# THE DISTRIBUTION OF SELF-FIBONACCI DIVISORS 

FLORIAN LUCA AND EMANUELE TRON


#### Abstract

Consider the positive integers $n$ such that $n$ divides the $n$-th Fibonacci number, and their counting function $A$. We prove that


$$
A(x) \leq x^{1-(1 / 2+o(1)) \log \log \log x / \log \log x}
$$

## 1. Introduction

The Fibonacci numbers notoriously possess many arithmetical properties in relation to their indices. In this context, Fibonacci numbers divisibile by their index constitute a natural subject of study, yet there are relatively few substantial results concerning them in the literature.

Let $\mathcal{A}=\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be the increasing sequence of natural numbers such that $a_{n}$ divides $F_{a_{n}}$ : this is OEIS A023172, and it starts
$1,5,12,24,25,36,48,60,72,96,108,120,125,144,168,180, \ldots$
(as they have no common name, we dub them self-Fibonacci divisors). Let moreover $A(x):=\#\{n \leq x: n \in \mathcal{A}\}$ be its counting function.

This kind of sequences has already been considered by several authors; we limit ourselves to mentioning the current state-of-the-art result, due to Alba González-Luca-Pomerance-Shparlinski.

Proposition 1.1 ([1), Theorems 1.2 and 1.3).

$$
\left(\frac{1}{4}+o(1)\right) \log x \leq \log A(x) \leq \log x-(1+o(1)) \sqrt{\log x \log \log x}
$$

We improve the upper bound above as follows.

## Theorem 1.2.

$$
\begin{equation*}
\log A(x) \leq \log x-\left(\frac{1}{2}+o(1)\right) \frac{\log x \log \log \log x}{\log \log x} \tag{1.1}
\end{equation*}
$$

The main element of the proof is a new classification of self-Fibonacci divisors.
We now recall some basic facts about Fibonacci numbers. All statements in the next lemma are well-known and readily provable.
Lemma 1.3. Define $z(n)$ to be the least positive integer such that $n$ divides $F_{z(n)}$ (the Fibonacci entry point, or order of appearance, of $n$ ). Then the following properties hold.

- $z(n)$ exists for all $n \in \mathbb{N}$. In fact, $z(n) \leq 2 n$.
- $\operatorname{gcd}\left(F_{a}, F_{b}\right)=F_{\operatorname{gcd}(a, b)}$ for $a, b \in \mathbb{N}$.
- $z(p)$ divides $p-\left(\frac{p}{5}\right)$ for $p$ prime, $\left(\frac{p}{5}\right)$ being the Legendre symbol.
- If a divides $b$, then $z(a)$ divides $z(b)$.
- $z(\operatorname{lcm}(a, b))=\operatorname{lcm}(z(a), z(b))$ for $a, b \in \mathbb{N}$. In particular, $\operatorname{lcm}(z(a), z(b))$ divides $z(a b)$.
- $z\left(p^{n}\right)=p^{\max (n-e(p), 0)} z(p)$ for $p$ prime, where $e(p):=v_{p}\left(F_{z(p)}\right) \geq 1$ and $v_{p}$ is the usual p-adic valuation.
From now on, we shall use the above properties without citing them.
Next comes a useful result concerning the p-adic valuation of Fibonacci numbers.
Lemma 1.4 ([4], Theorem 1).

$$
\begin{gathered}
v_{2}\left(F_{n}\right)= \begin{cases}0, & \text { if } n \equiv 1,2(\bmod 3) \\
1, & \text { if } n \equiv 3 \quad(\bmod 6) ; \\
3, & \text { if } n \equiv 6 \quad(\bmod 12) ; \\
v_{2}(n)+2, & \text { if } n \equiv 0 \quad(\bmod 12) .\end{cases} \\
v_{5}\left(F_{n}\right)=v_{5}(n) .
\end{gathered}
$$

For $p \neq 2,5$ prime,

$$
v_{p}\left(F_{n}\right)=\left\{\begin{array}{lll}
v_{p}(n)+e(p), & \text { if } n \equiv 0 & (\bmod z(p)) \\
0, & \text { if } n \not \equiv 0 & (\bmod z(p))
\end{array}\right.
$$

To end the section, we point out an interesting feature of the upper bound in Theorem 1.2: it should be, up to a constant factor, best possible.

A squarefree integer $n$ is a self-Fibonacci divisor if and only if $z(p)$ divides $n$ for every prime $p$ that divides $n$. This is certainly true if $p-\left(\frac{p}{5}\right)$ divides $n$ for every prime factor $p$ of $n$. This is indeed strongly reminiscent of Korselt's criterion for Carmichael numbers: one should therefore expect heuristics for self-Fibonacci divisors similar to those for Carmichael numbers to be valid; in particular Pomerance's [7, which would predict

$$
\log A(x)=\log x-(1+o(1)) \frac{\log x \log \log \log x}{\log \log x} .
$$

## 2. Arithmetical Characterisation

In this section, we show how $\mathcal{A}$ can be partitioned into subsequences that admit a simple description.

Note that $n$ divides $F_{n}$ if and only if $z(n)$ divides $n$ and set

$$
\mathcal{A}_{k}:=\{n \in \mathbb{N}: n / z(n)=k\} .
$$

Our next task is to prove the following characterisation of the $\mathcal{A}_{k}$ 's. Let $c(k):=\min \mathcal{A}_{k}$ whenever $\mathcal{A}_{k}$ is not empty.
Theorem 2.1. $\mathcal{A}_{k}=\varnothing$ if $k$ is divisible by 8,5 or $p^{e(p)+1}$ for an odd prime $p$. Otherwise, if $k=\prod_{i} p_{i}^{\alpha_{i}}$,

- $\mathcal{A}_{k}=\left\{c(k) \cdot 5^{\beta_{1}} \cdot \prod_{\substack{i \\ p_{i} \neq 2,5}} p_{i}^{\beta_{i}}\right\}$ as $\left(\beta_{1}, \ldots, \beta_{t}\right)$ ranges over $\mathbb{N}^{t}$ with the conditions that either $\beta_{i}=0$ or $\beta_{i} \geq e\left(p_{i}\right)-v_{p_{i}}(k)$ if $\alpha_{i}=e\left(p_{i}\right)$, and $\beta_{i}=0$ if $\alpha_{i}<e\left(p_{i}\right)$, for every $i$, if $k$ is odd or 2 times an odd number;
- $\mathcal{A}_{k}=\left\{c(k) \cdot 5^{\beta_{1}} \cdot \prod_{\substack{i \\ p_{i} \neq 5}} p_{i}^{\beta_{i}}\right\}$ with $\left(\beta_{1}, \ldots, \beta_{t}\right)$ as before, if $k$ is a multiple of 4 .

Proof. We shall henceforth implicitly assume that the primes we deal with are distinct from 2 and 5 , and all the proofs when some prime is 2 or 5 are easily adapted using the modified statement of Lemma 1.4.

Suppose that, for some $n, n / z(n)=k$, and $p^{d}$ is the exact power of $p$ that divides $k$. Upon writing $k=p^{d} k^{\prime}$ and $n=p^{d} n^{\prime}$, with $k^{\prime}$ coprime to $p$, this becomes $n^{\prime} / k^{\prime}=z\left(p^{d} n^{\prime}\right)$. In particular,

$$
d+v_{p}\left(n^{\prime}\right) \leq v_{p}\left(F_{z\left(p^{d} n^{\prime}\right)}\right)=v_{p}\left(F_{n^{\prime} / k^{\prime}}\right) \leq v_{p}\left(n^{\prime}\right)+e(p),
$$

which is absurd if $d \geq e(p)+1$, so that $\mathcal{A}_{k}=\varnothing$ if $p^{e(p)+1}$ divides $k$.
Suppose on the other hand that $k$ fulfills the conditions for $\mathcal{A}_{k}$ to be nonempty. We want to know for which $m \in \mathbb{N}$, given $n \in \mathcal{A}_{k}, m n$ is itself in $\mathcal{A}_{k}$ : this will give the conclusion, once we know that all the numbers in the sequence are multiples of a smallest number $c(k)$ which belongs itself to $\mathcal{A}_{k}$. The proof of this latter fact is deferred to Theorem [2.2 since it fits better within that setting.

Suppose we have $n \in \mathcal{A}_{k}$, and take $m=p_{1}^{a_{1}} \cdots p_{w}^{a_{w}}$ with $a_{i}>0$ for each $i$; set $n=p_{1}^{\lambda_{1}} \cdots p_{w}^{\lambda_{w}} n^{\prime}$ with $n^{\prime}$ coprime to $m$ and $\lambda_{i} \geq 0$ for each $i$. Then one has

$$
\begin{gathered}
k=\frac{n}{z(n)}=\frac{p_{1}^{\lambda_{1}} \cdots p_{w}^{\lambda_{w}} n^{\prime}}{z\left(p_{1}^{\lambda_{1}} \cdots p_{w}^{\lambda_{w}} n^{\prime}\right)} \\
=\frac{p_{1}^{\lambda_{1}} \cdots p_{w}^{\lambda_{w}} n^{\prime}}{\operatorname{lcm}\left(p_{1}^{\max \left(\lambda_{1}-e\left(p_{1}\right), 0\right)} z\left(p_{1}\right), \ldots, p_{w}^{\max \left(\lambda_{w}-e\left(p_{w}\right), 0\right)} z\left(p_{w}\right), z\left(n^{\prime}\right)\right)} .
\end{gathered}
$$

The $p_{i}$-adic valuation of this expression is $v_{p_{i}}(k)$, so in the denominator either $\max \left(\lambda_{i}-e\left(p_{i}\right), 0\right)$ is the greatest power of $p_{i}$, or some of $z\left(p_{1}\right), \ldots, z\left(p_{w}\right), z\left(n^{\prime}\right)$ has $p$-adic valuation $\lambda_{i}-v_{p_{i}}(k) \geq \lambda_{i}-e\left(p_{i}\right)$. Furthermore, one has $\lambda_{i} \geq v_{p_{i}}(k)$, as $n$ has to be a multiple of $k$.

Now, the number

$$
\begin{gathered}
\frac{m n}{z(m n)}=\frac{p_{1}^{\lambda_{1}+a_{1}} \cdots p_{w}^{\lambda_{w}+a_{w}} n^{\prime}}{z\left(p_{1}^{\lambda_{1}+a_{1}} \cdots p_{w}^{\lambda_{w}+a_{w}} n^{\prime}\right)} \\
=\frac{p_{1}^{\lambda_{1}+a_{1}} \cdots p_{w}^{\lambda_{w}+a_{w}} n^{\prime}}{\operatorname{lcm}\left(p_{1}^{\lambda_{1}+a_{1}-e\left(p_{1}\right)} z\left(p_{1}\right), \ldots, p_{w}^{\lambda_{w}+a_{w}-e\left(p_{w}\right)} z\left(p_{w}\right), z\left(n^{\prime}\right)\right)}
\end{gathered}
$$

is equal to $k$ if and only if its $p_{i}$-adic valuation is $v_{p_{i}}(k)$ for each $i$, that is

$$
v_{p_{i}}(k)=\lambda_{i}+a_{i}-\max \left(\lambda_{i}+a_{i}-e\left(p_{i}\right), \lambda_{i}-v_{p_{i}}(k)\right) .
$$

Suppose that the first term in the max is the greater, that is $a_{i} \geq e\left(p_{i}\right)-v_{p_{i}}(k)$. The above equality reduces to $v_{p_{i}}(k)=e\left(p_{i}\right)$ : so in this case each value $\geq e\left(p_{i}\right)-$ $v_{p_{i}}(k)$ for $a_{i}$, and each nonnegative value for $\lambda_{i}$ is admissible, if $v_{p_{i}}(k)=e\left(p_{i}\right)$, and no value is admissible if $0 \leq v_{p_{i}}(k)<e\left(p_{i}\right)$.

Suppose that the second term is the greater, that is $a_{i}<e\left(p_{i}\right)-v_{p_{i}}(k)$. The equality reduces to $a_{i}=0$, which is impossible.

Starting from $c(k)$ and building all the members of $\mathcal{A}_{k}$ by progressively adding prime factors, we find exactly the statement of the theorem.

In the remainder of this section, we show that $c(k)$ admits a more explicit description.

Theorem 2.2. $c(k)=k \operatorname{lcm}\left\{z^{i}(k)\right\}_{i=1}^{\infty}$.
Proof. To prove first that such an expression is well-defined, we show that the sequence of iterates of $z$ eventually hits a fixed point.

First note that, for $k=\prod_{i} p_{i}^{\alpha_{i}}, z(k)=\operatorname{lcm}\left\{p_{i}^{\max \left(\alpha_{i}-e\left(p_{i}\right), 0\right)} z\left(p_{i}\right)\right\}_{i}:$ this is a divisor of $\frac{k}{\operatorname{rad}(k)} \operatorname{lcm}\left\{z\left(p_{i}\right)\right\}_{i}$, where $\operatorname{rad}(k)=\prod_{i} p_{i}$ is the radical of $k$. Consider now the largest prime factor $P$ of $k$ : if $P \geq 7$, its exponent in the previous expression decreases by at least 1 at each step, since the largest prime factor of $z(P)$ is strictly smaller than $P$. Consequently, after at most $v_{P}(k)$ steps, the exponent of $P$ would have vanished. By iterating the argument concerning the largest prime factor at each step, after a finite number $\ell$ of steps, $z^{\ell}(k)$ will have only prime factors smaller than 7 ; set $z^{\ell}(k)=2^{a} 3^{b} 5^{c}$.

Recall now Theorem 1.1 of [6]: the fixed points of $z$ are exactly the numbers of the form $5^{f}$ and $12 \cdot 5^{f}$. By noting that $z\left(2^{a}\right)=3 \cdot 2^{a-2}, z\left(3^{b}\right)=4 \cdot 3^{b-1}, z\left(5^{c}\right)=5^{c}$, we get that $z\left(2^{a} 3^{b} 5^{c}\right)=2^{\max (a-2,2)} 3^{\max (b-1,1)} 5^{c}$. Since we can continue this until $a \leq 2$ and $b \leq 1$, we are left with a few cases to check to show that the sequence of iterates indeed reaches a fixed point.

As $c(k)$ must be a multiple of $k$, call $T:=c(k) / k$. Consider next the obvious equalities

$$
\begin{aligned}
T & =z(k T), \\
z(T) & =z^{2}(k T), \\
z^{2}(T) & =z^{3}(k T),
\end{aligned}
$$

Write $x \stackrel{\text { div }}{\leftarrow} y$ for the statement " $y$ divides $x$ ". Then we have that

$$
\begin{aligned}
T & =z(k T) \\
& \stackrel{\text { div }}{\leftarrow} z(\operatorname{lcm}(k, T)) \\
& =\operatorname{lcm}(z(k), z(T)) \\
& =\operatorname{lcm}\left(z(k), z^{2}(k T)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\operatorname{div}}{\leftarrow} \operatorname{lcm}(z(k), z(\operatorname{lcm}(z(k), z(T)))) \\
& =\operatorname{lcm}\left(z(k), \operatorname{lcm}\left(z^{2}(k), z^{2}(T)\right)\right) \\
& =\operatorname{lcm}\left(z(k), z^{2}(k), z^{3}(k T)\right) \\
& \vdots \\
& =\operatorname{lcm}\left(z(k), z^{2}(k), z^{3}(k), \ldots\right) .
\end{aligned}
$$

Note that we have not used yet that $k T$ is the smallest member of $\mathcal{A}_{k}$; this means the above reasoning works for any member of $\mathcal{A}_{k}$, so that any number in $\mathcal{A}_{k}$ is a multiple of $k \operatorname{lcm}\left(z(k), z^{2}(k), z^{3}(k), \ldots\right)$. If we manage to prove that $k \operatorname{lcm}\left(z(k), z^{2}(k), z^{3}(k), \ldots\right)$ is indeed in the sequence, we will obtain the divisibility argument we needed in the proof of Theorem [2.1.

Thus, we want to prove that $T=\operatorname{lcm}\left\{z^{i}(k)\right\}_{i=1}^{\infty}$ works; it is enough to prove that the divisibilities we previously derived are equalities, or in other words that $z(k T)=z(\operatorname{lcm}(k, T))$ for $T$ defined this way.

If $k=\prod_{i} p_{i}^{\alpha_{i}}$ with $\alpha_{i} \leq e\left(p_{i}\right)$ for each $i$, then

$$
\begin{aligned}
T & =\operatorname{lcm}\left(z\left(\prod_{i} p_{i}^{\alpha_{i}}\right), z^{2}\left(\prod_{i} p_{i}^{\alpha_{i}}\right), \ldots\right) \\
& =\operatorname{lcm}\left(\operatorname{lcm}\left\{z\left(p_{i}^{\alpha_{i}}\right)\right\}_{i}, \operatorname{lcm}\left\{z^{2}\left(p_{i}^{\alpha_{i}}\right)\right\}_{i}, \ldots\right) \\
& =\operatorname{lcm}\left(\left\{z\left(p_{i}^{\alpha_{i}}\right)\right\}_{i},\left\{z^{2}\left(p_{i}^{\alpha_{i}}\right)\right\}_{i}, \ldots\right)
\end{aligned}
$$

and

$$
z(k T)=z\left(\left(\prod_{i} p_{i}^{\alpha_{i}}\right) \operatorname{lcm}\left(z\left(\prod_{i} p_{i}^{\alpha_{i}}\right), z^{2}\left(\prod_{i} p_{i}^{\alpha_{i}}\right), \ldots\right)\right) .
$$

We would like to bring the $\prod_{i} p_{i}^{\alpha_{i}}$ into the least common multiple, but some power of $p_{i}$ could divide the iterated entry point of some other prime to a higher power. Define then $m\left(p_{h}\right)$ to be the largest exponent of a power of $p_{h}$ that divides $z^{i}\left(p_{j}\right)$ as $i$ and $j$ vary; thus

$$
\begin{aligned}
& z\left(\left(\prod_{i} p_{i}^{\alpha_{i}}\right) \operatorname{lcm}\left(z\left(\prod_{i} p_{i}^{\alpha_{i}}\right), z^{2}\left(\prod_{i} p_{i}^{\alpha_{i}}\right), \ldots\right)\right) \\
= & z\left(\operatorname{lcm}\left(\left\{p_{i}^{m\left(p_{i}\right)+\alpha_{i}}\right\}_{i}, z\left(\prod_{i} p_{i}^{\alpha_{i}}\right), z^{2}\left(\prod_{i} p_{i}^{\alpha_{i}}\right), \ldots\right)\right) \\
= & \operatorname{lcm}\left(\left\{z\left(p_{i}^{m\left(p_{i}\right)+\alpha_{i}}\right)\right\}_{i},\left\{z^{2}\left(p_{i}^{\alpha_{i}}\right)\right\}_{i},\left\{z^{3}\left(p_{i}^{\alpha_{i}}\right)\right\}_{i}, \ldots\right) .
\end{aligned}
$$

We need this to be equal to
$\operatorname{lcm}\left(\left\{z\left(p_{i}^{\alpha_{i}}\right)\right\}_{i},\left\{z^{2}\left(p_{i}^{\alpha_{i}}\right)\right\}_{i},\left\{z^{3}\left(p_{i}^{\alpha_{i}}\right)\right\}_{i}, \ldots\right)=\operatorname{lcm}(z(k), z(T))=z(\operatorname{lcm}(k, T))$.
All that is left to do now is to remark that this is true if and only if their $p_{i}$-adic valuations are equal for each $i$, or in other words, as $p_{i}$ is coprime to
$z\left(p_{i}^{\alpha_{i}}\right)=z\left(p_{i}\right)$,

$$
\left.\max \left(m\left(p_{i}\right)+\alpha_{i}-e\left(p_{i}\right)\right), m\left(p_{i}\right)\right)=m\left(p_{i}\right),
$$

and this is evident.

## 3. The proof of Theorem 1.2

Let $x \geq 10$. One of our ingredients is the following result from [3].
Lemma 3.1 ([3], Theorem 3). As $x \rightarrow \infty$,

$$
\#\{n \leq x: z(n)=m\} \leq x^{1-(1 / 2+o(1)) \log \log \log x / \log \log x}
$$

uniformly in $m$.
Let $n \in \mathcal{A}(x)$. By Theorem 2.1, every self-Fibonacci divisor is of the form $c(k) m$, where $m$ is composed of primes that divide $k$. Thus, write $n=c(k) m$, where every prime factor of $m$ divides $k$. Let $C(x):=x^{\log \log \log x / \log \log x}$. We distinguish two cases.

Case 1. $k \leq x / C(x)$.
Let $\mathcal{A}_{1}(x)$ be the subset of such $n \in \mathcal{A}(x)$. We fix $k$ and count possible $m$ 's because $c(k)$ is determined by $k$; we use an idea similar to the one of the proof of Theorem 4 in [2]. Clearly, $m$ has at most $\omega(k)$ distinct prime factors. Define next $\Psi(x, y)$ to be the number of positive integers $\ell \leq x$ whose largest prime factor $P(\ell)$ satisfies the inequality $P(\ell) \leq y$, and let $p_{s}$ be the $s$-th prime. If $\mathcal{P}_{k}$ is the set of the prime divisors of $k$, the quantity of numbers $m \leq x$ all of whose prime factors are in $\mathcal{P}_{k}$ is of course at most $\Psi\left(x, p_{\omega(k)}\right) \leq \Psi(x, 2 \log x)$ for $x$ large enough. Here we used the fact that $p_{s}<s(\log s+\log \log s)$ for all $s \geq 6$ (Theorem 3 of [8]) together with $\omega(k)<2 \log k / \log \log k$ for all $k \geq 3$. Classical estimates on $\Psi(x, y)$, such as the one of de Bruijn (see, for example, Theorem 2 on page 359 in [9]), show that if we put

$$
Z:=\frac{\log x}{\log y} \log \left(1+\frac{y}{\log x}\right)+\frac{y}{\log y} \log \left(1+\frac{\log x}{y}\right)
$$

then the estimate

$$
\begin{equation*}
\log \Psi(x, y)=Z\left(1+O\left(\frac{1}{\log y}+\frac{1}{\log \log (2 x)}\right)\right) \tag{3.1}
\end{equation*}
$$

holds uniformly in $x \geq y \geq 2$. The above estimates (3.1) with $y=2 \log x$ imply that there are at most $C(x)^{(3 \log 3-2 \log 2+o(1)) / \log \log \log x}=C(x)^{o(1)}$ values of $m$ for any fixed $k$. Summing up over $k$, we get that

$$
\begin{equation*}
\# \mathcal{A}_{1}(x) \leq C(x)^{o(1)} \sum_{k \leq x / C(x)} 1 \leq \frac{x}{C(x)^{1+o(1)}} \quad(x \text { large }) \tag{3.2}
\end{equation*}
$$

Case 2. $x / C(x)<k \leq x$.
Here, we have $k z(k) \leq c(k) \leq x$, whence $z(k) \leq C(x)$. Fix $z(k)=z$ in $[1, C(x)]$. By Lemma 3.1, if we put $\mathcal{B}_{z}:=\{n \in \mathbb{N}: z(n)=z\}$, then the inequality

$$
\begin{equation*}
\# \mathcal{B}_{z}(t) \leq t / C(t)^{1 / 2+o(1)} \quad \text { holds as } \quad t \rightarrow \infty \tag{3.3}
\end{equation*}
$$

We now let $k \in \mathcal{B}_{z}$. Then $n \leq x$ is a multiple of $k z$. The number of such $n$ is $\lfloor x / k z\rfloor \leq x / k z$. Summing up the above inequality over $k \in \mathcal{B}_{z}$ and using partial summation and (3.3), we have

$$
\begin{aligned}
\frac{x}{z} \sum_{\substack{k \in \mathcal{B}_{z} \\
x / C(x)<k \leq x}} \frac{1}{k} & =\frac{x}{z} \int_{x / C(x)}^{x} \frac{\mathrm{~d} \# \mathcal{B}_{z}(t)}{t} \\
& =\frac{x}{z}\left(\left.\frac{\# \mathcal{B}_{z}(t)}{t}\right|_{t=x / C(x)} ^{t=x}+\int_{x / C(x)}^{x} \frac{\# \mathcal{B}_{z}(t)}{t^{2}} \mathrm{~d} t\right) \\
& \leq \frac{x}{z}\left(\frac{\# \mathcal{B}_{z}(x)}{x}+\int_{x / C(x)}^{x} \frac{\mathrm{~d} t}{t C(t)^{1 / 2+o(1)}}\right) \\
& =\frac{x}{z}\left(\frac{1}{C(x)^{1 / 2+o(1)}}+\frac{1}{C(x)^{1 / 2+o(1)}} \int_{x / C(x)}^{x} \frac{\mathrm{~d} t}{t}\right) \\
& =\frac{(1+o(1)) x \log C(x)}{z C(x)^{1 / 2+o(1)}}=\frac{x}{z C(x)^{1 / 2+o(1)}},
\end{aligned}
$$

where in the above calculation we used the fact that

$$
C(t)^{1 / 2+o(1)}=C(x)^{1 / 2+o(1)} \quad \text { uniformly in } \quad t \in[x / C(x), x] \quad \text { as } \quad x \rightarrow \infty .
$$

We now sum over $z \in[1, C(x)]$, and obtain that

$$
\begin{align*}
& \# \mathcal{A}_{2}(x) \leq \frac{x}{C(x)^{1 / 2+o(1)}} \sum_{1 \leq z \leq C(x)} \frac{1}{z} \\
&=\frac{(1+o(1)) x \log C(x)}{C(x)^{1 / 2+o(1)}}=\frac{x}{C(x)^{1 / 2+o(1)}} \quad(x \rightarrow \infty) \tag{3.4}
\end{align*}
$$

The desired conclusion now follows from (3.2) and (3.4).

## 4. Comments

Of course, the methods we presented apply equally well to other Lucas sequences, where analogues of Theorems 2.1, 2.2 and 1.2 hold; we chose to display the Fibonacci case, when the classification takes a particularly simple form.

To conclude, we make some observations to promote future progress. The problem of finding lower bounds for $A(x)$ requires completely different ideas; one can prove that

$$
\log A(x)=\log \#\{n \leq x: c(n) \leq x, n \text { squarefree }\}+O\left(\frac{\log x \log \log \log x}{\log \log x}\right)
$$

so that in order to prove $A(x)=x^{1+O(\log \log \log x / \log \log x)}$ unconditionally one would need to build many squarefree $n$ with small $c(n)$. The best we managed to prove is that $\log c(n)<3 P(n)$ (by double counting), and $\log c(n)<7 \sum_{p \mid n}(\log p)^{2}$ (by induction), but neither of these is sufficient. This hints at building numbers $n$ for which their prime factors share most of their Pratt-Fibonacci trees (Pratt
trees built with the factors of $z(p)$ as children of a node $p^{\delta}$, taken with their exponents).

The set of numbers $n$ with small $c(n)$ is both small and large in a certain sense: it has asymptotic density 0 and exponential density 1 , conjecturally.

It is indeed likely that $c(n)$ is quite large for most $n$. Recall that putting

$$
F(n):=\operatorname{rad}\left(\prod_{k \geq 1} \phi^{k}(n)\right)
$$

then in [5] it is proved that the inequality

$$
F(n)>n^{(1+o(1)) \log \log n / \log \log \log n}
$$

holds for $n$ tending to infinity through a set of asymptotic density 1 . Since $c(n)$ is quite similar to $F(n)$, we conjecture that a similar result holds for $c(n)$ as well.

## Acknowledgements

We thank K. Ford, P. Leonetti, D. Marques, C. Pomerance, G. Tenenbaum for their help.

## References

[1] J. J. Alba González, F. Luca, C. Pomerance, I. E. Shparlinski, On numbers n dividing the nth term of a linear recurrence, Proc. Edinburgh Math. Soc. 55.2 (2012), 271-289.
[2] P. Erdős, F. Luca, C. Pomerance, On the proportion of numbers coprime to a given integer, Proceedings of the Anatomy of Integers Conference, Montréal, March 2006 (J.-M. De Koninck, A. Granville, F. Luca eds.), CRM Proceedings and Lecture Notes 46 (2008), 47-64.
[3] D. M. Gordon, C. Pomerance, The distribution of Lucas and elliptic pseudoprimes, Math. Comp. 57 (1991), 825-838.
[4] J. H. Halton, On the divisibility properties of Fibonacci numbers, Fibonacci Quart. 4.3 (1966), 217-240.
[5] F. Luca, C. Pomerance, Irreducible radical extensions and Euler-function chains, Combinatorial number theory, 351361, de Gruyter, Berlin, 2007.
[6] D. Marques, Fixed points of the order of appearance in the Fibonacci sequence, Fibonacci Quart. 50.4 (2012), 346-351.
[7] C. Pomerance, On the Distribution of Pseudoprimes, Math. Comp. 37 (1981), 587-593.
[8] J. Barkley Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6.1 (1962), 64-94.
[9] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge U. Press, 1995.

School of Mathematics, University of the Witwatersrand, PO Box 2050, Wits, South Africa

E-mail address: florian.luca@wits.ac.za
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
E-mail address: emanuele.tron@sns.it

