both cases is almost identical, with
only very minor adjustments needed to adapt Case I proofs to Case II. This would be expected
since the Case II numbers are essentially mirror images of Case I numbers (n2 being the mirror).

Recall the comment from the Introduction section that x can be assumed to be greater than
3 · 1018, because all the results proved below can be easily verified for the 25 Hall numbers less
than 3 · 1018.

Lemma 5 : If x = n2 + a (Case I), (1 ≤ a ≤ 2n), is a Hall number, then a > 3
√

6(n− 1)
2
3 . (For

x = n2 − a in Case II, the corresponding inequality is a > 2(n− 1)
2
3 − 1.)

Proof: From the equality L
8n = L

8n − q1(a) + q1(a), it follows that L
8n ≤ |

L
8n − q1(a)|+ |q1(a)| or

q1(a) = |q1(a)| ≥ L
8n − |

L
8n − q1(a)|. Using Lemma 4,

a3

16n3
> q1(a) ≥ L

8n
− | L

8n
− q1(a)| ≥ L

8n
−

1 +
1

4
√
x

2x
>

L

8n
−

1 +
1

4n
2(n2 + a)

>
L

8n
−

1 +
1

4n
2n2

because n2 < x = n2 + a. Multiplying both sides by 16n3 yields

a3 > 2n2L− 16n3 + 4n2

2n2
= 2n2L− (8n + 2)

Since 3a2 ≡ L (mod 8n), and because 3a2 can never be congruent modulo 8 to 1 or 2, the
least possible positive value of L is 3. (L cannot be 0 by Lemma 4.) Consequently,

a3 > 2n2L− (8n + 2) ≥ 6n2 − 8n− 2 > 6(n− 1)2, which proves the lemma in Case I.

The proof for Case II parallels that for Case I. The corresponding inequality in this case is

(a + 1)3

16n3
> q2(a) > 1− L

8n
− |1− L

8n
− q2(a)| > 8n− L

8n
−

1 +
1

4
√
x

2x
>

8n− L

8n
−

1 +
1

4n
2n2

(invoking Lemma 4). Once again, L = 0 would imply that x is not a Hall number. The
maximum possible value of L is 8n − 4 because 3a2 cannot be congruent modulo 8 to −1,−2,
or −3. So, the minimum possible value of 8n− L is 4, and multiplying by 16n3 yields,

(a + 1)3 > 2n2(8n− L)− (8n + 2) ≥ 8n2 − 8n− 2 > 8(n− 1)2,

from which the lemma for Case II follows.

Lemma 5 shows that there are boundaries to the left and right of n2 (n even) within which
there can be no Hall numbers. A similar result holds in the case of n2 (n odd), and this is the
focus of Lemma 6.

Lemma 6 : If n is an odd positive integer and x = n2 ± a is a Hall number, then a >
√
n.

Proof: Note that the previous stipulation for n to be even was solely to ensure that the second
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term (3na
2 ) in the binomial expansion of x

3
2 is an integer. Other than that, none of the previous

lemmas relied on the evenness of n. If n is odd, the integrality of 3na
2 depends on a. If a is an

even Hall number, the previous logic works as is and would establish that a > 3
√

6(n − 1)
2
3 in

the n2 + a case, and that a > 2(n− 1)
2
3 − 1 in the n2 − a case. If a is odd, a slight twist to the

argument is required although the logic is very similar.

In the n2 + a case (n odd, a odd) the associated expansion (for x
3
2 ) is:

n3 +
3na

2
+

3a2

8n
− a3

16n3
+

3a4

128n5
− ........

The fractional contribution from the second term is 0.5 and from the third term it is L
8n . So

the only way for x
3
2 to get close to an integer is for either L

8n to get fairly close to 0.5 or for
a3

16n3 to get close to 0.5 (with L
8n being small). In the latter case, a would have to be relatively

large because a3

16n3 being greater that even 1
16 would require a > n. In the former case, L

8n being
greater than even 3

8 is possible only when 3a2 > 3n or a >
√
n. Hence, the

√
n lower bound for

a to be a Hall number would always apply for n odd, regardless of whether a is odd or even.

In the n2 − a case (n odd, a odd) the associated expansion (for x
3
2 ) is:

n3 − 3na

2
+

3a2

8n
+

a3

16n3
+

3a4

128n5
+ ........,

and the argument here is similar because the positive terms after the second imply that the
fractional part of x

3
2 can get close to 1 only if either L

8n is greater than 3
8 or a3

16n3 is greater than
1
16 . The argument in the previous paragraph then applies verbatim, establishing a

√
n lower

bound on a here as well, and thus completing the proof of Lemma 6.

Note that Lemma 6 can be strengthened if one separates odd and even a, but we will content
ourselves with the

√
n estimate in the interest of having a more crisp and general articulation of

the bound when n is odd. Figure-2 captures Lemmas 5 and 6, and builds on Figure-1, portraying
the shaded regions (centered around the perfect squares) free of Hall numbers.

FIGURE - 2

Lemma 7 : If s is a positive integer such that 1 6 a 6 2n− s (in Case I), then

6



3sa2

16n3
(1− a

2n2
) < q1(a + s)− q1(a) <

3s(a + s)2

16n3

The corresponding Case II inequality is

3s(a− s)2

16n3
< q2(a)− q2(a− s) <

3sa2

16n3
(1 +

a

n2
)

Proof: The proof is a simple application of the mean value theorem. Differentiating both sides
of

q1(a) =
a3

16n3
− 3a4

128n5
+

3a5

256n7
− ......

(with respect to a, n held constant) yields

q
′
1(a) =

3a2

16n3
− 3a3

32n5
+

15a4

256n7
− ......

The mean value theorem implies that q1(a + s) − q1(a) = sq
′
1(a0), where a < a0 < a + s. The

lemma follows from the fact that q
′
1(a) is an increasing function of a (because its first derivative

is positive), and hence

3a2

16n3
(1− a

2n2
) =

3a2

16n3
− 3a3

32n5
< q

′
1(a) < q

′
1(a0) < q

′
1(a + s) <

3(a + s)2

16n3

For Case II, the proof is almost identical, the corresponding inequality being

3(a− s)2

16n3
< q

′
2(a− s) < q

′
2(a0) < q

′
2(a) <

3a2

16n3
(1 +

a

n2
)

One minor but subtle point: Note that for Case II, the a/2n2 from Case I changes to a/n2.
The reason for this difference is that when approximating q

′
2(a) one can easily show that the

sum of the third and succeeding terms in the expansion of q
′
2(a) is much less than the second term.

Lemma 8 : Suppose n and s are positive integers (n > 9, 709, 038), s < 1
4n

1/3, and suppose

a = kn + f, 0 < k < 2.5, and |f | < n
2
3

24s
. Then (for both Case I and Case II)

3sk2

2
− 4

5n
1
3

< 8n|q1(a± s)− q1(a)| < 3sk2

2
+

4

5n
1
3

Proof: Substituting a = kn + f in the following inequality from Lemma 7 (for Case I),

3sa2

2n2
(1− a

2n2
) < 8n(q1(a + s)− q1(a)) <

3s(a + s)2

2n2
, we get

3sa2

2n2
(1− a

2n2
) =

3sk2

2
+

3sfk

n
+

3sf2

2n2
− 3sk3

4n
− 9sk2f

4n2
− 9skf2

4n3
− 3sf3

4n4
, and

3s(a + s)2

2n2
=

3sk2

2
+

3sfk

n
+

3s2k

n
+

3sf2

2n2
+

3s2f

n2
+

3s3

2n2

Using the bounds for s and |f |, and the fact that 3s|f | < n
2
3

8 , it follows immediately that
the sum of the absolute values of the last five terms in the first expression, and the sum of the
last three terms of the second expression are both less than 4

n
2
3

, which results in

3sk2

2
+

3sfk

n
− 4

n
2
3

< 8n(q1(a + s)− q1(a)) <
3sk2

2
+

3sfk

n
+

3s2k

n
+

4

n
2
3

7



Note that
3|f |sk

n
<

2.5

8n
1
3

and
3s2k

n
<

7.5

16n
1
3

, and thus the sum of these two terms is less than

25

32n
1
3

. The lemma follows from the fact that, for n > 9, 709, 038,
4

n
2
3

<
0.6

32n
1
3

(and 25.6
32 = 4

5).

The proof for Case II is identical.

Lemma 9 : If L,L
′

and q, q
′

are any four real numbers, then

|q − q
′ | ≥ |L− L

′ | − |L− q| − |L′ − q
′ | and |L− L

′ | ≥ |q − q
′ | − |L− q| − |L′ − q

′ |

Both inequalities follow from the fact that L − L
′

= L − q + q − q
′

+ q
′ − L

′
and q − q

′
=

q − L + L− L
′
+ L

′ − q
′
, using the fact that |a + b + c| ≤ |a|+ |b|+ |c| for any real a, b, and c.

Lemma 10 : Let f(x, y) = k0x
n + k1x

n−1y + .... + kn−1xy
n−1 + kny

n be a homogeneous
polynomial of degree n ≥ 1 in x and y, where the ki are all integers and kn 6= 0. Let a and b be
non-zero integers such that kn and a are relatively prime and am divides f(a, b) for some integer
m ≥ n. Then a | b.

Proof: Let d be the (positive) gcd of a and b. Then a = da1 and b = db1 (a1 and b1 being
relatively prime). Clearly, f(a, b) = dnf(a1, b1) and

z =
f(a, b)

am
=

dnf(a1, b1)

dmam1
=

f(a1, b1)

dm−nam1

Since z is an integer and every term of f(a1, b1), except possibly the last, is divisible by a1,
it follows that a1 divides knb

n
1 . However, a1 is relatively prime to both kn and b1, so this forces

|a1| = 1, and hence |a| = d, which means that b = db1 = |a|b1, making b a multiple of a.

3 The Main Result

Theorem 1 : Suppose x is a Hall number and s ∈ N, 1 ≤ s < 1
5x

1/6. Then x± s cannot be Hall
numbers. (The gap s is higher when x is close to a perfect square, per the first paragraph below.)

Proof: From Lemmas 5 and 6 (and Figure 2), it is clear that if x is close to a perfect square
(just outside the shaded regions of Figure 2), then the bound for the gap s is actually far better

than 1
5x

1/6, being n
1
2 ≈ x

1
4 if x is close to an odd perfect square, and n

2
3 ≈ x

1
3 if x is close to

an even perfect square. Hence, we need only consider the cases when x = n2 + a, a + s ≤ 2n, n
even (for Case I), and x = n2 − a, a + s ≤ 2n − 2, n even (for Case II). Also, note that since

x = n2 + a < 2n2, x
1
6

5 < (2n2)
1
6

5 < n
1
3

4 (so the Lemma 8 condition is met).

The proof for Case II is identical to that for Case I, the only change being that the func-
tion q1 is replaced by 1− q2 (see Lemma 4), and noting that the distance between 1− q2(a) and
1− q2(a− s) is equal to the distance between q2(a) and q2(a− s). For this reason, we will only
prove the theorem for Case I. Further, note that proving ”x a Hall number ⇒ x + s not a Hall
number” also proves ”x a Hall number ⇒ x− s not a Hall number” (because Lemmas 5 and 6
enable us to assume that x− s, x, and x + s are all to the right of n2).

As before, set L to be the residue of 3a2 mod 8n, so 3a2 ≡ L (mod 8n), 0 6 L < 8n. Similarly,

8



set L1 to the residue of 3(a+s)2 mod 8n, so 3(a+s)2 ≡ L1 (mod 8n), 0 6 L1 < 8n. This clearly
implies that L1 − L = 6as + 3s2 − 8nv, for some integer v.

We will first prove that if x + s is a Hall number, then |L1 − L| must be less than
√
n. This

part of the proof is very straightforward. We will then show that a contradiction results if we
assume that |L1 − L| is less than

√
n, thus resolving the theorem. Proving this contradiction

requires more subtle reasoning.

If x and x + s are both Hall numbers, then a straightforward application of Lemma 4 and
Lemma 7, and the reasoning in Lemma 9 (noting that n2 < x = n2 + a < 2n2) results in

| L8n −
L1
8n | 6 |

L
8n − q1(a)|+ |q1(a)− q1(a + s)|+ |q1(a + s)− L1

8n |

<
1+ 1

4
√
x

2x +
1+ 1

4
√
x+s

2(x+s) + 3s(a+s)2

16n3 < 2
2x + 2

2x + 3s(2n+2n)2

16n3 < 2
x + 3s

n < 2
n2 + 3x

1
6

5n < 2
n2 + 6n

1
3

5n ...... (A)

< 2
n2 + 2

n
2
3

< 3

n
2
3

< 1
8
√
n

(for n > 246 = 191, 102, 976). Multiplying both sides by 8n es-

tablishes that |L1 − L| <
√
n.

We can thus assume going forward that |L1 − L| <
√
n. Setting d = L1 − L − 3s2, and

solving the equation L1 − L = 6as + 3s2 − 8nv for a yields

a =
8nv + d

6s
= n(

4v

3s
)+f , where f =

d

6s
and |f | = |d|

6s
6
|L1 − L|+ 3s2

6s
<
√
n+ 3n

2
3

16
6s <

4n
2
3

16
6s = n

2
3

24s

(for n > 166 = 16, 777, 216). Note that v cannot be 0 or negative because that would make a

less than n
2
3

24 which contradicts Lemma 5. Also, k = 4v
3s must be less than 2.5 or else a would

exceed 2n. Hence, all the conditions of Lemma 8 are met, and it follows that (because 3sk2

2 = 8v2

3s )

8v2

3s −
4

5n
1
3
< 8n(q1(a + s)− q1(a)) < 8v2

3s + 4

5n
1
3

......... (B)

There are two possibilities: either 8v2

3s is not an integer or it is an integer. We will show that
both these possibilities result in a contradiction.

Possibility 1: 8v2

3s is NOT an integer. In this case, the denominator of 8v2

3s (in reduced form)

is at most 3s, which means that the distance from 8v2

3s to the nearest integer is > 1
3s > 4

3n
1
3

.

Inequality (B) above then requires that 8n(q1(a + s) − q1(a)) must be at least a distance of
4

3n
1
3
− 4

5n
1
3

= 8

15n
1
3

> 1

2n
1
3

from the nearest integer. However, Lemma 9 implies, by virtue of

inequality (A) above, that (purely on the basis of x and x + s being Hall numbers)

| L8n −
L1
8n | − |q1(a)− q1(a + s)| 6 | L8n − q1(a)|+ |q1(a + s)− L1

8n | <
2

x

Multiplying both sides by 8n results in

|L− L1| − 8n|q1(a)− q1(a + s)| < 16n
x < 16n

n2 = 16
n < 1

2n
1
3

(for n > 182) ........ (C)

which places 8n|q1(a) − q1(a + s)| = 8n(q1(a + s) − q1(a)) within 1

2n
1
3

of the integer |L − L1|,
contradicting the earlier conclusion.

Possibility 2: 8v2

3s is an integer. It follows from inequalities (B) and (C) above that if 8v2

3s

is an integer then it must equal |L−L1| (or else 8v2

3s and |L−L1| would be separated by at least

9



1, which is clearly impossible). Substituting 8v2

3s for |L−L1| in the equation a =
8nv + d

6s
yields

a =
8nv + d

6s
=

8nv + L1 − L− 3s2

6s
=

8nv ± 8v2

3s
− 3s2

6s
=

24nvs± 8v2 − 9s3

18s2

Since a is an integer and 3 divides the denominator, it follows that 3 | 8v2 and hence 3 | v.
Setting v = 3v1 and substituting in the above equation yields

a =
72nv1s± 72v2

1 − 9s3

18s2
=

8nv1s± 8v2
1 − s3

2s2

This implies that 2 | s3, so s = 2s1, and another substitution results in

a =
16nv1s1 ± 8v2

1 − 8s3
1

8s2
1

=
2nv1s1 ± v2

1

s2
1

− s1

Since a + s1 is an integer, it follows that
2nv1s1 ± v2

1

s2
1

is an integer. Using Lemma 10, we

can conclude that s1 | v1. Setting v1 = s1v2 and substituting in the above results in

a = 2nv2 ± v2
2 − s1 = 2nv2 ± (v1s1 )2 − s1 = 2nv2 ± ( v

3s1
)2 − s1 = 2nv2 ± (2v

3s )2 − s

2

Since k = 4v
3s is less than 2.5, (2v

3s )2 is less than 1.6, and so the absolute value of ±(2v
3s )2 − s

2

cannot exceed 1.6 +
s

2
< 1.6 + n

1
3

8 . This forces v2 to be 1 because v2 > 2 would require a to

be within a distance of 1.6 + n
1
3

8 from 4n, which is impossible since a is less than 2n. (Note
that since v is positive, so are v1 and v2.) However, if v2 = 1, then the above equation simplifies to

a = 2nv2 ± v2
2 − s1 = 2n ± 1 − s1 = 2n ± 1 − s

2
− > 2n − 1 − s

2
. Since s < n

1
3

4 , this puts

x = n2 +a > n2 +2n−1− s

2
within a distance of 2+

s

2
< 2+ n

1
3

8 of (n+1)2, which is impossible

by Lemma 6 (also see Figure 2) because n + 1 is odd.
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Appendix

A History, Background, and Applications

A.1 History: The lead-up to Hall’s conjecture

Marshall Hall, Jr. studied math at Yale and Cambridge University, and held faculty positions
at several universities. He was a prolific mathematician who made very seminal contributions to
group theory, combinatorics, projective geometry, and coding theory. He passed away in London
in 1990 en route to a conference to mark his 80th birthday.

Marshall Hall’s conjecture is concerned with the separation between cubes and squares of in-
tegers. If x is an integer (which is not a perfect square), how close can a perfect square get
to x3? For example, 32 = 9 gets to within a distance of one from 23 = 8. The earliest se-
rious consideration of this separation appears to date back to Euler who, in the eighteenth
century, proved that there are no other instances of cubes and squares separated by a distance
of one. He used the method of infinite descent, a form of proof by contradiction: assuming a
least counterexample exists, and then deducing the existence of an even smaller counterexample.

In 1976, R. Tidjeman ([Tidj]) proved that for positive integer exponents m, n (m > 1 and
n > 1) there can be only finitely many integer pairs (x,y) such that xm – yn = 1, but no such
pairs could be identified besides (3,2), with m = 2, n = 3. In 2002, Preda Mihailescu ([Mihl)]
finally settled the question definitively by proving that with the exception of (3,2), there are no
other (x,y) pairs for which xm – yn = 1.

If, as Euler proved, there are no other cubes besides 8 that get to within a distance of one
from a perfect square, how close can a cube (which is not a perfect square) get to a perfect
square? In other words, if

x3 – y2 = k

where x and y are integers, and x is not a perfect square, then can one estimate a lower bound
for |k| in terms of some function of x? (Euler’s result implies that the lower bound has to be at
least 2, for x > 2). The earliest work on this question can be traced to a letter that S. Chowla
sent to B. J. Birch (dated 29 September, 1961, as mentioned in [HTTP7]). Chowla investigated
the polynomial family

x(t) =
t(t9 + 6t6 + 15t3 + 12)

9

y(t) =
t15

27
+

t12 + 4t9 + 8t6

3
+

5t3 + 1

12

k(t) = x3(t)− y2(t) = −3t6 + 14t3 + 27

108

(where t ≡ 3 modulo 6, so that x(t) and y(t) are integers). Since x is of the order of t10

and k(t) is of the order of t6, the above identity establishes that there are infinitely many (x,y)

pairs for which |k| < Cx
3
5 , C being a constant.

The obvious question would then be whether a similar result could be proved with an expo-
nent of x less than 3

5 . Hall’s experimental evidence for values of x up to 700, 000 seemed to
indicate that k is always greater than C

√
x for some constant C. For x = 5,234 (hence

√
x
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≈ 72.35) and y = 378,661, x3 – y2 = -17. Since 17/72.35 ≈ 0.235, it follows that for Hall’s

observation to be generalized C would have to be less than 0.235 or, equivalently, r =

√
x

k
would

have to be greater than 4.26.

Davenport ([Davn]) proved in 1965 that for polynomials f(t) and g(t) with complex coeffi-
cients, and such that f(t)3 6= g(t)2, the degree of f(t)3 – g(t)2 is always greater than or equal

to
degree(f(t))

2
+ 1. Marshall Hall’s conjecture was prompted by these results and stated:

Marshall Hall’s Conjecture: If x3 − y2 = k for integers x, y (x not a perfect square),

then |k| >
√
|x|
5

(equivalently, r =

√
|x|
|k|

< 5)

The measure r indicates how small |k| is relative to
√
|x| : the higher the value of r, the

smaller the value of |k| relative to
√
|x| .

A.2 Subsequent efforts

Hall’s conjecture sparked a search for integer pairs (x,y) for which |k| = |x3 – y2| is less than√
|x| (or r > 1), and x is not a perfect square. For convenience, we shall refer to such a number

x as a Hall number. As mentioned in [Elks1], the Danilov-Elkies Fermat-Pell family

x = 55t2 − 3000t + 719
Y = (53t2–114t + 26)(56t2–53(123)t + 3781)2

k = 27(2t− 1)

satisfies the identity x3 – Y = k

It can be proved using the theory underlying solutions to Pell’s equation that 53t2–114t+26 is a
perfect square for infinitely many values of t. (t = -5 and t = -10,150,883 are the smallest such
t, in absolute value, and the corresponding values of x are 93844 and 322001299796379844.) For
these values of t, Y would be a perfect square (say y2). Hence, there are infinitely many (x,y)

pairs for which x3 – y2 = k and |k| ≈ C
√
x, C =

54

5
5
2

≈ 0.966. Equivalently, r =
√
|x|/|k| > 1/C

≈ 1.035. The five values of x calculated to date are documented in [HPPT6]. They are the two
mentioned above (93844 and 322001299796379844) and:

1114592308630995805123571151844, 3858108676488182444301031186675778188809844, and
13354661111806898918013326915229994453818137920195953844.

None of the pairs in the Danilov-Elkies family would violate Hall’s conjecture. To disprove
the conjecture, a value of r above 5 would be required.

In 1998, Elkies ([Elks1]) developed an algorithm to search for values of x < X with r > 1.
He encoded it in a C program using 64-bit integer arithmetic that ran in

√
Xlog(X) time. His

program found all values of x less than X = 3(1018). Two values had r exceeding 5. Specifically,
38115991067861271 had r-value 6.5 and 5853886516781223 had r-value 46.6. This disproved
Hall’s conjecture in its C = 1/5 (or r = 5) formulation. In the same paper, Elkies proved that
there can be no more than

√
Xlog(X) Hall numbers below X.

Subsequent searches focused on finding larger Hall numbers. The interested reader can refer
to [Aand], [Calv], and [Elks1]. [Aand] lists all known Hall numbers, 25 of which are greater
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than 1020 (and two among these are greater than 1040). Note, however, that the Hall numbers
above 3(1018) were identified using a probabilistic search algorithm which was not guaranteed to
find all Hall numbers in a range, but only those that met specific criteria (which increased the
likelihood of their being Hall numbers). Hence, there likely are many Hall numbers in the 1020

to 1040 range that have not been identified. The 46.6 value for r found by Elkies still stands as
a record.

While Hall’s conjecture in its r = 5 formulation has been disproved, it could still hold with
a value of r greater than 46.6 (or a value of C less than 1/46.6 = 0.0215). Hence, Marshall
Hall’s conjecture remains unresolved to this day.

A weaker form of Hall’s conjecture, formulated by Stark and Trotter around 1980, states that
for any ε > 0, there is a constant C(ε), depending only on ε, such that for integers x, y (where
y2 6= x3)

|k| = |x3 − y2| > C(ε)x
1
2
−ε whenever x > C(ε)

The fact that even this weaker version is unresolved indicates that there is a fundamental
gap in our current understanding of the separation between cubes and squares of integers. A
generalization of Hall’s conjecture is Pillai’s conjecture which is associated with separation of
other distinct powers of integers (like fourth and fifth powers). It is also unresolved.

A.3 Hall’s Conjecture and Elliptic Curves

Hall’s conjecture originated from Mordell’s equation y2 = x3 + k associated with an elliptic
curve sometimes known as Mordell’s curve. A more general form of an elliptic curve is the set
of points (x,y) in the plane that satisfy an equation of the form: y2 = x3 + ax + b, (a and b are
constants.) The ”plane” here is defined by an underlying field (for example, the complex, real
or rational numbers), and a and b are in this field. By including a point at infinity, an addition
operator can be defined on the points on the curve.

To add two points P1 and P2, one would extend the line joining them until it intersects the
curve at a third point, and then set the sum of P1 and P2 to the reflection (in the x-axis) of this
third point. (To add a point to itself, the tangent line would be used instead.) This addition
is obviously commutative, but it takes a bit of computation to show that it is also associative.
There is an additive identity (which is the point at infinity), and each point has an additive
inverse (its reflection in the x-axis). Hence, the points form a group under this addition, an
observation that is credited to Henri Poincare.

If the underlying field contains the rational numbers, it is easy to prove that the points (x,y) on
this curve for which x and y are both rational form a subgroup of this group (assuming that a and
b are rational). In 1922, Louis Mordell proved that this subgroup is finitely generated ([Mord]).
(In his 1928 doctoral dissertation, Andre Weil ([Weil]) generalized this result to include certain
other types of fields - so this result is referred to as the Mordell-Weil theorem.) Incidentally, the
proof uses a form of infinite descent (which, as was pointed out at the beginning of this appendix,
was used by Euler when investigating cubes and squares that are separated by a distance of one).

The fact that this subgroup is finitely generated implies that it is a sum of a finite number
of finite cyclic groups and a finite number of copies of Z. The subgroup of this group comprising
the finite sum of finite cyclic groups is called the torsion subgroup, and elements of the torsion
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subgroup are referred to as torsion points. Clearly, they are the points P of finite order: meaning
that by computing P, P + P , P + P + P , etc., we will sooner or later reach P again. In 1977,
Barry Mazur ([Mazr1]) proved that the torsion subgroup must be one of only 15 possible groups,
the largest of which has 16 elements.

If an elliptic curve is defined by an equation with integer coefficients, then the Nagell-Lutz
theorem states that any torsion point which is rational must actually be an integer point; and in
1928, Carl Siegel proved that an elliptic curve can have only finitely many integer points. (Note
that an integer point may not be a torsion point.)

The number of copies of Z in the decomposition of the subgroup of rational points is referred
to as the rank of the elliptic curve. Most curves have small rank, and the elliptic curve with
the highest exactly known rank (of 19) is one discovered by Noam Elkies, who also discovered a
curve with rank at least 28. (Some examples of curves having high rank are at [HTTP11].) It is
not known whether or not there are curves with rank 29 or higher. In 1987, Joseph Silverman
([Silv]) proved that the number of integer points on the Mordell curve C: y2 = x3 + k (k being
6th power free) cannot exceed K1+rank(C) for some absolute constant K which is independent of
C. (Rank(C) is the rank of the subgroup of rational points.)

Determining which numbers can be possible ranks of an elliptic curve is a very difficult open
problem. The Birch and Swinnerton-Dyer conjecture, one of the six unresolved Millennium
problems (see [HTTP12]), each carrying a million dollar prize, is related to this open problem.

Interestingly, an elliptic curve called the Frey elliptic curve played a key role in the proof of
Fermat’s Last Theorem which states that the equation xn + yn = zn (n > 3, n ∈ N) cannot have
any integer solutions. In 1982, Gerhard Frey demonstrated that if Fermat’s Last Theorem had
a counterexample, then the Frey elliptic curve would not have certain properties. Andrew Wiles
spent six years proving a result which implied that the Frey curve would have the properties in
question, and hence ruling out the possibility of a counterexample to Fermat’s Last Theorem.

A generalization of Fermat’s Last Theorem, known as Beal’s Conjecture (and also as the
Tijdeman-Zagier conjecture), states that the equation xl +ym = zn (l,m, n > 3; l,m, n ∈ N) has
no integer solutions with x, y, z relatively prime. (Infinitely many solutions exist if the relatively
prime condition is dropped, example 33 + 63 = 35.) Andrew Beal, a billionaire banker and am-
ateur mathematician, is offering a million dollars for a proof or counterexample (see [HTTP8]).

The Beal conjecture has been proved for special cases of (l,m, n) using methods that extend
the theory of elliptic curves to a broader class of curves. In the context of this conjecture and
the broader class of curves (whose genus is greater than one) two theorems stand out: Falting’s
theorem and the Darmon-Granville theorem. The latter theorem implies that for any specific
(l,m, n), there can be at most finitely many relatively prime x, y, z solutions. (Refer to [Elks2]
and [Mazr2] for interesting coverage of these topics.)

When a = 0, the elliptic curve represents a Mordell curve. A few examples of Mordell curves
are shown below (extracted from [HTTP9]). The black dots on the curve indicate lattice points
(both x and y are integers). Sloan’s sequence ([HTTP10]) lists some values of k (6, 7, 11, 13,
14, 20, 21, 23, 29, 32, 34, 39, 42) for which the Mordell curve C : y2 = x3+k has no lattice points.
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Hall’s conjecture has implications for the integer solutions to Mordell’s equation: y2 = x3 + k.
As noted earlier, Siegel’s theorem states that this equation (for k 6= 0) can have at most finitely
many solutions. Baker proved that max(|x|, |y|) < ec|k|

1000
, where c = 1010. Stark improved on

this result and was able to show that for any ε > 0 there is a constant c = c(ε) (depending only
on ε) such that max(|x|, |y|) < ec|k|

1+ε
. However, both of these estimates are exponential.

Suppose Hall’s conjecture were true, say for r = 50. This would imply that

√
|x|
|k| < 50 or

√
x < 50k or x < 2500k2. Consequently, y2 = x3+k < (2500k2)3 + k = 506k6+k < 506(|k|+1)6.

So, y < 503(|k|+1)3. Hence, Hall’s conjecture, if true, would imply that max(|x|, |y|) is bounded
by a polynomial in k, which would be a far better bound than that of Stark.

A.4 Applications of Elliptic Curves

Elliptic curves have applications in public-key cryptography. Public-key cryptography is used to
encode data in a manner that is hard to decipher, and it is thus applicable in situations where
sensitive data needs to be stored and/or transmitted. Examples are defense/intelligence agency
communication, password information and credit card transactions on the internet, data storage
in the cloud, intra-company communication of proprietary information, transmission of private
information (like health care records), etc.
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Public-key cryptography requires two keys: a private key and a public key. The public key
is used for encryption and the private key is used for decryption. While the public key and the
private key have a mathematical link, it is essential to ensure that determining the private key
from the public key is virtually impossible. The goal is to make the deciphering of the private
key from the public key not computationally feasible. In other words, there would just be so
many possibilities to check, that with today’s computing speeds it would take several decades
of computing time to make this determination possible.

The first public-key cryptographic system, which is still being widely used, is known as RSA
(named after the initials of the three developers of the underlying algorithm: Ron Rivest, Adi
Shamir and Leonard Adleman). The difficulty in deciphering the private key essentially stems
from the fact that it is easy to get a computer to multiply two large primes, but difficult to
have it factor the product. For example, suppose one wanted to run a simple divisibility check
on all numbers between 1020 and 1030, and suppose each check can be done in a billionth of
a second. This would take several billion centuries, by which time the sun would have burned out!

Elliptic curve cryptography (ECC) (which was introduced in 1985) has two advantages:

1. It has a smaller public key size which reduces storage and bandwidth/transmission time
requirements. For example, a 256-bit ECC public key provides security which is comparable to
a 3072-bit RSA public key; and

2. Deciphering the ECC public key is much harder (more computationally intensive) than
deciphering an RSA public key. The following excerpt from [HTTP3] puts this comparison in
perspective:

To visualize how much harder it is to break, Lenstra recently introduced the concept of ”Global Security.” You can compute

how much energy is needed to break a cryptographic algorithm, and compare that with how much water that energy could

boil. This is a kind of cryptographic carbon footprint. By this measure, breaking a 228-bit RSA key requires less energy

than it takes to boil a teaspoon of water. Comparatively, breaking a 228-bit elliptic curve key requires enough energy to boil

all the water on earth. For this level of security with RSA, you’d need a key with 2,380-bits.

More information on the documented advantages of ECC over RSA can be found at [HTTP3],
and at the US National Security Agency website: The Case for Elliptic Curve Cryptography
([HTTP2]).

ECC uses elliptic curves over a finite field. The simplest example of a finite field is the set
of all integers modulo p (under addition and multiplication), where p is a prime. The elliptic
curve is then defined as the set of all points (x,y), where x and y are in the field and satisfy
y2 = x3 + ax + b

(which, when a = 0, is just the Mordell curve y2 = x3 + b).

For example, in the field of integers modulo 7 (under addition and multiplication) the point
(2,2) satisfies the equation

y2 = x3 + x + 1

because 22 ≡ 4 (mod 7) and 23 + 2 + 1 = 8 + 2 + 1 = 11 ≡ 4 (mod 7).

The set of all such points (x,y) on the curve (along with the point at infinity) forms a com-
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mutative group, with the point at infinity acting as the identity element of this group. It is
easy to show that a finite field has pn elements for some prime p (and positive integer n), so the
overall space in which an elliptic curve over a finite field is defined will have p2n + 1 points for
some prime p (the 1 being added to include the point at infinity). Some illustrative examples
can be found at [HTTP4].

Because it is so difficult to decipher, the adoption of ECC is growing. Governments and defense
organizations, including the United States government, are utilizing this relatively newer type of
cryptography, making it nearly impossible to tamper with internal communications. Companies
are beginning to apply elliptic curve cryptography as well. For example, Apple implements ECC
in order to provide signatures in Apple’s iMessage service. Several other text messaging or Short
Message Service (SMS) apps incorporate ECC. For example, searching for ECC on the Android
App Market (now called Google Play) will display several examples (or just Google a term like
Google Play elliptic curve cryptography).

The increasing use of remote patient monitoring systems via the use of embedded mobile devices
has raised concerns about privacy in the transmission of patient information from such systems.
Once again, ECC has been recommended as an efficient and effective solution by several health
care and security experts ([Malh]).

Similarly, wireless enterprise-wide instant messaging (IM) facilitates collaboration and good
communication within a company, but there is always the concern that these messages could be
intercepted by wily competitors who could steal valuable proprietary information. Once again,
ECC has been deployed to address these concerns.

It is also being used as a measure to secure cloud computing. ECC is transforming secure
data storage and communications, and is turning into a trustable solution for online security
([Gupt]). Bitcoin uses an ECC-based digital signature algorithm to ensure that only rightful
owners can access and spend their funds. Internet hosting companies are incorporating ECC
into their Secure Socket Layer (SSL) technology.

Some of the more recent versions of well-known web browsers, such as Google Chrome and
Firefox, also incorporate ECC-based algorithms for communicating securely. If you are using a
recent version of Google’s Chrome browser, typing in the URL for any secure site (one begin-
ning with https) and clicking the lock symbol (to the left of the URL) will show the encryption
scheme being used. For example, go to https://blog.cloudfare.com and click on the lock symbol.
You will see something like the following:
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Here, the ECDHE stands for Elliptic Curve Diffie Hellman Ephemeral which incorporates an
algorithm based on elliptic curves. (The RSA component means that RSA-based algorithms are
used to establish the identity of the server.)

A.5 Hall’s conjecture and the ABC conjecture

The abc conjecture (also known as the Oesterlé–Masser conjecture) was proposed by Joseph
Oesterlé and David Masser in the 80’s. It is one of the most well-known and challenging open
questions in math and its resolution would settle many outstanding unsolved math problems
including the weak form of Marshall Hall’s conjecture.

The key concept underlying the abc conjecture is simple. Let us define a triple to be an ordered
triad (a,b,c), where a and b are co-prime positive integers and a + b = c. We define the radical
r(a,b,c), or just r for short, as the product of the distinct primes dividing abc. Consider the
triple (125,3,128).

125 + 3 = 128 or 53 + 3 = 27

In this case r is 5 x 3 x 2 = 30, which is less than c = 128. Triples which have this prop-
erty (r < c) are referred to as abc triples. Experimenting with a few examples will quickly
show that abc triples are quite rare (a randomly chosen triple is very likely to not be an abc
triple). For example, there are only 15 abc triples with c less than 300. It is very easy to prove
that there are infinitely many abc triples: the family (1, 9n–1, 9n), where n is a positive integer,
contains only abc triples because 9n–1 is always divisible by 8, hence r would always be less
than 0.75(9n–1).

How small can the radical r of an abc triple get relative to c? One measure would be to calculate
the ratio c/r. The greater this ratio, the smaller r is in comparison to c. However, a more conve-

nient measure is to calculate the ratio of the logarithms: q = log(c)
log(r) . (This ratio is independent of

the base on account of the change of base formula.) We refer to q as the quality of the abc triple.

The highest known value of q is about 1.62991 associated with the triple (2, 109.310, 235), which
is known as Reysatt’s triple. The second highest value of q is about 1.62599 and is associated
with the triple (112, 325673, 23.221), known as Benne de Weger’s triple. As of 2013, there were
only 140 known triples whose quality was at least 1.4.

The abc conjecture states that for any ε > 0 there are only finitely many abc triples whose
quality q exceeds 1 + ε. Given that we defined q as the ratio of logs, this statement is obviously
equivalent to the statement that for any ε > 0 there are only finitely many abc triples such that
c > r1+ε. It can be proved that the abc conjecture implies the weak form of Hall’s conjecture.
It does not imply the strong form of Hall’s conjecture. [Wald] has some interesting and useful
coverage on the abc conjecture.

A.6 Wrap-up

As demonstrated in the preceding appendix subsections, Hall’s conjecture is not merely a stand
alone curiosity, but exists in a larger ecosystem of interesting problems, techniques, conjectures,
and applications. Any progress in resolving this conjecture is likely to reverberate through and
impact a significantly larger swath of mathematics.
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