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Abstract

This dissertation presents a multifaceted look into the structural decomposi-
tion of permutation classes. The theory of permutation patterns is a rich and
varied field, and is a prime example of how an accessible and intuitive defi-
nition leads to increasingly deep and significant line of research. The use of
geometric structural reasoning, coupled with analytic and probabilistic tech-
niques, provides a concrete framework from which to develop new enumerative
techniques and forms the underlying foundation to this study.

This work is divided into five chapters. The first chapter introduces these
techniques through working examples, both motivating the use of structural
decomposition and showcasing the utility of their combination with analytic
and probabilistic methods. The remaining chapters apply these concepts to
separate aspects of permutation classes, deriving new enumerative, statistical,
and structural results. These chapters are largely independent, but build from
the same foundation to construct an overarching theme of building structure
upon disorder.

The main results of this study are as follows. Chapter 2 investigates the av-
erage number of occurrences of patterns with permutation classes, and proves
that the total number of 231-patterns is the same in the classes of 132- and
123-avoiding permutations. Chapter 3 applies structural decomposition to
enumerate pattern avoiding involutions. Chapter 4 uses the theory of grid
classes to develop an algorithm to enumerate the so-called polynomial permu-
tation classes, and applies this to the biological problem of genetic evolutionary
distance. Finally, we end in Chapter 5 with an exploration of pattern-packing,
and determine the probability distribution for the number of distinct large
patterns contained in a permutation.

xi





– Chapter 1 –

Preliminaries

Permutations are a fundamental mathematical concept used productively
throughout the sciences to encode and understand disorder and rearrange-
ment. The theory of permutation patterns captures this geometric notion of
disorder, and has yielded a wide variety of productive and surprising research
over the past several decades. This dissertation presents several interrelated
projects within this interesting and rapidly developing field. Structural, ana-
lytic, and probabilistic combinatorics are central to this work, and combine to
provide unique insight into pattern enumeration.

This dissertation is organized as follows: Chapter 1 provides an accessible in-
troduction to the ideas and methods at play, followed by four illustrative exam-
ples which serve to motivate and introduce the material to come. The following
four chapters represent self-contained projects utilizing these techniques. Each
of these chapters is based partly on separate publications [26, 51, 52, 53], but
together they speak to the utility of structural methods coupled with multi-
variate analysis. Recursive structural decomposition intersected with modern
analytic and probabilistic techniques has proven exceptionally useful in inves-
tigating patterns within permutations, and each chapter focuses on a separate
facet of this productive combination.

For an accessible introduction to the field of combinatorics, the reader is di-
rected to Bóna [21]. Stanley [79, 80] provides a more advanced treatment to
the subject as a whole, while Bóna [22] focuses on the combinatorics of permu-
tations. Wilf [90] gives an excellent introduction to the theory of generating
functions, while Petkovšek, Wilf, and Zeilberger [72] provide a survey of al-
gorithmic methods. Finally, analytic methods in combinatorics are presented
best by Flajolet and Sedgewick [43] and by Pemantle and Wilson [71], who

1



2 Preliminaries

focus on single- and multi-variate methods, respectively.

§ 1.1 Permutation Classes

Permutations owe much of their rich structure to their variety of equivalent
representations. In this section we establish some of the basic notation and
definitions of permutations and permutation classes. Throughout this disser-
tation, let N denote the non-negative integers {0, 1, 2, 3, . . .}, P the positive
integers {1, 2, 3, 4, . . .}, and, for a given integer n ∈ P, let [n] denote the
integers {1, 2, . . . n}.

Permutations and Patterns

Definition 1.1.1. For a given integer n ∈ P, a permutation of length n is a
sequence π = π1π2 . . . πn in which πi ∈ [n] and each integer of [n] is used
exactly once. There are n! permutations of length n, the set of all of which is
denoted Sn.

For example, the six permutations of length three are as follows:

S3 = {123, 132, 213, 231, 312, 321}.

Permutations can be represented in many different ways, each leading to dif-
ferent generalizations. The above definition is known as the one-line repre-
sentation in the literature, and this approach leads naturally to the theory of
permutation patterns. We start by presenting formal definitions of patterns
before providing a geometric motivation.

Definition 1.1.2. For a positive integer n any two sequences of distinct numbers
α = α1α2 . . . αn and β = β1β2 . . . βn, we say that α and β are order isomorphic
(denoted α ∼ β) if

αi < αj if and only if βi < βj .

For example, the sequences α = 9 2 4 is order isomorphic to β = 5 1 3, because
their entries share the same relative order: the first is the biggest, the second
is smallest, and the third lies in between.



1.1. Permutation Classes 3

1

12 21

123 132 213 231 312 321

123412431324134214231432213421432314234124132431312431423214324134123421412341324213423143124321

Figure 1.1.1: The first four levels of the permutation pattern poset. Two
permutations are connected by a line if one is contained in the other as a
pattern.

It follows that each sequence α of n distinct numbers is order isomorphic to a
unique permutation of length n, called the standardization of α, and denoted
st(α). For a given sequence α, the standardization can be constructed by
relabelling the smallest entry of of α by 1, the second smallest by 2, and so
on (i.e., st(9 2 4) = 3 1 2). We can now present the formal definition of
permutation patterns.

Definition 1.1.3. Let n, k ∈ P with k ≤ n, and let π = π1π2 . . . πn ∈ Sn and
σ = σ1σ2 . . . σk ∈ Sk. Say that σ is contained as a pattern in π (denoted
σ ≺ π) if there is some subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that

πi1πi2 . . . πik ∼ σ1σ2 . . . σk.

Note that pattern containment is reflexive (π ≺ π for all permutations π),
transitive (ρ ≺ σ, σ ≺ π implies ρ ≺ π), and anti-symmetric (σ ≺ π and π ≺ σ
implies σ = π). These three properties mean that the set of all permutations,
equipped with this ordering, forms a partially ordered set (a poset) known as
the pattern poset.

The first four levels of this poset are shown in Figure 1.1.1. Note that the
number of lines going up from each permutation depends only on the length of



4 Preliminaries

the permutation, while the number going down varies. This will be a topic of
study in Chapter 5, where we will establish the probability distribution for the
number of large patterns contained within randomly selected permutations.

If a permutation π does not contain a pattern σ, we say that π avoids σ.
The set of all permutations which avoid a fixed pattern σ is denoted Av(σ).
Transitivity of pattern containment implies that if π ∈ Av(σ) and ρ ≺ π, then
ρ ∈ Av(σ). This relationship motivates our next definition.

Definition 1.1.4. Let P be a poset. A subset S ⊆ P is called a downset if it is
closed downwards. That is, if x ∈ S and y ≺ x, then y ∈ S. A downset of the
permutation pattern poset is called a permutation class. For a permutation
class C, denote by Cn the set of permutations of length n in C.

The set of all patterns which avoid some specified set of patterns are known as
the avoidance classes, and were first introduced by Knuth [61] in the context of
stack sorting. The investigation of these and other classes has sparked a wide
range of research over the past several decades, with a focus on enumeration.
In particular, the question of ‘which pattern is easiest to avoid?’ has been a
major open question for many years, and a variety of techniques have been
developed to provide partial answers. The Marcus-Tardos Theorem [66] (which
stood open as the Stanley-Wilf Conjecture for two decades) motivates much
of this work.

Definition 1.1.5. Let C be a permutation class. The (upper) growth rate of C
is defined as the limit

lim sup
n→∞

n
√
|Cn|.

Theorem 1.1.6 (Marcus, Tardos [66]). Every proper permutation class has a
finite growth rate.

Wilf-Equivalence

Though Theorem 1.1.6 says that all proper permutation classes have a finite
growth rate, finding and classifying these growth rates is difficult. Of particular
interest is identifying those patterns which have the same enumeration, i.e.,
β, τ such that Avn(β) = Avn(τ) for all n. Such a pair β, τ are called Wilf-
equivalent, and the set of all Wilf-equivalent permutations form a Wilf class.
Though showing Wilf-equivalence can be hard in general, many equivalences
arise from eight trivial symmetries.
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Definition 1.1.7. Let π = π1π2 . . . πn a permutation. The reverse, the comple-
ment, and the inverse of π (denoted πr, πc, and π−1, respectively) are defined
as follows:

(πr)i = πn−i+1,

(πc)i = n− πi + 1, and(
π−1
)
πi
= i.

Each of these operations map the set of permutations to itself, and each
preserves pattern containment. That is, if σ ≺ π, then σi ≺ πi, for each
i ∈ {r, c,−1}. It follows than that the class of permutations avoiding a pattern
are in bijection with the class avoiding any symmetry of this pattern. These
three symmetries thus generate an automorphism group of the pattern poset,
which is isomorphic to the dihedral group of order eight. Of these three, only
the inversion map has any fixed points; a permutation which is its own inverse
is called an involution. It follows from Smith [77] that this is the complete
set of automorphisms which respect pattern containment. Note that further
order-respecting isomorphisms between classes are explored in Albert, Atkin-
son and Claesson [4]. Note further that Wilf-classes need not contain bases of
the same size: Burstein and Pantone [30] recently showed the Wilf-equivalence
of Av(1324, 3416725) and Av(2143, 3142, 246135).

For permutations of length three, 123 and 321 are complements (and reverses)
of each other, and thus the classes Av(123) and Av(321) have the same enu-
meration (i.e., |Avn(123)| = |Avn(321)| for all n ∈ N). The permutation 132
can be reversed to obtain 231 or complemented to obtain 312, and 312 can be
complemented to obtain 213. Therefore the permutations {132, 213, 231, 312}
are Wilf-equivalent, and so there are at most two Wilf classes for length 3
permutations.

MacMahon, in 1915/16 [65] enumerated the 123-avoiding permutations while
Knuth, in 1968 [61], enumerated the 231-avoiding permutations, leading to the
first non-trivial Wilf equivalence. A bijection between 123− and 132-avoiding
permutations was presented by Simion and Schmidt [76] in 1985.

Theorem 1.1.8 (MacMahon, Knuth [61, 65]). The number of permutations of
length n avoiding 123 is equal to the number avoiding 231.

We explore this result further in Sections 1.3.1 and 1.3.2, and rederive this
result using geometric constructions. Note that two Wilf-equivalent classes
can have sharply contrasting structure, as we will soon see is the case for
Av(123) and Av(132). Theorem 1.1.8 shows that there is only one Wilf class
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Table 1.1.1: Enumerations of the three Wilf classes for patterns of length four.

|Avn(β)|
n = 1 2 3 4 5 6 7 8

β = 1342 1 2 6 23 103 512 2740 15485
β = 1234 1 2 6 23 103 513 2761 15767
β = 1324 1 2 6 23 103 513 2762 15793

for length three patterns, which gives false hope for longer patterns. As we see
here, the situation becomes much more complicated as patterns get longer.

Of the twenty-four patterns of length four, the trivial symmetries show that
there are at most eight Wilf classes. Non-trivial theorems from Babson and
West [14] and West [89] (and generalized in Backelin, West, and Xin [15])
reduce this number to four, and a result of Stankova [78] shows that two of
these remaining classes are Wilf-equivalent. This leaves the patterns of length
four partitioned into three Wilf classes. That these three classes do in fact
have different enumerations can be seen in the data presented in Table 1.1.1.

Note that the monotone pattern is neither the easiest nor hardest to avoid,
as one might expect. These three cases speak to the complexity involved in
enumerating permutation classes. The class Av(1342) was first counted by
Bóna [18], and was found to have an algebraic generating function and an ex-
ponential growth rate of 8. The class Av(1234) was enumerated by Gessel [46]
and Regev [74], who provided an exact formula the number of permutations of
a given length in the class and showed that the exponential growth rate is 9,
but showed that the generating function is D-finite but nonalgebraic. Finally,
the class Av(1324) has not been enumerated and the growth rate is unknown,
except that it is between 9.42 (Albert et. al. [8]) and 13.93 (Bóna [23]).

The permutation 1324 is a layered permutation, meaning it can be written
as a sequence of decreasing runs, the entries of which are each larger than
the previous layer. Layered permutations were conjectured by Arratia [12] to
be the easiest to avoid, i.e., their avoidance classes have the fastest growth.
This conjecture led to interest in these patterns [19, 34, 40], but was recently
overturned by Fox [44], who showed that the situation is much more complex
than small examples suggest. In Chapter 3 we consider the problem of finding
growth rates of pattern avoiding involutions, and determine the growth rates
of two such sets avoiding patterns of length four.
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Figure 1.1.2: The plot of the permutation π = 2 5 1 4 3.

Geometric Motivation

The investigation and classification of Wilf classes is a deep and complex re-
search program. The primary focus of this dissertation, however, is on the
geometric structure of permutation classes, and the use of this structure to
understand and explore pattern containment. The concepts presented above
can all be reconsidered in a geometric context which allows for a more intuitive
description of permutations and their patterns and symmetries. This geomet-
ric approach helps to illuminate new directions of research, is central to this
work.

Definition 1.1.9. The plot of the permutation π of length n is the set of points
(i, πi) ∈ R

2 for each i ∈ [n].

The plot of a permutation is shown in Figure 1.1.2. Say that a set of n points
in R

2 is generic if no two points lie on the same horizontal or vertical line. Say
that two generic sets P and T are order isomorphic (written P ∼ T ) if the
axes can be stretched or shrunk in some way to transform one into the other.

It follows that every generic point set is order isomorphic to a unique permu-
tation plot, and that order isomorphism is an equivalence relation. The set of
all n-element generic point sets, modulo this relation, is therefore in bijection
with the set of all permutations of length n. This correspondence allows us
to identify a permutation with its plot, and provides an alternate geometric
definition of permutation patterns, illustrated in Figure 1.1.3.

Definition 1.1.10. Let n, k ∈ P with k ≤ n, and let π ∈ Sn and σ ∈ Sk. Let
P, T be the points in the plots of π and σ, respectively. Say that σ ≺ π if
there is some subset R ⊆ S for which R ∼ T .
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⊂ =

Figure 1.1.3: The permutation σ = 312 is contained in the permutation π =
25143.

Many operations on permutations are easier to understand through these ge-
ometric plots. For example, the plot of a permutation can be reflected and
rotated to produce new permutations. Letting π = π1π2 . . . πn be a permuta-
tion, the reverse of π is obtained by reflecting the dots across a vertical line, the
complement by reflecting across a horizontal line, and the inverse is obtained
by reflecting across the line y = x. That these operations generate a group of
automorphisms isomorphic to the dihedral group of order eight is clear when
viewing permutations as plots within a square. It is equally clear from this
viewpoint that these operations respect pattern containment

We can also define operations which act on pairs of permutations, combining
two or more permutations into a single new one, and these operations can also
be described entirely at the geometric level. Two such examples are the direct
sum and skew sum of permutations.

Definition 1.1.11. Let n, k ∈ P, and let π ∈ Sn and σ ∈ Sk. The direct sum
of π and σ, written π ⊕ σ, is the permutation defined by

(π ⊕ σ)i =

{
πi if i ≤ n

σi−n + n if i > n.

The skew sum, written π ⊖ σ is defined similarly:

(π ⊕ σ)i =

{
πi + k if i ≤ n
σi−n if i > n.

A sum-indecomposable (resp. skew-indecomposable) permutation is one which
cannot be written as a direct (resp. skew) sum,

Geometrically, π ⊕ σ is the permutation whose plot is represented by placing
the plot of π below and to the left of the plot of σ, while π⊖σ places the plot
of π above and to the left of σ, as shown in Figure 1.1.4.

These definitions will prove essential when describing permutation classes. In
his thesis [82], Waton describes and explores classes defined entirely by points
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π

σ π

σ

Figure 1.1.4: The plots of π ⊕ σ and π ⊖ σ, respectively.

plotted on specified geometric shapes. We focus here, however, on more general
classes.

Direct sums and skew sums are simple examples of the so called inflation
operation. A non-geometric definition of inflation is technical and unillustra-
tive, but is natural when viewed as an operation of permutation plots. Before
defining inflations, we need another definition which will itself prove useful.

Definition 1.1.12. Let π = π1π2 . . . πn ∈ Sn. An interval of π is a contiguous
sequence of entries πiπi+1 . . . πi+k whose values form a contiguous sequence of
integers.

For example, in the permutation π = 2743516, the third, fourth, and fifth
entries (435) form an interval. Every permutation has an interval of size n
(the entire permutation) and intervals of size one (each entry). Permutations
which have only these trivial intervals are especially significant.

Definition 1.1.13. An permutation π ∈ Sn whose only intervals have size 1
and n is called simple.

Simple intervals are useful for describing permutation classes, as we will see.
Monotone intervals will be investigated further in Chapters 4 and 5, and sim-
plicity will be a major topic of Chapter 3. We can now define inflations, which
will used throughout this dissertation.

Definition 1.1.14. Let π ∈ Sn, and let α1, α2 . . . αn be permutations of any
length. The inflation of π by the permutations αi is defined as the permuta-
tion obtained by replacing the ith entry of π with an interval which is order
isomorphic to the permutation αi. This inflation is denoted

π[α1, α2, . . . αn].
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Figure 1.1.5: The simple permutation 2413 and its inflation
2413[213, 21, 132, 1] = 546 98 132 7.

For example, for any two permutations π and σ, π ⊕ σ = 12[π, σ] and π ⊖
σ = 21[π, σ]. A more complicated example is shown in Figure 1.1.5. While
simple permutations and inflations are useful for working with and describing
permutations, their true utility is illustrated in the following theorem, which
has generalizations to a wider range of combinatorial objects [67].

Theorem 1.1.15 (Substitution Decomposition [28]). Every permutation π can
be written as the inflation of a unique simple permutation. Further, if π =
σ[α1, . . . αm], where each αi is a permutation of length ≥ 1 and m ≥ 4, then
the permutations αi are uniquely determined as well.

§ 1.2 Dyck Paths and the Catalan Numbers

Before exploring two examples of permutation classes, we take a brief detour
and investigate another set of combinatorial objects known as Dyck paths.
These paths will be used throughout this dissertation, and provide a convenient
and flexible means of encoding recursive and structural information.

These paths are enumerated by the so-called Catalan numbers, a ubiquitous
and useful sequence of integers. Stanley [79] has famously collected a series a
sixty-six examples of combinatorial objects, each enumerated by these num-
bers. Their pervasiveness is due in part to their multiple recursive descriptions.

Paths on the Integer Lattice

At its most formal, a Dyck path of semilength n is a sequence ~v1, ~v2, . . . ~v2n of
vectors ~vi ∈ {〈1, 1〉 , 〈1,−1〉}, satisfying

∑2n
n=1 ~vi = 〈2n, 0〉 and, for all integers

k ∈ [2n] and 〈x, y〉 =∑k
n=1 ~vi, we have that y ≥ 0.
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Figure 1.2.1: A Dyck path of semilength 8.

As usual, a more intuitive definition will be useful. Suppose that, starting
from the point (0, 0) ∈ R

2, we want to travel to the point (2n, 0). Suppose
further that are only allowed to walk diagonally northeast (from a point (x, y)
to (x + 1, y + 1)) or southeast (from a point (x, y) to (x + 1, y − 1)). Call a
northeast step an upstep and a southeast step a downstep. The total number
of walks from (0, 0) to (2n, 0) is then

(
2n
n

)
, since the number of up steps must

equal the number of down steps, and so we need only specify which of the 2n
steps are up. Dyck paths can now be defined as follows.

Definition 1.2.1. A Dyck path of semilength n (or of length 2n) is path p =
s1s2 . . . s2n from (0, 0) to (2n, 0) using the steps u = 〈1, 1〉 and d = 〈1,−1〉
which never passes below the line y = 0.

These paths can be represented as a string of symbols from the alphabet
{u, d}, representing upsteps and downsteps, respectively. The path p =
uuuddududduuddd is shown in Figure 1.2.1.

Enumerating Dyck Paths

Dyck paths are a fundamental combinatorial object, and their properties have
been studied extensively [31, 37, 38]. Their well understood structure makes
them (and their generalizations) a useful intermediate object for building bi-
jections between other objects [17, 35]. To illustrate their recursive structure,
we derive their enumeration here.

In order to count Dyck paths, we first need to consider their structure, and
how they can be broken down into smaller pieces. We focus on two separate
decompositions, which lead to two different recursive descriptions, each of
which leads to the Catalan numbers.

First, let p = s1s2 . . . s2n be a Dyck path, and let si be the first step which
brings it back to the line y = 0. Such a step must exist, since s2n always ends
at this line. It follows then that i is even, s1 = u, si = d, and si+1si+2 . . . s2n is
a Dyck path of length 2n−i. Further, since si is the first time the path touches
the line y = 0, each of the steps s2, s3, . . . si−1 have a height greater than or
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equal to 1, which implies that s2s3 . . . si−1 is a Dyck path. This implies that
for every Dyck path p, there exist two smaller Dyck paths p1, p2 such that

p = up1d p2.

It follows that if P is the language of Dyck paths (i.e., the set of all strings of
the letters u, d which represent valid Dyck paths), then P = uPdP + ǫ, where
the ǫ represents the empty path. This leads immediately to a generating
function relation: if we let cn be the number of Dyck paths of semilength n
and C(z) =

∑
n≥0 cnz

n, then this relation leads to the equation

C(z) = zC(z)2 + 1. (1.1)

Before investigating further, we present an alternate decomposition. Let p =
s1s2 . . . s2n be a Dyck path, and let i1, i2, . . . ik be all of the indices with the
property that the step si ends on the line y = 0. It follows then that each
subword sij+1sij+2 . . . sij+1−1 stays above the line y = 1, and is therefore itself
a Dyck path. Therefore, for all Dyck paths p, there exist some integer k and
Dyck paths p1, p2, . . . pk such that

p = up1d up2d . . . upkd.

This gives an alternate relation for the generating function C(z) enumerating
Dyck paths:

C(z) = 1 + zC(z) + z2C(z)2 + z3C(z)3 + · · · = 1

1− zC(z)
. (1.2)

The equivalence of equations 1.2 and 1.1 is immediately obvious — one can
be rearranged into the other. It follows then that these two seemingly dif-
ferent recursions are in fact equivalent, and so any object exhibiting either
of these recursive descriptions are counted by the same numbers. With Dyck
paths, both recurrences are clear; with other objects, however, they are less
transparent. Dyck paths are useful in part because of the simplicity of their
decompositions, and Catalan numbers are ubiquitous because they capture so
many of these recursions.

The Catalan Numbers

The generating function presented above (equation 1.1) can be solved using
the quadratic formula, yielding the following (note that the quadratic formula



1.3. Four Case Studies 13

actually yields two solutions, but we discard the one which does not have a
series expansion with positive integer coefficients)

C(z) =
∑

n≥0

cnz
n =

1−
√
1− 4z

2z
. (1.3)

The first few coefficients in the expansion of C(z) are 1, 1, 2, 5, 14, 42, 132, . . . ,
and are sequence A000108 in the OEIS [84]. The generating function recur-
rence C(z) = zC(z)2+1 translates to c0 = 1 and cn+1 =

∑n
k=0 ckcn−k, and this

uniquely defines this sequence. The binomial theorem can be used to obtain
an exact formula for cn from equation 1.3 above:

cn =
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n− 1

)
. (1.4)

We note that the generating function presented above (equation 1.3) has a
singularity at z = 1/4. It follows that, when expanded as a power series about
z = 0, C(z) has a radius of convergence of 1/4. The exponential growth rate of
a sequence is equal to the reciprocal of the radius of convergence, which implies
that limn→∞

n
√
cn = 4. While Stirling’s approximation for the factorials gives

a simpler means of calculating this growth rate (and allow for the derivation
of the subexponential growth rate), analytic techniques, summarized in the
textbook of Flajolet and Sedgewick [43], provide a wide framework for deriving
these exponential growth rates.

§ 1.3 Four Case Studies

The advantage to this geometric focus is best illustrated through examples. In
this section we present four case studies, each of which corresponds roughly to
the subject of a later chapter. Together these provide motivation and a gentle
introduction to the methods used throughout this dissertation.

We begin by deriving the enumeration of the classes of 132- and 123-avoiding
permutations. Though they share the same enumeration, these two classes
present starkly different decompositions. We then combine these ideas and
explore the class of 123- and 231-avoiding permutations, motivating the inves-
tigation of polynomial permutation classes. Finally, we examine an example

http://oeis.org/A000108
http://oeis.org/
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of the use of probabilistic techniques and structural decomposition in finding
statistical information about classes.

Permutations Avoiding 132

We start with the enumeration of the class Av(132). The study of simples
within a permutation class has been a deep and productive line of research
in recent years [2, 27, 28]. Further, this investigation has seen numerous ap-
plications in the enumeration of classes [5, 30, 70]. While the vast majority
of this machinery is not needed for the class Av(132), but in the interest of
exposition we hit a small nail with a large hammer. The enumeration of a
class using its simples is the core idea of Chapter 3, where we apply it to sets
of pattern-avoiding involutions.

A plot of a permutation within Av(132) has strict restrictions: every element
to the left of the highest point must be higher than every element to the right,
since otherwise we would have a 132 pattern with the highest element playing
the role of the 3. This highest element then divides the plot into two sides. It
follows that every entry after the peak forms an interval, which implies that
the only simples in Av(132) are {1, 12, 21}.

By describing the simple permutations in the class, we can often obtain a
full enumeration. The class Av(132) is uncomplicated enough to be described
entirely using direct and skew sums, but it falls into a larger set of classes,
those which have only finitely many simple permutations. Such permutation
classes posess a number of useful properties, including the following theorem,
due to Albert and Atkinson.

Theorem 1.3.1 (Albert, Atkinson [2]). If a class contains only finitely many
simple permutations, then its enumeration is given by an algebraic generating
function.

In addition to theoretical results, the investigation of simple permutations and
decomposition has led to practical enumeration techniques. Once the simples
of a class have been obtained, one needs only determine the manner in which
each simple can be inflated in order to fully describe the class. While much
of this work has focused on enumerating classes, it can also be used to obtain
statistical information about the class. Section 1.3.4 gives an introductory
example to this technique, while Chapter 2 explores the concept further.
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Returning now to the class Av(132), note that arbitrary inflations of the sim-
ple permutations {1, 12, 21} do not lead to 132-avoiding permutations. Let-
ting π ∈ Av(132), recall that every entry after the maximal entry must have a
smaller value than every entry before. The substitution decomposition (The-
orem 1.1.15) implies that each permutation can be defined as an inflation of
precisely one of these: the simple permutation 1 can only be inflated to the
length 1 permutation, inflations of 12 are the sum-decomposable elements, and
the skew-decomposable elements are the inflations of 21.

For an inflation of 12, the 2 can only be inflated by an increasing run of entries,
or else would contain a 21 pattern, creating a 132 occurrence with any entry
of the inflation of the 1, which can be inflated by any 132-permutation. Recall
that the substitution decomposition does not guarantee uniqueness when in-
flating the simple permutations 12 and 21, so we have to be careful. To ensure
uniqueness, only allow the 2 of 12 to be inflated by a single element (if there
is an increasing run, take it to be part of the 1).

Finally, when inflating 21, the 1 can be inflated by any 132-permutation, while
the 2 can be inflated by any 132-avoiding permutation which ends in its last
element, which can be represented as the direct sum of a 132-avoiding permu-
tation (or the empty permutation) with the permutation 1. We express this
as follows, letting C denote Av(132) and ǫ denote the empty permutation:

C = 1
[
1
] ⋃

12
[
C, 1
] ⋃

21
[
(C ∪ ǫ)⊕ 1, C

]
.

Letting f denote the generating function
∑

n≥0 |Avn(132)|zn, this leads to the
following expression

f = z + fz + z(f + 1)f.

Solving for f using the quadratic formula gives that f is the generating function
for the Catalan numbers with the constant term subtracted off. This gives
an exact formula for the enumeration of Av(132), as originally derived by
Knuth [61].

Theorem 1.3.2. The number of permutations of length n avoiding 132 is the
nth Catalan number cn = 1

n+1

(
2n
n

)
.

Note that this result can be obtained using more elementary methods. It
follows that a permutation is 132-avoiding if and only if it can be written
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C =

C

C

=

C
C

C
C

Figure 1.3.1: A geometric description of the class C = Av 132.

as (π ⊕ 1) ⊖ σ, where π and σ are 132-avoiding permutations (or empty).
Applying this characterization iteratively provides a recursive description of
the 132-avoiding permutations, shown in Figure 1.3.1, and in fact characterizes
this class.

This recursive decomposition can be used to generate a recursively defined
bijection φ : Avn(132) → Dn from permutations in Avn(132) to Dyck paths
of semilength n, thus reproving Theorem 1.3.2 once again. Let π ∈ Avn(132),
and π = (π1 ⊕ 1)⊖ π2 be the decomposition defined above. Then define

φ(π) = u φ(π1) d φ(π2).

This recursive definition was originally presented by Knuth [61]. For example,

φ(74352681) = uφ(743526)dφ(1)

= u(udφ(43526))dud

= uud(uφ(4352)d)dud

= uudu(uφ(43)d)φ(2)dud

= uuduu(udφ(3))d(ud)dud

= uuduuud(ud)duddud

= uuduuududduddud ∈ Dn.
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Figure 1.3.2: The construction of the Dyck path ϕ(74352681).

There is an alternate, non-recursive bijection ϕ, first presented in an alternate,
non-geometric form by Krattenthaler [62], whose equivalence to the above def-
inition follows from the work of Claesson and Kitaev [35]. Let π ∈ Avn(132),
and define ϕ(π) as follows. First, plot π and define a lattice path from (1, n) to
(n, 1) using the steps {〈0,−1〉 , 〈1, 0〉}. Take this to be the unique path using
these steps which maximizes the area underneath the path, while remaining
below and to the left of each entry of the plotted permutation. Finally, trans-
late this to a Dyck path by mapping each 〈0,−1〉 to be an up step, and each
〈1, 0〉 to be a down step. See Figure 1.3.2 for an example.

Permutations Avoiding 123

Despite having the same enumeration, the class Av(123) presents a stark con-
trast to the class Av(132). First, there are infinitely many simple permutations
in the class, which prevents us from using many of the tools from the previ-
ous example. Enumerating and describing these simples is the central idea
of Chapter 3. We first present a bijective enumeration of the class, before
analyzing the structure.

As a further example highlighting the benefit of the geometric viewpoint note
that, remarkably, the bijection ϕ described in Figure 1.3.2 leads to a bijection
ϕ′ : Avn(123)→ Dn, using exactly the same description. See Figure 1.3.3 for
an example. Note that ϕ−1◦ϕ′ is a bijection from Avn(123) to Avn(132), which
is equivalent to the one presented by Simion and Schmidt [76], and shows that
the locations of left-to-right minima has the same distribution in both classes.

A modification of this bijection is central to Chapter 2, and will be used to
count pattern occurrences within the class. Dyck paths can be used to encode
structural information about the permutations they represent, and can be
easily enumerated.

To see that Av(123) contains infinitely many simple permutations, we define
the decreasing oscillations, a family of simples which are contained within the
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Figure 1.3.3: The construction of the Dyck path ϕ′(74382651).

Figure 1.3.4: The decreasing oscillations.

Figure 1.3.5: The class Av(123) is precisely those permutations which can be
plotted on descending lines of the diagram.

class. Figure 1.3.4 gives a graphical description of these permutations. Though
the simples are not as easily described as in our previous example, Av(123)
exhibits a different kind of geometric structure which will be equally useful.
Since a 123-avoiding permutation does not contain any three increasing en-
tries, it follows that it can be written as the union of two decreasing sequences
of entries. It follows further that we can partition the plot of such a permuta-
tion into an alternating sequence of monotone decreasing runs. We formalize
this in Chapter 3, but for now present an diagram of the so-called staircase
decomposition [3, 26] in Figure 1.3.5.

This decomposition will be used to enumerate and describe the simple permu-
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tations within the class, which will then be used to enumerate pattern avoiding
involutions in Chapter 3. We present one final method of enumerating the class
Av(123), by inflating the (infinitely many) simples. In Chapter 3 we use the
staircase decomposition to enumerate the simples of the class, and find that
their generating function (equation 3.1) is given by

f =
∑

σ∈Av(123)
σ simple

z|σ| =
1− z −

√
1− 2z − 3z2

2z
.

Each entry of a simple permutation in the class can be inflated only by de-
creasing runs, whose generating functions are given by z

1−z
. It follows then

that, since each z in the above generating function represents an entry of a
simple permutation, replacing z by z

1−z
, we obtain the generating function

for all permutations of the class. Indeed, after simplifying, we find that this
composition gives the generating function for the Catalan numbers, with the
constant term (representing the empty permutation) removed:

f

(
z

1− z

)
=

1− 2z −
√
1− 4z

2z
.

Permutations Avoiding 123 and 231

Our next example enumerates the class Av(123, 231) of permutations which
avoid both 123 and 231, using a structural description of the class. This
example motivates the exploration of the polynomial classes (the classes whose
enumeration is given by a polynomial). This will be investigated more fully
in Chapter 4, where an algorithm will be presented which, given a structural
description, enumerates the class.

Since we have already shown that the only simples in the class Av(231) are
{1, 12, 21} (because it is a symmetry of Av(132)), the fact that Av(123, 231) ⊂
Av(231) implies that these are the same simples in Av(123, 231). The added
restriction of avoiding 123 changes the way these simples can be inflated. Both
entries of 12 can only be inflated by decreasing runs, to avoid constructing an
occurrence of 123. Finally, the first entry of a 21 can be inflated only by a
decreasing run (to avoid 231), while the second can be inflated by any element
from the class.

After accounting for uniqueness, it follows that every permutation in the class
can be obtained by inflating the permutation 312 with (possibly empty) de-
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Figure 1.3.6: The class Av(123, 231) is precisely those permutations which can
be plotted on descending lines of the diagram.

scending permutations. Therefore, this class is precisely those permutations
which can be drawn on the diagram shown in Figure 1.3.6

This is a simple example of a grid class [68], a useful concept which has
produced many new enumerations in recent years. It is known [6, 55], and is
presented formally in Theorem 4.1.5, that a permutation class is enumerated
by a polynomial if and only if it is a union or intersection of classes which can
be represented with such a diagram, with only one nonempty cell per row and
column.

Returning to Figure 1.3.6, it is trivial to enumerate those permutations which
have at least one element in each block: the generating function for a single
block is z/(1 − z), and so the generating function for those with no empty
blocks are z3/(1− z)3. If the first block is empty, then we have the generating
function z2/(1 − z)2. If either the second or third block is empty, the entire
permutation is a single decreasing run, with generating function z/(1 − z).
Therefore, the generating function for the entire class is simply the sum of
these three:

∑

n≥1

|Avn(123, 231)|zn =
z3

(1− z)3
+

z2

(1− z)2
+

z

1− z
=

z3 − z2 + z

(1− z)3
. (1.5)

Equation 1.5 expanded using the binomial theorem to produce an exact equa-
tion for the number of permutations of each length in the class.

|Avn(123, 231)| =
n2 − n + 2

2
=

(
n

2

)
+ 1.
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More complicated decompositions lead to a number of technical obstacles, but
this same general idea can be used to calculate the polynomials enumerating
all such classes. This will be presented in Chapter 4, and an implementation
of the algorithm is available online [54].

Ascents in 132-Avoiding Permutations

We end this chapter with an illustrative example which utilizes a class’s struc-
tural decomposition to investigate the distribution of a permutation statistic.
This example, while relatively simple, serves to showcase the techniques which
will be used throughout the following chapters, and is particularly pertinent
to Chapter 2.

A permutation statistic is any function χ : Sn → R. In practice, we often
consider statistics that map from permutations to non-negative integers which
capture some structural trait of the permutation. Examples include the lo-
cation of the largest element, number of cycles, value of the first entry, and
number of inversions. In this section we consider the number of ascents of a
permutation. An ascent of a permutation π = π1π2 . . . πn is an index i such
that πi < πi+1, and the number of ascents in a permutation π is denoted
asc(π).

For a given permutation π of length n, it follows that asc(π) ∈ {0, 1, . . . n−1}.
If i is an ascent of π then i is a descent of πc, and so the number of permutations
of lengh n with k ascents is equal to the number of such permutations with
k descents (or n− k − 1 ascents). This implies in particular that the average
number of ascents in a randomly selected permutation from Sn is (n − 1)/2.
When we restrict to a proper permutation class, however, the distribution can
be more difficult to compute.

For a finite set S of permutations and a statistic f , the generating polynomial
for f on S in indeterminate u is

∑

π∈S

uf(π).

For example, if S3 = {123, 132, 213, 231, 312, 321} then the generating poly-
nomial for the number of ascents is u2+4u+1, since there is one permutation
with two ascents, four with one ascent, and one permutation with no ascents.
There is one crucial observation: if we take the derivative (with respect to u)
of the generating polynomial and set u = 1 we obtain a weighted sum which
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evaluates to the expected value, or average, of the statistic on S. Further, by
differentiating twice before setting u = 1, and then dividing by two, we obtain
the first factorial moment of the statistic, which can be used to compute the
variance. This process can be iterated to calculate higher moments of the
distribution.

Extending to permutation classes, let |π| denote the length of a permutation
π and define the generating function for a statistic f across a class C as

∑

π∈C

z|π|uf(π).

The coefficient of zn in this bivariate generating function is precisely the gen-
erating polynomial for the statistic f on the set Cn, and so it follows that by
differentiating with respect to u and plugging in u = 1, we can obtain generat-
ing functions whose coefficients represent the moments of the distribution on
Cn. Asymptotic analysis can then be used to compute the limiting distribution
as n approaches infinity.

Throughout this section, let an,k be the number of 132-avoiding permutations
of length n which contain exactly k ascents, and let

f(z, u) =
∑

π∈Av(132)

z|π|uasc(π) =
∑

n≥0

∑

k≥0

an,ku
kzn.

Our goal is to derive a closed expression for f , and use this to analyze the
distribution of descents across Av(132). Consider the recursive description of
the class, shown in Figure 1.3.1, and let π = (ρ ⊕ 1) ⊖ σ be a 132-avoiding
permutation. It follows that the number of ascents of π is equal to the sum of
ascents in ρ and σ, plus one if ρ is nonempty (otherwise the permutation starts
with its biggest entry). This relationship leads to the following functional
equation.

f = zf + uz(f − 1)f + 1.

The first term on the right hand side is the case where ρ is empty, the sec-
ond is when ρ is non-empty, and the constant term accounts for the empty
permutation. We can solve for f above to find the following:

f(z, u) =
1 + (u− 1)z −

√
(u2 − 2u+ 1)z2 − 2(u+ 1)z + 1

2uz
= 1 + z + (u+ 1)z2 + (u2 + 3u+ 1)z3 + (u3 + 6u2 + 6u+ 1)z4 + . . . .
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Note that substituting u = 1 gives the generating function for the Catalan
numbers, as expected. The coefficient of z3 is (u2 + 3u + 1), as there is
one 132-avoiding permutation with two ascents (123), three with one ascent
(213, 231, 312), and one with no ascents (321). Finally, we can obtain the
total number an of ascents in all 132-avoiding permutations of length n by
differentiating with respect to n and setting u = 1:

∑

n≥0

anz
n = ∂uf(z, u)

∣∣
u=1

=
1− 3z − (z − 1)

√
1− 4z

1 + z
√
1− 4z

=
∑

n≥0

(
2n− 1

n− 2

)
zn

= z2 + 5z3 + 21z4 + 84z5 + 330z6 + 1287z6 . . . .

It follows then that the average number of ascents in a randomly selected 132-
avoiding permutation is given by this total divided by the total number of such
permutations, the Catalan numbers. Therefore the average is given by

(
2n− 1

n− 2

)
n+ 1(

2n
n

) =
n− 1

2
.

Note that this expectation is identical to the average number of ascents in
a random permutation chosen from the set Sn, and so it follows that the
property ‘avoids 132’ is independent from the random variable asc. This can
also proven bijectively, by constructing a map from Avn(132) to itself which
maps ascents to descents (by mapping the permutations to unlabelled binary
trees, and then reflecting the tree), but the above approach can be extended
and generalized to other statistics and classes, as we will soon see.

In Chapter 2 we explore how pattern-avoidance changes the distribution of
other statistics. These same techniques will be revisited in Chapter 5 and
used to compute the distribution of intervals of size two, which relates to the
number of distinct patterns within a permutation.
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Pattern Expectation

In the set of all permutations of length n, all patterns of a fixed length occur
the same number of times. However, if we restrict to smaller classes of permu-
tation, the situation quickly becomes more interesting. The investigation of
pattern occurrences within permutations is a recent and productive research
topic. This chapter explores this new area, and uses it to develop connections
between permutation classes.

In particular, we examine the classes of 123- and 132-avoiding permutations,
and show that the number of 231 patterns is identical in each. This identity
extends an earlier result of Miklós Bóna [24], and its derivation sheds further
light on the distribution of pattern occurrences within permutation classes.
Further, this chapter brings to light new equivalences between these classes,
building on those presented by Elizalde [41], and forming a foundation for
further study [29, 57, 75]. This chapter is based partly on [52].

§ 2.1 Pattern Occurrences

Our primary concern in this chapter (and much of Chapter 5) will be the
number of occurrences of a pattern within a permutation. The number of
occurrences is the number of copies of the pattern we can find within a per-
mutations; formally, we define this as follows:

Definition 2.1.1. Let σ = σ1σ2 . . . σk be a pattern of length k, and π =
π1π2 . . . πn a permutation of length n. An occurrence of the pattern σ in

25
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π is a subsequence i1 < i2 < · · · < ik such that

πi1πi2 . . . πik ∼ σ1σ2 . . . σk.

The number of occurrences of σ in π, denoted by νσ(π), is the number of such
subsequences.

For example, the permutation π = 462513 contains 2 occurrences of the pat-
tern 213, since the first, third, and fourth, as well as the third, fifth, and sixth,
entries of p form 213 patterns. Thus, ν213(462513) = 2.

Clearly, for permutations π of length n and σ of length k, we have that νq(π)
is bounded below by 0 and above by

(
n
k

)
. This minimum value is realized by

taking π to be any σ-avoiding permutation, and the maximum is attained,
for example, when both π and σ are ascending permutations. Our primary
concern will be the average number of occurrences of a pattern over a set of
permutations. In the interest of brevity, we will abuse the above notation to
apply to sets:

Definition 2.1.2. For a given pattern σ and a set S of permutations, let νq(S)
denote the total number of occurrences of σ within the set S. That is,

νσ(S) =
∑

π∈S

νσ(π).

For example, letting S = {2341, 4321, 1234}, we have that

ν123(S) = 1 + 0 + 4 = 5.

Pattern Expectation

Counting the total number of occurrences of a pattern within a set of per-
mutations has an alternate, probabilistic interpretation. The expectation of
a pattern within a set is defined to be the average number of occurrences of
the pattern within a randomly selected element from the set. Clearly, we have
that the expectation of a pattern σ in a set S is equal to νσ(S)/|S|.
This probabilistic interpretation motivates many questions, several of which
have yielded interesting and surprising answers. We start with an illustrative
example, whose derivation showcases some of the ideas which will be useful
later. In particular, linearity of expectation will prove useful.
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Proposition 2.1.3. Let σ be any pattern of length k, and let n ≥ k. Then

νσ(Sn) =
n!

k!

(
n

k

)
.

Proof. We show that the expectation of the pattern σ is equal to
(
n
k

)
/k!,

which will imply the desired result. Let π be a (uniformly) randomly selected
permutation in Sn, and let X be the random variable denoting the number of
occurrences of σ within π.

There are
(
n
k

)
sets of positions of π in which a σ pattern could possibly occur.

For each set P , let

XP =

{
1 the entries of P form a σ pattern
0 otherwise

.

It now follows that X =
∑

P XP , and so by linearity of expectation, we have
that

E [X ] =
∑

P

E [XP ] .

Finally, for any specified set of indices, all patterns are equally likely. There-
fore, E [XP ] = 1/k!. Combining, we see that

E [X ] =
∑

P

1

k!
=

(
n

k

)
1

k!
.

Therefore, we have that

νσ(Sn) =
|Sn|
k!

(
n

k

)
=

n!

k!

(
n

k

)
.

Fact 2.1.3 shows that the total number of pattern occurrences within the set
of all permutations depends only on the length of the pattern specified. This
contrasts sharply with the fact that the numbers of permutations which avoid
a given pattern varies widely based on the choice of pattern. This discrepancy
can be explained in part by the fact that certain patterns are better able to
overlap with themselves, so that a smaller number of permutations contains a
higher concentration of pattern occurrences.
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Table 2.1.1: Total number of pattern occurrences for length 3 patterns in 123-
and 132-avoiding permutations.

Avn(123)
length ν123 ν132 ν213 ν231 ν312 ν321

3 0 1 1 1 1 1
4 0 9 9 11 11 16
5 0 57 57 81 81 144
6 0 312 312 500 500 1016
7 0 1578 1578 2794 2794 6271

Avn(132)
length ν123 ν132 ν213 ν231 ν312 ν321

3 1 0 1 1 1 1
4 10 0 11 11 11 13
5 68 0 81 81 81 109
6 392 0 500 500 500 748
7 2063 0 2794 2794 2794 4570

The problem of pattern packing will be discussed in more detail in Chapter 5.
In this chapter we examine the pattern expectation of of small patterns within
avoidance classes. In particular we seek insight to the following question, first
posed by Joshua Cooper: “How does the absence of one pattern affect the
expectation of another?”

Background and Data

The total number of length 3 patterns in the sets Avn(123) and Avn(132) are
shown below, for 1 ≤ n ≤ 7.

Since both 123 and 132 are involutions, inversion maps each set to itself, and
maps patterns to their inverse. This implies the identity ν231 = ν312 in both
sets of permutations. Miklós Bóna [20, 24] investigated the set Avn(132) and
enumerated the total occurrences of each length 3 pattern. In particular, he
established the identity ν213(Avn(132)) = ν231(Avn(132)).

This implies that the statistics ν213 and ν231 have the same expectations over
the set of 132-avoiding permutations of length n. This identity is surprising
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in part because these two statistics have different distributions over this set,
but share the same average value.

The main motivation for Section 2.2 is establishing the identity

ν231(Av(132)) = ν231(Av(123)).

This identity extends Bóna’s result, and presents another example of two per-
mutation statistics with different distributions having the same mean.

§ 2.2 123-avoiding Permutations

In this section, we derive exact and asymptotic values for νσ(Avn(123)) for
|σ| ≤ 3 and n ≥ 0. In addition, we show that for k ≥ 1, the pattern k (k −
1) (k − 2) . . . 2 1 has a higher expectation than any other pattern of length
k for large enough permutations. Finally, applying recent results of Miklós
Bóna, we show that the total number of 231 patterns is identical within the
sets of 132-avoiding and 123-avoiding permutations of length n.

Throughout this sections, let n be some fixed positive integer. For simplicity
of notation, we use νσ to denote νσ(Avn(123)).

Class Structure

The class of 123-avoiding permutations has a rigid structure, which we will use
to investigate pattern occurrences. Recall (Section 1.2.3) that |Avn(123)| =
cn, where cn is the nth Catalan number. . For a permutation π = π1π2 . . . πn,
we say that the entry πi is a left-to-right minimum (ltr-min) if it is smaller
than all of the elements to its left, and a right-to-left maximum (rtl-max) if it
is larger than all of the elements to its right.

In a 123-avoiding permutation π, every element is either a ltr-min or a rtl-
max (or possibly both), since otherwise it would have a bigger element to its
right and a smaller element to its left, which would form a 123 pattern. By
definition, the sets of ltr-min and of rtl-max are both decreasing when read
from left to right. Therefore, every 123-avoiding permutation is the union of
two decreasing sequences of entries.
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Breaking down permutations into these two decreasing sequences will prove
useful in the following sections. However, the possibility of an element being
both a ltr-min and a rtl-max poses problems. Further restricting our permu-
tations will alleviate this issue.

Definition 2.2.1. A permutation π = π1π2 . . . pn is skew-decomposable if there
exist permutations σ and ϕ for which π = σ ⊖ ϕ. Otherwise, we say that
π is skew-indecomposable. Denote the set of indecomposable 123-avoiding
permutation by Av∗n(123). Sum (in)decomposability is defined similarly.

In this chapter we consider only skew-(in)decomposability, and so we drop the
word ‘skew’ for the simplicity of notation.

Note that if any element of π is both a ltr-min and a rtl-max, then π is decom-
posable. It follows then that every indecomposable 123-avoiding permutation
can be uniquely decomposed into its left-to-right minima and its left-to-right
maxima. Further, it follows that every 123-avoiding permutation can be writ-
ten as a skew sum of indecomposable 123-avoiding permutations. We use this
fact to enumerate these permutations.

Proposition 2.2.2. The number of indecomposable 123-avoiding permutations
is cn−1, the (n− 1)st Catalan number .

Proof. Let

C∗(x) =
∑

n≥0

|Av∗n(123)|xn.

We know that |Avn(123)| = cn, and so

∑

n≥0

|Avn(123)|xn =
1−
√
1− 4x

2x
= C(x).

Since every permutation π ∈ Avn(123) can be written as sg1 ⊖ σ2 . . . σk for
some σ1, σ2, . . . σk ∈ Av∗n(123) and some k ≥ 1, it follows that

C(x) = 1 + C∗(x) + (C∗)(x))2 + (C∗(x))3 + · · · = 1

1− C∗(x)
.

Rearranging this equation leads to

C∗(x) =
C(x)− 1

C(x)
= xC(x).
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The second equality follows from the identity C(x) = xC(x)2 + 1.

Therefore,
∑

n≥0

|Av∗n(123)|xn = C∗(x) = xC(x) =
∑

n≥1

cn−1x
n.

Patterns of Length 2

To start, we compute the values ν12 and ν21. Since every pair of entries must
form either a 12 or a 21 pattern, the sum ν12+ν21 is equal to the total number
of pairs of entries amongst the set of all 123-avoiding permutations. Therefore,
we have

ν12 + ν21 =

(
n

2

)
.

An inversion of a permutation is an occurrence of the pattern 21. Inversions
are a well-known and well-studied permutation statistic, and the total number
of inversions amongst the set Avn(321) is known.

Theorem 2.2.3 (Cheng, Eu, Fu [32]). The total number of inversions in the set
Avn(321) is given by

ν21(Avn(321)) = 4n−1 −
(
2n− 1

n

)
.

The generating function for this sequence is as follows:

∑

n≥0

ν21(Avn(321))x
n =

x2C(x)2

1− 4x
.

By reversing permutations, we see that ν21(Avn(321)) = ν12(Avn(123)). This
allows us to establish exact answers for the number of occurrences of length 2
patterns within Avn(123).

Proposition 2.2.4. The total number of 12 patterns in Avn(123) is given by

ν12 = 4n−1 −
(
2n− 1

n

)
.

Further, since ν21(Avn(321)) = 4n−1 −
(
2n−1
n

)
, it follows that

ν21 =

(
n

2

)
cn − 4n−1 +

(
2n− 1

n

)
.
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Patterns of Length 3

Deriving the number of occurrences for length three patterns is considerably
more involved, but utilizes some of the same ideas. In this section we find
both the asymptotic and exact values for the total occurrences of νσ for each
σ ∈ S3. The key idea will be derive the total number of occurrences of a single
pattern, and then use the class structures to develop the other values. Let

an = ν213, bn = ν231, ν321.

We start by finding the generating function for the numbers ν213(Av
∗
n(123)).

While this may seem arbitrary, this will in fact lead to generating functions
for all other patterns. Let π be a permutation in Av∗n(123). Recall that each
entry in π is either a ltr-min or a rtl-max, and no entry is both. An occurrence
of 213 within π must consist of two left-to-right minima followed by a right-to-
left maximum. By counting the number of entries to the left and below each
rtl-max we can exactly determine the number of 213 patterns within π.

Lemma 2.2.5. The generating function A∗(x) for the number of 213 patterns
in Av∗n(123) is given by

A∗(x) =
∑

n≥0

ν213(Av
∗
n(123)) =

x3C(x)

(1− 4x)3/2
=

x2

2(1− 4x)3/2
− x2

2(1− 4x)
.

Proof. The proof consists of three parts: First, we examine the structure of
permutations in Av∗n(123), and find a simple way of counting the number of
213 patterns. Second, we build a bijection onto Dyck paths which maps 213
patterns to a path statistic. Finally, we find the weighted sum of all Dyck
paths with respect to this statistic.

The idea of the proof is as follows: We build a bijection from the set of
permutations Av∗n(123) to the set D of elevated Dyck paths of semilength n,
find a statistic on these paths which corresponds to 213 patterns, and then
find the weighted sum of all Dyck paths with respect to this statistic.

Let π be a permutation in Av∗n(123), and consider the plot of π. Note that, by
the indecomposability of π, there is no entry which is simultaneously a ltr-min
and a rtl-max. Construct a Dyck path φ(π) of semilength n−1 as follows. First,
build a path from (1, n) to (n, 1) using the steps {〈1, 0〉 , 〈0, 1〉}. Let this path
be the be the unique path which minimizes the area underneath itself while
lying above all of the entries of π. This path, a variation of the construction
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Figure 2.2.1: The construction of the Dyck path φ(48371652) =
uduuduududddud.

presented in Section 1.3.2, is then uniquely defined by the locations of the
right-to-left maxima, which in turn uniquely define the permutation. Finally,
rotate each 〈1, 0〉 step to be an up step, and each 〈0,−1〉 to become a downstep
in the path φ(π). See Figure 2.2.1 for an example construction.

This path is a slight modification of the path given by Krattenthaler’s bi-
jection [62], taking advantage of the indecomposability of the permutation
to yield a more geometric description. This geometric interpretation of the
bijection gives some additional insight into the number of 213 patterns.

Note that each rtl-max in π produces a peak in P . If πi is a rtl-max, let the
span of πi (Sp πi) denote the number of entries to the left and below this entry.
It follows then that πi corresponds to a peak of height Sp πi above the x-axis
in P . An occurrence of 213 must have a rtl-max as its 3 entry, and it follows
then that the 21 entries must lie in the span of this entry. We therefore see
that every rtl-max is involved in

(
Spπi

2

)
occurrences of 213, since we need only

choose any two elements in its span to act as the 21. Therefore, if we let hn,k

denote the total number of peaks of height k in all Dyck paths of semilength
n, we have that

ν213(Av
∗
n(123)) =

n−1∑

k=1

(
k

2

)
hn−1,k.

Finally, we can compute H(x, u) =
∑

n,k≥0 hn,kx
nuk as follows. First, note

that since each Dyck path begins with an upstep it has a unique first point
at which the path returns to the x-axis, so we can decompose each path P of
length n into the concatenation of two shorter paths Q and R. This gives that
P = uQdR, where u denotes an upstep and d a downstep, and each peak of
height k − 1 in Q and height k in R leads to a peak of height k in P . With
this in mind, we have the following generating function relation:

H(x, u) = ux(H(x, u) + 1)C(x) + xH(x, u)C(x).
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Here the first term counts the peaks from the uQd part, including the case
when Q is empty. The second term counts the contribution from the R part.
Rearranging leads to

H(x, u) =
uxC(x)

1− uxC(x)− xC(x)
.

Now, to count 213 patterns, we need to count each peak with weight
(
k
2

)
. By

taking derivatives twice with respect to u, setting u = 1, dividing by two and
scaling by x, we find that

∑

n,k≥0

(
k

2

)
hn−1,kx

n = x
∂2
uH(x, u)|u=1

2
=

x3C(x)

(1− 4x)3/2

= x3 + 7x4 + 38x5 + 187x6 + 874x7 + . . . .

The sequence 0, 0, 1, 7, 38, 187 . . . is sequence A000531 in the OEIS [84]. Fi-
nally, the correspondence between peaks and 213 patterns completes the
proof.

Now, it is relatively simple to move from the set of indecomposable 123-
avoiding permutations to the larger set of all 123-avoiding permutations.

Theorem 2.2.6. Let an be the number of 213 patterns in Avn 123. Then

∑

n≥0

anx
n =

x3C(x)3

(1− 4x)3/2
=

x− 1

2(1− 4x)
− 3x− 1

2(1− 4x)3/2
.

Proof. Let A(x) be the generating function for the numbers an, and let A∗(x)
denote the generating function for the number of 213 patterns in indecompos-
able 123-avoiding permutations.

Now, any permutation π in Av(123) can be written uniquely as a skew sum of a
nonempty indecomposable 123-avoiding permutation σ and another, possibly
empty, 123-avoiding permutation ϕ. Now, it is clear that any 213 pattern in
π must be contained entirely in either σ or ϕ. This leads to the following
relation:

A(x) = A∗(x)C(x) + xC(x)A(x).

Solving for A gives

A(x) =
A∗(x)C(x)

1− xC(x)
= C2(x)A∗(x).

http://oeis.org/A000531
http://oeis.org/
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Lemma 2.2.5 now implies

A(x) =
x3C(x)3

(1− 4x)3/2
.

From here, we obtain the generating functions of the other patterns simply by
relating their enumerations with the one already obtained. The following two
observations provide linear relations between these numbers. The first follows
from the simple fact that any three entries must form some 3-pattern.

Lemma 2.2.7. On the set Avn(123), we have that

ν132 + ν213 + ν231 + ν312 + ν321 = cn

(
n

3

)
.

Proof. Both sides count the total number of 3-patterns within the class
Avn(123). The right-hand-side is the total number of ways of choosing three
indices in any 123-avoiding permutation. Each of these choices is an occurrence
of a 3-patterns other than 123, which is counted by the left-hand-side.

The next lemma provides a relationship between the numbers ν132, ν213, ν231,
and ν312 by counting the total number of 3-patterns which contain a non-
inversion (an occurrence of 12).

Lemma 2.2.8. The following equality holds on the set Avn(123):

2ν132 + 2ν213 + ν231 + ν312 = (n− 2)ν12.

Proof. Rewrite this equation as

(n− 2)ν12 − (ν132 + ν213) = ν132 + ν213 + ν231 + ν312.

Both sides count the total number of length 3 patterns which contain at least
one non-inversion. Indeed, the right-hand-side counts all 3-patterns except for
321. The left-hand-side builds such a pattern by first choosing a 12 pattern,
and then adding another entry to create a 3-pattern. However, this overcounts
the patterns 132 and 213, since each of these contains two 12-patterns, so we
subtract these off to correct the equality.



36 Pattern Expectation

The generating functions for the numbers cn
(
n
3

)
and (n − 2)ν12 can be deter-

mined from the generating functions we already have. These equations can be
obtained using techniques explained in Section 1.3.4.

Lemma 2.2.9. Letting J(x) =
∑

n≥0 ν12(Avn(123))x
n, the following identities

hold:
∑

n≥0

cn

(
n

3

)
=

x3 d3

dx3 (C(x))

6

∑

n≥0

(n− 2)ν12(Avn(123)) = x3 d

dx

(
J(x)

x2

)
.

Lemmas 2.2.8 and 2.2.7, coupled with Lemma 2.2.9, establish a system of
linear equations with three unknowns, ν213, ν231, and ν321. Any new linear
relation or solution to one of these would solve the system, giving generating
functions and exact formulas for the number of all length 3 patterns within
Avn(123).

The calculation of the ν213 provides that missing piece, but we note that there
are many other identities which, once these lemmas are established, are equiv-
alent to Theorem 2.2.6. We collect some of these in Corollary 2.2.13. A direct
proof of any of them could help to simplify the arguments presented here while
retaining all of the same results, and provide further insight into the connec-
tions between Av(123) and Av(132). While each of these seem tractable to
bijective methods, they have resisted many attempts at a direct proof and
we include them here partly out of spite. First, we present the generating
functions for the occurrences of 231 and 321, which follow by routine (but
technical) computation.

Theorem 2.2.10. The number of 231 (or 312) occurrences is given by

∑

n≥0

ν231(Avn(123))z
n =

3z − 1

(1− 4z)2
− 4z2 − 5z + 1

(1− 4z)5/2
.

Corollary 2.2.11. The total number of 231 occurrences in Avn(123) is equal to
the number in Avn(132).

Theorem 2.2.12. The number of 321 occurrences is given by

∑

n≥0

ν321(Avn(123))z
n =

8z3 − 20z2 + 8z − 1

(1− 4z)2
− 36z3 − 34z2 + 10z − 1

(1− 4z)5/2
.
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Corollary 2.2.13. The following identities hold

ν21(Avn(123)) = 2ν213(Av
∗
n(123))

ν213(Avn(123)) + ν231(Avn(123)) = ν231(Av
∗
n−1(123))

C(z)

(
∑

n≥0

ν213(Avn(123))z
n

)
= zC ′(z)

(
∑

n≥0

ν12(Avn(123))z
n

)

∑

n≥0

ν213(Av
∗
n(132)z

n) =
∑

n≥0

(
ν132(Av

∗
n(123)) + ν231(Av

∗
n(123))

)
zn.

Now we can do some analysis of the main sequences. Using some standard
generating function analysis [43], we find that the asymptotic growth of the
number of length 3 patterns are as follows:

ν213(Avn(123)) ∼
√

n

π
4n−1

ν231(Avn(123)) ∼
n

2
4n−1

ν321(Avn(123)) ∼
2

3

√
n3

π
4n−1.

We see that the three sequences each differ by a factor of approximately
√
n.

Surprisingly, this is the same factor that the sequences ν123, ν231, ν321 differ by
in the class Av(132), as seen in [24].

Each of these generating functions are simple enough that exact formulas can
be obtained with relatively little hassle. One could argue that the asymptotic
values are more interesting and provide more insight than the complicated
formulas, but we present them here for completeness.

Corollary 2.2.14. Let an = ν132(Avn(123)), bn = ν213(Avn(123)), and dn =
ν321(Avn(123)). Then we have that

an =
n + 2

4

(
2n

n

)
− 3 · 22n−3

bn = (2n− 1)

(
2n− 3

n− 2

)
− (2n+ 1)

(
2n− 1

n− 1

)
+ (n+ 4) · 22n−3
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dn =
1

6

(
2n+ 5

n+ 1

)(
n + 4

2

)
− 5

3

(
2n+ 3

n

)(
n + 3

2

)
+

17

3

(
2n+ 1

n− 1

)(
n + 2

2

)

− 6

(
2n− 1

n− 2

)(
n+ 1

2

)
− (n+ 1) · 4n−1.

Larger Patterns

Some of these same techniques are applicable to larger patterns. For example,
we can easily modify Lemmas 2.2.8 and 2.2.7 to apply to patterns of all sizes.
This leads to increasingly complicated expressions, but this simple idea can
be used to prove the following proposition.

Proposition 2.2.15. Let k ∈ Z
+, and σ be any permutation in Sk other than

the decreasing permutation. Then for n large enough, we have that

νk...321(Avn(123)) > νσ(Avn(123)).

Proof. Let D be the set of permutation in Sk which are not the decreasing per-
mutation. As in Lemma 2.2.8, we can express the number

(
n−2
k−2

)
ν12(Avn(123))

as a positive linear combination of all of νσ(Avn(123)) where σ ∈ D. As
in Lemma 2.2.7, we can express

(
n
k

)
cn as the sum of all νρ(Avn(123)) where

ρ ∈ Sn. It follows that there is a positive integer m and positive integers ei
such that

(
n

k

)
cn −m

(
n− 2

k − 2

)
ν12(Avn(123)) = νk...321 −

∑

σ∈D

eiνσ(Avn(123)).

Asymptotic analysis shows that the left hand side is eventually positive, and
so the first term on the right side eventually outgrows the second term, which
completes the proof.
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Pattern Avoiding Involutions

In this chapter, we investigate sets of pattern-avoiding involutions . While the
enumeration of pattern-avoiding permutations has become a major topic of re-
search in recent years, involutions have been largely overlooked. In particular,
we focus on finding the Stanley-Wilf limit for sets of involutions which avoid
patterns of length four.

Pattern-avoiding involutions were first considered by Simion and Schmidt [76],
who enumerated the involutions avoiding any length three pattern. As in the
case for permutations, the situation quickly becomes more complicated for
longer patterns. We begin this chapter by examining the simple 123 involu-
tions, which will be our primary tool. This chapter is based in part on [26].

§ 3.1 Definitions and Context

Definition 3.1.1. For a given permutation β, let AvI(β) denote the set of β-
avoiding involutions, the set of involutions (permutations which are their own
inverse) which do not contain β. Let AvIn(β) be the set of permutations of
length n within this set.

Note that AvI(β) is not necessarily a class, as the set of all involutions is not
closed under the pattern ordering. However we can apply many of the same
ideas in order to enumerate these sets. Clearly, AvI(β) ⊆ Av(β), and so the
Marcus-Tardos theorem states that each set has a finite upper growth rate.

39
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Note that due to the symmetry of inversion (σ ≺ π if and only if σ−1 ≺ π−1),
these classes are not principally based in the classical sense. Indeed, AvIn(β) =
AvIn(β, β

−1) for any permutation β. For simplicity of notation, and to parallel
the work done in permutations, we write such a set with only a single basis
element.

Previous Results

Two patterns β, τ are involution Wilf-equivalent if |AvIn(β)| = |AvIn(τ)|.
Simion and Schmidt completed the classification of the involution Wilf-
equivalence classes of patterns of length three in their 1985 paper [76] by
showing that, for all patterns β ∈ {123, 132, 213, 321} and σ ∈ {231, 312},

|AvIn(β)| =
(

n

⌊n/2⌋

)
and |AvIn(σ)| = 2n−1.

Extending the work of Guibert, Pergola, and Pinzani [49], Jaggard [56] clas-
sified the eight involution Wilf-equivalence classes for length four patterns.
Of these classes, only two have been successfully enumerated: Gessel [46]
counted the set AvIn(1234), while Brignall, Huczynska, and Vatter [28] pro-
vided the enumeration for AvIn(2413). In this chapter we enumerate two of
these unknown sets (AvIn(1342) and AvIn(2341)), and provide bounds for a
third (AvIn(1324)).

Jaggard [56] computed the values |AvIn(β)| for each β of length four, up to
n = 11. This data (Table 3.1.1) suggests an ordering on the eight classes,
which we will show is misleading. For example, it seems clear from his data
that there are more involutions avoiding 2341 than avoiding 1234. However,
there are exponentially more 1234 avoiding involutions, as we will soon show.

Simple Involutions

Our primary tool will be the substitution decomposition. Inflations and in-
volutions are linked by the following theorem, which provides a recipe for
constructing new involutions from simples.

Theorem 3.1.2 (Brignall, Huczynska, Vatter [28]). Let σ 6= 21 be a simple
permutation of length m, and α1, α2, . . . αm. Then π = σ[α1, α2, . . . αm] is an
involution if and only if σ is an involution and αi = α−1

σi
. Further, the skew
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Table 3.1.1: The enumerations of involutions avoiding a pattern β of length 4
for n = 5, . . . , 11, as presented by Jaggard [56] (ordered by the last row).

1324 1234 4231 2431 1342 2341 3421 2413

|AvI5(β)| 21 21 21 24 24 25 25 24

|AvI6(β)| 51 51 51 62 62 66 66 64

|AvI7(β)| 126 127 128 154 156 170 173 166

|AvI8(β)| 321 323 327 396 406 441 460 456

|AvI9(β)| 820 835 858 992 1040 1124 1218 1234

|AvI10(β)| 2160 2188 2272 2536 2714 2870 3240 3454

|AvI11(β)| 5654 5798 6146 6376 7012 7273 8602 9600

decomposable involutions are either of the form 21[α1, α2] with α1 = α−1
2 or

321[α1, α2, α3] with α1 = α−1
3 and α2 = α−1

2 .

Describing classes as restricted inflations of their simple permutations is a new
and useful method for enumerating classes of permutations [5], and we adapt
this method to pattern-avoiding involutions. As we will show, the simple 2341-
avoiding and 1342-avoiding involutions are (almost) the same as the simple
123-avoiding involutions. The enumerations of these sets can then be obtained
by appropriately inflating these 123-avoiding involutions.

§ 3.2 Simple 123-Avoiding Permutations

We step back from involutions briefly, and investigate the simple 123-avoiding
permutations. This investigation, while interesting on its own, provides a gen-
tle introduction to the generating function techniques of Section 3.3. In par-
ticular, we mirror the techniques used by Albert and Vatter [10] to construct
and analyze a generating function for the 123-avoiding permutations.
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Figure 3.2.1: The staircase decomposition for the permutation 759381642.

The Staircase Decomposition

In Section 1.3.2 we investigated the geometric structure of the class Av 123,
and showed that it contains infinitely many simple permutations. While this
class is not a grid class [6], it can be defined using similar language. The
staircase decomposition of Av 123 allows one to utilize many of the specialized
techniques which are typically only applicable to grid classes, and is central to
our study.

Every permutation π ∈ Av 123 can be written as a union of two increasing
sequences of entries (the left-to-right minima and the right-to-left maxima).
The plot of such a permutation can be fit into a descending staircase of blocks,
the contents of which are monotone decreasing. See Figure 3.2.1. In general,
such a decomposition is not unique, but for simple 123-avoiding permutations
we can define a unique gridding as follows: let the first cell contain the longest
decreasing prefix of the permutation, each eastward cell contain all entries
whose value is greater than the smallest in the previous cell, and each south-
ward cell contain all entries to the left of the rightmost entry of the previous
cell.

This staircase decomposition was first introduced in [3] in the study of sub-
classes of Av 321. As 123 is the complement of 321, our decomposition is a
mirror image of theirs. Note that this decomposition separates the left-to-
right minima and right-to-left maxima. We will use this fact later to build a
bivariate generating function that keeps track of these entries separately.

Iterative Process

Let f =
∑

π∈Avn 123 x
n. We follow the exposition presented by Albert and

Vatter in [10] by first giving an almost correct derivation, then fixing two
small errors to obtain the correct result.
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−→ −→ −→ −→

Figure 3.2.2: The evolution of the permutation 759381642 by our recurrence.

We can build a simple 123-avoiding permutations iteratively using the staircase
decomposition by filling one cell at the time. We must, however, be careful
to ensure simplicity at each step along the way. To this end, we fill up an
infinite staircase with filled dots and hollow dots; a filled dot represents an
entry of the permutation, while a hollow dot represents a region which must
be filled by at least one entry in order to maintain simplicity. Filled dots can
be filled with a monotone run of entries, but each pair must be split by a
hollow dot in the next cell. Such a diagram with no hollow dots represents a
simple 123-avoiding permutations, while a diagram with hollow dots is still a
work in progress. Since there are only two cells ‘active’ at a time (the current
one, and the next one), we can represent this process as an iterative system,
and our goal is then to find a fixed point of the iteration.

We build f one cell at a time. At step one, we have a single hollow dot in
the first cell. At step two, we can fill this hollow dot with a descending run of
filled dots, but each pair of these necessitates a hollow dot in the next cell to
split them. During step three, each hollow dot in cell two can be filled with a
descending run, but again we must place hollow dots in cell three to maintain
simplicity. See Figure 3.2.2 for an example of this development.

Let fi be the generating function at stage i of this evolution, with the exponent
of x indicating the number of filled dots and the exponent of y indicating hollow
dots (so f1 = y). A hollow dot can be filled with a run of filled dots, each
pair of which requires a hollow dot, and we have the option of placing a new
hollow dot above the run. It follows then that in each step, each occurrence
of u will be replaced by

x(1 + y) + x2(y + y2) + x3(y2 + y3) + · · · = x(1 + y)

1− xy
.

Thus, we have

f1(x, y) = y, f2 = f1

(
x,

x(1 + y)

1− xy

)
=

x(1 + y)

1− xy
, fi+1 = fi

(
x,

x(1 + y)

1− xy

)
. . . .
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Since we are interested in permutations with arbitrarily many staircase cells,
we want to find the limit f = limn→∞ fi. It follows then that f is a fixed point

of the iteration x→ x; y → x(y+1)
1−xy

. Since f(x, y) = f
(
x, x(y+1)

1−xy

)
, can solve for

x to find

y =
x(y + 1)

1− xy
=⇒ y =

1− x−
√
1− 2x− 3x2

2x
.

Thus we have

f = f1

(
x,

1− x−
√
1− 2x− 3x2

2x

)

=
1− x−

√
1− 2x− 3x2

2x
= x+ x2 + 2x3 + 4x4 + 9x5 + 21x6 + . . . .

These coefficients are the Motzkin numbers, a well-studied and understood
sequence (sequence A001006 in the OEIS [84]), but are unfortunately not the
number of simple 123-avoiding permutations. This is due to the aforemen-
tioned errors, which we will now correct.

Correcting the Errors

Our iteration was correct, but there are some slight discrepancies arising in
the first two steps of the iteration which must be accounted for. In the second
step, the ‘optional’ hollow dot above the topmost element is actually required,
else the permutation will start with its largest entry (and therefore not be
simple). Furthermore, when this required dot is inflated in the third step,
the optional dot is in fact forbidden, else we will violate the greediness of the
gridding. See Figure 3.2.3 for an illustration.

Fortunately, however, these issues only affect the first three iterations: after-
wards, the iteration works as initially described. We can therefore compensate
by simply computing the first three by hand, and then plug in the value of
y which leads to the fixed point, as found above. As above, we have f1 = y.
Since the next optional point is required and will be treated differently in the
next step, we mark it with a t to differentiate it from the standard hollow dots.
Thus

f2(x, y, t) =
xt

1− xy
.

http://oeis.org/A001006
http://oeis.org/
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Figure 3.2.3: The hollow triangle represents the location of the hollow dot
which is required, and the hollow square represents the location of the hollow
dot which is forbidden.

To compute f3, we perform the standard iteration on the variable y, and change
the variable t into a generating function representing runs of filled dots with
no option to place one above. This leads to

f3 = f2

(
x,

x(y + 1)

1− xy
,

x

1− xy

)
.

At this point the standard iteration, taken to infinity, produces the correct
generating function, which can be used to enumerate the class Av(123), as
shown in Section 1.3.2.

f(z) = f3

(
x,

1− x−
√
1− 2x− 3x2

2x

)

=
2x2

1 + x2 + (1 + x)
√
1− 2x− 3x2

= x2 + 2x4 + 2x5 + 7x6 + 14x7 + 37x8 + . . . .

(3.1)

The coefficients are sequence A187306 in the OEIS [84].

§ 3.3 Simple 123-Avoiding Involutions

We return now to the problem of enumerating the simple 123-avoiding involu-
tions. Though this is more difficult, the iterative development of the generating

http://oeis.org/A187306
http://oeis.org/
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function for the simple 123-avoiding permutations presented above forms the
basis for our study. As we will eventually be inflating these involutions to
enumerate the avoiding sets, we want to keep track of left-to-right minima
(ltrmin), right-to-left maxima (rtlmax), and fixed points (fp) separately. Our
goal here will be to find the generating functions s(i)(u, v), defined below

s(i)(u, v) :=
∑

simple σ∈AvIn 123
with fp(σ)=i

ultrmin(σ)vrtlmax(σ).

Extending the Iteration

We proceed defining an iterative process similar to the development presented
in Section 3.2. This iterative process can be extended in a variety of ways,
as we will soon see. Note, for example, that we could have used a two-part
recurrences to keep track of the top cells and bottom cells separately; it fol-
lows then that this process can be used to enumerate the left-to-right minima
separately from the right-to-left maxima with a more technical (but no more
conceptually difficult) computation. The following sections will rely on some
tedious and technical calculations, but the core ideas are relatively easy to
express.

Geometrically, an involution is a permutation whose plot is symmetric about
the line y = x through the plane. As such, we can build a simple 123-avoiding
involution using the staircase decomposition starting from the center, and
building out in both directions. Figure 3.3.1 shows the two possible cases.
When there is a single fixed point, the case is uniquely determined by consid-
ering whether the fixed point is a rtl-max or ltr-min.

As in Section 3.2, we start with a single hollow dot in the center cell, and pro-
ceed outwards in both directions simultaneously while mainaining symmetry.
However, the number of fixed points determines how we proceed from here.
In the interest of clarity, we develop the single fixed point case in detail, and
give a sketch of the details of the other cases.

Single Fixed Point

We first develop the generating function ŝ(1)(z) = s(1)(z, z), which only keeps
track of the number of such permutations of each length and ignores the ltr-
min and rtl-max, and then indicate how to obtain the more general ŝ(1)(u, v).
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. . .

. . .
. . .

. . .

Figure 3.3.1: The diagrams on which we can draw simple permutations σ ∈
AvI(123) that contain a single fixed point. The starting point of the iteration
is the shaded cell.

Figure 3.3.2: An example of a bad placement of splitting entries that leads to
a skew decomposable permutation.

The set of all simple (123)-avoiding involutions with exactly one fixed point
can be partitioned based on whether the fixed point is a ltr-min or a rtl-max.
These two sets are in bijection with each other, as mapping a permutation
to its reverse complement maps one set to the other. Therefore it suffices to
enumerate those in which the fixed point is a rtl-max, and then simply double
the result to obtain the full generating function (or in the case of s(1), add the
result to itself with the rtl-max and ltr-min switched).

Assume that the fixed point is a rtl-max. The first hollow dot must then be
inflated by an odd number of filled dots (with the fixed point at the center).
The hollow dots here behave a bit differently than in the previous section: each
pair of filled dots can be split either below or to the left, or both. Of these
possible splittings, one of them (see Figure 3.3.2 yields a skew decomposable
permutation, violating the simplicity condition. We can account for this with
a calculation which takes the symmetry into account.

Suppose that the initial cell (which contains the fixed point) contains a total
of 2k+1 entries. It follows that k of these entries lie below and to the right of
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the fixed point. Because σ is simple, each of the 2k adjacent pairs of entries in
this cell must be separated by entries in the cell below, by entries in the cell
to the left, or by both types of entries. Each adjacent pair lying above and to
the left of the fixed point has a corresponding adjacent pair (its image under
inversion) which lies below and to the right of the fixed point; if we split the
former to the left, then the inverse-image of the separating entry splits the
latter below, and vice versa.

We can split each adjacent pair with as few as k entries in the cell below the
fixed point, and this can be done in 2k ways by picking which of each two
corresponding pairs of entries to split below. Similarly, the number of ways to
have k+ i separating entries in the cell below is given by 2k−i

(
k
i

)
, since we can

first pick which of the i corresponding pairs of gaps between entries are split
both to the left and below, then we choose which of each of the remaining k−i
corresponding pairs are split below or to the left.

As in the derivation in Section 3.2.3, there are a few slight difficulties we must
take into account, but again they only arise in the first three steps of the
iteration. We therefore construct these three steps by hand, before letting the
iteration go to infinity.

Every choice of separating entries leads to a simple permutation except one:
if we split all of the pairs of entries to the right of the fixed point by entries
below the initial cell and split no other pairs, then the resulting permutation
will be skew decomposable, as shown in Figure 3.3.2. We compensate for these
“bad cases” by subtracting the term x/(1− x2y).

It follows that

ŝ
(1)
2 (x, y, z) =

2z

y

(
∞∑

k=0

(
x2k+1

k∑

i=0

2k−i

(
k

i

)
yk+i

)
− x

1− x2y

)

=
2x3z(1 + y)

(1− x2y)(1− 2x2y − x2y2)
.

The 2 in ŝ
(1)
2 accounts for both cases, where the fixed point is a rtl-max and a

ltr-min, while the z/y factor counts the topmost hollow dot in the cell below the
fixed point by z instead of y, as it will require special care. By our definition of
greediness, this topmost hollow dot, shown as a hollow square in Figure 3.3.3,
is not allowed to produce an hollow dot above it in the next cell. Therefore,
when substituting for z to obtain ŝ

(1)
3 , we substitute x2/(1 − x2y) instead of

x2(1 + y)/(1− x2y). As such, we obtain
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s
(1)
1 s

(1)
2 s

(1)
3

Figure 3.3.3: Three stages of the recurrence, in the case when the single fixed
point is a right-to-left maximum.

ŝ
(1)
3 (x, y) = s2

(
x,

x2(1 + y)

1− x2y
,

x2

1− x2y

)
.

After this point, the same iteration leads from ŝ
(1)
i for ŝ

(1)
i+1 for all i ≥ 3. Since

the filled dots above the center cell are completely determined by those below,
we need only consider the expansion of hollow dots in the bottom cell. Their
expansion is exactly as in Section 3.2, except that each expansion of a hollow
dot adds dots in both the bottommost cell and the topmost. Letting i ≥ 3,
this leads to the relation

ŝ
(1)
i+1(x, y) = ŝ

(1)
i

(
x,

x2(y + 1)

1− x2y

)
. (3.2)

To find the limit of this iteration, it suffices to find at fixed point, and plug it
in for y in the expression ŝ

(1)
3 (x, y). This leads to

ŝ(1)(x) = ŝ
(1)
3

(
x,

1− x2 −
√
1− 2x2 − 3x4

2x2

)

=
2x5

(
1 + x2 +

√
1− 2x2 − 3x4

)

(1 + x2)2
(
1− 3x2 + (1− 2x2)

√
1− 2x2 − 3x4

)

= 2x5 + 2x7 + 10x9 + 22x11 + 68x13 + 184x15 + 530x17 + . . .

(3.3)

Note that an involution with only a single fixed point is necessarily of odd
length, and so the power series in equation 3.3 contains no terms with even
powers.
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Rather than repeat this full derivation to find s(1)(u, v), we simply indicate the
changes to make to the above calculation. Recall that u (resp. v) represents
a filled dot which is a ltr-min (reps. rtl-max), and introduce new variables yu
and yv which represent hollow dots which are ltr-min and rtl-max, respectively.
We can assume that the fixed point is a rtl-max, because then we can just add
this generating function to itself with the u and v swapped to obtain the full
generating function s(1)(u, v).

A hollow dot in a lower cell, represented by yu, then leads to filled dots in
the lower cell (represented by u) and hollow dots in an upper cell (represented
by yvs). A similar description of hollow dots in an upper cell leads to the
iterations

yu 7→
u2(1 + yv)

1− u2yv

yv 7→
v2(1 + yu)

1− v2yu
.

(3.4)

To find the fixed point of this iteration, we can compute two iterations and
solve. That is, solve for yv in the expression

yv =
v2(1 + yu)

1− v2yu

=
v2
(
1 + u2(1+yv)

1−u2yv

)

1− v2 u
2(1+yv)
1−u2yv

=
v2(1 + u2

1− u2v2 − u2yv − u2v2yv
.

Solving this system yields the fixed point of the iteration:

yv =
1− u2v2 −

√
1− 6u2v2 − 4u2v4 − 4u2v2 − 3u4v4

2u2(1 + v2)
. (3.5)

Mirroring the construction of ŝ(1), we can derive s
(1)
3 (u, v, yu, yv) by hand using

these extra variables. Note that there will be no yu terms in this expression,
because at the third stage the only hollow dots will be in cells corresponding
to left-to-right minima. The limit of the iteration is then given by plugging in
the fixed point to this expression. This gives the generating function for the



3.3. Simple 123-Avoiding Involutions 51

case when the fixed point is a rtl-max, but by swapping occurrences of u and
v and then adding it back to itself, we obtain the full generating function s(1).

s(1)(u, v) =
u2v3(1 + u2)(1 + 2v2 + u2v2 + r)

(1 + v2)(1− 6u2v2 − 4u2v4 − 4u4v2 − 3u4v4 + (1− 3u2v2 − 2u4v2)r)

where r :=
√

1− 6u2v2 − 4u2v4 − 4u4v2 − 3u4v4.

(3.6)

Zero and Two Fixed Points

We now turn to the remaining two cases, in which the involution has no fixed
points or two fixed points. The derivation is largely the same as the single
fixed point case, so we simply sketch the changes that must be made. Each of
these has their own idiosyncrasies, but they can be dealt with easily.

First, consider the case of involutions with no fixed points. Such a permutation
cannot be uniquely gridded, because the diagonal line on which the fixed points
would lie can be taken to pass through either a lower or upper central cell. It
follows, however, that every involution with no fixed points can be decomposed
in both ways, and so it suffices to assume that the diagonal line passes through
an upper cell, and take this to be our initial cell.

Since there is no fixed point, this initial cell must have an even number of
elements. We build the first three iterations by hand, in the same manner as
the one fixed point case, before substituting the fixed point of the iteration. A
similar bad case (Figure 3.3.2) must be accounted for, and the same restriction
applies to the topmost hollow dot of the second cell, as shown in Figure 3.3.3.

The generating function ŝ(0) enumerating the class according to length, and
the corresponding bivariate generating function s(0) enumerating the ltr-min
and ltr-max entries are given below.

ŝ(0)(x) =
2x6(1 + x2 −

√
1− 2x2 − 3x4)

2− 2x2 − 10x4 − 6x6 + (2− 6x4 − 4x6)
√
1− 2x2 − 3x4

= x8 + 2x10 + 8x12 + 22x14 + 68x16 + 198x18 + 586x20 + · · · .
(3.7)
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Figure 3.3.4: The decomposition of an involution with two fixed points.

s(0)(u, v) =
2u2v4(1 + u2)(1 + 2u2 + u2v2 − r)

(1− u2v2 + r)(1− 6u2v2 − 4u2v4 − 4u4v2 − 3u4v4 + (1 + 2v2 + u2v2)r)

where r :=
√

1− 6u2v2 − 4u2v4 − 4u4v2 − 3u4v4.

(3.8)

Finally, we consider the case of involutions with two fixed points. As with
the case of no fixed points, such a permutation can be drawn on either of the
two diagrams shown in Figure 3.2.1. To ensure uniqueness, break our own
rules slightly to say that the topmost fixed point is the center of the initial
cell, while the bottom fixed point lies on the southwest corner of this cell. See
Figure 3.3.4 for an example, and note that in this case, the hollow square is
allowed to produce a hollow dot above itself in the next cell, as this no longer
violates the greediness of the decomposition (because of the lower fixed point).

Note also that the ‘bad case’ (Figure 3.3.2) is no longer a bad case, as the lower
fixed point maintains simplicity. Also, we are now allowed to add a hollow dot
in the second cell immediately to the right of the lower fixed point, as long as
we insert a hollow dot above this entry in the third cell. Taking these factors
into consideration, we have the following generating functions for ŝ(0) and s(0).

ŝ(0)(x) =
x4(2 + 5x2 + 3x4 − (2 + x2)

√
1− 2x2 − 3x4)

1− x2 − 5x4 − 3x6 + (1 + 2x2 + x4)
√
1− 2x2 − 3x4

= 3x6 + 4x8 + 15x10 + 36x12 + 105x14 + 288x16 + 819x18 + · · · .
(3.9)
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s(0)(u, v) =
uv3 (2 + 7u2 + 4u2v2 + 4u4 + 3u4v2 − (2 + u2)r)

1− 6u2v2 − 4u2v4 − 4u4v2 − 3u4v4 + (1 + 2v2 + u2v2)r

where r :=
√
1− 6u2v2 − 4u2v4 − 4u4v2 − 3u4v4.

(3.10)

We can now combine the generating functions s(0), s(1), s(2) to obtain a generat-
ing function for all simple 123-avoiding permutations, enumerated by number
of left-to-right minima and right-to-left maxima. However, it will be convenient
to keep these separate, because in the next section we will explore inflations of
these permutations, and oftentimes fixed points have different inflation rules
from other entries.

§ 3.4 Enumerating Pattern Avoiding Involutions

We are now in position to enumerate the sets AvI(1342) and AvI(2341). Our
tool for both of these is to first show that the simples in each set (almost)
coincides with the simples within AvI(123). This allows us to describe each of
these sets by inflations of these simples, and so we need only determine what
inflations are allowed to enumerate the sets.

Involutions Avoiding 1342

Clearly, every involution avoiding 1342 must also avoid 1342−1 = 1423. We
first show that the set of simples in this set are precisely the 123-avoiding
simple involutions. This will be easy once we establish suitable notation.

Definition 3.4.1. Given a permutation class C, define its substitution closure
〈C〉 to be the largest class with the same simple permutations as C.

By definition, since Av(123) ⊆ Av(1342, 1423), we have that the 123-avoiding
simples are contained in Av(1342, 1423). Atkinson, Ruškuc, and Smith [13]
investigated substitution closures, and found that

〈Av(123)〉 = Av(24153, 25314, 31524, 41352, 246135, 415263).
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Each of these basis elements contains either 1342 or 1423, and so we have the
following relation and its consequences.

Av(1342, 1423) ⊆ 〈Av(123)〉 .

Proposition 3.4.2. The simple permutations within Av(1342, 1423) are pre-
cisely the same as the simple permutations within Av(123).

Corollary 3.4.3. The simple involutions within Av(1342, 1423) are precisely the
same as the simple involutions within Av(123).

To enumerate the set we now need only describe the allowable inflations which
maintain pattern avoidance and involutionicity. We divide the simples into
three classes: first we have the inflations of 1, which themselves must be sim-
ple. Then come the inflations of 12 and 21, the sum- and skew-decomposable
permutations, respectively. Finally we consider inflations of simples of length
greater than three.

We begin by by defining f to be the generating function for the class
Av(1342, 1423) and f⊕ (resp., f⊖) the generating function for the sum (resp.,
skew) decomposable permutations of this class. We then define g to be the
generating function for the set AvI(1342) and g⊕ (resp., g⊖) the generating
function for the sum (resp., skew) decomposable 1342-avoiding involutions.

First we describe the sum decomposable permutations π = α1 ⊕ α2 counted
by g⊕. By Proposition 1.1.15, we can assure uniqueness of decomposition by
requiring that α1 is sum indecomposable. To produce an involution, α1 and
α2 must be involutions as well. In order for π to avoid the patterns 1342
and 1423, it is required that α1 avoids these patterns, and that α2 avoids the
patterns 231 and 312 = 231−1.

In fact, the class Av(231, 312), known as the class of layered permutations,
consists entirely of involutions because a permutation lies in Av(231, 312) if and
only if it can be expressed as a sum of some number of decreasing permutations.
The layered permutations of length n are in bijection with compositions of n,
and hence there are 2n−1 permutations of length n in Av(231, 312). Therefore,
g⊕ satisfies the equation

g⊕ = (g − g⊕)

(
x

1− 2x

)
.

From this expression it follows that
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g⊕ =
gx

1− x
. (3.11)

Next we must briefly consider the permutation class Av(1342, 1423). Kre-
mer [63, 64] showed that this class is counted by the large Schröder numbers,
sequence A006318 in the OEIS [84], and has generating function

f(x) =
1− x−

√
1− 6x+ x2

2
.

Since this permutation class is skew closed (because both 1342 and 1423 are
skew indecomposable), it follows by Proposition 1.1.15 that, since f⊖ = (f −
f⊖)f and f⊖ = f2

1+f
,

f − f⊖ =
f

1 + f
=

1 + x−
√
1− 6x+ x2

4
.

This is the generating function for the small Schröder numbers, sequence
A001003 in the OEIS [84].

Returning our attention to AvI(1342), which is also skew closed, we note that
skew indecomposable permutations in this set are of the form α1 ⊖ α2 ⊖ α−1

1

where α1 is a skew decomposable member of Av(1342, 1423) and α2 is an
arbitrary (and possibly empty) member of AvI(1342). Therefore we see that

g⊖ =
(
f(x2)− f⊖(x

2)
)
(1 + g). (3.12)

Lastly, we must enumerate 1342-avoiding involutions which are inflations of
simple permutations of length at least four. Any such simple permutation
must have at least two right-to-left maxima and by simplicity every right-to-
left maximum must have some entry both below it and to the left. Hence
to avoid creating a copy of 1342 or 1423, we may only inflate right-to-left
maxima by decreasing intervals. An entry which is a left-to-right minimum
can be inflated by any permutation in the class Av(1342, 1432). However, to
ensure that the inflated permutation is an involution, we must inflate each
fixed point by an involution. Additionally, if we inflate the entry with value
σ(i) by the permutation α, we must make sure to inflate the entry with value
i by α−1.

Consider s(0)(u, v), which is the generating function for simple involutions of
length at least four which avoid 123 and have zero fixed points. To inflate

http://oeis.org/A006318
http://oeis.org/
http://oeis.org/A001003
http://oeis.org/
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each right-to-left maximum by a decreasing permutation in a way that yields
an involution, we substitute

v2 =
x2

1− x2
.

This follows because if σ(i) is a right-to-left maximum of the simple 123-
avoiding involution σ then the entry with value i will also be a right-to-left
maximum, and we must substitute a permutation and its inverse into this
pair of entries of σ. Because the class Av(1342, 1423) is counted by the large
Schröder numbers, the inflations of the simple involutions of length at least
four with zero fixed points are counted by

s(0)(u, v)
∣∣
u2=f(x2), v2=x2/(1−x2)

. (3.13)

Recall that s(1)(u, v) counts only those simple involutions whose single fixed
point is a right-to-left maximum. Since this fixed point must be inflated by a
decreasing permutation, we count inflations of such permutations by

(
s(1)(u, v)

v

∣∣∣∣
u2=f(x2), v2=x2/(1−x2)

)
· x

1− x
. (3.14)

To count those simple involutions whose single fixed point is a left-to-right
minimum, we need only swap u and v. Thus, inflations of these are counted
by the generating function

(
s(1)(v, u)

u

∣∣∣∣
u2=f(x2), v2=x2/(1−x2)

)
· g. (3.15)

Finally, we must account for inflations of those simple involutions which con-
tain exactly two fixed points, one of which is a right-to-left maximum while
the other is a left-to-right minimum. These permutations are counted by

(
s(2)(u, v)

uv

∣∣∣∣
u2=f(x2), v2=x2/(1−x2)

)
· gx

1− x
. (3.16)

By summing the contributions of (3.11)–(3.16) and accounting for the single
permutation of length 1, one finds that
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g(x) =
x
(
1− 2x+ x2 +

√
1− 6x2 + x4

)

2 (1− 3x+ x2)
.

It can then be computed that the growth rate of involutions avoiding 1342 is
1 plus the golden ratio,

1 +
1 +
√
5

2
≈ 2.62.

Involutions Avoiding 2341

We turn our attention now to enumerating the 2341-avoiding involutions. Note
that each involution avoiding 2341 must also avoid 2341−1 = 4123. We begin
by examining the simple involutions which avoid these patterns. Note that,
in this case, the simple permutations of the class Av(2341, 4123) are not the
same as the simples of Av(123). When we restrict to involutions, however,
we find that the simples of AvI(2341) are almost the same as the simples of
AvI(123).

Theorem 3.4.4. The simple 2341-avoiding involutions are precisely the union
of set of 123-avoiding simple involutions along with the permutation 5274163.

We delay the technical proof of this theorem to the end of this section.

Now that we know the simples, we need only determine the ways in which they
can be inflated. As in the previous section, we enumerate the 2341-avoiding
involutions by separately enumerating the sum decomposable permutations,
the skew decomposable permutations, and the inflations of simple permuta-
tions of length at least four. Again we define g to be the generating function
for the set AvI(2341) and g⊕ (resp., g⊖) the generating function for the sum
(resp., skew) decomposable 2341-avoiding involutions.

In this case we see that AvI(2341) is sum closed, so we have

g⊕ = (g − g⊕)g.

This then leads that

g⊕ =
g2

1 + g
. (3.17)
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By Proposition 3.1.2, the skew decomposable permutations must have the form
321[α1, α2, α

−1
1 ], where α1 is skew indecomposable and α2 is a (possibly empty)

involution. Furthermore, to avoid the occurrence of a 2341 or a 4123 pattern,
we must also have that α1, α2 ∈ Av(123).

Recall that the 123-avoiding permutations are enumerated by the Catalan
numbers, which have generating function

c(x) =
1− 2x−

√
1− 4x

2x
.

Since the class Av(123) is skew closed, when we denote the generating function
for the skew decomposable 123-avoiding permutation, it follows (as in the
previous section) that

c− c⊖ =
c

1 + c
= x(c + 1).

As mentioned in the Section 3.1, Simion and Schmidt [76] proved that

|AvIn(123)| =
(

n

⌊n/2⌋

)
.

These terms are known as the central binomial coefficients, sequence A001405
in the OEIS [84]. These permutations thus have the generating function

1− 4x2 −
√
1− 4x2

4x2 − 2x
.

Therefore, the generating function which counts our choices for the pair
(α1, α

−1
1 ) is x2(c(x2) + 1), and the generating function for all skew decom-

posable 2341-avoiding involutions is

g⊖ =
(
x2
(
c(x2) + 1

))
·
(
1− 4x2 −

√
1− 4x2

4x2 − 2x
+ 1

)
(3.18)

Next, we consider inflations of the simple permutations in AvI(123). In both
cases, every entry of such a simple permutation can only be inflated by a
decreasing permutation, as any inflation by a permutation with an increase
would create a copy of 2341 or 4123. Thus inflations of the simple permutations
counted by s(0) contribute

http://oeis.org/A001405
http://oeis.org/
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s(0)(u, v)
∣∣
u2=v2=x2/(1−x2)

. (3.19)

Inflations of the simple permutations counted by s(1) contribute

2

(
s(1)(u, v)

v

∣∣∣∣
u2=v2=x2/(1−x2)

)
· x

1− x
. (3.20)

Next, inflations of simple permutations counted by s(2) contribute
(
s(2)(u, v)

uv

∣∣∣∣
u2=v2=x2/(1−x2)

)
·
(

x

1− x

)2

. (3.21)

Lastly, we consider inflations of 5274163. Because this permutation has three
fixed points, the 2341-avoiding involutions formed by inflations of 5274163 are
counted by

(
x2

1− x2

)2(
x

1− x

)3

. (3.22)

By combining the contributions (3.17)–(3.22) and accounting for the single
permutation of length 1, it can be computed that g has minimal polynomial
Therefore, b satisfies the functional equation

b = x+
b2

1 + b
+ x2(c(x2) + 1)

(
1 + x+ xc(x2)√

1− 4x2

)
+ I(x).

From this it follows that b has minimal polynomial shown below.

t2g2 + (48x16 − 158x15 + 101x14 + 334x13 − 627x12 + 60x11 + 801x10 − 684x9 − 231x8

+624x7 − 221x6 − 162x5 + 151x4 − 24x3 − 17x2 + 8x− 1)tg

+(18x15 − 51x14 + 16x13 + 125x12 − 169x11 − 48x10 + 256x9 − 130x8 − 131x7

+159x6 − 11x5 − 60x4 + 28x3 + 3x2 − 5x+ 1)tx

In the expression above, t is defined as

t = 32x16 − 120x15 + 113x14 + 206x13 − 540x12 + 223x11 + 561x10 − 725x9

+ 26x8 + 514x7 − 326x6 − 55x5 + 141x4 − 50x3 − 4x2 + 6x− 1.
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Note that though this minimal polynomial looks complicated, it is in fact
quadratic in g, so it is not difficult to solve it explicitly. While the explicit
solution is even more complicated than the minimal polynomial, this makes
it relatively easy to compute the minimal polynomial for the growth rate of
AvI(2341, 4123), which is

x16 − 6x15 + 4x14 + 50x13 − 141x12 + 55x11 + 326x10 − 514x9 − 26x8 + 725x7

−561x6 − 223x5 + 540x4 − 206x3 − 113x2 + 120x− 32.

The growth rate itself is approximately 2.54.

We now return to the proof of Theorem 3.4.4. The proof is rather technical,
and relies on listing and eliminating a variety of cases. This was greatly assisted
by Albert’s PermLab [1] software.

Proof of Theorem 3.4.4. The proof of this theorem consists of the investiga-
tion of many cases relating to the placement of the fixed points in a 2341-
avoiding simple involution. Recall that such an involution must also avoid
2341−1 = 4123. To better understand these permutations, we utilize permu-
tation diagrams, depicted in Figures 3.4.1, 3.4.2, and 3.4.3. Each of these
diagrams consists of the plot of a permutation, together with a coloring of
the cells. A cell is white if we are allowed to insert an entry without creat-
ing an occurrence of 2341 or 4123, and dark gray otherwise. A cell is light
gray if we explicitly forbid any entries through the course of our arguments.
The rectangular hull of a set S of entries is defined to be the smallest axis-
parallel rectangle which contains all points of S. Finally, the inverse image of
a point (x, y) is the point (y, x), equivalent to the image of the point when
reflecting across the line y = x. These tools will be useful in describing and
understanding the various cases of this proof.

Let σ be a 2341-avoiding simple involution, and claim that either σ avoids 123
or σ = 5274163. Suppose that σ contains at least one 123 pattern. Of all of
the possible occurrences of 123, we focus on a single occurrence of this pattern,
the one in which the 3 is the topmost possible entry, the 1 is the bottommost
for the chosen 3, and the 2 is the rightmost for the chosen 1 and 3. It follows
then that σ can be drawn on the diagram shown in Figure 3.4.1a. Note that,
despite the apparent symmetry, these three entries are not necessarily fixed
points, because each white cell could be inflated by different numbers of entries.
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A
B C

A

(a) (b) (c)

Figure 3.4.1: Permutation diagrams referenced in the proof of Theorem 3.4.4.

Thus, we must consider separate cases in which some combination of these
entries lie on the diagonal.

Case 1: For our first case, assume that each of these entries are in fact fixed
points. Then, since σ is an involution, the cells labelled A,B,C must all be
empty, since otherwise the plot would not be symmetric about the line passing
through the diagonal. It follows then that σ can be plotted on the diagram
shown in Figure 3.4.1b. We now claim that σ = 5274163.

By simplicity, the rectangular hull of the leftmost two entries shown in Fig-
ure 3.4.1b must be split by an entry either in the white cell above it or in
the white cell to its right. Since σ is an involution, it follows then that there
are in fact splitting entries in both of these cells. Assume that the splitting
entry in the cell above is the topmost possible entry and the one to the right
is the rightmost possible. A similar argument applied to the rectangular hull
of the rightmost two entries produces a permutation diagram depicted in Fig-
ure 3.4.1c.

We now claim that we can go no further. There are only four remaining white
cells in Figure 3.4.1c, and no two of these cells shares a row or column. It
follows then that by placing entries in any of these cells, we would be creating
intervals which cannot be split by any other entry, thus violating simplicity.
It follows then that the only simple 2341-avoiding involution which contains
an occurrence of 123 in which each entry is a fixed point is the permutation
5274163, as desired.

Case 2: Now suppose that the rightmost entry of our specified 123 occurrence
is not a fixed point. It therefore must lie either above or below the reflection
line, i.e., it must be either above and to the left or below and to the right of
its inverse image. Suppose first that it is below this line of reflection, and so
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(a) (b) (c) (d) (e)

Figure 3.4.2: Permutation diagrams referenced in the proof of Theorem 3.4.4.

its inverse image must lie above and to the left. There is only one candidate
cell, the result is shown in Figure 3.4.2a.

Note that, in a general involution, if two entries from an increase (resp., a
decrease) then their inverse image also forms an increase (resp., a decrease).
It follows then that the third entry from the left shown in Figure 3.4.2a (the
2 of the original 123 pattern) cannot lie above or on the reflection line, and
so must lie below. Therefore its inverse image lies above. There is only one
appropriate white cell in which this entry can lie, as shown in Figure 3.4.2b.
If the leftmost entry in this figure were a fixed point, then the permutation
would begin with its smallest entry, violating simplicity. This entry therefore
lies below the reflection line, and has an inverse above and to its left. This
leads to Figure 3.4.2c, but we see that the this leads to a non simple, and in
fact sum decomposable, permutation, because the bottom-leftmost three by
three rectangular hull cannot be split by any other entries. This case therefore
leads to a contradiction, and can be eliminated.

Suppose now that instead of lying below the reflection line, the 3 of our 123
pattern shown in Figure 3.4.1a lies above, and so its inverse image is in a
cell below and to the right, of which there are two. If the inverse image,
however, is in the lower of these two then by an argument analogous to the
paragraph above we reach a violation of simplicity. Therefore the inverse
image of the rightmost entry must lie in the cell directly below and to its
right. The fact that σ is an involution allows us to forbid the placing of entries
into cells where the inverse image would create a forbidden pattern, leading
to Figure 3.4.2d. Now the rectangular hull of the rightmost two entries must
be split to preserve simplicity, and in fact must be split below and to the
left to preserve involutionicity, leading to Figure 3.4.2e. Our situation is now
analagous to that shown in Figure 3.4.2c, in that any placement of entries will
lead to a sum decomposable (and hence non simple) permutation. Therefore
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(a) (b) (c) (d)

Figure 3.4.3: Permutation diagrams referenced in the proof of Theorem 3.4.4.

this case (in which the last entry of the original 123 is not a fixed point), can
be discarded.

Case 3: Finally, we consider the case where the 3 of the 123 is a fixed point, but
some other entry is not. Suppose first that the middle entry of Figure 3.4.1a
lies above the reflection line. We are then forced into a situation identical to
that shown in Figure 3.4.2e except rotated by 180 degrees, leading to a con-
tradiction. Assuming that the middle entry is above the reflection line leads,
and recalling that the inverse image of two increasing points are themselves
increasing, leads to Figure 3.4.3a.

First assume that the leftmost entry shown in Figure 3.4.3a is a fixed point,
leading to Figure 3.4.3b. Simplicity then requires that there be an entry
in the bottommost white cell whose inverse image is in the leftmost white
cell, yielding Figure 3.4.3c. The center of this diagram, however, contains an
interval which cannot be split, contradicting our assumption that the leftmost
entry of Figure 3.4.3a is a fixed point. Letting this entry lie above the reflection
line leads to a contradiction analogous to Figure 3.4.2c, and so let this entry
lie below the line, with its inverse image above and to the left. Inspecting the
various cases shows that this inverse image must lie in the cell immediately
above and to the left, producing Figure 3.4.3d. The rectangular hull of the
leftmost two entries can be split in two ways, but one of them leads to a sum
decomposable permutation and the other leads to a non involution.

Our final remaining case is when the middle entry of Figure 3.4.1a is a fixed
point. Using similar methods to those presented above, we find that the that
the leftmost entry must also be a fixed point. However, this case has already
been investigated.

It therefore follows that there is precisely one simple 2341-avoiding involution.
Since every 123-avoiding simple involution must also avoid 2341, it follows
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that the set of all simple 2341-avoiding involutions is equal to the set of simple
123-avoiding involutions together with the permutation 5274163.



– Chapter 4 –

Polynomial Classes and Genomics

This chapter examines the so called polynomial classes, those permutation
classes whose enumeration is given by a polynomial for large enough sizes.
Much research in the area of permutation classes focuses on characterizing
exponential growth rates, with a particular focus on the principally based
classes. Considerably less attention has been paid to the small permutation
classes [85,86] of which the polynomial classes, having subexponential growth,
are an example.

These classes have recently found biological applications to the field of ge-
nomics. Evolution and mutation of organisms can be modelled as a rearrange-
ment of a sequence of genes, and permutations have recently been applied
to model these rearrangements [42]. The physical mechanics of genome rear-
rangement have led to a variety of operations on permutations, and the theory
of geometric grid classes [6] provides a geometric foundation from which to
study these various operations. The polynomial classes are a subset of these
grid classes, and arise when modelling the evolutionary distance.

Polynomial classes can characterized in a number of ways, but determining
the actual polynomial which enumerates such a class can be computationally
difficult. While there are several established methods for enumerating permu-
tation classes, many of these are inefficient and none take advantage of the
inherent structure in these classes. In this chapter, we introduce an algorithm
which quickly and efficiently enumerates a polynomial class from a structural
description of the class. This allows for an extension of existing genomic data,
as well as a framework for further investigation. This chapter is based in
part on [53], and the algorithm, implemented in Python, is freely available
online [54].

65
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§ 4.1 Class Structure

Definition 4.1.1. A permutation class C is a polynomial class if and only if the
function p(n) = |Cn| is given by a polynomial for large enough n.

It is not obvious that this definition gives way to a strict geometric description,
as we shall soon see. Geometric grid classes provides a range of tools for
analyzing the geometric properties of permutation class structure, and has
produced new enumerative techniques for classes. To describe polynomial
classes, however, we don’t need the full machinery of geometric grid classes;
these classes can be defined entirely using inflations (Definition 1.1.14).

Note first that the polynomial classes fall under the purview of several es-
tablished approaches, which could theoretically be used to enumerate the
classes [2,6,9,28,87]. However, each of these approaches has its own drawbacks,
and none provides an enumeration directly from a structural description of the
class. Further, the work presented here illuminates some of the preliminary
obstacles preventing a similar algorithmic approach to geometric grid classes.

Peg Permutations

Polynomial classes can be viewed by considering a set of restricted inflations
of a finite set of permutations. In order to properly analyze these inflations,
we introduce an additional structure on permutations which will be used to
specify which inflations are allowed.

Definition 4.1.2. A peg permutation ρ̃ is a permutation ρ = ρ1ρ2 . . . ρn in
which each entry is decorated with either a +, −, or •. The length of a peg
permutation ρ̃ is just the length of the underlying permutation ρ.

For example, ρ̃ = 3+1−2•4+ is a peg permutation of length 4, and there are 3nn!
peg permutations of length n. We denote peg permutations with a tilde, while
the underlying permutation (with decoration removed) is written without.

We allow peg permutations to be inflated with monotone intervals. The entries
marked with a + (resp. −) can be inflated with ascending (resp. decreasing)
runs. Entries marked with a • can be inflated with a single entry. Note
that we go against tradition and allow empty inflations. It follows then that
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Figure 4.1.1: The peg permutation ρ̃ = 3+1−2•4+ inflated by the vector ~i =
(2, 3, 1, 0) is the permutation 563214.

such an inflation can be described simply as a peg permutation together with
a sequence of integers which represent the number of elements by which to
inflate each entry. We formalize this below.

Definition 4.1.3. Let ρ̃ = ρ̃1ρ̃2 . . . ρ̃n be a peg permutation of length n, and
~i = (i1, i2, . . . in). Then let ρ̃(I) be the permutation obtained by inflating entry
ρ̃k by an interval of size ik according to the decoration of ρ̃k: an ascending run
if the decoration is a +, a descending run if it is a −, and a single entry if a •.
If ρ̃k has a dot, then ik must be 0 or 1, otherwise ik ∈ N.

Recall, for example, the class Av(123, 231) examined in Section 1.3.3. The
decomposition of this class was shown in Figure 1.3.6, and can be described
as inflations of the peg permutation 3+1+2+.

Like many definitions in this dissertation, this one is best illustrated with a
graphic example. Figure 4.1.1 shows a peg permutation being inflated and
then standardized into a permutation. The following definition and theorem
provide our desired characterization of polynomial classes.

Definition 4.1.4. For a peg permutation ρ̃, denote by I(ρ̃) the set of all valid
inflations of ρ̃. Similarly, for a set S̃ of peg permutations, let

I(S̃) = ∪ρ̃∈S̃I(ρ̃).

It follows that for a permutation π ∈ I(ρ̃), there exists some partition P of
the entries of π into monotone intervals which are compatible with ρ̃. This
partition is referred to as a ρ̃-partition of π.

It can be easily shown that, for a peg permutation ρ̃ of length n, if ~v =
(v1, v2 . . . vn) ∈ N

n and ~w = (w1, w2, . . . wn) ∈ N
n are two vectors such that
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Figure 4.1.2: If a class contains arbitrarily long patterns of any of these forms,
it is not a polynomial class.

vi ≤ wi for all i ∈ [n], then ρ̃(~v) ≺ ρ̃(~w) as permutations. Also, note that
I(ρ̃) forms a permutation class, and in fact, as we shall soon see, a polynomial
class.

Theorem 4.1.5 ( [6,55]). For a permutation class C, the following are equivalent.

1) C is a polynomial class,

2) Cn < fn for some n, where fn is the nth Fibonacci number,

3) C does not contain arbitrarily long patterns of the forms shown in Fig-
ure 4.1.2,

4) C = I(S̃) for some set S̃ of peg permutations.

Peg Patterns

Analogous to the permutation pattern ordering, we can define an ordering on
peg permutations. Essentially, we say that a peg permutation is contained in
another if it can be obtained by deleting entries and changing signs to dots.

Definition 4.1.6. Let ρ̃ = ρ̃1ρ̃2 . . . ρ̃n and τ̃ = τ̃1τ̃2 . . . τ̃k be peg permutations.
Say that τ̃ is contained within ρ̃ if there is a subsequence ρ̃i1 ρ̃i2 . . . ρ̃ik , whose
entries lie in the same relative order as those of τ̃ and whose decorations are
compatible, meaning that ρ̃ij either have the same decoration or τ̃j is decorated
with a dot.

It follows from the definitions that if τ̃ ≺ ρ̃, then I(τ̃ ) ⊂ I(ρ̃). However, the
converse is not true. For example, letting τ̃ = 1•2• and ρ̃ = 1+, we see that
I(τ̃ ) = {1, 12} ⊂ I(ρ̃), but τ̃ 6≺ ρ̃. The core idea of the algorithm is the
partition all permutations of the class according to peg permutation, and then
enumerate these by enumerating integer vectors.
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Definition 4.1.7. For a peg permutation ρ̃ and a permutation π, say that π fills
ρ̃ if π = ρ̃(~v) such that ~vi = 1 whenever ρ̃i is decorated with a dot, and ~vi ≥ 2
otherwise. Every peg permutation ρ̃ has a unique minimal filling permutation,
denoted mρ̃.

Integer Vectors

Peg permutations provide a way of translating between integer vectors and
permutations. The underlying idea of the algorithm is to formalize this cor-
respondence in a way which preserves the ordering, converting permutation
posets into posets of integer vectors. We will now establish some machinery
for working with and enumerating integer vector posets.

Downsets in the integer vector poset are easier to work with than permutation
classes in part because of Higman’s Theorem [50], which implies that every
downset has a finite basis. The union and intersection of these downsets is
easy to compute as well.

Definition 4.1.8. For two vectors ~v, ~w ∈ N
n, say that ~v ≺ ~w if vi ≤ wi for each

i ∈ [n]. For a downset V ⊂ N
n, denote by BV the set of minimal vectors in the

complement of V. It follows then that V can be described as precisely those
vectors which avoid the vectors of BV , that is,

V := {~v ∈ N
n : ~bi 6≺ ~v, ∀ ~bi ∈ BV}.

For two vectors ~v, ~w ∈ N
n, denote by ~v ∨ ~w the minimal vector for which

~v ≺ ~v ∨ ~w and ~w ≺ ~v ∨ ~w. It follows that (~v ∨ ~w)i = max(~vi, ~wi) for each
i ∈ [n].

Proposition 4.1.9. Let V,W be downsets in N
n with corresponding downsets

BV ,BW . Letting BM be the minimal vectors of the set {~v∨ ~w : ~v ∈ V, ~w ∈ W},
BU the minimal vectors of the union BV ∪ BW , and M and U the downsets
which avoid BM and BU , respectively. We have that

V ∩W = U ,

V ∪W =M.

Proof. Clearly, any vector in V ∩W must avoid all basis elements of both BV
and BW , and so the basis for V ∩W is the set of minimal elements of the set
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BV ∪ BW . For unions, we proceed using De Morgan’s laws:

V ∪W =

(
⋂

~v∈BV

{~v-avoiding vectors}
)
⋃
(
⋂

~w∈BW

{~w-avoiding vectors}
)

=
⋂

~v∈BV

~w∈BW

(
{~v-avoiding vectors} ∪ {~w-avoiding vectors}

)

=
⋂

~v∈cBV
~w∈BW

{~v ∨ ~w-avoiding vectors}.

Therefore the basis for V∪W consists of the set BM, completing the proof.

Proposition 4.1.9 can also be used to enumerate downsets of integer vector
classes, using inclusion exclusion. It will be useful to consider these downsets
as collections of point-sets on an integer lattice, and to enumerate the classes
based on the number of n-element sets they contain. We formalize this below.

We define the weight of a vector as the sum of its entries. A peg permutation,
inflated by a vector of weight k, produces a permutation of length k. Counting
integer vectors according to weight is relatively simple, and is equivalent to
counting ordered compositions. Letting an,k denote the number of k-weight
vectors in N

n, we have ∑

k≥0

an,kz
k =

1

(1− z)n
.

Similarly, the generating function for the number of permutations which con-
tain a given vector ~v ∈ N

n is given by

zwt(~v)

(1− z)n
.

It follows from this and Proposition 4.1.9 that that downsets can be enumer-
ated by adding and subtracting generating functions of this form. This leads
to the following lemma.

Lemma 4.1.10. Let ρ̃ be a peg permutation, and let s be the number of signs
in the decoration of ρ̃, and d the number of dots. Then the generating function
for the filling permutations of ρ̃ is given by

zd+2s

(1− z)s
.
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Lemma 4.1.10 will ultimately be our enumeration scheme for these classes.
The main barrier is partitioning the class into categories based on which peg
permutation they fill. The bulk of the algorithm, described in the next section,
will be performing this partitioning.

§ 4.2 The Algorithm

This section gives an overview of the enumeration algorithm, given a set of
peg permutations as an input, and outputting a disjoint set of integer vector
downsets, which can then be enumerated. The algorithm consists of three
parts. First the set is completed, then compacted, and finally cleaned, at which
point we have a set of peg permutations which partition the class. Letting S̃
be a set of peg permutations, we describe each part in detail below, with the
goal of enumerating the class I(S̃). A pseudocode overview of the algorithm
is shown in Figure 4.2.1.

Completing the Set

Say that a set S̃ is complete if every permutation π ∈ I(S̃) fills at least
one element ρ̃ ∈ tS. For example, the set {2+1+} is not complete, because
1 2 3 ∈ I(2+1+) (since 1 2 3 = 2+1+(3, 0)), but doesn’t fill 2+1+. It follows
from the definition of peg patterns, however, that every permutation in I(S̃)
must fill some pattern within an element in S̃.

Therefore, the downset of any peg pattern is a complete set. The first step of
the algorithm completes the set S̃ by, for each ρ̃ ∈ S̃, we add all patterns of ρ̃
into the set S̃. After this step, the set S̃ is complete.

Compacting the Set

The next obstacle in the enumeration is ensuring that every permutation in
the class fills a unique peg permutation in the set. Given a permutation, we
can divide its entries up into monotone intervals in a number of ways. The
following lemma will help to ensure uniqueness, and allow for enumeration.

Lemma 4.2.1. If two monotone intervals intersect, then their union and inter-
section are also monotone intervals.
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Proof. Suppose we have two monotone intervals with a non-empty intersection.
Without loss of generality, suppose that one of them is increasing, and so their
intersection is either increasing or consists of a single element. Since each
interval consists of contiguous entries, the second entry must also be increasing,
and so the union of the two is an increasing interval.

Lemma 4.2.1 implies that by greedily choosing the largest possible intervals,
we can ensure that for each permutation π, there is a unique smallest peg
permutation ρ̃ for which π is in I(ρ̃), but not in I(τ̃ ) for any τ̃ ≺ ρ̃. However,
not all peg permutations are able to fulfill this role.

Say that a peg permutation ρ̃ is compact if, for all τ̃ ≺ ρ̃, we have that
I(τ̃ ) 6= I(ρ̃). For example, 2•1− is not compact, since I(2•1−) = I(1−). The
following lemma and proposition characterizes these peg permutations.

Proposition 4.2.2. For a peg permutation ρ̃, the following are equivalent:

1) ρ̃ is compact,

2) ρ̃ does not contain the patterns 1+2+, 1+2•, 1•2+ or, symmetrically,
2−1−, 2−1• or 2•1−,

3) every permutation π which fills ρ̃ has a unique vector ~v for which ρ̃(~v) = π.

Proof. First we show that (1) and (2) are equivalent. Clearly (1) implies (2),
so to show the reverse implication, let ρ̃ be a noncompact peg permutation.
By definition, there exists some τ̃ ≺ ρ̃ such that I(τ̃ ) = I(ρ̃). Let π be
a permutation which fills ρ̃, with P the ρ̃-partition and P ′ the τ̃ partition.
Because τ̃ is shorter than ρ̃, it follows that there must be some part of P ′

which intersects two parts of P ′. By Lemma 4.2.1 these two form a monotone
interval, and so must be of one of the forms listed in (2).

Now, we show that (2) and (3) are equivalent. If a peg permutation ρ̃ contains
one of the patterns specifies in (2), it is clear that a permutation can fill ρ̃ in
at least two different ways, so (3) implies (2). Suppose that the permutation
π fills ρ̃ with two different ρ̃-partitions P and P ′. It follows then that a block
of one partition must intersect two blocks of the other. However, this implies
(Lemma 4.2.1) that intersection and unions are also monotone, and so must
be of one of the forms given in (2).

By simply removing each of the peg permutations which contain one of the
intervals listed in Proposition 4.2.2, our set of peg permutations becomes a
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set of compact peg permutations. Further, since our set is a full and com-
plete downset, the definition of compact implies that the new set will still be
complete.

Cleaning the Set

The final step in the algorithm is bijecting our complete and compact set of
peg permutations to a set of downsets of integer vectors. Our final obstacle in
this bijection will be peg permutations which have intervals of dotted entries.
For example, the peg permutation 1•2•3•4• produces a class which is strictly
contained in 1+, but there is no containment at the level of peg permutations.
We remedy this by using forbidden vectors: the peg permutation 1•2•3•4• is
mapped to the inflations of 1+ which avoid the vector 〈5〉.

Definition 4.2.3. Say that a peg permutation ρ̃ is clean if I(ρ̃) 6⊂ I(τ̃ ) for any
shorter permutation τ̃ .

Proposition 4.2.4. The compact peg permutation ρ̃ is clean if and only if it
does not contain an interval order isomorphic to 1•2• or 2•1•.

Proof. If ρ̃ contains one of the specified intervals, then letting τ̃ be the shorter
peg permutation obtained by contracting these two entries into a single entry
with the appropriate sign, we find that I(ρ̃) ⊆ I(τ̃ ).
For the other direction, suppose that I(ρ̃) ⊆ I(τ̃ ) for some shorter peg per-
mutation τ̃ . Let π be any permutation which fills ρ̃. In any τ̃ -partition of π
there must be a monotone interval formed from entries in different parts of
any ρ̃ partition. Because ρ̃ is compact, it follows (from Proposition 4.2.2) that
ρ̃ must contain either 1•2• or 2•1•, completing the proof.

Given a complete and compact set S̃ of peg permutations, it is not possible
in general to find a clean set which inflates to the same class. To see this,
let ρ̃ = 1•2•3•. Then there is no clean set whose inflation is equal to I(ρ̃).
However, we can put the set S̃ in bijection with a clean set together with a
set of allowable inflation vectors. We formalize this below.

Definition 4.2.5. For a peg permutation ρ̃ and a set V of vectors of the same
length, let I(ρ̃;V) denote the inflations of ρ̃ using vectors from the set V.

Lemma 4.2.6. For each peg permutation ρ̃, there exists a clean permutation τ̃
and a vector set V such that the set of all inflations of ρ̃ is equal to I(τ̃ ,V).
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Proof. To construct τ̃ , simply contract all of the intervals of dotted entries in
ρ̃ into signed entries. To construct V, build a vector ~v such that, if the entry
τ̃i arose from a dotted interval of length k, let ~vi = k+1, and take V to be the
set of vectors avoiding ~v. This ensures that this entry will never be inflated
by a run longer than the original sequence of dotted entries.

The final step of the algorithm can be described as follows. First, let V be
an empty set, which will be the output. For each peg permutation ρ̃ ∈ S̃,
compute the pair (τ̃ , ~W ) as described in Lemma 4.2.6, and let V be the vector
downset with basis BV = {~v}. If there is no pair (τ̃ ,W) in the set V, add
(τ̃ ,V) to V. Otherwise, replace (τ̃ ,W) with (τ̃ ,W ∪ V).
Since every permutation in the class fills a unique clean and compact peg
permutation, and since each permutation which fills a compact permutation
has a unique partition, it follows that the polynomial class is in bijection with
the set ⊎

(ρ̃,V)∈V

I(ρ̃,V).

Letting ~mρ̃ be the vector defined by (~mρ̃)i = 1 if ρ̃i is decorated with a dot,
and (~mρ̃)i = 2 otherwise, and let s(ρ̃) denote the number of signed (non-
dotted) entries of ρ̃. The generating function for I(ρ̃) is then given by inclusion
exclusion in conjunction with Proposition 4.1.9, and allows us to efficiently
enumerate these classes.

∑

B⊆BV

(−1)|B| z
wt(~mρ̃∨(

∨
B))

(1− z)s(ρ̃)
.

§ 4.3 Genomics

The field of computational biology is a new and rapidly developing field. The
vast quantities of sequencing data produced by modern geneticists necessitate
the use of complex mathematical techniques for analysis. A common problem,
given two related genetic sequences, is to determine the most recent evolution-
ary ancestor. This is generally solved by determining the number of mutations
required to rearrange one sequence into the other, allowing a researcher to de-
termine the midpoint between the two. Determining this distance, however, is
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Input: Set S̃ of Peg Permutations

Output: Integer vectors in bijection with the class

// Complete S̃

for ρ̃ ∈ S̃ do

Add to S̃ all peg permutations which can be realized by deleting

entries of ρ̃, or changing a signs to dots

end

// Remove all non-compact elements from S̃

for ρ̃ ∈ S̃ do
if ρ̃ contains any of the consecutive permutations 1+2+, 1•2+, 1+2•

or their symmetries then

Remove ρ̃ from S̃

end

end

// Clean S̃ and construct a vector set

Initialize the set V, which will contain pairs (ρ̃,V), where ρ̃ is a

peg permutation and V is a set of integer vectors of the same

length as ρ̃

for ρ̃ ∈ S̃ do
if ρ̃ contains intervals of the form 1•2• or 2•1• then

Let τ̃ denote the cleaned ρ̃, and V the set of integer vectors

for which {τ̃ [~v] : ~v ∈ V} = {ρ̃[~v] : ~v ∈ Fρ̃}
Let (ρ̃′,V ′)← (τ̃ ,V)

else
Let (ρ̃′,V ′)← (ρ̃,Fρ̃)

end
if (ρ̃′,W) ∈ V for some W then

Replace the element (ρ̃′,W) with (ρ̃′,W ∪V ′)
else

Add (ρ̃′,V ′) to V

end

end
The permutation class is now in bijection with the disjoint union⊎

(ρ̃,V)∈V

{ρ̃[~v] : ~v ∈ V}.

Figure 4.2.1: A pseudocode overview of the algorithm.
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computationally difficult, but the work presented in this chapter can be used
to effectively and efficiently perform these and other computations.

This section applies the theory of polynomial classes to the problem of evolu-
tionary distance. While the focus is on the combinatorial aspects of genome
rearrangement, we begin with a rough overview of the biological mechanics.
For a more complete introduction, see the surveys [73] or [42].

Chromosomes and Mutation

Every living organism encodes its hereditary information in molecules called
chromosomes, the set of which is known as the organism’s genome. The in-
formation carried in the genome is passed down from organism to organism,
and undergoes mutations which can cause both subtle and dramatic change
between generations.

Each chromosome is composed of double strands of deoxyribonucleic acid
(DNA), each strand of which is in turn composed of a sequence of nucleotides.
Nucleotides come in four types (A, C, G, and T), and the two strands, ar-
ranged in a double helix, are complementary, i.e., a A’s are always coupled
with a T, and G’s with C. It follows that DNA can be defined as a single
sequence - a word on the alphabet {A,C,G,T}. A DNA sequence is some con-
secutive piece of this word, while genes are the smallest sequences which have
some independent biological function.

The genome is made up of chromosomes, which are in turn made up of coiled
DNA strands, which can be broken down into genes sequences, which them-
selves are simply sequences of nucleotides. This complexity leads to a variety
of errors which can be introduced during replication, and these inaccuracies
are the basis for genetic evolution. Many of these mutations can be viewed as
rearranging sequences of genes, and can be effectively modelled using permu-
tations.

The physical properties of chromosomes lead to a variety of rearrangement
operations, but they share a common theme: some contiguous segment of the
gene sequence is removed, reversed and/or relocated, then replaced back in
the sequence. While there are other mutations possible at both the larger
and smaller scales, these so called genome-rearrangements have received much
attention in recent research and, most importantly, fall under the purview of
polynomial classes.
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Block Transformations

Permutations are apt models for rearrangement, and can be used to study
genetic mutations. Mutations happen in various ways, and a variety of per-
mutation transformations have been studied. These operations are known
collectively as block transformations, as each of them acts on contiguous sub-
sequences of permutations, henceforth referred to as blocks. Each of these
operations can be viewed as a set of allowable moves which transform one
permutation into another.

Treating block transformations as mutations, the basic problem is as follows:
given two permutations, what is the shortest sequence of moves which can
transform one into the other? By relabelling the entries, we can assume,
without any loss of generality, that the target permutation is the identity
permutation. In this light, the question becomes a sorting sorting problem,
and asks how quickly a sequence can be sorted. We present here some of the
more commonly studied operations, but note that other varieties and models
are biologically significant.

Definition 4.3.1. Let π = π1π2 . . . πn be a permutation written in one-line
notation. A block of π is some contiguous string of entries πiπi+1 . . . πi+k. A
prefix is a block which starts at π1.

Blocks of permutations are models for gene sequences, and each of the block
permutations below differ only in their treatment of blocks. We define each
type of sorting by defining a single allowable operation.

Definition 4.3.2 (Block Reversal). A block reversal operation consists of re-
versing the entries of any block of the permutation. This operation was first
studied by Watterson, Ewens, Hall, and Morgan [88] and further investigated
by Alpar-Vajk [11].

Definition 4.3.3 (Block Transposition). A block transposition operation con-
sists of moving one block from its current position to any other location in the
permutation. This operation was first studied by Bafna and Pevzner [16].

Definition 4.3.4 (Block Interchange). A block interchange operation consists
of selecting two non-intersecting blocks of the permutation and interchanging
them. This operation was first studied by Christie [33], and further investi-
gated by Bóna and Flynn [25].
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Definition 4.3.5 (Prefix Transposition). A prefix transposition operation con-
sists of moving a prefix of the permutation to any other location in the per-
mutation. This operation was first studied by Dias and Meidanis [39].

Definition 4.3.6 (Prefix Reversal). A prefix reversal operation consists of re-
versing the entries of a prefix of the permutation. This is sometimes referred to
as the ‘pancake flipping operation’, and was first studied by “Harry Dweighter”
(actually, Jacob E. Goodman) as a Monthly problem [60] (and was also studied
by Gates [45]).

Definition 4.3.7 (Cut-Paste Sorting). A cut-paste operation consists of mov-
ing a block of the permutation, with the option to reverse its entries. This
operation was first studied by Cranston, Sudborough, and West [36].

For a given block transformation, we refer to the distance between two per-
mutations π and σ as the minimum number of operations needed to transform
one into the other. Finding the maximal distance between two permutations
of a given length is equivalent to finding the maximal distance from the iden-
tity to any permutation. Further, since each of these operations is reversible
— if π can be transformed into σ, then σ can be transformed into π — this is
equivalent to finding the distance from the identity to any permutation.

Biologically, two permutations with a small distance represent closely related
organisms, as each transformation represents a mutation which can occur from
one generation to the next. Understanding the sets of permutations at each
fixed distance from the identity can help to understand how different genomes
are related. For any k ∈ N, the set of permutations which are at distance ≤ k
from the identity forms a polynomial class, and thus can be enumerated by
our algorithm.

Theorem 4.3.8. For each of the operations presented above and for a positive
integer k, the set of permutations with distance at most k from the identity
forms a polynomial class.

Proof. The class of identity permutations is the inflations of the peg permuta-
tion 1+, which can be represented geometrically as a diagonal line parallel to
y = x. Each block transformation can be viewed as taking some piece of this
line and moving or reversing it. Such an array of lines can be translated back
into a peg permutation, and it follows that the set of distance ≤ k permutation
can be represented as the union of all peg permutations obtained in this way.
See Figures 4.3.1 and 4.3.2 for graphical examples.
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Figure 4.3.1: The classes of permutations which are at most one block reversal,
block transposition, and prefix reversal away from the identity are given by
I(1+2−3+), I(1+3+2+4+), and I(1−2+), respectively.

Figure 4.3.2: The class of permutations which are at most two block re-
versals from the identity is given by inflations of the four peg permutations
1+4−3+2−5+, 1+2−3+4−5+, 1+4+2−3−5+, and 1+3−4−2+5+.

Data

Calculating the number of permutations of length n which are at most k oper-
ations away from the identity helps to understand how these block transforma-
tions differ, and how accurately they model biological mutation. The following
tables show the numbers of these permutation in each radii from the identity,
and build on the data presented in [42]. The polynomials (in the variable n)
enumerating these classes have integer coefficients when presented with the
basis {

(
n
k

)
}k≥0 (as implied by [58]). These enumerations are presented in the

tables below.
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Table 4.3.1: Number of permutations of length n within k block transpositions
of the identity.

k 1 2 3 4 5 6 7 8 9 10 OEIS [84]
1 1 2 5 11 21 36 57 85 121 166 A000292(

n

0

)
+
(
n

2

)
+
(
n

3

)

2 1 2 6 23 89 295 827 2017 4405 8812 A228392(
n

0

)
+
(
n

2

)
+ 2
(
n

3

)
+ 8
(
n

4

)
+ 18

(
n

5

)
+ 11

(
n

6

)

3 1 2 6 24 120 675 3527 15484 56917 179719 A228393
(

n

0

)

+
(

n

2

)

+ 2
(

n

3

)

+ 9
(

n

4

)

+ 44
(

n

5

)

+ 220
(

n

6

)

+ 656
(

n

7

)

+ 841
(

n

8

)

+ 369
(

n

9

)

Table 4.3.2: Number of permutations of length n within k prefix transpositions
of the identity.

k 1 2 3 4 5 6 7 8 9 10 OEIS [84]
1 1 2 4 7 11 16 22 29 37 46 A000124(

n

0

)
+
(
n

2

)

2 1 2 6 21 61 146 302 561 961 1546 A228394(
n

0

)
+
(
n

2

)
+ 2
(
n

3

)
+ 6
(
n

4

)

3 1 2 6 24 116 521 1877 5531 13939 31156 A228395(
n

0

)
+
(
n

2

)
+ 2
(
n

3

)
+ 9
(
n

4

)
+ 40

(
n

5

)
+ 90

(
n

6

)

Table 4.3.3: Number of permutations of length n within k block reversals of
the identity.

k 1 2 3 4 5 6 7 8 9 10 OEIS [84]
1 1 2 4 7 11 16 22 29 37 46 A000124(

n

0

)
+
(
n

2

)

2 1 2 6 22 63 145 288 516 857 1343 A228396

8
(
n

0

)
− 3
(
n

1

)
+
(
n

2

)
+ 4
(
n

3

)

3 1 2 6 24 118 534 1851 5158 12264 25943 A228397

318
(

n

0

)

− 214
(

n

1

)

+ 131
(

n

2

)

− 61
(

n

3

)

+ 20
(

n

4

)

+ 70
(

n

5

)

+ 35
(

n

6

)

http://oeis.org/
http://oeis.org/A000292
http://oeis.org/A228392
http://oeis.org/A228393
http://oeis.org/
http://oeis.org/A000124
http://oeis.org/A228394
http://oeis.org/A228395
http://oeis.org/
http://oeis.org/A000124
http://oeis.org/A228396
http://oeis.org/A228397
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Table 4.3.4: Number of permutations of length n within k prefix reversals of
the identity.

k 1 2 3 4 5 6 7 8 9 10 OEIS [84]
1 1 2 3 4 5 6 7 8 9 10 A000027(

n

1

)

2 1 2 5 10 17 26 37 50 65 82 A002522

2
(
n

0

)
− 1
(
n

1

)
+ 2
(
n

2

)

3 1 2 6 21 52 105 186 301 456 657 A228398

−3
(
n

0

)
+ 3
(
n

1

)
− 2
(
n

2

)
+ 6
(
n

3

)

Table 4.3.5: Number of permutations of length n within k cut-paste moves of
the identity.

k 1 2 3 4 5 6 7 8 9 10 OEIS [84]
1 1 2 6 16 35 66 112 176 261 370 A060354(

n

1

)
+ 3
(
n

3

)

2 1 2 6 24 120 577 2208 6768 17469 39603 A228399

−18
(
n

0

)
+ 45

(
n

1

)
− 61

(
n

2

)
+ 70

(
n

3

)
− 53

(
n

4

)
+ 88

(
n

5

)
+ 107

(
n

6

)

3 1 2 6 24 120 720 5040 36757 223898 1055479 A228400

508264
(
n

0

)
− 280036

(
n

1

)
+ 140012

(
n

2

)
− 57622

(
n

3

)
+ 13839

(
n

4

)

+4136
(
n

5

)
− 5368

(
n

6

)
+ 531

(
n

7

)
+ 21125

(
n

8

)
+ 12615

(
n

9

)

Table 4.3.6: Number of permutations of length n within k block interchanges
of the identity.

k 1 2 3 4 5 6 7 8 9 10 OEIS [84]
1 1 2 6 16 36 71 127 211 331 496 A145126(

n

0

)
+
(
n

2

)
+ 2
(
n

3

)
+
(
n

4

)

2 1 2 6 24 120 540 1996 6196 16732 40459 A228401(
n

0

)
+
(
n

2

)
+ 2
(
n

3

)
+ 9
(
n

4

)
+ 44

(
n

5

)
+ 85

(
n

6

)
+ 70

(
n

7

)
+ 21

(
n

8

)

http://oeis.org/
http://oeis.org/A000027
http://oeis.org/A002522
http://oeis.org/A228398
http://oeis.org/
http://oeis.org/A060354
http://oeis.org/A228399
http://oeis.org/A228400
http://oeis.org/
http://oeis.org/A145126
http://oeis.org/A228401
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Fixed-Length Patterns

The set of all permutations, equipped with the pattern ordering, forms an
infinite graded poset. While much research in this area (and within this dis-
sertation) focuses on infinite downsets of this poset, this chapter focuses on
finite subsets. In particular, we examine the downset induced by a single
permutation, and investigate the number of distinct patterns.

In 2003, Herb Wilf raised the question of finding the maximum number of
distinct patterns which could be contained within a single permutation of
length n, and classifying those permutations which maximize this number.
In [7], the authors showed that the maximum number of patterns for a length
n pattern is asymptotic to 2n, and provided a construction which achieves this
number.

In this chapter we examine the number of distinct patterns of a specified length
which can be contained within a permutation. In the language of posets,
Wilf’s question asks to find which permutations which maximize the size of
their downset, while here we seek to maximize the width of the downset. This
chapter can be divided into two parts: in the first, we examine the number of
(n − 1)-patterns contained in a random permutation of length n, and obtain
the expectation and variance for this statistic by extending a 1945 result of
Kaplansky and Wolfowitz [59,91]. In the second part, we examine the number
of patterns of any fixed size within a permutation, and provide a construction
which maximizes this number. This chapter is based partly on [51].
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1234
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2413
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1

Figure 5.1.1: Downsets of 1234, 1243, and 2413

§ 5.1 Large Patterns

The set of all permutations, equipped with the pattern ordering, forms an
infinite partially ordered set (see Figure 1.1.1). We focus here on the local
properties of this poset, namely the number of patterns containing and con-
tained in a given pattern. The more general topology of this poset was studied
by McNamara and Steingŕımsson [81].

The set of patterns contained within any fixed permutation forms a partially
ordered set, in fact a finite downset of the full pattern poset. To examine these
downsets, we use a top-down approach: deleting entries one at a time from
the permutation to obtain the full set of patterns. Figure 5.1.1 shows several
examples of these downsets.

Definitions and Notation

It will be convenient to establish some machinery for dealing with large pat-
terns. Fix n ≥ 2, let π be a permutation of length n, and let σ be an (n− 1)-
permutation. If σ is contained as a pattern within π, then it follows that 1
can be obtained by deleting one entry from π, and relabelling with respect to
order. Similarly, it follows that π can be obtained by inserting an appropriate
entry into σ. We formalize these ideas with the following pair of definitions.

Definition 5.1.1. For any permutation π ∈ Sn, define the function ∇π : [n]→
Sn−1, where ∇π(i) is the permutation obtained by deleting the ith entry of π,
and standardizing the remaining entries. Let ∇π = {∇π(i) : i ∈ [n]} denote
the image of ∇π.
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Definition 5.1.2. For any permutation σ ∈ Sn−1, define the function Φσ : [n]×
[n] → Sn, where Φσ(i, j) is the permutation obtained by inserting the entry
j − 1/2 immediately to the left of the ith entry of σ, and then standardizing
the entries. Let Φσ = {Φσ(i, j) : i, j ∈ [n]} denote the image of Φσ.

Letting π and σ be an n- and (n−1)-permutation, respectively, it follows from
their definitions that these functions that ∇π is the set of all n − 1-patterns
contained in π, and Φσ is the set of permutations of length n which contain σ.
In addition, these functions satisfy the following inverse relationship:

∇Φσ(i,j)(i) = σ and Φ∇π(i)(i, πi).

§ 5.2 Plentiful Permutations

Fix n ∈ Zp, and let π be a permutation of length n. Since every pattern
within π can be obtained by deleting elements of π one by one, the relationship
between ∇π and π can be applied iteratively to understand the full downset
of π. It follows directly from the definition that |∇π| ≤ n, and that |∇π| = n
if and only if ∇π is a one-to-one function, i.e., ∇π(i) = ∇π(j) if and only if
i = j. Before investigating further, we introduce another pair of definitions.

Definition 5.2.1. Let π be a permutation of length n. Say that π is plentiful if
it contains n distinct (n− 1)-patterns. Equivalently, π is plentiful if and only
if ∇π is a one-to-one function.

Definition 5.2.2. Let π = π1p2 . . . πn be a permutation, and let i ∈ [n−1]. Say
that the pair (πi, πi+1) is a bond, of entries of π if πi−πi+1 = ±1. We say that
the sequence (πi, πi+1, . . . πi+k−1) is a run of length k if, for 1 ≤ j ≤ k − 2, the
pair (πi+j, πi+j+1) is a bond. Denote by β(π) the number of bonds in π.

Note that runs are necessarily either increasing or decreasing, and that a run of
length k contains k−1 bonds. We can now establish a fundamental relationship
between bonds and (n− 1)-patterns.

Lemma 5.2.3. Let π = π1π2 . . . πn. For any j, k ∈ [n] with j 6= k, ∇π(i) =
∇π(j) if and only if πj and πk are part of the same run.
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Proof. The forward direction is clear, since removing any element of a run
simply results in a shorter run.

The reverse implication takes a bit more work. Suppose that there exist j, k
with 1 ≤ j < k ≤ n and ∇π(j) = ∇π(k). We proceed by induction on k − j.

For the base case, suppose that k = j + 1. Assume first that πj < πj+1, and
consider the jth entry of ∇π(j) = ∇π(j + 1). By the definition of ∇, the jth
entry of ∇π(j) is πj+1 − 1, and the same entry in ∇π(j + 1) is πj . Therefore,
we see that πj+1 − 1 = πj , which means that (πj , πj+1) is a bond. Again, the
case where πj+1 < πj follows similarly.

Now assume by way of induction that the statement holds when k = j+m−1,
and suppose there exists 1 ≤ j < k ≤ n such that k − j = m and ∇π(j) =
∇π(k). Assume first that πj < πk. ∇π(j) = ∇π(k) implies, in particular, that
the (k− 1)st entries on both sides of the equality are equal. By definition, the
k− 1 entry of ∇π(j) is πk − 1, while the k− 1 entry of ∇π(k) is either πk−1 or
πk−1− 1. The latter case would imply that πk−1 = πk, a contradiction, and so
it follows that πk−1 = πk.

By what has already been proved, ∇π(k− 1) = ∇π(k) since these entries form
a bond. But then ∇π(j) = ∇π(k) = ∇π(k − 1), and so by the induction
hypothesis the entries (πjπj+1 . . . πk−1) form a run. Finally, πk − 1 = πk−1

implies that (πjπj+1 . . . πk−1πk) is a length m run. Once more, the case where
πj > πk follows similarly, and the lemma is proved.

The size of the set ∇π then depends entirely on β(π), since each bond decreases
by one the number of distinct (n − 1)-patterns contained in π. This leads to
the following theorem, and its immediate corollary.

Theorem 5.2.4. Let π ∈ Sn. Then |∇π| = n− β(π).

Corollary 5.2.5. A permutation is plentiful if and only if it contains no bonds.

Theorem 5.2.4 also provides a simple proof of the following local property of
the permutation pattern poset .

Corollary 5.2.6. If σ ∈ Sn−1, then |Φσ| = n2 − 2n + 2 = (n − 1)2 + 1. In
other words, every permutation of length n is contained in exactly n2 + 1
(n+ 1)-permutations.

Proof. By definition, the set Φσ = {insσ(j, k) : 1 ≤ j, k ≤ n}, so we see that
|Φσ| ≤ n2.
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Now, a permutation π ∈ Sn is contained in Φσ more than once exactly when
σ can be obtained in more than one way by deleting a entry of π. It follows
that σ is contained in a permutation π ∈ Sn more than once exactly when
Φσ(j, k) = Φσ(j

′, k′) where (j, k) 6= (j′, k′). By the lemma, this happens
exactly when the jth entry of Φσ(j, k) is a part of the same run as the j′ entry
of Φσ(j

′, k′). We can prevent this from occurring by never inserting an element
just to the right and directly above or below an existing element of σ, as this
ensures that any new bonds can be created in exactly one way.

This eliminates exactly 2(n − 1) choices for inserting an entry into σ, and so
therefore |Φσ| = n2 − 2(n− 1) = (n− 1)2 + 1, and the proof is complete.

§ 5.3 Distribution of the Number of Patterns

We now consider let π be a (uniformly) randomly chosen permutation of length
n, and examine the distribution of the statistic |∇π|. The correlation presented
in Theorem 5.2.4 allows us to investigate this distribution by analyzing the
distribution of bonds. This distribution has been examined previously in other
contexts, most notably by Kaplansky and Wolfowitz [59, 91]. In this section
we extend their asymptotic results by finding exact values for the expectation
and variance of β(π), and therefore of |∇π|.
Throughout this section, fix n and let δn and βn be random variables denoting
the number of distinct (n− 1)-patterns and the number of bonds in a random
permutation of length n, respectively. Our primary tool in this investigation
will be multivariate generating functions, but first we note that E [δ] can be
obtained directly using results from the previous section.

Proposition 5.3.1. The expectation of δ is equal to n− 2(n−1)
n

, which approaches
n− 2 as n increases.

Proof. By the definition of expectation, we have

E [δ] =

∑
π∈Sn

|∇π|
n!

.

The proposition then follows immediately from Corollary 5.2.6 and the identity

(n2 − 2n+ 2)(n− 1)! =

(
n− 2(n− 1)

n

)
n!.
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Generating Functions

Generating functions allow us to go several steps further, and obtain higher
moments for the distributions of these variables. It follows from Theorem 5.2.4
and the linearity of expectation that

E [δ] = n− E [β] .

Therefore we can translate the distribution of β to that of δ. We start by
building a multivariate generating function which keeps track of the distri-
bution of bonds throughout all permutations. We use a method similar to
the cluster method of Goulden and Jackson [47,48], described by Noonan and
Zeilberger [69]. Note that this generating function converges nowhere, but still
yields useful algebraic information.

Theorem 5.3.2. Let an,k be the number of permutations of length n which
contain exactly k bonds, and let a0,0 = 1. Then the numbers an,k have the
following generating function

∑

n≥0

∑

k≥0

an,kz
nuk =

∑

m≥0

m!

(
z +

2z2(u− 1)

1− z(u− 1)

)m

.

Denote this function by f(z, u).

Proof. First we construct a related generating function, then translate it into
ours using the technique of inclusion-exclusion. Say that a bond in a per-
mutation can be arbitrarily marked, and then a marked permutation is one
in which each bond is either marked or unmarked. Let bn,k be the number of
permutations of length n which contain exactly k marked bonds. For example,
bn,0 = n!, since every permutation can be written with no bonds marked, and
no permutation is counted more than once. Similarly, bn,n−1 = 1, since the only
marked permutation with n− 1 marked bonds is the decreasing permutation
with all of its bonds marked.

Let
g(z, u) :=

∑

n≥0

∑

k≥0

bn,kz
nuk.

This generating function is easier to construct, as we can build a permutation
of length n with k marked bonds by first specifying our marked runs, then
permuting these runs with the remaining entries. The benefit to this method
is that we don’t have to worry about bonds forms between these runs, as we
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have already specified which ones are marked. A marked run of length j can
be either ascending or descending, and contains j − 1 bonds. It follows that

g(z, v) =
∑

m≥0

m!

(
z +

2z2v

1− zv

)m

.

Now, we can use this generating function to obtain f(z, u). The variable v
keeps track of marked bonds, while u keeps track of all bonds. Since every
bond can either be marked or unmarked, it follows that by substituting u
for v + 1 we can translate f(z, u) to g(z, v). Therefore, we have the relation
f(z, v + 1) = g(z, v), from which we see that

f(z, u) = g(z, u− 1) =
∑

m≥0

m!

(
z +

2z2(u− 1)

1− z(u − 1)

)m

.

The following corollary is immediate, and follows from the relationship between
δ and β.

Corollary 5.3.3. Let dn,k denote the number of permutations of length n con-
taining exactly k distinct (n− 1) patterns, and let d0,0 = 1. Then

h(z, u) :=
∑

n≥0

∑

k≥0

hn,kz
nuk =

∑

m≥0

m!

(
zu+

2zu2(1/u− 1)

1− zu(1/u− 1)

)m

.

Proof. Since δ = n− β, it follows that h(z, u) = f(zu, 1/u).

The remainder of this section will consist of the analysis of the function F (z, u),
and the translation of this analysis into facts about permutations. First, we
compute the number of permutations which have no bonds (and are therefore
plentiful).

Proposition 5.3.4. Let bn be the number of permutations of length n with no
bonds. Then

∑

n≥0

bnz
n =

∑

m≥0

m!zm
(1− z)m

(1 + z)m

= 1 + z + 2z4 + 14z5 + 90z6 + 646z7 + 5242z8 + . . .
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Proof. This follows immediately by setting u = 0 in f(z, u).

The numbers bn in Corollary 5.3.4 are sequence A002464 in the OEIS [84].
These numbers are also equal to the number of ways of placing n non-attacking
kings on an n× n chessboard with one king per each row and column, as can
be seen by plotting the permutations. It was shown in [83] that this sequence
is asymptotic to n!/e2, and so Corollary 5.2.5 implies the following corollary.

Corollary 5.3.5. The probability that a randomly selected n permutation is
plentiful tends to 1/e2 as n tends to infinity.

In addition to exact results, we can use the function f(z, u) to determine the
expected number of bonds within a randomly selected permutation of length
n, Using techniques described in Chapter 1 and in [43].

Theorem 5.3.6. The expectation and variance of the random variable βn are
as follows:

E [βn] = 2
(n− 1)

n

V [βn] = 4
(n− 2)2

n(n− 1)
+ 2

n− 1

n
− 4

(n− 1)2

n2
.

Proof. The expectation is obtained by taking the partial derivative with re-
spect to u, then plugging in u = 0 as shown below.

∑

n≥0

E [βn] z
n =

∂uf(z, u)
∣∣
u=0

n!

=
∑

n≥0

2(n− 1)! · (n− 1)zn.

The second factorial moment E [βn(βn − 1)] can be computed from the gener-
ating function as follows:

∑

n≥0

E [βn(βn − 1)] zn =
∂2
uf(z, u)

∣∣
u=1

n!
.

The variance can then be computed using linearity of expectation:

V
[
β2
n

]
= E

[
β2
n

]
− E [βn]

2 = E [βn(βn − 1)] + E [βn]− E [βn]
2 .

From here, a tedious and technical computation finishes the proof.

http://oeis.org/A002464
http://oeis.org/
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Higher moments can be computed iteratively. The relationship between the
variables βn and δn immediately provides the corresponding expectation and
variance for δn. Taking the limit as n → ∞ gives asymptotic values for this
distribution, which leads to the results found in [59, 91]. We summarize these
ideas in the following corollaries.

Corollary 5.3.7. The expectation and variance for the variable δn are as follows:

E [βn] = n− 2(n− 1)

n

V [βn] = 4
(n− 2)2

n(n− 1)
+ 2

n− 1

n
− 4

(n− 1)2

n2
.

Corollary 5.3.8. For large n, we have that

E [βn] ∼ n− 2 and V [βn] ∼ 2.

§ 5.4 Patterns of Other Sizes

In this section, we examine the number of distinct (n−k)-patterns contained in
a permutation of length n. For a given permutation of length n π, ∇π denotes
the image of the function ∇π, which is exactly the set of (n− 1)-patterns con-
tained in π. The following definitions generalize the Definitions 5.1.1 and 5.2.1.

Definition 5.4.1. Let S = {i1, i2, . . . ik} ⊆ [n], with i1 < i2 < · · · < ik. We
denote by ∇π(S) the permutation obtained by deleting the entries in positions
i1, . . . ik, and standardizing the remaining entries. Denote by ∇k

π the set of
all permutations which can be obtained by deleting k entries from π and
standardizing.

Definition 5.4.2. Say that a permutation of length n π is k-plentiful if it has
the maximal number of distinct (n− k)-patterns, i.e., if

|∇k
π| =

(
n

k

)
.
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Characterizing k-plentiful Permutations

We seek to characterize those permutations which are k-plentiful, for an arbi-
trary k ∈ [n]. In Section 5.3 we found that a permutation is plentiful if and
only if it contains no bonds. By generalizing our notion of bonds, we obtain
an analogous result here.

Definition 5.4.3. Let π = π1π2 . . . πn ∈ Sn. For any two integers i, j ∈ [n],
define the distance dπ(i, j) between i and j to be

dπ(i, j) = |i− j|+ |πi − πj |.

The minimum gap of π, denoted by Γ(π), is defined to be the minimum dis-
tance between any two entries. Formally:

Γ(π) = min{dπ(i, j) : 1 ≤ i, j ≤ n}.

If we plot a permutation π, then the function dπ is just the usual taxicab
metric on {(i, πi) : 1 ≤ i ≤ n} ⊂ R

2. It is easy to see that (πi, πj) is a bond
if and only if dπ(i, j) = 2. It follows then that π is plentiful if and only if
Γ(π) ≥ 3. This idea allows us to generalize Corollary 5.2.5. We start with one
more definition, and a simple lemma which will prove useful.

Definition 5.4.4. Let π = π1π2 . . . πn ∈ Sn and let i, j ∈ [n] with i < j. The
span of the indices i and j, denoted σπ(i, j), is defined as the set of indices
corresponding to entries which are between (i, πi) and (j, πj) either horizontally
and vertically. Formally, when πi < πj we have

σπ(i, j) = {k : i < k < j} ∪ {k : πi < πk < πj}.

The case when πi > πj is defined analogously.

Lemma 5.4.5. Let π ∈ Sn be such that Γ(π) = m, and let i, j be such that
dπ(i, j) = m. Then |σπ(i, j)| = m− 2. Further, deleting one entry can reduce
the minimum gap by at most one, i.e., Γ(∇π(k)) ≥ k − 1 for all k ∈ [n].

Proof. Clearly |σπ(i, j)| ≤ m−2, since otherwise this would contradict Γ(π) =
m. The only way in which |σπ(i, j)| could be less than k−2 is if there exists an
entry πk which lies between (i, πi) and (j, πj) both vertically and horizontally.
However, this would imply that dπ(i,m) < dπ(i, j) = m−2, which contradicts
the minimality of dπ(i, j). Therefore, |σπ(i, j)| = m− 2.
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For the second part, note that the only way that deleting a single entry could
reduce the minimum gap by more than one is if that entry lies between two
minimally separated entries. However, we have just seen that no such entry
exists.

We are now able to give a partial characterization of the k-plentiful permuta-
tions in the following generalization of Corollary 5.2.5.

Theorem 5.4.6. A permutation π is k-plentiful if and only if Γ(π) ≥ k + 2.

Proof. First let π = π1π2 . . . πn be a k-plentiful permutation, and assume
by way of contradiction that Γ(π) = m < k + 2. Let i < j be such that
dπ(i, j) = m. By Lemma 5.4.5, we have that σπ(i, j) = {s1, s2, . . . sm−2}. Let
σ = ∇π(σπ(i, j) ∈ Sn−m+2, the permutation obtained by removing the entries
with indices si and standardizing the remaining entries. If follows then that
Γ(σ) = 2 and so σ has a bond (σi, σj) and is therefore not plentiful. It follows
then that ∇σ(i) = ∇σ(j), and so there are two sets of indices S and S ′ for
which ∇π(S) = ∇π(S

′). Therefore |∇k
π| <

(
n
k

)
, contradicting the plentifulness

of π.

For the other direction, we proceed using induction. We have already shown
that the theorem holds when k = 1 (Corollary 5.2.5), so let k > 1 and assume
that the statement holds for all positive integers less than k. Let π ∈ Sn

be such that Γ(π) ≥ k + 2. We know by induction that this permutation is
m-plentiful for all 1 ≤ m < k.

Suppose by way of contradiction that σ ∈ Sn−k can be obtained by deleting
two different sets of entries from π. That is, suppose that there exist A =
{a1, a2, . . . ak} 6= B = {b1, b2, . . . bk}, with ai < aj and bi < bj for i < j, such
that ∇π(A) = ∇π(B) = σ. Claim that A ∩ B = ∅. To see this, suppose that
ai = bj , and note that since A − {ai} 6= B − {bj}, σ is contained in ∇π(ai)
in two different ways. However, by Lemma 5.4.5, Γ(∇π(ai)) ≥ k + 1, and so
by induction ∇π(ai) is (k − 1)-plentiful, a contradiction. Therefore A and B
must be disjoint.

Assume without loss of generality that a1 < b1. Let j ∈ [n] be the smallest in-
teger such that j > a1 but j /∈ A. Since ∇π(A) = ∇π(B) = σ = σ1σ2 . . . σn−k,
it follows that the entries pa1 will move to fulfill the role of σa1 once the B
entries are deleted. However, the entry aj will also move to fulfill this role
once the A entries are deleted. However, this implies that every entry in the
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Figure 5.4.1: The plots of the permutations Θ(4) and Θ(5).

span of πa1 and πj must be deleted, but there must be at least k such en-
tries by Lemma 5.4.5. Therefore, A must contain a1 and k additional entries,
contradicting |A| = k and proving the theorem.

Constructing k-plentiful Permutations

It is not immediately obvious that there exist permutations with arbitrarily
large minimum gaps. In [7], the authors constructed a permutation of length
(k − 1)2 which has a minimum gap equal to k. We conclude this section with
a construction that gives a slightly smaller permutation which achieves the
same gap size, and prove that this construction is the best possible.

Definition 5.4.7. Let π ∈ S(k−1)2 be defined by

πi(k−1)+j+1 = i+ j(k − 1) + 1, 0 ≤ i, j ≤ k − 2.

Then let Θ(k) ∈ S(k−1)2−2 be defined by removing the first and last entries of
π.

The permutations Θ(4) and Θ(5) are shown in Figure 5.4.1. It is clear from the
figure, and can be shown from the definition (with some tedious but simple
calculation) that Γ(Θ(k)) = k. It also follows that Θ(k) is an involution, and its
reverse is equal to its complement, so its orbit under the automorphism group
of the pattern poset consists of only two elements.

By embedding a permutation π into the plane, the function dπ can be extended
to the usual taxicab metric d1 on R

2. If π has a minimum gap size of k, then π
defines a tiling of the plane with angled bricks of uniform size and centered on



5.4. Patterns of Other Sizes 95

the points of Z2. It is clear that a minimal such permutation will correspond
to a maximal tiling of this form, with the property that no two centers lie
on the same horizontal or vertical line. There are exactly two such tilings,
corresponding to the permutation Θ(k) and its reverse. We summarize this in
the following theorem.

Theorem 5.4.8. The permutation Θ(k) and its reverse are the shortest permu-
tations with minimum gap size equal to k.

We end this chapter with one last theorem, generalizing Theorem 5.2.4.

Theorem 5.4.9. Let π ∈ Sn have Γ(π) = k + 1, and let pk be the number of
pairs (i, j) such that dπ(i, j) = k. Then

|∇k
π| =

(
n

k

)
− pk.

Proof. Let π ∈ Sn be such that Γ(π) = k + 1, and let i, j ∈ [n] be such that
dπ(i, j) = k + 1 (i.e., |σπ(i, j)| = k − 1). If we let S = σπ ∪ i and S ′ = σπ ∪ j,
we see that ∇π(S) = ∇π(S

′), and so

∇k
π ≤

(
n

k

)
− pk.

To show equality, let A = {a1, a2, . . . ak} 6= B = {b1, b2, . . . bk}, with ai < aj
and bi < bj when i < j, and suppose that ∇π(A) = ∇π(B).

Claim that |A ∩ B| = k − 1, i.e., that the two sets differ by exactly one
element. . Suppose first that a1 6= b1, and let s be the smallest integer greater
than a1 such that s /∈ A. Then, as in the proof of Theorem 5.4.6, we have
dπ(a1, s) = k + 1, and A− a1 = B − b1 = σπ(a1, s). In the case where a1 = b1,
let π′ = ∇π(a1), A

′ = A−{a1}, and B′ = B−{b1}. Since ∇π′(A′) = ∇π′(B′),
by Lemma 5.4.5 and Theorem 5.4.6 imply that that Γ(π′) = k. We now find
that either a2 = b2 or A′ − {a2} = B′ − {b2}. Iterating this argument shows
that the two sets differ by at most one element.

Finally, let i, j be such that ai ∈ A− B and bj ∈ B − A. It follows then that
A − {ai} = B − {bj} − {σπ(i, j)}. But since their span has size k − 1, their
distance must be equal to k+1, an element in between them both horizontally
and vertically would contradict the size of the minimum gap. Thus, each pair
i, j for which dπ(i, j) = k+1 reduces the number of (n−k)-patterns by exactly
one, which completes the proof.
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West, J. Growth rates for subclasses of Av(321). Electron. J. Comb. 17,
1 (2010), Research Paper 141, 16. (Cited on pages 18 and 42.)

[4] Albert, M. H., Atkinson, M. D., and Claesson, A. Isomorphisms between
pattern classes. arXiv:1308.3262 [math.CO], 11 pp. (Cited on page 5.)

[5] Albert, M. H., Atkinson, M. D., and Vatter, V. Inflations of geometric
grid classes: Three case studies. Australas. J. Comb. 58, 1 (2014), pp.
27–47. (Cited on pages 14 and 41.)

[6] Albert, M. H., Atkinson, M. D., Vatter, V., Ruškuc, N., and Bouvel,
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[13] Atkinson, M. D., Ruškuc, N., and Smith, R. Substitution-closed pattern
classes. J. Comb. Theory, Ser. A 118, 2 (2011), 317–340. (Cited on
page 53.)

[14] Babson, E., and West, J. The permutations 123p4 · · · pm and 321p4 · · ·pm
are Wilf-equivalent. Graphs Comb. 16, 4 (2000), 373–380. (Cited on
page 6.)

[15] Backelin, J., West, J., and Xin, G. Wilf-equivalence for singleton classes.
Adv. Appl. Math. 38, 2 (2007), 133–148. (Cited on page 6.)

[16] Bafna, V., and Pevzner, P. Sorting by transpositions. SIAM J. Discret.
Math. 11, 2 (1998), 224–240. (Cited on page 77.)

[17] Bloom, J., and Vatter, V. Two vignettes on full rook placements.
arXiv:1310.6073 [math.CO], 9 pp. (Cited on page 11.)
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