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Abstract

The Dufresne laws (laws of product of independent random variables with gamma and beta
distributions) occur as stationary distribution of certain Markov chains Xn on IR defined by:

Xn = An(Xn−1 +Bn) (0.1)

where X0, (A1, B1), ..., (An, Bn) are independent and the (Ai, Bi)
′s are identically distributed. This

paper generalizes an explicit example where A is the product of two independent βa,1, βb,1 and B ∼ γ1
or γ2.

MSC: primary: 60E05; secondary: 60G55,33C05,33C20,33C15.

Keywords: beta, gamma and Dufresne distributions,Markov chains, stationary distributions,
hypergeometric differential equations, Poisson process.

I Introduction.

Let us recall that the real Dufresne laws are distributions on (0,∞) defined as follows: Let p and q be in
IN = 0, 1, 2, ... and a = (a1, ..., ap) and =

¯
(b1, ..., bq) be two sequences of positive numbers. We write for

s ≥ 0 and p > 0

(a)s =

p
∏

j=1

Γ(aj + s)

Γ(aj)

and (a)s = 1 for p = 0. As introduced in [3,6], the Dufresne law D(a;b) on (0,+∞) (if it exists) is
defined by its Mellin transform:

∫ ∞

0

xsD(a, )
¯
(dx) =

(a)s
()
¯
s

where s is such that aj + s and bi + s are positive for all i and j. For p = q = 1 an example is given the
beta distribution defined for a > 0 and b > 0 by

βa,b(dx) =
1

B(a, b)
xa−1(1− x)b−1

1(0,1)(x)dx, (1.2)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) . and which therefore can also be written as D(a; a+ b). Similarly for p = 1 and

q = 0 the gamma distribution with scale parameter 1 and shape parameter c > 0 is the probability on
(0,∞) defined by

γc(dx) =
1

Γ(c)
xc−1e−x

1(0,∞)(x)dx (1.3)

is the Dufresne distribution D(c,−).
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II General case

Let us now develop an extension to paragraph 5 in [3]:

Proposition 1 Let A,B and X be independent positive random variables such that A has distribution
D(α, β;α+1, β+1) (i.e. is the distribution of product of two independent random variables βα,1, ββ,1) and
such that B has distribution γu = D(u;−), where u is a positive real parameter. Then X and A(X +B)
have the same distribution if and only if Φ(s) = IE (e−sX) is the unique continuous solution for s ≥ 0
with Φ(0) = 1 of the following differential equation:

(s+ 1)usΦ′′(s) + (α+ β + 1)(s+ 1)uΦ′(s) +
αβ

s
((s+ 1)u − 1)Φ(s) = 0 (2.4)

Proof. Suppose that X and A(X + B) have the same distribution and consider Φ(s) = IE (e−sX) for
s ≥ 0. The law of A is:

αβ

β − α
[tα−1 − tβ−1] 1(0,1)(t)dt

If B has the gamma distribution D(u;−), we have

IE (e−sB) =
1

(1 + s)u

and the functional equation can be written:

Φ(s) = IE (e−sA(X+B)) = IE (IE (e−sA(X+B) | A)) = IE (
Φ(sA)

(1 + sA)u
) = αβ

∫ 1

0

∫ 1

0

Φ(sab)aα−1bβ−1

(1 + sab)u
dadb

(2.5)
leading to:

Φ(s) =
αβ

sα

∫ s

0

∫ 1

0

Φ(tb)tα−1bβ−1

(1 + tb)u
dtdb (2.6)

we rewrite this as

sαΦ(s) = αβ

∫ s

0

∫ t

0

Φ(v)tα−1vβ−1

tβ(1 + v)u
dtdv (2.7)

Taking the derivative of both sides gives:

(sαΦ(s))′ = αβsα−β−1

∫ s

0

Φ(v)vβ−1

(1 + v)u
dv (2.8)

and this easily leads to the differential equation (2.4). To show the uniqueness of Φ , an elementary way
is to see that all other solution of (2.4) in a neighborhood of zero can be written as s 7−→ Φ(s)z(s), where
the unknown function z satisfies

sΦ(s)z′′(s) + (2Φ′(s) + (α + β + 1)Φ(s))z′(s) = 0

Since from (2.4) Φ′(0) = − uαβ
α+β+1 , it is easily seen that z is continuous on 0 with z(0) = 1 iff z is a

constant.

III Case u = 1

Let us study first the case where u = 1. Then the problem becomes a particular case of the Dufresne
result α, β, c = 1 (see Proposition 3 in [3] see also [5]) and the distribution of X is D(α, β;α+ β +1) . A
direct proof of this result can also been obtained from the differential equation (2.4), which becomes for
u = 1 :

(s+ 1)sΦ′′(s) + (α+ β + 1)(s+ 1)Φ′(s) + αβΦ(s) = 0
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whose solutions can be calculated by the standard tools of hypergeometric differential equations. As noted
in [3] the explicit expression of the Dufresne distribution in terms of Whittaker confluent hypergeometric
function W (p, q;x) is:

Γ(α+ β + 1)

Γ(α)Γ(β)
e−x/2x

α+β−3
2 W (−1 + α+ β

2
,
β − α

2
;x)1(0,∞)(x)dx (3.9)

(see Erdelyi et al. 5.19 [8], or Gradsteyn and Ryzhik 7.621(6) [11]).

IV Case u = 2

We now consider the more difficult case u = 2. Proposition 12 in [3] was curiously involving the golden

ratio 1+
√
5

2 . We extend it as follows:

Proposition 2 Let A,B and X be independent positive random variables such that A has distribution
D(α, β;α + 1, β + 1) and such that B has distribution γ2 = D(2;−). Then X and A(X + B) have the
same distribution if and only if X has the distribution:

D(α+ ρ, β + ρ;α+ β + 1) ∗D(−ρ,−)

where ρ =
1−

√
1+4αβ

2 and the operation ∗ stands for an additive convolution of Dufresne variables.

Proof. For n = 2 the differential equation (2.4) becomes:

(s+ 1)2sΦ′′(s) + (α + β + 1)(s+ 1)2Φ′(s) + αβ(s + 2)Φ(s) = 0 (4.10)

The characteristic equation of this differential equation relative to the singular point s = −1 is p2−p−αβ,

whose solutions are ρ+ =
1+

√
1+4αβ

2 or ρ =
1−

√
1+4αβ

2 . Changing the function Φ into the new unknown
function z defined by Φ(s) = (1 + s)ρz(s) leads to the following hypergeometric differential equation for
z:

s(1 + s)z′′(s) + (α+ β + 1 + (2ρ+ α+ β + 1)s)z′(s) + (ρ+ α)(ρ+ β)z(s) = 0

whose unique solution continuous on [0,∞) and equal to 1 on 0 is the Gauss hypergeometric function :

2F1(ρ+ α, ρ+ β;α+ β + 1;−s)

(see Rainville p. 54 [12]). Thus

Φ(s) = (1 + s)ρ2F1(ρ+ α, ρ+ β;α+ β + 1;−s)

We know that the Laplace transform of the Dufresne distribution D(ρ+ α, ρ + β;α + β + 1) is 2F1(ρ +
α, ρ + β;α + β + 1;−s) and that the Laplace transform of the distribution γ−ρ is (1 + s)ρ: the result is
proved. Note that the positivity of the parameters is given by the condition min(α, β) + 1 > max(α, β),
this condition shows the exchange of the product of two beta variates: D(α, β;α+1, β+ 1) is equivalent
to D(α, β;β + 1, α+ 1).

V Corollaries

As a consequence, we get a possibly new identity for the generalized hypergeometric function 3F2.

Corollary 1 For all integers n > 0 we have the following identity:

(−ρ)n 3F2(ρ+α, ρ+β,−n;α+β+1, ρ−n; 1) =
1

(n+ 1)2
(2−ρ)n 3F2(ρ+α, ρ+β,−n;α+β+1, ρ−3−n; 1)

(5.11)
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Proof. With the notations of the previous proposition, we use the fact that IE (Xn) = IE (An)IE ((X +B)n).
Now the distribution of X +B is D(α+ ρ, β + ρ;α+ β+1) ∗D(−ρ+2,−), from proposition (2) and the
convolution properties of the gamma distributions. We can now apply Proposition 7 in [3] for computing
the moments of X and X +B. Since IE (An) = 1

(n+1)2 , the corollary is proved.

Another consequence, where we get a possibly new integral formula for Gauss hypergeometric functions,
arises from the application of the Laplace transform to the result.

Corollary 2 If α, β are positive, if ρ =
1−

√
1+4αβ

2 and if 2F1(a, b; c; s) is the Gauss hypergeometric
function then we have :

(1+s)ρ2F1(ρ+α, ρ+β;α+β+1;−s) =

∫ 1

0

∫ 1

0

αβxα−1yβ−1

(1 + sxy)−ρ+2 2F1(ρ+α, ρ+β;α+β+1;−sxy)dxdy (5.12)

Proof. With the notations of the previous proposition, we use the fact that IE (e−sX) = IE (e−sA(X+B)).
Now the Laplace transform of the distribution of X + B is (1 + s)ρ−2

2F1(ρ + α, ρ + β;α + β + 1;−s).
From Proposition 2, from the convolution properties of the gamma function and since A is the product
of two independent βα,1, ββ,1 the corollary is proved.

VI Application to the triggered shot noise

In physics and in insurance mathematics (see [5])the following process occurs:

Z(t) =
∑

0≤Ti≤t

Bie
−p(t−Ti) (6.13)

where the (Ti)i∈IN ∗ are the arrival dates of a Poisson process with rate λ and the (Bi)i∈IN ∗ are i.i.d.
random variables . Z(t) represents, for example, the shot noise as in ref. [15]. The stationary limit of
this process exists if E(log |Bi|) < ∞ and is the same as the distribution limit of the sequence of random
variables (Xi)i∈IN ∗ defined by

X1 = A1B1, Xm+1 = Am+1(Xm +Bm+1),m > 0

the Aj being powers in p
λ of independent random variables uniform on [0, 1] .

Now consider a triggered shot noise with period k (see [1,2,4]):

Zk(t) =
∑

i|0≤Tki≤t

Bie
−(
∑

k

j=2
p(j−1)(T(k(i−1)+j)−T(k(i−1)+(j−1))+p(k)(t−T(ki)))

The k sucessive Poisson events are perturbating the exponential decay differently. The same arguments
as in [9] show that the distribution limit of ZTkm

is given by the limit of Xm , but the Ai are independent

with the same distribution as Πk
j=1U

pj/λ
j the Uj being independent random variables uniform on [0, 1]

which correspond to the studied cases u = 1, 2 where α = p1

λ , β = p2

λ and the Bi are γ1 or γ2 distributed
.

VII Products of more than 2 betas

Proposition 3 Let A,B and X be independent positive random variables such that A has distribution
D(α, β, γ;α + 1, β + 1, γ + 1) (i.e. is the distribution of product of three independent random variables
βα,1, ββ,1, βγ,1) and such that B has an exponential distribution γ1 = D(1;−). Then X and A(X + B)
have the same distribution if and only if Φ(s) = IE (e−sX) is the unique continuous solution for s ≥ 0
with Φ(0) = 1 of the following differential equation:

(1+s)s2Φ′′′(s)+(α+β+γ+3)(1+s)sΦ′′(s)+(1+s)(αβ+αγ+βγ+α+β+γ+1)Φ′(s)+αβγΦ(s) = 0 (7.14)
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Proof. Using the same arguments as in proposition (2), we get

Φ(s) = αβγ

∫ 1

0

∫ 1

0

∫ 1

0

Φ(sabc)aα−1bβ−1cγ−1

(1 + sabc)
dadbdc (7.15)

from which after 3 differentiations we derive the differential equation. The problem again becomes a
particular case of Dufresne distribution D(α, β, γ; c1, c2) since the differential equation is of generalized
hypergeometric type with solution

3F2(α, β, γ; c1, c2;−s)

see [14] the parameters c1, c2 being the roots of the second order equation generated by the non linear
system given by the identification of the parameters of equation (7.14) with those of the canonical equation
in [14]. i.e.:

c1 + c2 + 1 = α+ β + γ + 3

and
c1c2 = αβ + αγ + βγ + α+ β + γ + 1

The roots are complex conjugate (or real positive),

c1 =
α+ β + γ + 2 + i

√

4(αβ + αγ + βγ + α+ β + γ + 1)− (α+ β + γ + 2)2

2

the case α = β = γ has been studied by Dufresne in [7] where he justifies the fact of having complex
parameters for the product of beta distributions, such complex parameters have appeared already for the
distribution of triggered shot noise [2], it is easily verified that the real part and the module of the roots
(or the two real roots ) are greater than the elements of (α, β, γ)

⋂

max(α, β, γ) to build the Laplace
transform of a beta variable.
Products of n > 3 betas could be handled in the same way, leading again to Dufresne variables but with
increasing complexity to calculate the parameters since for n > 5 it will be necessary to use iterative
numerical methods to solve the system of n − 1 non-linear equations to evaluate the n − 1 unknown
parameters. For instance for n = 4 the differential equation is:

(1 + s)s3Φ(iv)(s) + (α + β + γ + δ + 6)(1 + s)s2Φ′′′(s)

+(αβ + αγ + αδ + βγ + βδ + γδ + 3(α+ β + γ + δ) + 7)(1 + s)sΦ′′(s)

+(αβγ + αγδ + αβδ + βγδ + αβ + αγ + αδ + βγ + βδ + γδ + α+ β + γ + δ + 1)(1 + s)Φ′(s)

+αβγδΦ(s) = 0

the solution is:

4F3(α, β, γ, δ; c1, c2, c3;−s)

the unkown parameters are the roots of the third order equation resulting from the 3 non linear equations
due to the identification with the parameters of the fourth order hypergeometric equation given in [13]i.e.:

c1 + c2 + c3 + 3 = α+ β + γ + δ + 6

c1 + c2 + c3 + c1c2 + c2c3 + c3c1 + 1 = αβ + αγ + αδ + βγ + βδ + γδ + 3(α+ β + γ + δ) + 7

c1c2c3 = αβγ + αγδ + αβδ + βγδ + αβ + αγ + αδ + βγ + βδ + γδ + α+ β + γ + δ + 1

There are 3 real positive roots or one real positive root and two complex conjugate roots which is allowed
according to the Dufresne results [7] the positivity being given by the Descartes/Laguerre rule of signs,
see appendix.
For the case n = 5 the solution is:

5F4(α, β, γ, δ, η; c1, c2, c3, c4;−s)

5



the unkown parameters are the roots of the fourth order equation resulting from the 4 non linear equations
due to the identification with the parameters of the fith order hypergeometric equation :

c1 + c2 + c3 + c4 + 6 = α+ β + γ + δ + η + 10

3(c1 + c2 + c3 + c4) + c1c2 + c2c3 + c3c1 + c1c4 + c2c4 + c3c4 + 7 =

αβ + αγ + αδ + βγ + βδ + γδ + αη + βη + γη + δη + 6(α+ β + γ + δ + η) + 25

c1c2c3 + c1c2c4 + c1c3c4 + c2c3c4 + c1 + c2 + c3 + c4 + c1c2 + c2c3 + c3c1 + c1c4 + c2c4 + c3c4 + 1 =

αβγ + αγδ + αβδ + βγδ + αβη + αγη + αδη + βγη + βδη + γδη

+3(αβ + αγ + αδ + βγ + βδ + αη + βη + γη + γδ + δη) + 7(α+ β + γ + δ + η) + 15

c1c2c3c4 = αβγη + αγδη + αβδη + βγδη + αβγδ

αβγ + αγδ + αβδ + βγδ + αβη + αγη + αδη + βγη + βδη + γδη

+(αβ + αγ + αδ + βγ + βδ + αη + βη + γη + γδ + δη) + (α+ β + γ + δ + η) + 1

There are 4 real positive roots or two real positive roots and two complex conjugate roots or two pairs of
complex conjugate roots which is allowed according to the Dufresne results [7],the positivity being given by
the Descartes/Laguerre rule of signs, see appendix. The process could be extended by induction using an
automatic procedure, the main difficulty being then for n > 5 to get a good initial guess of the location of
the solution of the non-linear system by an iterative method, for the sake of simplicity the choice of the set
of (α, β, γ, δ, η, ...)

⋂

max(α, β, γ, δ, η, ...) components for the starting array of the real roots of the iteration
process could be made since their positivity is assumed from the Descartes/Laguerre rule of signs and each
real positive parameters ci must be greater than one of the associated α, β, γ, δ, η, ... to build the Laplace
transform of a beta variable. Otherwise the calculations could be made sequentially: set the parameters
(α, β, γ, δ, η, ...) in increasing order αi, i = 1, ..., n+1 compute the n roots starting the iterations with the
initial guess α1 and then max(ci−1, αi), i = 2, ..., n. For instance, if α = β = γ = δ = η = ζ = 1 then

c1 = 3, c2 =
3 + i

√
3

2
, c3 =

3− i
√
3

2
, c4 =

5 + i
√
3

2
, c5 =

5− i
√
3

2

(using wolframalpha) equivalent results have been tested which show that the special case: equality to
1 of the all the parameters gives a set of real integer coefficients for a quasi cyclotomic polynomial, the
roots are the roots of unit (the real root 1 is lacking ) the unit circle being centered at (2, 0) on the
complex plane ( C++ program available on request, see also Sloane [14]). The corresponding cycltomic
polynomial is the following according to the identity [13]:

m=n
∑

m=0

(−1)myn−m

An extension to the case α = β = γ = δ = η = ζ = ... gives the roots on the circle of radius α centered
at (α + 1, 0) in the complex plane. This extension due to the generalization of the relation of theorem
1.1 in [13]

n
∑

j=r+1

Cj
nC

r
j−1α

j−1−r =

n
∑

j=r+1

Cr
j−1(1 + α)j−1−r , 0 ≤ r ≤ n− 1

For instance if α = 2 the polynomial is x3 − 11x2+43x− 65 the roots are x = 3− 2i, x = 3+2i, x = 5 on
the circle of radius 2 centered at (3, 0) the real root 1 is lacking see figure.If all the parameters are equal
to 1

n at the limit n tending to infinity it can be conjectured that the result is degenereted to a circle point
of radius 1

n centered at (1 + 1
n , 0) showing an infinite product of β 1

n
,1.
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IX Appendix: Algorithm for the coefficients

n-5 n-4 n-3 n-2 n-1 n = 6
n - - - - - 1
n-1 - - - - 1 n(n− 1)/2 = 15
n-2 - - - 1 10 (n− 2)tablen−2,n−1 + tablen−3,n−1 = 65
n-3 - - 1 6 25 (n− 3)tablen−3,n−1 + tablen−4,n−1 = 90
n-4 - 1 3 7 15 (n− 4)tablen−4,n−1 + tablen−5,n−1 = 31
n-5 1 1 1 1 1 1
* Σ5+ Σ4+ Σ3+ Σ2+ Σ1+ Σ0

Where the Σs come from the Viete’s formulae for polynoms:
Σ0 = 1 Σ1 = α + β + ...+ ν with n terms Σ2 = αβ + ... with C2

n terms Σk = αβ...κ + ... with Ck
n terms

Σn = αβ...ν Note that this table shows the triangle of Stirling numbers of 2nd kind (see Sloane [13]).

X Appendix: Remainder (Cardan) ready for use

From the non linear system we get the following third order equation, since the corresponding elementary
symmetrical functions appear:

ξ3 −Aξ2 + (B −A)ξ − C = 0

where:
A = α+ β + γ + δ + 3

B = αβ + αγ + αδ + βγ + βδ + γδ + 3(α+ β + γ + δ) + 6

C = αβγ + αγδ + αβδ + βγδ + αβ + αγ + αδ + βγ + βδ + γδ + α+ β + γ + δ + 1

According to the classical solution of the third order equation, let:

p = B −A− A2

3

q = −2A3

27
− C +

A(B −A)

3

the roots are:

ξk =
A

3
+ jk

3

√

− q

2
+

√

q2

4
+

p3

27
+ j|k−3| 3

√

− q

2
−
√

q2

4
+

p3

27
, k = 0, 1, 2

where j is the cubic root of unit. For instance, if α = β = γ = δ = 1 then ξ1 = 3, ξ2 = 2 + i, ξ3 = 2 − i
Note that the real root 1 is lacking .

XI Appendix: Remainder (Ferrari)ready for use

From the non linear system we get the following 4th order equation, since the corresponding elementary
symmetrical functions appear:

ξ4 −Aξ3 + (B − 3A)ξ2 − (C −B + 2A)ξ +D = 0

where:
A = α+ β + γ + δ + η + 4

B = αβ + αγ + αδ + βγ + βδ + γδ + αη + βη + γη + δη + 6(α+ β + γ + δ + η) + 18

8



C = αβγ + αγδ + αβδ + βγδ + αβη + αγη + αδη + βγη + βδη + γδη

+3(αβ + αγ + αδ + βγ + βδ + αη + βη + γη + γδ + δη) + 7(α+ β + γ + δ + η) + 14

D = αβγη + αγδη + αβδη + βγδη + αβγδ

αβγ + αγδ + αβδ + βγδ + αβη + αγη + αδη + βγη + βδη + γδη

+(αβ + αγ + αδ + βγ + βδ + αη + βη + γη + γδ + δη) + (α+ β + γ + δ + η) + 1

According to the classical solution of the 4th order equation, let:

p = B − 3A− 3A2

8

q =
A3

8
+

A(B − 3A)

2
+ C −B + 2A

r = −3A4

256
+

(B − 3A)A2

16
+

(C −B + 2A)A

4
+D

p1 = −r − p2

12

q1 = − p3

108
+

4rp− q2

8
− pr

6

the roots of the third order equation are:

ζk =
p

6
+ jk

3

√

−q1
2

+

√

q21
4

+
p31
27

+ j|k−3| 3

√

−q1
2

−
√

q21
4

+
p31
27

, k = 0, 1, 2

from which ζr is chosen among the real root(s), and then the 4 roots are:

ξk =
A

4
+

1

2

√

2ζr − p+ (−1)k
√

ζr
2

− p

4
+ (−1)[

k
2 ]
√

ζ2r − r, k = 0, 1, 2, 3

For instance, if α = β = γ = δ = η = 1 then ξ1 = 2+ 1
4 ((1−

√
5) + i

√

2(5 +
√
5)), ξ2 = 2+ 1

4 ((1−
√
5)−

i
√

2(5 +
√
5)), ξ3 = 2+ 1

4 ((1 +
√
5)+ i

√

2(5−
√
5)), ξ4 = 2+ 1

4 ((1+
√
5)− i

√

2(5−
√
5)) . Note that the

quasi cyclotomic polynomial has the real root 1 lacking.
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XII Table of the coefficients of the polynomial for α = β = ... = 1

0 1 - - - - - - - - - -
1 1 -3 - - - - - - - - -
2 1 -5 7 - - - - - - - -
3 1 -7 17 -15 - - - - - - -
4 1 -9 31 -49 31 - - - - - -
5 1 -11 49 -111 129 -63 - - - - -
6 1 -13 71 -209 351 -321 127 - - - -
7 1 -15 97 -351 769 -1023 769 -255 - - -
8 1 -17 127 -545 1471 -2561 2815 -1793 511 - -
9 1 -19 161 -799 2561 -5503 7937 -7423 4097 -1023 -
10 1 -21 199 -1121 4159 -10625 18943 -23297 18943 -9217 2047

n xn x(n−1) x(n−2) x(n−3) x(n−4) x(n−5) x(n−6) x(n−7) x(n−8) x(n−9) x(n−10)
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Figure 1: roots forα = 2
=
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