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THE SEQUENCE OF FRACTIONAL PARTS OF ROOTS

KEVIN O’BRYANT

Abstract. We study the function Mθ(n) =
⌊

1/
{

θ1/n
}⌋

, where θ is
a positive real number, ⌊·⌋ and {·} are the floor and fractional part
functions, respectively. Nathanson proved, among other properties of
Mθ, that if log θ is rational, then for all but finitely many positive in-
tegers n, Mθ(n) = ⌊n/ log θ − 1/2⌋. We extend this by showing that,
without condition on θ, all but a zero-density set of integers n satisfy
Mθ(n) = ⌊n/ log θ − 1/2⌋. Using a metric result of Schmidt, we show
that almost all θ have asymptotically (log θ log x)/12 exceptional n ≤ x.
Using continued fractions, we produce uncountably many θ that have
only finitely many exceptional n, and also give uncountably many ex-
plicit θ that have infinitely many exceptional n.

1. Introduction

The author finds the identity (valid for any nonzero integer n)

(1)

⌊

1

e
√
2/n − 1

⌋

=

⌊

n√
2
− 1

2

⌋

breathtaking. Even more perplexing is that the similar expression (see [7])

(2)

⌊

1

21/n − 1

⌋

=

⌊

n

log(2)
− 1

2

⌋

holds for integers 1 < n < 777 451 915 729 368, but fails at both of the given
endpoints.

This identity and near-identity arise in our study of the sequence of frac-
tional parts of roots, following Nathanson [5]. The distribution of ({θn})n≥1,
where θ > 1, has been the object of much study [1] but remains enigmatic
except for a few peculiar θ. The sequence (

{

θ1/n
}

)n≥1 has been thought too

simple to warrant study: trivially, for θ > 1 one has θ1/n > 1 and θ1/n → 1,
and so

{

θ1/n
}

→ 0. Nevertheless, Nathanson found interesting phenomena
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2 K. O’BRYANT

in the regularity with which this convergence takes place. He introduced
and derived the basic properties of

Mθ(n) :=

⌊

1

{θ1/n}

⌋

,

and identified symmetries that allow one to assume without loss of generality
that θ > 1 and that the integer n is positive. Surprisingly, he proved that
for any real θ > 1 and integer n > log2 θ, either Mθ(n) = ⌊n/ log θ − 1/2⌋
or Mθ(n) = ⌊n/ log θ + 1/2⌋; moreover, if log θ is rational, then Mθ(n) =
⌊n/ log θ − 1/2⌋ for all sufficiently large n.

We will show that the set

(3)

{

n ∈ N : Mθ(n) 6=
⌊

n

log θ
− 1

2

⌋}

has density 0 for all θ > 1, and for almost all θ > 1 has counting function
asymptotic to log θ

12
logn. For θ < e6 ≈ 400, we give criteria for (3) to be

finite or infinite in terms of the continued fraction expansions of 1/ log θ
and 2/ log θ. As a consequence, we are able to give explicit θ for which (3)
is empty and is infinite. As mentioned above, Nathanson proved that for
θ = ep/q, (3) is finite; we give another proof of this below that gives an
explicit bound on the size in terms of p and q.

In the final sections of this article, we discuss the two displayed equations
at the beginning of this introduction, and update Nathanson’s list of open
problems for Mθ(n).

2. Conventions, Results, Strategy

The set of positive integers is denoted N. Throughout, we assume that
θ > 1 and that n is a positive integer. If n > log2 θ, then 1 < θ1/n < 2, and
so
{

θ1/n
}

= θ1/n − 1. Set

M ′
θ(n) :=

⌊

1

θ1/n − 1

⌋

,

so thatMθ(n) = M ′
θ(n) if n > log2 θ. Although we don’t use it here, this sort

of expression arises [3, 6] in the following way. M ′
θ(n) is the largest integer

N such that θNn ≤ (N +1)n; and M ′
θ(n) is the largest integer N such that

(1 + 1
N
)n ≥ θ. We call the elements of

Aθ :=

{

n ∈ N : M ′
θ(n) 6=

⌊

n

log θ
− 1

2

⌋}

the atypical numbers, terminology which we will justify later. Nathanson
proved the following result, albeit in different notation.

Theorem 1. If n > log2 θ, then either

Mθ(n) =

⌊

n

log θ
− 1

2

⌋

and n 6∈ Aθ

or

Mθ(n) =

⌊

n

log θ
+

1

2

⌋

and n ∈ Aθ.
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This shows that understanding Mθ(n) for nonsmall n is equivalent to
understanding Aθ. Our results are presented as properties of Aθ. We state
the theorems here, although we define some of the terminology, such as that
relating to density and continued fractions, in the proofs.

Theorem 2 (Nathanson). If log θ = p/q > 1 is rational, then

Aθ ⊆ [1,
p2

6q
).

Theorem 3. For all θ > 1, Aθ has density 0.

Theorem 4. For almost all θ > 1,

∣

∣Aθ ∩ [1, n]
∣

∣ ∼ log θ

12
logn.

Theorem 5. Let ai be positive integers with a2k = 1 for k ≥ 0. Set ℓ to be

the irrational number with simple continued fraction [a0; a1, a2, . . . ], and set

θ = e2/ℓ. Then Aθ = ∅. In particular, if c ∈ N and θ = e−c+
√

c(c+4), then

Aθ is empty.

Theorem 6. Let ai be positive integers with a0 = 0, a1 = 2, a2k = 4
for all k ≥ 1. Set ℓ to be the irrational with simple continued fraction

[a0; a1, a2, . . . ], and set θ = e2/ℓ. Then A is infinite. In particular, if c ∈ N

and θ = e4−c+
√

c(c+1), then Aθ is infinite.

The last two theorems give explicit uncountable families of θ with Aθ

empty and infinite, and also draw attention to even more explicit countable
subfamilies. The simplest examples are that Ae

√

5−1 is empty and Ae2
√

5 is
infinite. The actual results proved are inequalities on the partial quotients
of the continued fraction, and the specific ai given in these theorems are
not the only ai that satisfy the inequalities. Our countable families consist
entirely of transcendental numbers; we do not know if there is an algebraic
θ with Aθ = ∅, nor if there is an algebraic θ with Aθ infinite.

We now outline our approach. We first obtain an asymptotic expansion

1

θ1/n − 1
=

n

log θ
− 1

2
+ f

(

log θ

n

)

for a very small positive function f . The floor of the left hand side is M ′
θ(n),

and the floor of the right hand side is ⌊n/ log θ − 1/2⌋ unless n/ log θ− 1/2
is within f(log θ/n) of an integer. We are thus led to a nonhomogeneous
diophantine approximation problem that we can partially handle with con-
tinued fractions. In particular, we will need to know the simple continued
fractions of both 1/ log θ and 2/ log θ. By defining θ through the continued
fraction of 2/ log θ we are able to set, or at least control, the size of Aθ.
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3. Bernoulli numbers and nth roots

We use the generating function for the sequence (Bk)
∞
k=0 of Bernoulli

numbers to obtain an asymptotic expansion of M ′
θ(n). For |t| < 2π,

(4)
t

et − 1
=

∞
∑

k=0

Bk

k!
tk = 1− 1

2
t+

1

12
t2 − 1

720
t4 +

∞
∑

k=3

B2k

(2k)!
t2k.

For t > 0, we define the function

(5) f(t) =
1

et − 1
− 1

t
+

1

2
.

Lemma 7. For t > 0, the function f(t) is strictly increasing, limt→0+ f(t) =
0, and limt→∞ f(t) = 1/2. If 0 < t < 1, then

(6)
t

12
− t3

720
< f(t) <

t

12
.

Proof. The function f(t) is strictly increasing (because f ′(t) > 0), limt→0+ f(t) =
0 (apply l’Hôpital’s rule twice), and limt→∞ f(t) = 1/2.

For 0 < t < 2π, we have the power series

(7) f(t) =
1

12
t− 1

720
t3 +

∞
∑

k=3

B2k

(2k)!
t2k−1.

The Bernoulli numbers satisfy the classical identity ([2], [8, formula (9.1)])

B2k

(2k)!
=

2(−1)k−1

(2π)2k

∞
∑

n=1

1

n2k
.

It follows that for 0 < t < 1 the sequence
( |B2k|
(2k)!

t2k−1

)∞

k=1

is strictly decreasing and tends to 0, hence (7) is an alternating series and (6)
follows. This completes the proof. �

Lemma 8. Either

M ′
θ(n) =

⌊

n

log θ
− 1

2

⌋

or M ′
θ(n) =

⌊

n

log θ
+

1

2

⌋

,

and M ′
θ(n) = ⌊n/ log θ + 1/2⌋ if and only if

(8)
1

2
− f

(

log θ

n

)

≤
{

n

log θ

}

<
1

2
.

Note that Theorem 1 is a direct consequence of Lemma 8.

Proof. By the definition of f , we have

1

θ1/n − 1
=

n

log θ
− 1

2
+ f

(

log θ

n

)

=

⌊

n

log θ
− 1

2

⌋

+

{

n

log θ
− 1

2

}

+ f

(

log θ

n

)
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and so

M ′
θ(n) =

⌊

n

log θ
− 1

2

⌋

+

⌊{

n

log θ
− 1

2

}

+ f

(

log θ

n

)⌋

.

As fractional parts are between 0 and 1 while f is between 0 and 1/2, we can
now see that either M ′

θ(n) = ⌊n/ log θ − 1/2⌋ or M ′
θ(n) = ⌊n/ log θ − 1/2⌋+

1, which is the first claim of this lemma. Moreover, M ′
θ(n) = ⌊n/ log θ + 1/2⌋

if and only if

1 ≤
{

n

log θ
− 1

2

}

+ f

(

log θ

n

)

< 2.

By Lemma 7, for t > 0 we have 0 < f (t) < 1/2, and if 1/2 < {t− 1/2}
then {t− 1/2} = {t}+ 1/2, and so

1

2
< 1− f

(

log θ

n

)

≤
{

n

log θ
− 1

2

}

=

{

n

log θ

}

+
1

2
< 1.

This implies (8).
Conversely, inequality (8) implies that

1 ≤
{

n

log θ

}

+
1

2
+ f

(

log θ

n

)

=

{

n

log θ
− 1

2

}

+ f

(

log θ

n

)

<
3

2
< 2.

This completes the proof. �

Lemma 9. If 0 ≤ a < b ≤ 1, then
{

t ∈ R :
a

2
≤ {t} <

b

2

}

=

{t ∈ R : a ≤ {2t} < b} \
{

t ∈ R :
a+ 1

2
≤ {t} <

b+ 1

2

}

.

Proof. If {t} < 1
2
, then {2t} = 2 {t} and so a ≤ {2t} < b if and only if

a/2 ≤ {t} < b/2. If {t} ≥ 1
2
, then {2t} = 2 {t} − 1 and so a ≤ {2t} < b if

and only if (a+ 1)/2 ≤ {t} < (b+ 1)/2. Thus,

{t ∈ R :a ≤ {2t} < b}

=

{

t ∈ R : {t} <
1

2
and

a

2
≤ {t} <

b

2

}

∪
{

t ∈ R : {t} ≥ 1

2
and

a+ 1

2
≤ {t} <

b+ 1

2

}

=

{

t ∈ R :
a

2
≤ {t} <

b

2

}

∪
{

t ∈ R :
a+ 1

2
≤ {t} <

b+ 1

2

}

.

The Lemma follows from the observation that the two sets on the right side
of this equation are disjoint. �

Combining Lemmas 8 and 9 proves the following result.

Lemma 10. We have n ∈ Aθ if and only if both
{

2n

log θ

}

≥ 1− 2f

(

log θ

n

)
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and
{

n

log θ

}

< 1− f

(

log θ

n

)

.

4. Proofs of Theorems 2, 3, and 4

Nathanson proved that Aep/q is finite; while his proof is different from
the one here, it could also be pushed to give this bound.

Proof of Theorem 2. Assume that n ≥ p2/(6q). Then by Lemma 7

f

(

log θ

n

)

<
log θ

12n
≤ 1

2p
,

and so there is no rational strictly between 1/2 − f(log θ/n) and 1/2 with
denominator p. But clearly {n/ log θ} has denominator p, and so Lemma 8
tells us that n 6∈ Aθ; that is, Aθ ⊆ [1, p2/(6q)). �

The set X of positive integers has density ǫ if

lim
N→∞

card ({x ∈ X : x ≤ N})
N

exists and is equal to ǫ. We use the following results concerning density.
If a set X is a subset of a set with density ǫ for every small ǫ > 0, then
X has density 0. Let 0 ≤ a < b < 1 and let α be any irrational; the set
{n ∈ N : a ≤ {nα} < b} has density b− a.

Proof of Theorem 3. If log θ is rational, then by Theorem 2, we know that
Aθ is finite. As finite sets have density 0, this case is handled.

Now suppose that log θ is irrational. Take small ǫ > 0, and take n0 =
log θ/(12ǫ) so that for all n > n0 we have f(log θ/n) < log θ

12n
< ǫ. Lemma 8

now implies that

Aθ ⊆
{

n ∈ N :
1

2
− ǫ ≤

{

n

log θ

}

<
1

2

}

.

Since log θ is irrational, {n/ log θ} is uniformly distributed, and so Aθ is
contained in a set with density ǫ. As ǫ was arbitrary, it follows that Aθ has
density 0. �

The main tool for Theorem 4 is a result of Schmidt [10, Theorem 1],
which we state a special case of below. Let [[P ]] be 1 if P is true, and 0 if P
is false, and let |I| be the length of the interval I.

Theorem (Schmidt). Let I1 ⊇ I2 ⊇ . . . be a nested sequence of subintervals

of [0, 1), ǫ > 0, then for almost all α

n
∑

k=1

[[{kα} ∈ Ik]] =

n
∑

k=1

|Ik|+O

(

(

n
∑

k=1

|Ik|)1/2+ǫ

)

.

Proof of Theorem 4. We apply Schmidt’s theorem with α replaced by 1/ log θ,
take x > 1 and intervals

Ik =

[

1

2
− f

(

log x

k

)

,
1

2

)

,
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which are properly nested since f(t) is increasing for t > 0. Since f(t) =
t/12 +O(t3) (as t → 0), as n → ∞ we have

n
∑

k=1

|Ik| =
n
∑

k=1

f

(

log x

k

)

=

n
∑

k=1

(

log x

12k
+O(1/k3)

)

=
log x

12
log n+O(1).

By Lemma 8, for θ < x,

Aθ =

{

k :

{

k

log θ

}

∈ [
1

2
− f

(

log θ

k

)

,
1

2
)

}

⊆
{

k :

{

k

log θ

}

∈ [
1

2
− f

(

log x

k

)

,
1

2
)

}

=

{

k :

{

k

log θ

}

∈ Ik

}

,

and so

|Aθ ∩ [1, n]| ≤
n
∑

k=1

[[{

k

log θ

}

∈ Ik

]]

.

Similarly, for θ > x

|Aθ ∩ [1, n]| ≥
n
∑

k=1

[[{

k

log θ

}

∈ Ik

]]

.

Set

g(θ) := lim sup
n→∞

∣

∣Aθ ∩ [1, n]
∣

∣

log n
,

which must be Lebesgue measurable since its definition makes no appeal to
the axiom of choice. One may verify the measurability of g more directly
by observing that, for fixed n, the preimages of θ 7→ Aθ ∩ [1, n] are unions

of half-open intervals, and so each θ 7→ |Aθ∩[1,n]|
logn

is a simple measurable

function, and so g(θ) is the lim sup of a sequence of simple measurable
functions, and so is itself measurable.

Schmidt’s theorem implies: for all x > 1, almost all θ < x satisfy

g(θ) ≤ log x

12
,

and almost all θ > x satisfy

g(θ) ≥ log x

12
.

Now consider the integral

(9)

∫ x

1

(

g(θ)− log θ

12

)

dθ.
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Let 1 = x0 < x1 < · · · < xN = x be evenly spaced from 1 to x. We have

∫ x

1

(

g(θ)− log θ

12

)

dθ =

N−1
∑

i=0

∫ xi+1

xi

(

g(θ)− log θ

12

)

dθ

≤
N−1
∑

i=0

∫ xi+1

xi

(

log xi+1

12
− log θ

12

)

dθ,

which goes to 0 as N → ∞ since log θ/12 is Riemann integrable over [1, x].
Similarly, we find that (9) is at least 0, whence g(θ) = log θ/12 for almost
all θ less than x, and x is arbitrary. �

We note that LeVeque [4] constructed α with

lim sup
n→∞

1

log n

n
∑

k=1

[[{kα} < 1/k]] = ∞,

showing that the “almost all” in Schmidt’s theorem cannot be improved
to “all”. While LeVeque’s construction, using continued fractions, does not
immediately carry over to intervals that do not contain 0, we believe that
the same phenomenon affects us. That is, we believe that for any function
g(n) → 0, there is a θ so that

∣

∣Aθ ∩ [1, n]
∣

∣ > n · g(n) for infinitely many n.

5. Continued fractions and the proofs of Theorems 5 and 6.

The continued fraction algorithm produces a positive integer from a real
number α > 1 by taking the integer part of the reciprocal of the fractional
part of α. This is exactly how the function Mθ(n) operates on the nth root
of a real number θ > 1, so it is, perhaps, not surprising that there is a
relationship between continued fractions and the fractional parts of roots.

We shall consider infinite continued fractions of the form [a0; a1, a2, . . .]
with partial quotients a0 ∈ Z and ak ∈ N for all k ∈ N. Then α =
[a0; a1, a2, . . .] is a real irrational number whose kth convergent is the ra-
tional number

Ak

Bk
= [a0; a1, a2, . . . , ak]

where Ak and Bk are relatively prime positive integers. Also, set

λk := [0; ak−1, ak−2, . . . , a1] + [ak; ak+1, ak+2, . . . ].

We follow the notation of Rockett and Szüsz [9], and use some results that
are found there but not in the other standard references. The sequence
of denominators, sometimes called continuants, satisfies Bk ≥ Fk+1, the
(k + 1)th Fibonacci number. Further,

(10)
A2k−2

B2k−2
<

A2k

B2k
< α <

A2k+1

B2k+1
<

A2k−1

B2k−1

and

(11) α− Ak

Bk
=

(−1)k

B2
kλk+1

.
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This is often used in conjuction with the trivial bounds

ak+1 < λk+1 < ak+1 + 2.

If m and n are positive integers and

(12)
∣

∣

∣
α− m

n

∣

∣

∣
≤ 1

2n2
,

then [9, Theorem II.5.1] there are integers k ≥ 0, c ≥ 1 such that m = cAk

and n = cBk and λk+1 > 2c2.

Lemma 11. Let 1 < θ < e3 with log θ irrational, and ak, Bk, λk be asso-

ciated to the continued fraction of 2/ log θ. For each n ∈ Aθ, there exist

positive integers c, k such that n = cB2k−1 and λ2k >
6c2

log θ
.

Proof. Let n ∈ Aθ, i.e., M
′
θ(n) = ⌊n/ log θ + 1/2⌋. By Theorem 10

1− 2f

(

log θ

n

)

≤
{

2n

log θ

}

< 1.

Let m = 1 + ⌊2n/ log θ⌋. Applying the upper bound in Lemma 7 with
t = log θ/n, we obtain

0 < 1−
{

2n

log θ

}

= m− 2n

log θ
≤ 2f

(

log θ

n

)

<
log θ

6n
<

1

2n

and so

0 <
m

n
− 2

log θ
<

1

2n2
.

Properties (10) and (12) of continued fractions imply that m/n is an odd
convergent to 2/ log θ. Thus, there exist positive integers k and c with λ2k >
2c2 such that m = cA2k−1 and n = cB2k−1. It follows from property (11)
that

1

B2
2k−1λ2k

=
A2k−1

B2k−1
− 2

log θ
<

log θ

6c2B2
2k−1

and so λ2k > 6c2/ log θ, which makes the earlier restriction λ2k > 2c2 redun-
dant. This completes the proof. �

Proof of Theorem 5. Let a0 ≥ 1 and a2k ≤ 3a0−2 for k ≥ 1, ℓ = [a0; a1, . . . ],
θ = e2/ℓ. Then 0 < log θ < 2/a0 ≤ 2, and so θ satisfies the hypotheses of
Lemma 11. Consequently, for each n ∈ Aθ, there are positive integers c, k
such that n = cB2k−1 and λ2k > 6c2/ log θ. But

λ2k = [0; a2k−1, a2k−2, . . . , a1] + [a2k; a2k+1, . . . ] < a2k + 2 ≤ 3a0

while
6c2

log θ
= 3c2ℓ ≥ 3a0.

Therefore, there are no n in Aθ.
Set a2k = 1 for k ≥ 0, and let the a2k−1 be arbitrary positive integers, to

see the first family stated in Theorem 5. Set a2k+1 = c, an arbitrary positive
integer, for k ≥ 0 to get

ℓ = [1; c, 1, c, 1, . . . ] =
c+

√

c(c+ 4)

2c
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and

θ = e−c+
√

c(c+4).

�

Set

Qθ :=
{

cB2i−1 : i and c positive integers, 2c2 < λ2i

}

where Bi, λi correspond to the continued fraction of 1/ log θ (not of 2/ log θ).
By properties (11) and (12) of continued fractions,

Qθ =

{

n : n ≥ 1, there exists an integer m with 0 < m− n

log θ
<

1

2n

}

.

In particular, Qθ is a set of good denominators for approximating 1/ log θ.
Our next lemma identifies continuants of 2/ log θ that are either also good

denominators for 1/ log θ or are exceptional. When we apply the lemma in
the proof of Theorem 6, we will have additional constraints that prevent
the continuants from also being good denominators for 1/ log θ, and thereby
force them to be exceptional.

Lemma 12. Let 1 < θ < e6 with log θ irrational, and ak, Bk, λk be as-

sociated to the continued fraction of 2/ log θ. For 0 < δ < log θ, choose

k0 = k0(δ) ≥ 3 such that

(13) B2
2k−1 >

(log θ)3

60δ

for all k ≥ k0. If k ≥ k0 and

(14) λ2k ≥
6

log θ − δ

then

B2k−1 ∈ Qθ ∪Aθ.

Proof. As k ≥ 3, we have B2k−1 ≥ B5 ≥ 8 and 0 < log θ/B2k−1 ≤ 6/8 < 1.
Continued fraction inequalities (10) and (11) give

0 <
A2k−1

B2k−1
− 2

log θ
=

1

λ2kB2
2k−1

,

whence, with λ2k > a2k ≥ 1,

0 < A2k−1 −
2B2k−1

log θ
=

1

λ2kB2k−1
<

1

8
.

It follows that 2B2k−1/ log θ is slightly less than an integer, and therefore

(15)

{

2B2k−1

log θ

}

= 1− 1

λ2kB2k−1

.
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Assuming that λ2k and B2k−1 satisfy the inequalities in (13) and (14), we
have

1

λ2kB2k−1
≤ 1

B2k−1

(

log θ − δ

6

)

=
log θ/B2k−1

6
−
(

60δB2
2k−1

(log θ)3

)

(log θ/B2k−1)
3

360

<
log θ/B2k−1

6
− (log θ/B2k−1)

3

360

= 2

(

log θ/B2k−1

12
− (log θ/B2k−1)

3

720

)

< 2f

(

log θ

B2k−1

)

,

where the last inequality uses the lower bound in Lemma 7 with t =
log θ/B2k−1. Combining this with (15) gives

{

2B2k−1

log θ

}

> 1− 2f

(

log θ

B2k−1

)

.

If, further, {B2k−1/ log θ} < 1 − f(log θ/B2k−1), then by Lemma 10, we
have B2k−1 ∈ Aθ. We therefore assume that

(16)

{

B2k−1

log θ

}

≥ 1− f

(

log θ

B2k−1

)

and need to show that B2k−1 ∈ Qθ. Define bi through

1

log θ
= [b0; b1, b2, . . . ],

and denote the convergents of 1/ log θ by Ri/Si, and set

τk = [0; bk−1, . . . , b1] + [bk; bk+1, bk+2, . . . ].

We need to prove that B2k−1 = cS2i−1 for some c, i ∈ N and 2c2 < τ2i.
Inequality (16) implies that

0 < 1−
{

B2k−1

log θ

}

≤ f

(

log θ

B2k−1

)

<
log θ

12B2k−1
.

Let r = 1 + ⌊B2k−1/ log θ⌋ . Then

0 < r − B2k−1

log θ
<

log θ

12B2k−1

<
1

2B2k−1

because log θ < 6, and so

0 <
r

B2k−1
− 1

log θ
<

1

2B2
2k−1

.

This implies that r/B2k−1 is an oddth convergent to 1/ log θ, i.e., there are
positive integers c, i with B2k−1 = cS2i−1 and 2c2 < τ2i. This completes the
proof of this lemma. �
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Proof of Theorem 6. Set a0 = 0, a1 = 2, a2k = 4 for all k ≥ 1, and let the
a2k+1 be arbitrary positive integers, giving us uncountably many options;

the choices a2k+1 = c lead to θ = e4−c+
√

c(c+1). Define θ through

2

log θ
= [a0; a1, a2, . . . ]

which is clearly irrational, and let Bk be its continuants. Now,

[0; 2, 4] <
2

log θ
= [a0; a1, a2, . . . ] = [0; 2, 4, a3, 4, a5, . . . ] < [0; 2]

and so e4 < θ < e9/2 < e6. We take δ = 2, and since

(log θ)3

60δ
< 1

we may take k0 = 3. As

λ2k > a2k = 4 >
6

4− 2
>

6

log θ − 2
,

Lemma 12 tells us that B2k−1 (for k ≥ 3) is in Qθ ∪ Aθ. We will show that
B2k−1 is not in Qθ, and this will prove that Aθ is infinite.

Let Sk denote the kth convergent to 1/ log θ. Since a2k is always even,
we have

1

log θ
=

1

2

2

log θ
=

1

2
· [a0; a1, a2, a3, . . . ] = [

a0
2
; 2a1,

a2
2
, 2a3, . . . ].

That is, the simple continued fraction of 1/ log θ = [b0; b1, . . . ] where b0 = 0,
b1 = 4, b2k = 2 and b2k+1 = 2a2k+1 for k ≥ 1. We have S0 = B0 = 1,
S1 = 2B1 = 4, S2 = B2 = 9, and the recursion relations for k ≥ 2

B2k = 4Bk−1 +Bk−2

B2k−1 = a2k−1B2k−2 +B2k−3

S2k = 2S2k−1 + S2k−2

S2k−1 = 2a2k−1S2k−2 + S2k−3.

These imply that B2k = S2k and 2B2k+1 = S2k+1 for all k ≥ 0.
If B2k−1 ∈ Qθ, then there are positive integers c, i with B2k−1 = cS2i−1

and τ2i > 2c2, where

τi := [0, bi−1, . . . , b1] + [bi; bi+1, bi+2, . . . ].

Clearly, τ2i < b2i + 2 = 4, so that necessarily c = 1. If k ≥ 3 and B2k−1 =
S2i−1 for some i ≥ 1, then B2k−1 = S2i−1 = 2B2i−1 and so i < k. But then

2B2i−1 = B2k−1 > B2k−2+B2k−3 = (4B2k−3+B2k−4)+B2k−3 > 5B2k−3 ≥ 5B2i−1

which is absurd. Therefore, there are no such c, i, and therefore B2k−1 6∈
Qθ. �
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6. The identities stated in the first paragraph, θ = 2 and
θ = e

√
2

Set θ = e
√
2. Because

2

log θ
=

√
2 = [1; 2, 2, 2, . . .]

and for all k ≥ 1

λ2k < 4 < 3
√
2 =

6

log θ
,

Lemma 11 tells us that Aθ is empty. By definition, M ′
θ(n) = ⌊n/ log θ − 1/2⌋

for all n ∈ N, and Mθ(n) = ⌊n/ log θ − 1/2⌋ for all n ≥ 3 > log2 θ =√
2/ log 2.
In the first sentence of this paper, we claimed thatM ′

θ(n) = ⌊n/ log θ − 1/2⌋
for all nonzero n, which we deduce now from the positive n case. Assume
n > 0. Since ⌊−x⌋ = −⌊x⌋ − 1 for positive nonintegers x,

M ′
θ(−n) =

⌊

1

θ1/−n − 1

⌋

=

⌊ −θ1/n

θ1/n − 1

⌋

=

⌊ −θ1/n

θ1/n − 1
+

θ1/n − 1

θ1/n − 1
− 1

⌋

=

⌊

− 1

θ1/n − 1

⌋

− 1

= −
⌊

1

θ1/n − 1

⌋

− 2

= −M ′
θ(n)− 2,

making of use of the Gelfand-Schneider Theorem to be certain that

1

θ1/n − 1
=

1

e
√
2/n − 1

is not an integer. Continuing,

M ′
θ(−n) = −M ′

θ(n)− 2 = −
⌊

n

log θ
− 1

2

⌋

− 2

=

⌊

−
(

n

log θ
− 1

2

)⌋

− 1

= −
⌊ −n

log θ
− 1

2

⌋

,

where we have used the value and irrationality of log θ =
√
2 to guarantee

that n/ log θ − 1/2 is positive and not an integer. This establishes (1) for
negative n.
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Now, set θ = 2, and take n so that n ∈ Aθ. As log 2 is irrational and
2

log 2
< 3, we can apply Theorem 11 to deduce that there are positive in-

tegers c, k such that n = cB2k−1 and λ2k > 6c2/ log 2 (where Bi, λi corre-
spond to the continued fraction of 2/ log 2). It is not difficult to compute
λ2, λ4, . . . , λ34 and find that only λ2 is greater than 6/ log 2. Therefore, our
only candidate for A2 less than B35 = 777 451 915 729 368 is B1 = 1 (we
have to consider the multiples cB1 with 8.73 > λ2 > 6c2/ log 2 > 8.65c2,
that is, c = 1). Direct calculation shows that in fact B1 and B35 are both in
Aθ. This completes our justification of the claims made in our opening para-
graph. This is essentially the same as the computation of sequence A129935
in the OEIS [7].

7. More Problems

Nathanson [5, Section 5] gives a list of problems concerning Mθ(n). Sev-
eral of these problems are solved (explicitly or implicitly) in the current
work, but those concerning small n or letting θ vary are not addressed here.
To his list, we add the following problems:

(1) Is Aee infinite?
(2) Are there θ, τ with both Aθ and Aτ infinite, but the symmetric

difference Aθ△Aτ finite?
(3) For every θ0, are there uncountably many θ > θ0 with Aθ finite?
(4) What is the Hausdorff dimension of {θ > 1 : Aθ is finite}?
(5) Is there any algebraic θ for which Aθ can be proved finite? Infinite?
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