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REVERSE LEXICOGRAPHIC SQUAREFREE INITIAL IDEALS
AND GORENSTEIN FANO POLYTOPES

HIDEFUMI OHSUGI AND TAKAYUKI HIBI

Abstract. Via the theory of reverse lexicographic squarefree initial ideals of

toric ideals, we give a new class of Gorenstein Fano polytopes (reflexive polytopes)

arising from a pair of stable set polytopes of perfect graphs.

Introduction

Recall that an integral convex polytope is a convex polytope all of whose vertices

have integer coordinates. An integral convex polytope P ⊂ R
d of dimension d is

called a Fano polytope if the origin of Rd is a unique integer point belonging to

the interior of P. We say that a Fano polytope P ⊂ R
d is Gorenstein if the dual

polytope P∨ of P is again integral. (A Gorenstein Fano polytope is often called

a reflexive polytope in the literature.) Gorenstein Fano polytopes are related with

mirror symmetry and studied in a lot of areas of mathematics. See, e.g., [5, §8.3]

and [15]. It is known that there are only finitely many Gorenstein Fano polytopes

up to unimodular equivalence if the dimension is fixed. Classification results are

known for low dimensional cases [16, 17]. On the other hand, one of the most

important problem is to construct new classes of Gorenstein Fano polytopes. In

the case of Gorenstein Fano simplices, there are nice results on classifications and

constructions. See, e.g., [4, 14, 18] and their references. In order to find classes of

Gorenstein Fano polytopes of high dimension which are not necessarily simplices,

integral convex polytopes arising from some combinatorial objects are studied in

several papers. For example, the following classes are known:

• Gorenstein Fano polytopes arising from the order polytopes of graded posets

(Hibi [10], revisited by Hegedüs–Kasprzyk [7, Lemma 5.10]);

• Gorenstein Fano polytopes arising from the Birkhoff polytopes (appearing

in many papers. See, e.g., Stanley’s book [24, I.13] and Athanasiadis [1]);

• Gorenstein Fano polytopes arising from directed graphs satisfying some con-

ditions (Higashitani [13]);

• Centrally symmetric configurations (Ohsugi–Hibi [23]);

• The centrally symmetric polytope O(P )± of the order polytope O(P ) of a

finite poset P (Hibi–Matsuda–Ohsugi–Shibata [12]).
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In the present paper, via the theory of Gröbner bases, we give a new class of Goren-

stein Fano polytopes which is not necessarily a simplex. For any pair of perfect

graphs G1 and G2 (here, G1 = G2 is possible) on d vertices, we show that the con-

vex hull of QG1
∪−QG2

, where QGi
is the stable set polytope of Gi, is a Gorenstein

Fano polytope of dimension d. Note that there are a lot of pairs of perfect simple

graphs on d vertices1 (Figure 1). Any Gorenstein Fano polytope P in our class is

number of vertices 2 3 4 5 6 7 8

perfect graphs 2 4 11 33 148 906 8887

pairs of perfect graphs 3 10 66 561 11,026 410,871 39,493,828

Figure 1. Number of perfect graphs / pairs of perfect graphs

terminal, i.e., each integer point belonging to the boundary of P is a vertex of P. In

particular, if both of two graphs are the complete (resp. empty) graphs on d vertices,

then the Gorenstein Fano polytope has 2d (resp. 2d+1 − 2) vertices. Thus, our class

has enough size and variety comparing with the existing classes above.

Let Z≥0 denote the set of nonnegative integers. Let A = [a1, . . . , an] ∈ Z
d×n
≥0

and B = [b1, . . . ,bm] ∈ Z
d×m
≥0 , where each ai and each bj is a nonzero column

vector belonging to Z
d
≥0. In Section 1, after reviewing basic materials and notation

on toric ideals, we introduce the concept that A and B are of harmony. Roughly

speaking, Theorem 1.1 says that if A and B are of harmony and if the toric ideal

of each of A and B possesses a reverse lexicographic squarefree initial ideal which

enjoys certain properties, then the toric ideal of [0,−B,A] ∈ Z
d×(n+m+1) possesses a

squarefree initial ideal with respect to a reverse lexicographic order whose smallest

variable corresponds to the column 0 ∈ Z
d. Working with the same situation as in

Theorem 1.1, Corollary 1.3 guarantees that if the integral convex polytope P ⊂ R
d

which is the convex hull of {−b1, . . . ,−bm, a1, . . . , an} is a Fano polytope with

P ∩ Z
d = {0,−b1, . . . ,−bm, a1, . . . , an} and if there is a d× d minor A′ of [−B,A]

with det(A′) = ±1, then P is Gorenstein.

The topic of Section 2 is the incidence matrix A∆ of a simplicial complex ∆ on

[d] = {1, . . . , d}. It follows that if ∆ and ∆′ are simplicial complexes on [d], then

A∆ and A∆′ are of harmony. Following Theorem 1.1 it is reasonable to study the

problem when the toric ideal of A∆ satisfies the required condition on initial ideals

of Theorem 1.1. Somewhat surprisingly, Theorem 2.6 says that A∆ satisfies the

required condition on initial ideals of Theorem 1.1 if and only if ∆ coincides with

the set S(G) of stable sets of a perfect graph G on [d]. A related topic on Gorenstein

Fano polytopes arising from simplicial complexes will be studied (Theorem 2.8).

1 See A052431 in “The On-Line Encyclopedia of Integer Sequences,” at http://oeis.org
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1. Reverse lexicographic squarefree initial ideals

Let K be a field and K[t, t−1, s] = K[t1, t
−1
1 , . . . , td, t

−1
d , s] the Laurent polynomial

ring in d+1 variables over K. Given an integer d×n matrix A = [a1, . . . , an], where

aj = [a1j , . . . , adj ]
⊤, the transpose of [a1j , . . . , adj ], is the jth column of A, the toric

ring of A is the subalgebra K[A] of K[t, t−1, s] which is generated by the Laurent

polynomials ta1s = ta111 · · · tad1d s, . . . , tans = ta1n1 · · · tadnd s. Let K[x] = K[x1, . . . , xn]

denote the polynomial ring in n variables over K and define the surjective ring

homomorphism π : K[x] → K[A] by setting π(xj) = tajs for j = 1, . . . , n. The toric

ideal of A is the kernel IA of π. Every toric ideal is generated by binomials. (Recall

that a polynomial f ∈ K[x] is a binomial if f = u − v, where u =
∏n

i=1 x
ai
i and

v =
∏n

i=1 x
bi
i are monomials with

∑n

i=1 ai =
∑n

i=1 bi.) Let < be a monomial order

on K[x] and in<(IA) the initial ideal of IA with respect to <. We say that in<(IA)

is squarefree if in<(IA) is generated by squarefree monomials. We refer the reader

to [11, Chapters 1 and 5] for the information about Gröbner bases and toric ideals.

Let Zd
≥0 denote the set of integer column vectors [a1, . . . , ad]

⊤ with each ai ≥ 0.

Given an integer vector a = [a1, . . . , ad]
⊤ ∈ Z

d, let a(+) = [a
(+)
1 , . . . , a

(+)
d ]⊤, a(−) =

[a
(−)
1 , . . . , a

(−)
d ]⊤ ∈ Z

d
≥0 where a

(+)
i = max{0, ai} and a

(−)
i = max{0,−ai}. Note that

a = a(+) − a(−) holds in general. Let Zd×n
≥0 denote the set of d× n integer matrices

(aij) 1≤i≤d
1≤j≤n

with each aij ≥ 0. Furthermore if no columns of A ∈ Z
d×n
≥0 is the zero

vector 0 = [0, . . . , 0]⊤ ∈ Z
d, then we introduce the d × (n + 1) integer matrix A♯

which is obtained by adding the column 0 ∈ Z
d to A.

Now, given A ∈ Z
d×n
≥0 and B ∈ Z

d×m
≥0 , we say that A and B are of harmony if

the following condition is satisfied: Let a be a column of A♯ and b that of B♯. Let

c = a− b ∈ Z
d. If c = c(+) − c(−), then c(+) is a column vector of A♯ and c(−) is a

column vector of B♯.

Theorem 1.1. Let A = [a1, . . . , an] ∈ Z
d×n
≥0 and B = [b1, . . . ,bm] ∈ Z

d×m
≥0 , where

none of ai’s and bj’s is 0 ∈ Z
d, be of harmony. Let K[z,x] = K[z, x1, . . . , xn]

and K[z,y] = K[z, y1, . . . , ym] be the polynomial rings over a field K. Suppose that

in<A
(IA♯) ⊂ K[z,x] and in<B

(IB♯) ⊂ K[z,y] are squarefree with respect to reverse

lexicographic orders <A on K[z,x] and <B on K[z,y] respectively satisfying the

conditions that

• xi <A xj if π(xi) divides π(xj);

• z <A xk for 1 ≤ k ≤ n, where z corresponds to the column 0 ∈ Z
d of A♯;

• z <B yk for 1 ≤ k ≤ m, where z corresponds to the column 0 ∈ Z
d of B♯.

Let [−B,A] denote the d× (n+m) integer matrix

[−b1, . . . ,−bm, a1, . . . , an].
3



Then the toric ideal I[−B,A]♯ of [−B,A]♯ possesses a squarefree initial ideal with

respect to a reverse lexicographic order whose smallest variable corresponds to the

column 0 ∈ Z
d of [−B,A]♯.

Proof. Let K[[−B,A]♯] ⊂ K[t, t−1, s] = K[t1, t
−1
1 , . . . , td, t

−1
d , s] be the toric ring of

[−B,A]♯ and I[−B,A]♯ ⊂ K[x,y, z] = K[x1, . . . , xn, y1, . . . , ym, z] the toric ideal of

[−B,A]♯. Recall that I[−B,A]♯ is the kernel of π : K[x,y, z] → K[[−B,A]♯] with

π(z) = s, π(xi) = tais for i = 1, . . . , n and π(yj) = t−bjs for j = 1, . . . , m.

Suppose that the reverse lexicographic orders <A and <B are induced by the

orderings z <A xn <A · · · <A x1 and z <B ym <B · · · <B y1. Let <rev be the reverse

lexicographic order on K[x,y, z] induced by the ordering

z < xn < · · · < x1 < ym < · · · < y1.

In general, if a = [a1, . . . , ad]
⊤ ∈ Z

d
≥0, then supp(a) is the set of those 1 ≤ i ≤ d

with ai 6= 0. Now, we introduce the following

E = { (i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m, supp(ai) ∩ supp(bj) 6= ∅ }.

Let c = ai − bj with (i, j) ∈ E . Then c(+) 6= ai and c(−) 6= bj . The hypothesis that

A and B are of harmony guarantees that c(+) is a column of A♯ and c(−) is a column

of B♯. It follows that f = xiyj − u ( 6= 0) belongs to I[−B,A]♯, where

u =















xkyℓ if c(+) = ak and c(−) = bℓ,

zyℓ if c(+) = 0 and c(−) = bℓ,

xkz if c(+) = ak and c(−) = 0,

z2 if c(+) = c(−) = 0.

If z divides u, then in<rev
(f) = xiyj, where in<rev

(f) is the initial monomial of

f ∈ K[x,y, z]. If z cannot divide u, then, since π(xk) divides π(xi), one has xk <A xi

and in<rev
(f) = xiyj. Hence

{ xiyj : (i, j) ∈ E } ⊂ in<rev
(I[−B,A]♯).

Now, let MA (resp. MB) be the minimal set of squarefree monomial generators

of in<A
(IA♯) (resp. in<B

(IB♯)). Suppose that in<rev
(I[−B,A]♯) cannot be generated by

the set of squarefree monomials

M = { xiyj : (i, j) ∈ E } ∪MA ∪MB (⊂ in<rev
(I[−B,A]♯) ).

The following fact ([22, (0.1), p. 1914]) on Gröbner bases is known:

A finite set G of IA is a Gröbner basis with respect to < if and only if π(u) 6= π(v)

for any monomials u /∈ (in<(g) : g ∈ G) and v /∈ (in<(g) : g ∈ G) with u 6= v.

Since G with M = {in<(f) : f ∈ G} is not a Gröbner basis, it follows that there

exists a nonzero irreducible binomial g = u− v belonging to I[−B,A]♯ such that each
4



of u and v can be divided by none of the monomials belonging to M. Write

u =

(

∏

p∈P

xip
p

)(

∏

q∈Q

yjqq

)

, v = zα

(

∏

r∈R

xkr
r

)(

∏

s∈S

yℓss

)

,

where P and R are subsets of {1, . . . , n}, where Q and S are subsets of {1, . . . , m},

where α is a nonnegative integer, and where each of ip, jq, kr, ℓs is a positive integer.

Since g = u − v is irreducible, one has P ∩ R = Q ∩ S = ∅. Furthermore, the fact

that each of xiyj with (i, j) ∈ E can divide neither u nor v guarantees that
(

⋃

p∈P

supp(ap)

)

∩

(

⋃

q∈Q

supp(bq)

)

=

(

⋃

r∈R

supp(ar)

)

∩

(

⋃

s∈S

supp(bs)

)

= ∅.

Since π(u) = π(v), it follows that
∑

p∈P

ipap =
∑

r∈R

krar,
∑

q∈Q

jqbq =
∑

s∈S

ℓsbs.

Let γP =
∑

p∈P ip, γQ =
∑

q∈Q jq, γR =
∑

r∈R kr, and γS =
∑

s∈S ℓs. Then

γP + γQ = α + γR + γS.

Since α ≥ 0, it follows that either γP ≥ γR or γQ ≥ γS. Let, say, γP > γR, then

h =
∏

p∈P

xip
p − zγP−γR

(

∏

r∈R

xkr
r

)

6= 0

belongs to I[−B,A]♯ and in<rev
(h) =

∏

p∈P x
ip
p divides u, a contradiction. Hence γP =

γR. Then the binomial

h0 =
∏

p∈P

xip
p −

∏

r∈R

xkr
r

belongs to I[−B,A]♯. If h0 6= 0, then either
∏

p∈P x
ip
p or

∏

r∈R xkr
r must belong to

in<rev
(I[−B,A]♯). This contradicts the fact that each of u and v can be divided by

none of the monomials belonging to M. Hence h0 = 0 and P = R = ∅. Similarly,

Q = S = ∅. Hence α = 0 and g = 0. This contradiction guarantees that M is the

minimal set of squarefree monomial generators of in<rev
(I[−B,A]♯), as desired. �

Given an integral convex polytope P ⊂ R
d, we write AP for the integer matrices

whose column vectors are those a ∈ Z
d belonging to P. The toric ring K[AP ] is

often called the toric ring of P. A triangulation ∆ of P with using the vertices

belonging to P ∩ Z
d is unimodular if the normalized volume ([11, p. 253]) of each

facet of ∆ is equal to 1 and is flag if every minimal nonface of ∆ is an edge. It follows

from [26, Chapter 8] that if the toric ideal IAP
of AP possesses a squarefree initial

ideal, then P possesses a unimodular triangulation. Furthermore if IAP
possesses

an initial ideal generated by quadratic squarefree monomials, then P possesses a

unimodular triangulation which is flag.
5



An integral convex polytope P ⊂ R
d of dimension d is called Fano if the origin

of Rd is a unique integer point belonging to the interior of P. We say that a Fano

polytope P is Gorenstein if the dual polytope P∨ of P is again integral ([2], [9]). A

smooth Fano polytope is a simplicial Fano polytope P ⊂ R
d for which the d vertices

of each facet of P is a Z-basis of Zd.

Lemma 1.2. Let P ⊂ R
d be an integral convex polytope of dimension d for which

0 ∈ Z
d belongs to P. Suppose that there is a d×d minor A′ of AP with det(A′) = ±1

and that IAP
possesses a squarefree initial ideal with respect to a reverse lexicographic

order whose smallest variable corresponds to the column 0 ∈ Z
d of AP . Then, for

each facet F of P with 0 6∈ F , one has ZF = Z
d, where

ZF =
∑

a∈F ∩Zd

Za,

and the equation of the supporting hyperplane H ⊂ R
d with F ⊂ H is of the form

a1z1 + · · ·+ adzd = 1

with each aj ∈ Z.

In particular if P is a Fano polytope, then P is Gorenstein. Furthermore if P is

a simplicial Fano polytope, then P is a smooth Fano polytope.

Proof. Let ∆ be the pulling triangulation ([11, p. 268]) coming from a squarefree

initial ideal with respect to a reverse lexicographic order whose smallest variable

corresponds to the column 0 ∈ Z
d of AP . A crucial fact is that the origin of Rd

belongs to each facet of ∆. Let F be a facet of ∆ with the vertices 0,b1, . . . ,bd for

which {b1, . . . ,bd} ⊂ F . The existence of a d×d minor A′ of AP with det(A′) = ±1

guarantees that the normalized volume of F coincides with | det(B)|, where B =

[b1, . . . ,bd]. Since ∆ is unimodular, one has det(B) = ±1. Hence {b1, . . . ,bd} is

a Z-basis of Zd and ZF = Z
d follows. Moreover the hyperplane H ⊂ R

d with each

bj ∈ H is of the form a1z1 + · · ·+ adzd = 1 with each aj ∈ Z, as desired. �

Corollary 1.3. Work with the same situation as in Theorem 1.1. Let P ⊂ R
d be

the integral convex polytope which is the convex hull of {−b1, . . . ,−bm, a1, . . . , an}.

Suppose that 0 ∈ Z
d belongs to the interior of P and that there is a d× d minor A′

of AP with det(A′) = ±1. Then P is a Gorenstein Fano polytope. Furthermore if

P is a simplicial polytope, then P is a smooth Fano polytope.

Example 1.4. Let A1 and A2 be the following matrices:

A1 =

[

1 0

0 1

]

, A2 =

[

1 0 1

0 1 1

]

.

Then, Ai and Aj are of harmony and satisfy the condition in Theorem 1.1 for any

1 ≤ i ≤ j ≤ 2. By Corollary 1.3, we have three Gorenstein Fano polygons. It is

known that there are exactly 16 Gorenstein Fano polygons ([5, p.382]).
6



2. Convex polytopes arising from simplicial complexes

Let [d] = {1, . . . , d} and e1, . . . , ed the standard coordinate unit vectors of Rd.

Given a subset W ⊂ [d], one has ρ(W ) =
∑

j∈W ej ∈ R
d. In particular ρ(∅) is

the origin of Rd. Let ∆ be a simplicial complex on the vertex set [d]. Thus ∆ is

a collection of subsets of [d] with {i} ∈ ∆ for each i ∈ [d] such that if F ∈ ∆

and F ′ ⊂ F , then F ′ ∈ ∆. In particular ∅ ∈ ∆. The incidence matrix A∆ of ∆

is the matrix whose columns are those ρ(F ) with F ∈ ∆. We write P∆ ⊂ R
d for

the (0, 1)-polytope which is the convex hull of { ρ(F ) : F ∈ ∆ } in R
d. One has

dimP∆ = d. It follows from the definition of simplicial complexes that

Lemma 2.1. Let ∆ and ∆′ be simplicial complexes on [d]. Then A∆ and A∆′ are

of harmony.

Following Lemma 2.1 together with Theorem 1.1, it is reasonable to study the

problem when the toric ideal IA∆
of a simplicial complex ∆ possesses a squarefree

initial ideal with respect to a reverse lexicographic order whose smallest variable

corresponds to the column 0 ∈ Z
d of A∆.

Let ∆ be a simplicial complex on [d]. Since {i} ∈ ∆ for each i ∈ [d], the d × d

identity matrix is a d× d minor of A∆. It then follows from Lemma 1.2 that

Corollary 2.2. Let ∆ be a simplicial complex on [d]. Suppose that IA∆
possesses

a squarefree initial ideal with respect to a reverse lexicographic order whose smallest

variable corresponds to the column 0 ∈ Z
d of A∆. Then, for each facet F of P∆ with

0 6∈ F , one has ZF = Z
d and the equation of the supporting hyperplane H ⊂ R

d

with F ⊂ H is of the form a1z1 + · · ·+ adzd = 1 with each aj ∈ Z.

Let G be a finite simple graph on [d] and E(G) the set of edges of G. (Recall

that a finite graph is simple if G possesses no loop and no multiple edge.) A subset

W ⊂ [d] is called stable if, for all i and j belonging to W with i 6= j, one has

{i, j} 6∈ E(G). Let S(G) denote the set of stable sets of G. One has ∅ ∈ S(G)

and {i} ∈ S(G) for each i ∈ [d]. Clearly S(G) is a simplicial complex on [d]. The

stable set polytope QG ⊂ R
d of G is the (0, 1)-polytope PS(G) ⊂ R

d arising from the

simplicial complex S(G). A finite simple graph is said to be perfect ([3]) if, for any

induced subgraph H of G including G itself, the chromatic number of H is equal to

the maximal cardinality of cliques of H . (A chromatic number of G is the smallest

integer t for which there exist stable set W1, . . . ,Wt of G with [d] = W1 ∪ · · · ∪Wt

and a clique of G is a subset W ⊂ [d] which is a stable set of the complementary

graph G of G.) A complementary graph of a perfect graph is perfect ([3]).

Recall that an integer matrix A is compressed ([21], [27]) if the initial ideal of the

toric ideal IA is squarefree with respect to any reverse lexicographic order.

Example 2.3. Let G be a perfect graph on [d]. Then A∆, where ∆ = S(G), is

compressed ([21, Example 1.3 (c)]). Let G and G′ be perfect graphs on [d] and
7



Q ⊂ R
d be the Fano polytope which is the convex hull of QG ∪ (−QG′). It then

follows from Corollary 1.3 together with Lemma 2.1 that Q is Gorenstein.

Lemma 2.4. Let ∆ be one of the following simplicial complexes:

(i) the simplicial complex on [e] with the facets [e] \ {i}, 1 ≤ i ≤ e, where e ≥ 3;

(ii) S(G), where G is an odd hole of length 2ℓ+ 1, where ℓ ≥ 2;

(iii) S(G), where G is an odd antihole of length 2ℓ+ 1, where ℓ ≥ 2;

Let < be any reverse lexicographic order whose smallest variable corresponds to the

column 0 of A∆. Then the initial ideal in<(IA∆
) cannot be squarefree. (Recall

that an odd hole is an induced odd cycle of length ≥ 5 and an odd antihole is the

complementary graph of an odd hole.)

Proof. By virtue of Corollary 2.2, we find a supporting hyperplane H of P∆ with

0 6∈ H for which H ∩ P∆ is a facet of P∆ such that the equation of H cannot be of

the form a1z1 + · · · + adzd = 1 with each aj ∈ Z. In each of (i), (ii) and (iii), the

equation of a desired hyperplane H is as follows:

(i)
∑e

i=1 zi = e− 1;

(ii)
∑2ℓ+1

i=1 zi = ℓ;

(iii)
∑2ℓ+1

i=1 zi = 2.

In (i), it is easy to see that H ∩ P∆ is a facet of P∆. In each of (ii) and (iii), it is

known ([25], [28]) that H ∩ P∆ is a facet of P∆. �

Let B = [b1, . . . ,bm] ∈ Z
d×m be a submatrix of A = [a1, . . . , an] ∈ Z

d×n. Then,

K[B] is called a combinatorial pure subring ofK[A] if the convex hull of {b1, . . . ,bm}

is a face of the convex hull of {a1, . . . , an}. For any combinatorial pure subring

K[B] of K[A], it is known that, if the initial ideal of IA is squarefree, then so is the

corresponding initial ideal of IB. See [20, 19] for details.

Lemma 2.5. Let ∆ be a simplicial complex on [d] and ∆′ an induced subcomplex of

∆ which is one of (i), (ii) and (iii) of Lemma 2.4. Let < be any reverse lexicographic

order whose smallest variable corresponds to the column 0 ∈ Z
d of A∆. Then the

initial ideal in<(IA∆
) cannot be squarefree.

Proof. Let ∆′ be the induced subcomplex of ∆ on V , where V ⊂ [d], and <′ the

reverse lexicographic order induced by <. Lemma 2.4 says that in<′(IA
∆′ ) cannot

be squarefree. Since ∆′ is an induced subcomplex of ∆, it follows that P∆′ is a face

of P∆. Thus K[A∆′ ] is a combinatorial pure subring of K[A∆] and hence in<(IA∆
)

cannot be squarefree, as required. �

We are now in the position to state a combinatorial characterization of simplicial

complexes ∆ on [d] for which the toric ideal IA∆
possesses a squarefree initial ideal

with respect to a reverse lexicographic order whose smallest variable corresponds to

the column 0 ∈ Z
d of A∆.

8



Theorem 2.6. Let ∆ be a simplicial complex on [d]. Then the following conditions

are equivalent:

(i) There exists a perfect graph G on [d] with ∆ = S(G);

(ii) A∆ is compressed;

(iii) IA∆
possesses a squarefree initial ideal with respect to a reverse lexicographic

order whose smallest variable corresponds to the column 0 ∈ Z
d of A∆.

Proof. In [21, Example 1.3 (c)], (i) ⇒ (ii) is proved. (See also [6, §4].) Moreover,

(ii) ⇒ (iii) is trivial. Now, in order to show (iii) ⇒ (i), we fix a reverse lexicographic

order < whose smallest variable corresponds 0 ∈ Z
d of A∆.

(First Step) Suppose that there is no finite simple graph G on [d] with ∆ = S(G).

Given a simplicial complex ∆ on [d], there is a finite simple graph G on [d] with

∆ = S(G) if and only if ∆ is flag, i.e, every minimal nonface of ∆ is an edge of ∆.

(See, e.g., [8, Lemma 9.1.3]. Note that S(G) is the clique complex of the complement

graph of G.) Let ∆ be a simplicial complex which is not flag and V ⊂ [d], where

|V | ≥ 3, a minimal nonface of ∆. One has V \ {i} ∈ ∆ for all i ∈ V . Thus

the induced subcomplex ∆′ of ∆ on V coincides with the simplicial complex (i) of

Lemma 2.4.

(Second Step) Let G be a nonperfect graph on [d] with A∆ = S(G). The strong

perfect graph theorem [3] guarantees that G possesses either an odd hole or an odd

antihole. Thus ∆ contains an induced subcomplex ∆′ which coincides with either

(ii) or (iii) of Lemma 2.4.

As a result, Lemma 2.5 says that IA∆
possesses no squarefree initial ideal with

respect to a reverse lexicographic order whose smallest variable corresponds to the

column 0 ∈ Z
d of A∆. This completes the proof of (iii) ⇒ (i). �

Example 2.7. Let A ∈ Z
d×n for which each entry of A belongs to {0, 1} and IA♯

the toric ideal of A♯. In general, even if IA♯ possesses a squarefree initial ideal with

respect to a reverse lexicographic order whose smallest variable corresponds to the

column 0 ∈ Z
d of A♯, the matrix A♯ may not be compressed. For example, if

A =



















1 0 1 1 0 0 0

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 0 1

0 0 0 0 1 1 0

0 0 0 0 0 1 1



















,

then IA♯ is generated by x1x3x5x7 − x2x
2
4x6. Thus the initial ideals of IA♯ with

respect to the reverse lexicographic order induced by the ordering

z < x2 < x1 < x3 < x4 < x5 < x6 < x7
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is generated by x1x3x5x7, while the initial ideals of IA♯ with respect to the reverse

lexicographic order induced by the ordering

z < x1 < x2 < x3 < x4 < x5 < x6 < x7

is generated by x2x
2
4x6. Even though A♯ satisfies the condition (iii) of Theorem 2.6,

the integer matrix A♯ cannot be compressed.

Apart from Theorem 2.6, we can ask the problem when the convex polytope

P ⊂ R
d which is the convex hull of P∆ ∪ (−P∆′), where ∆ and ∆′ are simplicial

complexes on [d], is a Gorenstein Fano polytope.

Theorem 2.8. Let ∆ and ∆′ be simplicial complexes on [d] and P ⊂ R
d the convex

polytope which is the convex hull of P∆ ∪ (−P∆′). Then P is a Gorenstein Fano

polytope if and only if there exist perfect graphs G and G′ on [d] with ∆ = S(G) and

∆′ = S(G′).

Proof. The “If” part follows from Example 2.3. To see why the “Only If” part

is true, suppose that either ∆ is not flag or there is a nonperfect graph G with

∆ = S(G). Since P ⊂ R
d is a Gorenstein Fano polytope, the equation of the

supporting hyperplane H ⊂ R
d for which H ∩ P is a facet of P is of the form

a1z1 + · · ·+ adzd = 1 with each aj ∈ Z.

Let ∆ be not flag and V ⊂ [d] with |V | ≥ 3 for which V \ {i} ∈ ∆ for all i ∈ V

and V /∈ ∆. Let, say, V = [e] with e ≥ 3. Then the hyperplane H′ ⊂ R
d defined by

the equation z1 + · · ·+ ze = e− 1 is a supporting hyperplane of P. Let F be a facet

of P with H′ ∩ P ⊂ F and a1z1 + · · ·+ adzd = 1 with each aj ∈ Z the equation of

the supporting hyperplane H ⊂ R
d with F ⊂ H. Since ρ(V \ {i}) ∈ H for all i ∈ V ,

one has
∑

j∈[e]\{i} aj = 1. Thus (e− 1)(a1 + · · ·+ ae) = e. Hence a1 + · · ·+ ae 6∈ Z,

a contradiction.

Let ∆ = S(G), where G possesses an odd hole C of length 2ℓ+1 with the vertices,

say, 1, . . . , 2ℓ+1, where ℓ ≥ 2. Then the hyperplane H′ ⊂ R
d defined by the equation

z1 + · · · + z2ℓ+1 = ℓ is a supporting hyperplane of P. Let F be a facet of P with

H′∩P ⊂ F and a1z1+· · ·+adzd = 1 with each aj ∈ Z the equation of the supporting

hyperplane H ⊂ R
d with F ⊂ H. The maximal stable sets of C is

{1, 3, . . . , 2ℓ− 1}, {2, 4, . . . , 2ℓ}, . . . , {2ℓ+ 1, 2, 4, . . . , 2ℓ− 2}

and each i ∈ [2ℓ − 2] appears ℓ times in the above list. Since, for each maximal

stable set U of C, one has
∑

i∈U ai = 1, it follows that ℓ(a1 + · · ·+ a2ℓ+1) = 2ℓ+ 1.

Hence a1 + · · ·+ ae 6∈ Z, a contradiction.

Let ∆ = S(G), where G possesses an odd antihole C with the vertices, say,

1, . . . , 2ℓ + 1, where ℓ ≥ 2. Then the hyperplane H′ ⊂ R
d defined by the equation

z1 + · · · + z2ℓ+1 = 2 is a supporting hyperplane of P. Let F be a facet of P with

H′∩P ⊂ F and a1z1+· · ·+adzd = 1 with each aj ∈ Z the equation of the supporting
10



hyperplane H ⊂ R
d with F ⊂ H. The maximal stable sets of C is

{1, 2}, {2, 3}, . . . , {2ℓ+ 1, 1}

and each i ∈ [2ℓ− 2] appears twice in the above list. Since, for each maximal stable

set U of C, one has
∑

i∈U ai = 1, it follows that 2(a1 + · · ·+ a2ℓ+1) = 2ℓ+ 1. Hence

a1+ · · ·+ae 6∈ Z, a contradiction. �
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