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MRA-Wavelet subspace architecture for logic, probability, and
symbolic sequence processing

DANIEL J. GREENHOE

Abstract : The linear subspaces of a multiresolution analysis (MRA) and the linear sub-
spaces of the wavelet analysis induced by the MRA, together with the set inclusion re-
lation ⊆ , form a very special lattice of subspaces which herein is called a primorial lat-
tice. This paper introduces an operator 𝐑 that extracts a set of 2𝘕 −1 element Boolean
lattices from a 2𝘕 element Boolean lattice. Used recursively, a sequence of Boolean lat-
tices with decreasing order is generated—a structure that is similar to anMRA. A second
operator, which is a special case of a “difference operator”, is introduced that operates on
consecutive Boolean lattices 𝙇𝑛

2 and 𝙇𝑛−1
2 to produce a sequence of orthocomplemented

lattices. These two sequences, together with the subset ordering relation ⊆ , form a pri-
morial lattice ℙ . A logic or probability constructed on a Boolean lattice 𝙇𝘕

2 likewise
induces a primorial lattice ℙ . Such a logic or probability can then be rendered at 𝘕
different “resolutions” by selecting any one of the 𝘕 Boolean lattices in ℙ and at 𝘕 dif-
ferent “frequencies” by selecting any of the 𝘕 different orthocomplemented lattices in
ℙ . Furthermore, ℙ can be used for symbolic sequence analysis by projecting sequences
of symbols onto the sublattices in ℙ using one of three lattice projectors introduced. ℙ
can be used for symbolic sequence processing by judicious rejection and selection of pro-
jected sequences. Examples of symbolic sequences include sequences of logic values,
sequences of probabilistic events, and genomic sequences (as used in “genomic signal
processing”).
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1 Background: lattices

1.1 Order

1.1.1 Order relations

Definition 1.1 ¹ Let 𝑋 be a set.Let 𝟚𝑋𝑋 be the set of all relations on 𝑋 . A relation ≤ is an
order relation in 𝟚𝑋𝑋 if

1. 𝑥 ≤ 𝑥 ∀𝑥∈𝑋 (reflexive) and preorder
2. 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 ⟹ 𝑥 ≤ 𝑧 ∀𝑥,𝑦,𝑧∈𝑋 (transitive) and
3. 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 ⟹ 𝑥 = 𝑦 ∀𝑥,𝑦∈𝑋 (anti-symmetric)

An ordered set is the pair (𝑋, ≤). The set 𝑋 is called the base set of (𝑋, ≤). If 𝑥 ≤ 𝑦 or
𝑦 ≤ 𝑥, then elements 𝑥 and 𝑦 are said to be comparable, denoted 𝑥 ∼ 𝑦. Otherwise they
are incomparable, denoted 𝑥||𝑦. The relation ⪇ is the relation ≤ ⧵ = (“less than but not
equal to”), where⧵ is the set difference operator, and = is the equality relation.

Definition 1.2 ² Let (𝑋, ≤) be an ordered set (Definition 1.1 page 3). Let 𝟚𝑋𝑋 be the set of all
relations on 𝑋 . The relations ≥, <, >∈ 𝟚𝑋𝑋 are defined as follows:

¹📘 [113], page 470,📘 [12], page 1, 📃 [105], page 156, ⟨I, II, (1)⟩ , 📃 [38], page 373, ⟨I–III⟩ . An
order relation is also called a partial order relation. An ordered set is also called a partially ordered
set or poset.

² 📃 [139], page 2
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𝑥 ≥ 𝑦
def

⟺ 𝑦 ≤ 𝑥 ∀𝑥,𝑦∈𝑋

𝑥 ⪇ 𝑦
def

⟺ 𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦 ∀𝑥,𝑦∈𝑋

𝑥 ⪈ 𝑦
def

⟺ 𝑥 ≥ 𝑦 and 𝑥 ≠ 𝑦 ∀𝑥,𝑦∈𝑋
The relation ≥ is called the dual of ≤.

Example 1.3
order relation dual order relation

≤ (integer less than or equal to) ≥ (integer greater than or equal to)
⊆ (subset) ⊇ (super set)
| (divides) (divided by)
⟹ (implies) ⟸ (implied by)

Definition 1.4 ³ A relation ≤ is a linear order relation on 𝑋 if
1. ≤ is an order relation (Definition 1.1 page 3) and
2. 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥 ∀𝑥,𝑦∈𝑋 (comparable).

A linearly ordered set is the pair (𝑋, ≤).
A linearly ordered set is also called a totally ordered set, a fully ordered set, and a chain.

1.1.2 Representation

Definition 1.5 ⁴ 𝑦 covers 𝑥 in the ordered set (𝑋, ≤) if
1. 𝑥 ≤ 𝑦 (𝑦 is greater than 𝑥) and
2. (𝑥 ≤ 𝑧 ≤ 𝑦) ⟹ (𝑧 = 𝑥 or 𝑧 = 𝑦) (there is no element between 𝑥 and 𝑦).

The case in which 𝑦 covers 𝑥 is denoted 𝑥 ≺ 𝑦.

An ordered set can be represented in any of three ways:
⛈ Hasse diagram (Definition 1.6 page 4)
⛈ a set of ordered pairs of order relations (Definition 1.1 page 3)
⛈ a set of ordered pairs of cover relations (Definition 1.5 page 4)

Definition 1.6 Let (𝑋, ≤) be an ordered pair. A diagram is aHasse diagram of (𝑋, ≤) if it
satisfies the following criteria:

⛈ Each element in 𝑋 is represented by a dot or small circle.
⛈ For each 𝑥, 𝑦 ∈ 𝑋 , if 𝑥 ≺ 𝑦, then 𝑦 appears at a higher position than 𝑥 and a line

connects 𝑥 and 𝑦.
³📘 [113], page 470, 📃 [133], page 410
⁴ 📃 [14], page 445
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Example 1.7 Here are three ways of representing the ordered set (𝟚{𝑥,𝑦}, ⊆);

(1) Hassediagrams: If twoelements are comparable, then the lesser
of the two is drawn lower on the page than the other with a line
connecting them.

{𝑥, 𝑦}
{𝑥} {𝑦}

∅

(2) Sets of ordered pairs specifying order relations (Definition 1.1 page 3):
⊆= {

(∅, ∅) , ({𝑥}, {𝑥}) , ({𝑦}, {𝑦}) , ({𝑥, 𝑦}, {𝑥, 𝑦}) ,
(∅, {𝑥}) , (∅, {𝑦}) , (∅, {𝑥, 𝑦}) , ({𝑥}, {𝑥, 𝑦}) , ({𝑦}, {𝑥, 𝑦}) }

(3) Sets of ordered pairs specifying covering relations:
≺= { (∅, {𝑥}) , (∅, {𝑦}) , ({𝑥}, {𝑥, 𝑦}) , ({𝑦}, {𝑥, 𝑦}) }

1.1.3 Decomposition

Definition 1.8 ⁵ The tupple (𝑌 , ⧀) is a subposet of the ordered set (𝑋, ≤) if
1. 𝑌 ⊆ 𝑋 (𝑌 is a subset of 𝑋) and
2. ⧀ = (≤ ∩𝑌 2) (⧀ is the relation ≤ restricted to 𝑌 × 𝑌 )

Example 1.9

Subposets of include

Example 1.10 Let

(𝑋, ≤) ≜ ({0, 𝑎, 𝑏, 𝑐, 𝑝, 1}, { (0, 0) , (𝑎, 𝑎) , (𝑏, 𝑏) , (𝑐, 𝑐) , (𝑝, 𝑝) , (1, 1) ,

(0, 𝑎) , (0, 𝑏) , (0, 𝑐) , (0, 𝑝) , (0, 1) ,
(𝑎, 𝑏) , (𝑎, 𝑐) , (𝑎, 1) , (𝑝, 1) ,

(𝑏, 𝑐) , (𝑏, 1) , (𝑐, 1) , (𝑝, 1) })
(𝑌 , ⧀) ≜ ({0, 𝑎, 𝑐, 𝑝, 1}, { (0, 0) , (𝑎, 𝑎) , (𝑐, 𝑐) , (𝑝, 𝑝) , (1, 1) ,

(0, 𝑎) , (0, 𝑐) , (0, 𝑝) , (0, 1) ,

(𝑎, 𝑐) , (𝑎, 1) , (𝑝, 1) , (𝑐, 1) , (𝑝, 1) }).

1
𝑐
𝑏 𝑝
𝑎

0

1

𝑝𝑐
𝑎

0

Then (𝑌 , ⧀) is a subposet of (𝑋, ≤) because 𝑌 ⊆ 𝑋 and ⧀ = (≤ ∩𝑌 2).

⁵📘 [72], page 2
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A chain is an ordered set in which every pair of elements is comparable (Definition 1.4 page 4).
An antichain is just the opposite—it is an ordered set in which no pair of elements is com-
parable (next definition).

Definition 1.11 ⁶ The subposet (𝐴, ⧀) in the ordered set (𝑋, ≤)
is an antichain if all elements in 𝐴 are incomparable (Definition 1.1
page 3), such that

𝑥||𝑦 ∀𝑥, 𝑦 ∈ 𝐴

antichain

antichain antichain

Definition 1.12 ⁷ The length 𝓁(𝙇) of a chain (Definition 1.4 page 4) 𝙇 with 𝘕 elements is 𝘕 − 1.
The length of an ordered set (Definition 1.1 page 3) is the length of the longest chain in the ordered
set. The width of an ordered set is the number of elements in the largest antichain in the
ordered set.

Theorem 1.13 (Dilworth's theorem) ⁸ Let (𝑋, ≤) be an ordered set.

{
WIDTH 𝘕 of (𝑋, ≤)
is FINITE } ⟹

⎧⎪
⎨
⎪⎩

1. there exists a partition of (𝑋, ≤) into 𝘕 chains and
2. there does not exist any partition

of (𝑋, ≤) into less than 𝘕 chains

⎫⎪
⎬
⎪⎭

Definition 1.14 ⁹ Let 𝑋 and 𝑌 be disjoint sets. Let 𝙋 ≜ ( 𝑋, ⧀) and 𝙌 ≜ ( 𝑌 , ⩹) be ordered
sets on 𝑋 and 𝑌 . The direct sum of 𝙋 and 𝙌 is defined as

𝙋 + 𝙌 ≜ ( 𝑋 ∪ 𝑌 , ≤)
where 𝑥 ≤ 𝑦 if

1. 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ⧀ 𝑦 or
2. 𝑥, 𝑦 ∈ 𝑌 and 𝑥 ⩹ 𝑦

The direct sum operation is also called the disjoint union. The notation 𝑛𝙋 is defined as
𝑛𝙋 ≜ 𝙋 + 𝙋 + ⋯ + 𝙋⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛 − 1 “+” operations

.

Definition1.15 ¹⁰ Let 𝑋 and 𝑌 bedisjoint sets. Let 𝙋 ≜ ( 𝑋, ⧀) and 𝙌 ≜ ( 𝑌 , ⩹) beordered
sets on 𝑋 and 𝑌 . The direct product of 𝙋 and 𝙌 is defined as

𝙋 × 𝙌 ≜ ( 𝑋 × 𝑌 , ≤)
where (𝑥1, 𝑦1) ≤ (𝑥2, 𝑦2) if 𝑥1 ⧀ 𝑥2 and 𝑦1 ⧀ 𝑦2.

⁶📘 [72], page 2
⁷📘 [72], page 2,📘 [18], page 5
⁸ 📃 [47], page 161, 📓 [48], 📃 [56], page 4
⁹📘 [155], page 100
¹⁰📘 [155], pages 100–101,📘 [154], page 43
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The direct product operation is also called the cartesian product. The order relation ≤ is
called a coordinate wise order relation. The notation 𝙋 𝑛 is defined as

𝙋 𝑛 ≜ 𝙋 × 𝙋 × ⋯ × 𝙋⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 − 1 “×” operations

.

Definition1.16 ¹¹ Let 𝑋 and 𝑌 bedisjoint sets. Let 𝙋 ≜ ( 𝑋, ⧀) and 𝙌 ≜ ( 𝑌 , ⩹) beordered
sets on 𝑋 and 𝑌 . The ordinal sum of 𝙋 and 𝙌 is defined as

𝙋 ⊕ 𝙌 ≜ ( 𝑋 ∪ 𝑌 , ≤)
where 𝑥 ≤ 𝑦 if

1. 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ⧀ 𝑦 or
2. 𝑥, 𝑦 ∈ 𝑌 and 𝑥 ⩹ 𝑦 or
3. 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 .

Definition1.17 ¹² Let 𝑋 and 𝑌 bedisjoint sets. Let 𝙋 ≜ ( 𝑋, ⧀) and 𝙌 ≜ ( 𝑌 , ⩹) beordered
sets on 𝑋 and 𝑌 . The ordinal product of 𝙋 and 𝙌 is defined as

𝙋 ⊗ 𝙌 ≜ ( 𝑋 × 𝑌 , ≤)
where (𝑥1, 𝑦1) ≤ (𝑥2, 𝑦2) if {

1. 𝑥1 ≠ 𝑥2 and 𝑥1 ⧀ 𝑥2 or
2. 𝑥1 = 𝑥2 and 𝑦1 ⩹ 𝑦2 }

The order relation ≤ is called a lexicographical order relation, dictionary order relation,
or alphabetic order relation.

Definition 1.18 ¹³ Let 𝙋 ≜ ( 𝑋, ≤) be an ordered set. Let ≥ be the dual order relation of ≤.
The dual of 𝙋 is defined as 𝙋 ∗ ≜ ( 𝑋, ≥)

Definition1.19 ¹⁴ Let 𝑋 and 𝑌 bedisjoint sets. Let 𝙋 ≜ ( 𝑋, ⧀) and 𝙌 ≜ ( 𝑌 , ⩹) beordered
sets on 𝑋 and 𝑌 . 𝙌𝙋 ≜ ( {𝖿 ∈ 𝑌 𝑋 |𝖿 is order preserving } , ≤)
where 𝖿 ≤ 𝗀 if 𝖿(𝑥) ≤ 𝗀(𝑥) ∀𝑥 ∈ 𝑋 . The order relation ≤ is called a pointwise order
relation.

Theorem 1.20 (cardinal arithmetic) ¹⁵ Let 𝙋 ≜ ( 𝑋, ≤) be an ordered set.
1. 𝙋 + 𝙌 = 𝙌 + 𝙋 (COMMUTATIVE)
2. 𝙋 × 𝙌 = 𝙌 × 𝙋 (COMMUTATIVE)
3. (𝙋 + 𝙌) + 𝙍 = 𝙋 + (𝙌 + 𝙍) (ASSOCIATIVE)
4. (𝙋 × 𝙌) × 𝙍 = 𝙋 × (𝙌 × 𝙍) (ASSOCIATIVE)
5. 𝙋 × (𝙌 + 𝙍) = (𝙋 × 𝙌) + (𝙋 × 𝙍) (DISTRIBUTIVE)
6. 𝙍𝙋 +𝙌 = 𝙍𝙋 × 𝙍𝙌

7. (𝙋 𝙌 )𝙍 = 𝙋 𝙌×𝙍

¹¹📘 [155], page 100
¹²📘 [155], page 101,📘 [154], page 44,📘 [81], page 58,📘 [82], page 54
¹³📘 [155], page 101
¹⁴📘 [155], page 101
¹⁵📘 [155], page 102
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+ =

⊕ =

× =

⊗ =

Figure 1: Operations on ordered sets (Example 1.23 page 8)

Definition 1.21 The ordered set 𝙇1 is defined as ({𝑥}, ≤), for some value
𝑥.
It is illustrated by the Hasse diagram to the right.
Definition 1.22 The ordered set 𝙇2 is defined as 𝙇2 ≜ 𝙇2

1 .
It is illustrated by the Hasse diagram to the right.

1.1.4 Decomposition examples

Example 1.23 Figure 1 (page 8) illustrates the four ordered set operations +, ×, ⊕, and ⊗.

Example 1.24 ¹⁶The ordered set 𝑛𝙇1 is the anti-chain with 𝑛 elements.
The ordered set 4𝙇1 is illustrated to the right.

Example 1.25 The ordered set 𝙇𝑛
1 is the chain with 𝑛 elements.

The ordered set 𝙇4
1 is illustrated to the right.

Examples of the Boolean lattices (Definition 1.69 page 18) 𝙇1
2 , 𝙇2

2 , 𝙇3
2 , 𝙇4

2 and 𝙇5
2 are illustrated in

Example 1.74 (page 21).
¹⁶📘 [155], page 100
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longest antichain 1

𝑟𝑞𝑝

𝑐𝑏𝑎

0

partition 1: { {0, 𝑎}, {𝑏, 𝑝}, {𝑐, 𝑞}, {𝑟, 1} }
partition 2: { {0, 𝑎, 𝑝}, {𝑏}, {𝑐, 𝑞}, {𝑟, 1} }
partition 3: { {0, 𝑎, 𝑝, 1}, {𝑏}, {𝑐, 𝑞}, {𝑟} }
partition 4: { {0, 𝑏, 𝑝, 1}, {𝑎}, {𝑐, 𝑞}, {𝑟} }
partition 5: { {0, 𝑐, 𝑟, 1}, {𝑎, 𝑝}, {𝑏}, {𝑞} }
partition 6: { {0, 𝑐, 𝑞, 1}, {𝑎, 𝑝}, {𝑏}, {𝑟} }⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

examples of partitions of chains

Figure 2: Lattice of width 4 and examples of minimal order partitions of chains (see Example 1.26
page 9)

Example1.26 ¹⁷ The longestantichain (Definition 1.11 page 6) in the lattice illustrated in Figure 2
(page 9) has 4 elements giving this ordered set a width (Definition 1.12 page 6) of 4. The longest
chain also has 4 elements, giving the ordered set a length (Definition 1.12 page 6) of 3. By Dil-
worth's theorem (Theorem 1.13 page 6), the smallest partition consists of four chains (Definition 1.4
page 4). Examples of such minimal order partitions those listed in Figure 2.

Definition 1.27 Let (𝑋, ≤) be an ordered set and 𝟚𝑋 the power set of 𝑋 . For any set
𝐴 ∈ 𝟚𝑋 , 𝑐 is an upper bound of 𝐴 in (𝑋, ≤) if

1. 𝑥 ≤ 𝑐 ∀𝑥 ∈ 𝐴.
An element 𝑏 is the least upper bound, or lub, of 𝐴 in (𝑋, ≤) if

2. 𝑏 and 𝑐 are upper bounds of 𝐴 ⟹ 𝑏 ≤ 𝑐.

The least upper bound of the set 𝐴 is denoted ⋁ 𝐴. It is also called the supremum of 𝐴,
which is denoted sup 𝐴. The join 𝑥 ∨ 𝑦 of 𝑥 and 𝑦 is defined as 𝑥 ∨ 𝑦 ≜ ⋁ {𝑥, 𝑦}.

Definition 1.28 Let (𝑋, ≤) be an ordered set and 𝟚𝑋 the power set of 𝑋 . For any set
𝐴 ∈ 𝟚𝑋 , 𝑝 is a lower bound of 𝐴 in (𝑋, ≤) if

1. 𝑝 ≤ 𝑥 ∀𝑥 ∈ 𝐴.
An element 𝑎 is the greatest lower bound, or glb, of 𝐴 in (𝑋, ≤) if

2. 𝑎 and 𝑝 are lower bounds of 𝐴 ⟹ 𝑝 ≤ 𝑎.

The greatest lower bound of the set 𝐴 is denoted ⋀ 𝐴. It is also called the infimum of
𝐴, which is denoted inf 𝐴. Themeet 𝑥 ∧ 𝑦 of 𝑥 and 𝑦 is defined as 𝑥 ∧ 𝑦 ≜ ⋀ {𝑥, 𝑦}.

Proposition 1.29 Let ( 𝑋, ∨, ∧ ; ≤) be an ORDERED SET (Definition 1.1 page 3).

𝑥 ≤ 𝑦 ⟺ {
1. 𝑥 ∧ 𝑦 = 𝑥 𝑎𝑛𝑑
2. 𝑥 ∨ 𝑦 = 𝑦 } ∀𝑥,𝑦∈𝑋

¹⁷📃 [56], page 4
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Proposition 1.30 Let 𝟚𝑋 be the POWER SET of a set 𝑋 .

𝐴 ⊆ 𝐵 ⟹ {
1. ⋁ 𝐴 ≤ ⋁ 𝐵 and
2. ⋀ 𝐴 ≤ ⋀ 𝐵 } ∀𝐴,𝐵∈𝟚𝑋

1.2 Lattices

1.2.1 Definition

The structure available in an ordered set (Definition 1.1 page 3) tends to be insufficient to en-
sure “well-behaved” mathematical systems. This situation is greatly remedied if every pair
of elements in the ordered set has both a least upper bound and a greatest lower bound
(Definition 1.28 page 9) in the set; in this case, that ordered set is a lattice (next definition). Gian-
Carlo Rota (1932–1999) has illustrated the advantage of lattices over simple ordered sets
by pointing out that the ordered set of partitions of an integer “is fraught with pathologi-
cal properties”, while the lattice of partitions of a set “remains to this day rich in pleasant
surprises”.¹⁸

Definition 1.31 ¹⁹ An algebraic structure 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) is a lattice if
1. (𝑋, ≤) is an ordered set ((𝑋, ≤) is a partially or totally ordered set) and
2. ∃𝑥 ∨ 𝑦 ∈ 𝑋 ∀𝑥, 𝑦 ∈ 𝑋 (every pair of elements in 𝑋 has a least upper bound in 𝑋) and
3. ∃𝑥 ∧ 𝑦 ∈ 𝑋 ∀𝑥, 𝑦 ∈ 𝑋 (every pair of elements in 𝑋 has a greatest lower bound in 𝑋).

The algebraic structure 𝙇∗ ≜ ( 𝑋, >, ? ; ≥) is the dual lattice of 𝙇, where > and ? are
determined by ≥. The lattice 𝙇 is linear if (𝑋, ≤) is a chain (Definition 1.4 page 4).

Theorem 1.32 ²⁰ ( 𝑋, ∨, ∧ ; ≤) is a LATTICE ⟺
⎧
⎪
⎨
⎪
⎩

𝑥 ∨ 𝑥 = 𝑥 𝑥 ∧ 𝑥 = 𝑥 ∀𝑥∈𝑋 ( IDEMPOTENT) and
𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥 ∀𝑥,𝑦∈𝑋 (COMMUTATIVE) and

(𝑥 ∨ 𝑦) ∨ 𝑧 = 𝑥 ∨ (𝑦 ∨ 𝑧) (𝑥 ∧ 𝑦) ∧ 𝑧 = 𝑥 ∧ (𝑦 ∧ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋 (ASSOCIATIVE) and
𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥 ∀𝑥,𝑦∈𝑋 (ABSORPTIVE).

⎫
⎪
⎬
⎪
⎭

Lemma 1.33 ²¹ Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be LATTICE (Definition 1.31 page 10).
𝑥 ≤ 𝑦 ⟺ 𝑥 = 𝑥 ∧ 𝑦 ∀𝑥,𝑦∈𝙇

✎PROOF:

¹⁸ 📃 [148], page 1440, ⟨(illustration)⟩ , 📃 [147], page 498, ⟨partitions of a set⟩
¹⁹📘 [113], page 473,📘 [17], page 16, 📃 [133], 📃 [14], page 442,📘 [116], page 1
²⁰📘 [113], pages 473–475, ⟨LEMMA 1, THEOREM 4⟩ ,📘 [23], pages 4–7,📘 [16], pages 795–796,

📃 [133], page 409, ⟨(𝛼 )⟩ , 📃 [14], page 442, 📃 [38], pages 371–372, ⟨(1)–(4)⟩
²¹📘 [88]

Monday 13th October, 2014 ⛈ MRA-Wavelet subspace architecture for logic, probability, and symbolic sequence processing ⛈ version 0.65

http://books.google.com/books?vid=ISBN0821816462&pg=PA473
http://books.google.com/books?vid=ISBN3540120440&pg=PA16
http://books.google.com/books?vid=ISBN0821816462&pg=PA473
http://books.google.com/books?vid=ISBN0387905782&pg=PA4


1 BACKGROUND: LATTICES Daniel J. Greenhoe page 11

(1) Proof for ⟹ case: by left hypothesis and definition of ∧ (Definition 1.28 page 9).
(2) Proof for ⟸ case: by right hypothesis and definition of ∧ (Definition 1.28 page 9).

✏

Proposition 1.34 (Monotony laws) ²² Let ( 𝑋, ∨, ∧ ; ≤) be a lattice.

{
𝑎 ≤ 𝑏 and
𝑥 ≤ 𝑦 } ⟹ {

𝑎 ∧ 𝑥 ≤ 𝑏 ∧ 𝑦 and
𝑎 ∨ 𝑥 ≤ 𝑏 ∨ 𝑦 }

Theorem 1.35 (Minimax inequality) ²³ Let ( 𝑋, ∨, ∧ ; ≤) be a lattice.
𝑚

⋁
𝑖=1

𝑛

⋀
𝑗=1

𝑥𝑖𝑗
⏟⏟⏟⏟⏟

maxmini: largest of the smallest

≤
𝑛

⋀
𝑗=1

𝑚

⋁
𝑖=1

𝑥𝑖𝑗
⏟⏟⏟⏟⏟
minimax: smallest of the largest

∀𝑥𝑖𝑗 ∈ 𝑋

Special cases of the minimax inequality include three distributive inequalities (next the-
orem). If for some lattice any one of these inequalities is an equality, then all three are
equalities (Theorem 1.54 page 15); and in this case, the lattice is a called a distributive lattice (Defi-
nition 1.53 page 15).

Theorem 1.36 (distributive inequalities) ²⁴ ( 𝑋, ∨, ∧ ; ≤) is a lattice ⟹
⎧⎪
⎨
⎪⎩

𝑥 ∧ (𝑦 ∨ 𝑧) ≥ (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋 ( JOIN SUPER-DISTRIBUTIVE) and
𝑥 ∨ (𝑦 ∧ 𝑧) ≤ (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋 (MEET SUB-DISTRIBUTIVE) and

(𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) ∨ (𝑦 ∧ 𝑧) ≤ (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋 (MEDIAN INEQUALITY).

Besides the distributive property, another consequence of the minimax inequality is the
modularity inequality (next theorem). A lattice in which this inequality becomes equality
is said to be modular (Definition 1.47 page 14).

Theorem 1.37 (Modular inequality) ²⁵ Let ( 𝑋, ∨, ∧ ; ≤) be a LATTICE (Definition 1.31 page 10).
𝑥 ≤ 𝑦 ⟹ 𝑥 ∨ (𝑦 ∧ 𝑧) ≤ 𝑦 ∧ (𝑥 ∨ 𝑧)

Theorem 1.32 (page 10) gives 4 necessary and sufficient pairs of properties for a structure
( 𝑋, ∨, ∧ ; ≤) to be a lattice. However, these 4 pairs are actually overly sufficient (they are
not independent), as demonstrated next.

²²📘 [68], page 39, 📃 [50], pages 97–99,📘 [78], ⟨§4.2⟩
²³📘 [17], pages 19–20
²⁴ 📘 [36], page 85, 📘 [72], page 38, 📃 [14], page 444, 📃 [105], page 157, 📘 [125], page 13,

⟨terminology⟩
²⁵📘 [17], page 19,📘 [23], page 11, 📃 [38], page 374
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Theorem 1.38 ²⁶
( 𝑋, ∨, ∧ ; ≤) is a lattice ⟺
⎧⎪
⎨
⎪⎩

𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥 ∀𝑥,𝑦∈𝑋 (COMMUTATIVE) and
(𝑥 ∨ 𝑦) ∨ 𝑧 = 𝑥 ∨ (𝑦 ∨ 𝑧) (𝑥 ∧ 𝑦) ∧ 𝑧 = 𝑥 ∧ (𝑦 ∧ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋 (ASSOCIATIVE) and
𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥 ∀𝑥,𝑦∈𝑋 (ABSORPTIVE)

⎫⎪
⎬
⎪⎭

1.2.2 Bounded lattices

Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a lattice. By the definition of a lattice (Definition 1.31 page 10), the upper
bound (𝑥 ∨ 𝑦) and lower bound (𝑥 ∧ 𝑦) of any two elements in 𝑋 is also in 𝑋 . But what
about the upper and lower bounds of the entire set 𝑋 (⋁ 𝑋 and ⋀ 𝑋 ) (Definition 1.27 page 9,
Definition 1.28 page 9)? If both of these are in 𝑋 , then the lattice 𝙇 is said to be bounded (next
definition). All finite lattices are bounded (next proposition). However, not all lattices are
bounded—for example, the lattice (ℤ, ≤) (the lattice of integers with the standard integer
ordering relation) is unbounded.

Definition 1.39 Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a lattice. Let ⋁ 𝑋 be the least upper bound of
(𝑋, ≤) and let ⋀ 𝑋 be the greatest lower bound of (𝑋, ≤).

𝙇 is upper bounded if (⋁ 𝑋) ∈ 𝑋.
𝙇 is lower bounded if (⋀ 𝑋) ∈ 𝑋.
𝙇 is bounded if 𝙇 is both upper and lower bounded.

A bounded lattice is optionally denoted ( 𝑋, ∨, ∧, 0, 1 ; ≤), where 0 ≜ ⋀ 𝑋 and 1 ≜ ⋁ 𝑋 .

Proposition 1.40 Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a lattice.
{𝙇 is FINITE} ⟹ {𝙇 is BOUNDED}

Proposition 1.41 ²⁷ Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a lattice with ⋁ 𝑋 ≜ 1 and ⋀ 𝑋 ≜ 0.

{𝙇 is BOUNDED} ⟹
⎧
⎪
⎨
⎪
⎩

𝑥 ∨ 1 = 1 ∀𝑥∈𝑋 (upper bounded) and
𝑥 ∧ 0 = 0 ∀𝑥∈𝑋 (lower bounded) and
𝑥 ∨ 0 = 𝑥 ∀𝑥∈𝑋 (join-identity) and
𝑥 ∧ 1 = 𝑥 ∀𝑥∈𝑋 (meet-identity)

⎫
⎪
⎬
⎪
⎭

Definition 1.42 ²⁸ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a bounded lattice (Definition 1.39 page 12). The
height 𝗁(𝑥) of a point 𝑥 ∈ 𝙇 is the least upper bound of the lengths (Definition 1.12 page 6) of
all the chains that have 0 and in which 𝑥 is the least upper bound. The height 𝗁(𝙇) of the
lattice 𝙇 is defined as

𝗁(𝙇) ≜ 𝗁(1) .
²⁶📘 [136], pages 7–8,📘 [12], page 5,📃 [120], page 24,📃 [77], ⟨Theorem 1.22⟩ ,📘 [78], ⟨§4.4⟩
²⁷ 📃 [77], ⟨§1.2.2⟩ ,📘 [78], ⟨§4.5⟩
²⁸📘 [18], page 5
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atomic lattices anti-atomic atomic and anti-atomic

neither atomic nor anti-atomic

Figure 3: Selected atomic, anti-atomic, and neither atomic nor anti-atomic lattices (see Exam-
ple 1.45 page 13)

Example 1.43 The height of the lattice illustrated in Figure 2 (page 9) is 3 because

𝗁(𝙇) ≜ 𝗁(1)
≜ ⋁ {𝓁(𝘾) |𝘾 is a chain in 𝙇 containing both 0 and 1}
= ⋁ {𝓁 ({0, 𝑎, 𝑝, 1}, ≤) , 𝓁 ({0, 𝑏, 𝑝, 1}, ≤) , 𝓁 ({0, 𝑐, 𝑝, 1}, ≤) , 𝓁 ({0, 𝑐, 𝑞, 1}, ≤) ,

𝓁 ({0, 𝑐, 𝑟, 1}, ≤) , }
= ⋁ {4 − 1, 4 − 1, 4 − 1, 4 − 1, 4 − 1}
= ⋁ {3, 3, 3, 3, 3}
= 3

1.2.3 Atomic lattices

Definition 1.44 ²⁹ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a bounded lattice (Definition 1.39 page 12).
𝑥 is an atom of 𝙇 if 𝑥 covers (Definition 1.5 page 4) 0.
𝑥 is an anti-atom of 𝙇 if 𝑥 is covered by 1.
𝙇 is atomic if every 𝑥 ∈ 𝑋⧵0 can be represented as joins of atoms of 𝙇.
𝙇 is anti-atomic if every 𝑥 ∈ 𝑋⧵1 can be represented as meets of anti-atoms of 𝙇.

Example1.45 Figure3 (page13) illustrates someexamplesof lattices that areatomic,anti-
atomic, both, and neither.

²⁹ 📃 [108], page 178, 📃 [16], page 800, ⟨see footnote ‡⟩
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1.2.4 Modular Lattices

Definition 1.46 ³⁰ Let ( 𝑋, ∨, ∧ ; ≤) be a lattice. Let 𝟚𝑋𝑋 be the set of all relations in 𝑋2 .
Themodularity relation Ⓜ ∈ 𝟚𝑋𝑋 and the dual modularity relation Ⓜ∗ ∈ 𝟚𝑋𝑋 are defined
as

𝑥Ⓜ𝑦
def

⟺ {(𝑥, 𝑦) ∈ 𝑋2 |𝑎 ≤ 𝑦 ⟹ 𝑦 ∧ (𝑥 ∨ 𝑎) = (𝑦 ∧ 𝑥) ∨ 𝑎 ∀𝑎 ∈ 𝑋 }
𝑥Ⓜ∗𝑦

def
⟺ {(𝑥, 𝑦) ∈ 𝑋2 |𝑎 ≥ 𝑦 ⟹ 𝑦 ∨ (𝑥 ∧ 𝑎) = (𝑦 ∨ 𝑥) ∧ 𝑎 ∀𝑎 ∈ 𝑋 } .

A pair (𝑥, 𝑦) ∈ Ⓜ is alternatively denoted as (𝑥, 𝑦) Ⓜ, and is called a modular pair. A pair
(𝑥, 𝑦) ∈ Ⓜ∗ is alternatively denoted as (𝑥, 𝑦) Ⓜ∗ , and is called a dual modular pair. A pair
(𝑥, 𝑦) that is not a modular pair ((𝑥, 𝑦) ∉ Ⓜ) is denoted 𝑥 /Ⓜ𝑦. A pair (𝑥, 𝑦) that is not a dual
modular pair is denoted 𝑥 /Ⓜ∗𝑦.

Modular lattices are a generalization of distributive lattices (Definition 1.53 page 15) in that all
distributive lattices are modular, but not all modular lattices are distributive (Example 1.61
page 16, Example 1.62 page 17).

Definition 1.47 ³¹ A lattice ( 𝑋, ∨, ∧ ; ≤) ismodular if 𝑥Ⓜ𝑦 ∀𝑥, 𝑦 ∈ 𝑋 .

Theorem 1.48 ³² Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a lattice.
𝙇 is MODULAR ⟺ {𝑥 ≤ 𝑦 ⟹ 𝑥 ∨ (𝑧 ∧ 𝑦) = (𝑥 ∨ 𝑧) ∧ 𝑦} ∀𝑥,𝑦,𝑧∈𝑋

⟺ 𝑥 ∨ [(𝑥 ∨ 𝑦) ∧ 𝑧] = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋
⟺ 𝑥 ∧ [(𝑥 ∧ 𝑦) ∨ 𝑧] = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋

Definition 1.49 (N5 lattice/pentagon) ³³ The N5 lattice is the or-
dered set ({0, 𝑎, 𝑏, 𝑝, 1}, ≤) with cover relation

≺= {(0, 𝑎) , (𝑎, 𝑏) , (𝑏, 1) , (𝑝, 1) , (0, 𝑝)}.
The N5 lattice is also called the pentagon. The N5 lattice is illustrated
by the Hasse diagram to the right.

1
𝑝𝑏

𝑎
0

Theorem 1.50 ³⁴ Let 𝙇 be a LATTICE (Definition 1.31 page 10).
𝙇 is MODULAR (Definition 1.47 page 14) ⟺ 𝙇 does NOT contain the N5 LATTICE (Definition 1.49
page 14).

Theorem 1.51 ³⁵ Let 𝘼 ≜ ( 𝑋, ∨, ∧ ; ≤) be an algebraic structure.

{
(𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) = [(𝑧 ∧ 𝑥) ∨ 𝑦] ∧ 𝑥 ∀𝑥,𝑦,𝑧∈𝑋 and
[𝑥 ∨ (𝑦 ∨ 𝑧)] ∧ 𝑧 = 𝑧 ∀𝑥,𝑦,𝑧∈𝑋 } ⟺ {

𝘼 is a
modular lattice }

³⁰📘 [157], page 11,📘 [116], page 1, ⟨Definition (1.1)⟩ ,📘 [117], page 248
³¹📘 [18], page 82,📘 [116], page 3, ⟨Definition (1.7)⟩
³²📘 [136], page 39,📘 [133], page 413, ⟨(2)⟩ ,📘 [78], ⟨Theorem 5.1⟩
³³📘 [12], pages 12–13, 📃 [38], pages 391–392, ⟨(44) and (45)⟩
³⁴📘 [23], page 11,📘 [71], page 70, 📃 [38], ⟨cf Stern 1999 page 10⟩ ,📘 [78], ⟨Theorem 5.1⟩
³⁵📘 [136], pages 42–43, 📃 [145]
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1 BACKGROUND: LATTICES Daniel J. Greenhoe page 15

Examples of modular lattices are provided in Example 1.61 (page 16) and Example 1.62
(page 17).

1.2.5 Distributive Lattices

Definition 1.52 ³⁶ Let ( 𝑋, ∨, ∧ ; ≤) be a lattice (Definition 1.31 page 10). Let 𝟚𝑋𝑋𝑋 be the set of
all relations in 𝑋3 . The distributivity relation Ⓓ ∈ 𝟚𝑋𝑋𝑋 and the dual distributivity rela-
tion Ⓓ∗ ∈ 𝟚𝑋𝑋𝑋 are defined as

Ⓓ ≜ {(𝑥, 𝑦, 𝑧) ∈ 𝑋3 |𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)} (each (𝑥, 𝑦, 𝑧) is disjunctive distributive) and
Ⓓ∗ ≜ {(𝑥, 𝑦, 𝑧) ∈ 𝑋3 |𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧)} (each (𝑥, 𝑦, 𝑧) is conjunctive distributive).

A triple (𝑥, 𝑦, 𝑧) ∈ Ⓓ is alternatively denoted as (𝑥, 𝑦, 𝑧) Ⓓ, and is adistributive triple. A triple
(𝑥, 𝑦, 𝑧) ∈ Ⓓ∗ is alternatively denoted as (𝑥, 𝑦, 𝑧) Ⓓ∗ , and is a dual distributive triple.

Definition 1.53 ³⁷ A lattice ( 𝑋, ∨, ∧ ; ≤) is distributive if (𝑥, 𝑦, 𝑧) ∈ Ⓓ ∀𝑥, 𝑦, 𝑧 ∈ 𝑋

Not all lattices are distributive. But if a lattice 𝙇 does happen to be distributive (Definition 1.53
page 15)—that is all triples in 𝙇 satisfy the distributive property (Definition 1.53 page 15)—then all
triples in 𝙇 also satisfy the dual distributive property, as well as another property called the
median property. The converses also hold (next theorem).

Theorem 1.54 ³⁸ Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a LATTICE (Definition 1.31 page 10).
𝙇 is DISTRIBUTIVE (Definition 1.53 page 15)

⟺ 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋 (DISJUNCTIVE DISTRIBUTIVE)
⟺ 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋 (CONJUNCTIVE DISTRIBUTIVE)
⟺ (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) ∨ (𝑦 ∧ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋 (MEDIAN PROPERTY)

Definition1.55 (M3 lattice/diamond) ³⁹ TheM3lattice is theordered
set ({0, 𝑝, 𝑞, 𝑟, 1}, ≤) with covering relation

≺= {(𝑝, 1) , (𝑞, 1) , (𝑟, 1) , (0, 𝑝) , (0, 𝑞) , (0, 𝑟)}.
TheM3 lattice is also called thediamond, and is illustratedby theHasse
diagram to the right.

1

𝑝 𝑞 𝑟

0

³⁶📘 [116], page 15, ⟨Definition 4.1⟩ ,📃 [62], page 67,📘 [130], page 32, ⟨Definition 5.1⟩ ,📃 [37],
page 314, ⟨disjunctive distributive and conjunctive distributive functions⟩

³⁷📘 [23], page 10,📘 [17], page 133, 📃 [133], page 414, ⟨arithmetic axiom⟩ , 📃 [14], page 453,
📘 [9], page 48, ⟨Definition II.5.1⟩

³⁸📃 [49], page 237,📘 [23], page 10,📃 [133], page 416, ⟨(7),(8), Theorem3⟩ ,📃 [134], ⟨cf Gratzer
2003 page 159⟩ , 📘 [153], page 286, ⟨cf Birkhoff(1948)p.133⟩ , 📃 [105], ⟨cf Birkhoff(1948)p.133⟩ ,
📘 [78], ⟨Theorem 6.1⟩

³⁹📘 [12], pages 12–13,📘 [105], page 157, ⟨ 𝑝1 ≡ 𝑥, 𝑝2 ≡ 𝑦, 𝑝3 ≡ 𝑧, 𝑔 ≡ 1, 0 ≡ 0 ⟩

Monday 13th October, 2014 ⛈ MRA-Wavelet subspace architecture for logic, probability, and symbolic sequence processing ⛈ version 0.65

http://books.google.com/books?vid=ISBN0387905782&pg=PA10
http://books.google.com/books?vid=ISBN3540120440&pg=PA133
http://books.google.com/books?vid=ISBN098380110X&pg=PA48
http://books.google.com/books?vid=ISBN0387905782&pg=PA10
http://books.google.com/books?vid=ISBN0983801118
http://books.google.com/books?vid=ISBN902771715X&pg=PA12


1 BACKGROUND: LATTICES Daniel J. Greenhoe page 16

Lemma 1.56 ⁴⁰

{
𝙇 is an
M3 lattice } ⟹ {

1. 𝙇 is NOT distributive (Definition 1.53 page 15) and
2. 𝙇 IS modular (Definition 1.47 page 14) }

Theorem 1.57 (Birkhoff distributivity criterion) ⁴¹ Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a LATTICE.

𝙇 is DISTRIBUTIVE ⟺
⎧⎪
⎨
⎪⎩

𝙇 does not contain N5 as a sublattice
rr rr r and

𝙇 does not contain M3 as a sublattice
r rr rr

Distributive lattices are a special case of modular lattices. That is, all distributive lattices
aremodular, but not all modular lattices are distributive (next theorem). An example is the
M3 lattice—it is modular, but yet it is not distributive.

Theorem 1.58 ⁴² Let ( 𝑋, ∨, ∧ ; ≤) be a lattice.
{(𝑋, ∨, ∧; ≤) is DISTRIBUTIVE} ⟹

/⟸ {( 𝑋, ∨, ∧ ; ≤) is MODULAR}

Theorem 1.59 ⁴³ Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a LATTICE (Definition 1.31 page 10).
⎧⎪
⎨
⎪⎩

1. 𝙇 is DISTRIBUTIVE and
2. 𝑥 ∨ 𝑎 = 𝑥 ∨ 𝑏 and
3. 𝑥 ∧ 𝑎 = 𝑥 ∧ 𝑏

⎫⎪
⎬
⎪⎭

⟹ {𝑎 = 𝑏} ∀𝑥, 𝑎, 𝑏 ∈ 𝑋

Proposition 1.60 ⁴⁴ Let 𝑋𝑛 be a finite set with order 𝑛 = | 𝑋𝑛 |. Let 𝑙𝑛 be the number of
unlabeled lattices on 𝑋𝑛 , 𝑚𝑛 the number of unlabeled modular lattices on 𝑋𝑛 , and 𝑑𝑛 the
number of unlabeled distributive lattices on 𝑋𝑛 .
𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
𝑙𝑛 1 1 1 1 2 5 15 53 222 1078 5994 37622 262776 2018305 16873364
𝑚𝑛 1 1 1 1 2 4 8 16 34 72 157 343 766 1718 3899
𝑑𝑛 1 1 1 1 2 3 5 8 15 26 47 82 151 269 494

Example 1.61 ⁴⁵ There are a total of 5 unlabeled lattices on a five element set. Of these,
3 are distributive (Proposition 1.60 page 16, and thus also modular), one is modular but non-

⁴⁰📘 [17], page 6,📘 [23], page 11,📘 [105], page 157, ⟨cf Salii1988 p. 37⟩
⁴¹📘 [23], page 12,📘 [17], page 134, 📃 [19]📘 [78], ⟨Theorem 6.2⟩
⁴²📘 [17], page 134,📘 [23], page 11 📃 [77], ⟨Theorem 1.37⟩ ,📘 [78], ⟨§6.2.3⟩
⁴³📘 [113], pages 484–485
⁴⁴ 💻 [2] ⟨http://oeis.org/A006966⟩ , 💻 [2] ⟨http://oeis.org/A006982⟩ , 💻 [2] ⟨http://

oeis.org/A006981⟩ ,📃 [84], ⟨ 𝑙𝑛 ⟩ , 📃 [54], page 17, ⟨ 𝑑𝑛 ⟩ , 📃 [160]
⁴⁵ 📃 [54], pages 4–5,📘 [78], ⟨Example 6.2⟩
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1 BACKGROUND: LATTICES Daniel J. Greenhoe page 17

distributive, and one is non-distributive (and non-modular).
distributive (andmodular) modular non-distributive

Example 1.62 ⁴⁶ There are a total of 15 unlabeled lattices on a six element set. Of these, 5
are distributive (Proposition 1.60 page 16, andmodular), 3 aremodular but non-distributive, and
7 are non-distributive (and non-modular).

distributive (andmodular) modular but non-distributive

non-distributive (and non-modular)

1.2.6 Complemented lattices

Definition 1.63 ⁴⁷ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a bounded lattice (Definition 1.39 page 12). An
element 𝑥′ ∈ 𝑋 is a complement of an element 𝑥 in 𝙇 if

1. 𝑥 ∧ 𝑥′ = 0 (non-contradiction) and
2. 𝑥 ∨ 𝑥′ = 1 (excluded middle).

An element 𝑥′ in 𝙇 is the unique complement of 𝑥 in 𝙇 if 𝑥′ is a complement of 𝑥 and
𝑦′ is a complement of 𝑥 ⟹ 𝑥′ = 𝑦′ . 𝙇 is complemented if every element in 𝑋 has
a complement in 𝑋 . 𝙇 is uniquely complemented if every element in 𝑋 has a unique
complement in 𝑋 . A complemented lattice that isnot uniquely complemented ismultiply
complemented.

Example 1.64 Here are some examples:

⁴⁶📘 [78], ⟨Example 5.6⟩
⁴⁷📘 [157], page 9,📘 [17], page 23
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non-complemented lattices uniquely complemented lattices

multiply complemented lattices

Example 1.65 Of the 53 unlabeled lattices on a 7 element set, 0 are uniquely comple-
mented, 17 are multiply complemented, and 36 are non-complemented.

Theorem 1.66 (next) is a landmark theorem in mathematics.

Theorem 1.66 ⁴⁸ For every lattice 𝙇, there exists a lattice 𝙐 such that
1. 𝙇 ⊆ 𝙐 (𝙇 is a sublattice of 𝙐 ) and
2. 𝙐 is UNIQUELY COMPLEMENTED.

Corollary 1.67 ⁴⁹ Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a lattice.

{
1. 𝙇 is DISTRIBUTIVE and
2. 𝙇 is COMPLEMENTED }

⟹
/⟸ {𝙇 is UNIQUELY COMPLEMENTED}

Theorem 1.68 (Huntington properties) ⁵⁰ Let 𝙇 be a lattice.

⎧⎪
⎨
⎪⎩

𝙇 is
UNIQUELY
COMPLEMENTED

⎫⎪
⎬
⎪⎭

and

⎧⎪
⎪
⎨
⎪
⎪⎩

𝙇 is MODULAR or
𝙇 is ATOMIC or
𝙇 is ORTHOCOMPLEMENTED or
𝙇 has FINITE WIDTH or
𝙇 is DE MORGAN

⎫⎪
⎪
⎬
⎪
⎪⎭⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

HUNTINGTON PROPERTIES

⟹ {
𝙇 is
DISTRIBUTIVE }

1.2.7 Boolean lattices

Definition 1.69 ⁵¹ A lattice (Definition 1.31 page 10) 𝙇 is Boolean if
1. 𝙇 is bounded (Definition 1.39 page 12) and
2. 𝙇 is distributive (Definition 1.53 page 15) and
3. 𝙇 is complemented (Definition 1.63 page 17).

⁴⁸ 📃 [46], page 123,📘 [151], page 51,📘 [72], page 378, ⟨Corollary 3.8⟩
⁴⁹📘 [113], page 488,📘 [151], page 30, ⟨Theorem 10⟩
⁵⁰📘 [146], page 103,📘 [3], page 79,📘 [151], page 40, 📃 [46], page 123,📘 [73], page 698
⁵¹📘 [113], page 488,📘 [97]
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1 BACKGROUND: LATTICES Daniel J. Greenhoe page 19

In this case, 𝙇 is a Boolean algebra or a Boolean lattice.
In this paper, a Boolean lattice with 2𝘕 elements is sometimes denoted 𝙇𝘕

2 .

The next theorem presents the classic properties of any Boolean algebra. The first 4 pairs
of properties are true for any lattice (Theorem 1.32 page 10). The bounded, distributive, and com-
plemented properties are true by definition of a Boolean lattice (Definition 1.69 page 18).

Theorem 1.70 (classic 10 Boolean properties) ⁵² Let 𝘼 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be an alge-
braic structure. In the event that 𝑨 is a BOUNDED LATTICE (Definition 1.39 page 12), let 𝑥′ represent
a COMPLEMENT (Definition 1.63 page 17) of an element 𝑥 in 𝘼.
𝘼 is a Boolean algebra ⟺ ∀𝑥, 𝑦, 𝑧 ∈ 𝑋
𝑥 ∨ 𝑥 = 𝑥 𝑥 ∧ 𝑥 = 𝑥 ( IDEMPOTENT) and
𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥 (COMMUTATIVE) and
𝑥 ∨ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∨ 𝑧 𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧 (ASSOCIATIVE) and
𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 𝑥 ∧ (𝑥 ∨ 𝑦) = 𝑥 (ABSORPTIVE) and
𝑥 ∨ 1 = 1 𝑥 ∧ 0 = 0 (BOUNDED) and
𝑥 ∨ 0 = 𝑥 𝑥 ∧ 1 = 𝑥 ( IDENTITY) and
𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) (DISTRIBUTIVE) and
𝑥 ∨ 𝑥′ = 1 𝑥 ∧ 𝑥′ = 0 (COMPLEMENTED) and
(𝑥 ∨ 𝑦)′ = 𝑥′ ∧ 𝑦′ (𝑥 ∧ 𝑦)′ = 𝑥′ ∨ 𝑦′ (DE MORGAN) and

(𝑥′)′ = 𝑥 ( INVOLUTORY)
disjunctive properties conjunctive properties property name

Proposition 1.71 (Huntington's fourth set) ⁵³ Let 𝑨 ≜ ( 𝑋, ∨, ∧ ; ≤) be an ALGEBRAIC
STRUCTURE. 𝑨 is a Boolean algebra ⟺

⎧
⎪
⎨
⎪
⎩

1. 𝑥 ∨ 𝑥 = 𝑥 ∀𝑥∈𝑋 ( IDEMPOTENT) and
2. 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 ∀𝑥,𝑦∈𝑋 (COMMUTATIVE) and
3. (𝑥 ∨ 𝑦) ∨ 𝑧 = 𝑥 ∨ (𝑦 ∨ 𝑧) ∀𝑥,𝑦,𝑧∈𝑋 (ASSOCIATIVE) and
4. (𝑥′ ∨ 𝑦′)′ ∨ (𝑥′ ∨ 𝑦)′ = 𝑥 ∀𝑥,𝑦∈𝑋. (HUNTINGTON'S AXIOM)

⎫
⎪
⎬
⎪
⎭

1.3 Orthocomplemented Lattices

Orthocomplemented lattices (Definition 1.72 page 20) are a kind of generalization of Boolean al-
gebras. The relationship between lattices of several types, including orthocomplemented
andBoolean lattices, is stated inTheorem1.86 (page26) and illustrated inFigure4 (page20).

⁵² 📃 [89], pages 292–293, ⟨“1st set”⟩ , 📃 [90], page 280, ⟨“4th set”⟩ ,📘 [113], page 488,📘 [68],
page 10,📘 [124], pages 20–21,📘 [153],📘 [167], pages 35–37

⁵³ 📃 [90], page 280, ⟨“4th set”⟩
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bounded
(Definition 1.39 page 12)

modular
(Definition 1.47 page 14)

distributive
(Definition 1.53 page 15)

complemented
(Definition 1.63 page 17)

orthocomplemented
(Definition 1.72 page 20)

orthomodular
(Definition 1.83 page 25)

modular orthocomplemented
(Definition 1.85 page 25)

boolean
(Definition 1.69 page 18)

Figure 4: relationships between selected lattice types (see Theorem 1.86 page 26)

1.3.1 Definition

Definition 1.72 ⁵⁴ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a bounded lattice (Definition 1.39 page 12).
An element 𝑥⟂ ∈ 𝑋 is an orthocomplement of an element 𝑥 ∈ 𝑋 if

1. 𝑥⟂⟂ = 𝑥 ∀𝑥∈𝑋 (involutory) and
2. 𝑥 ∧ 𝑥⟂ = 0 ∀𝑥∈𝑋 (non-contradiction) and
3. 𝑥 ≤ 𝑦 ⟹ 𝑦⟂ ≤ 𝑥⟂ ∀𝑥,𝑦∈𝑋 (antitone).

The lattice 𝙇 isorthocomplemented (𝙇 is anorthocomplemented lattice) if every element
𝑥 in 𝑋 has an orthocomplement . The elements {𝑥, 𝑦} are orthocomplemented pairs in 𝙇
if 𝑦 = 𝑥⟂ .

Definition 1.73 ⁵⁵
TheO6 lattice is the ordered set ({0, 𝑝, 𝑞, 𝑝⟂, 𝑞⟂, 1}, ≤) with cover relation

≺= {(0, 𝑝) , (0, 𝑞) , (𝑝, 𝑞⟂) , (𝑞, 𝑝⟂) , (𝑝⟂, 1) , (𝑞⟂, 1)}.
The 𝑂6 lattice is illustrated by the Hasse diagram to the right.

1
𝑝⟂𝑞⟂

𝑞𝑝
0

⁵⁴📘 [157], page 11,📘 [12], page 28,📘 [98], page 16,📘 [79], page 76,📘 [112], page 3, 📃 [20],
page 830, ⟨L71–L73⟩

⁵⁵📘 [98], page 22, 📓 [88], page 50,📘 [12], page 33,📘 [157], page 12. TheO6 lattice is also called
the Benzene ring or the hexagon.
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Example 1.74 ⁵⁶ There are a total of 10 orthocomplemented lattices with 8 elements or
less. These 10, along with 3 other orthocomplemented lattices with 10 elements, are illus-
trated next:

Lattices that are orthocomplemented but non-orthomodular and hence also not
modular orthocomplemented and non-Boolean:

1

𝑥⟂𝑦⟂

𝑦𝑥

0

1
𝑥⟂𝑦⟂

𝑝⟂𝑝
𝑦𝑥

1

1

𝑦⟂ 𝑥⟂

𝑝⟂𝑝 𝑦𝑥

0

1

𝑧⟂ 𝑥⟂𝑦⟂

𝑥 𝑦 𝑧

0
1. 𝑂6 lattice 2. 𝑂8 lattice 3. 4.

1
𝑥⟂𝑧⟂

𝑦⟂
𝑝⟂

𝑧𝑦
𝑝
𝑥

0

1

𝑧⟂ 𝑦⟂ 𝑥⟂ 𝑤⟂

𝑤 𝑥 𝑦 𝑧

0

1 𝑥⟂𝑦⟂

𝑝⟂𝑝𝑞 𝑞⟂

𝑦𝑥
0

5. 6. 7.
Lattices that are orthocomplemented and orthomodular but not modular
orthocomplemented and hence also non-Boolean:

1

𝑥⟂𝑦⟂
𝑧⟂

𝑝 𝑝⟂𝑥 𝑦 𝑧

0

1

𝑥⟂𝑦⟂𝑧⟂

𝑥 𝑦 𝑧

𝑎⟂𝑏⟂𝑐⟂𝑑⟂

𝑎 𝑏 𝑐 𝑑

0
8. 9.

Lattices that are orthocomplemented, orthomodular, andmodular
orthocomplemented but non-Boolean:

1
𝑤 𝑥 𝑦 𝑧

0

1

𝑥 𝑦 𝑧 𝑥⟂𝑦⟂
𝑧⟂
0

10. 𝑀4 lattice 11. 𝑀6 lattice
Lattices that are orthocomplemented, orthomodular,modular
orthocomplemented and Boolean:
⁵⁶📘 [12], pages 33–42,📃 [117], page 250,📘 [98], page 24, ⟨Figure 3.2⟩ ,📘 [157], page 12, 📓 [88],

page 50
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10
1
0

1

𝑝⟂

𝑝

0

1
𝑟⟂ 𝑞⟂ 𝑝⟂

𝑝 𝑞 𝑟
0

12. 𝐿1 lattice 13. 𝐿2 lattice 14. 𝐿2
2 lattice 15. 𝐿3

2 lattice

1
𝑟⟂ 𝑞⟂ 𝑝⟂

𝑑⟂ 𝑏⟂
𝑎⟂

𝑠

𝑠⟂

𝑎 𝑏 𝑑

𝑝 𝑞 𝑟
0

1

𝑞⟂𝑟⟂𝑠⟂

𝑓 ⟂ 𝑒⟂ 𝑑⟂

𝑔

𝑡⟂

𝑗⟂ ℎ⟂𝑖⟂

𝑎 𝑏 𝑐

𝑝

𝑝⟂

𝑎⟂𝑏⟂𝑐⟂

ℎ 𝑖 𝑗

𝑡

𝑔⟂

𝑓𝑒𝑑

𝑞 𝑟 𝑠

0
16. 𝐿4

2 lattice 17. 𝐿5
2 lattice

Example 1.75 The structure ( 𝟚ℝ𝘕 , +, ∩, ∅, 𝙃 ; ⊆) is an
orthocomplemented latticewhere

⛈ ℝ𝘕 is an Euclidean spacewith dimension 𝘕 and

⛈ 𝟚ℝ𝘕 is the set of all subspaces of ℝ𝘕 and
⛈ 𝙑 + 𝙒 is the Minkowski sum of subspaces 𝙑 and 𝙒 and
⛈ 𝙑 ∩ 𝙒 is the intersection of subspaces 𝙑 and 𝙒 .

𝙓
𝙔

𝙕
𝙔 ⟂

𝙕 ⟂

Example1.76 The structure ( 𝟚𝙃 , ⊕, ∩, ∅, 𝙃 ; ⊆) is anorthocomplemented latticewhere
𝙃 is a Hilbert space, 𝟚𝙃 is the set of all closed subspaces of 𝙃 , 𝙓 + 𝙔 is the Minkowski
sum of subspaces 𝙓 and 𝙔 , 𝙓 ⊕ 𝙔 ≜ (𝙓 + 𝙔 )− is the closure of 𝙓 + 𝙔 , and 𝙓 ∩ 𝙔 is the
intersection of subspaces 𝙓 and 𝙔 .

1.3.2 Properties

Theorem 1.77 ⁵⁷ Let 𝑥⟂ be the ORTHOCOMPLEMENT (Definition 1.72 page 20) of an element 𝑥 in a
BOUNDED LATTICE 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤).

⁵⁷📘 [12], pages 30–31, 📃 [20], page 830, ⟨L74⟩ ,📘 [29], page 37, ⟨3B.13. Theorem⟩
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𝙇 is
ortho-
complemented

⎫⎪
⎬
⎪⎭

⟹

⎧⎪
⎪
⎨
⎪
⎪⎩

(1). 0⟂ = 1 (BOUNDARY CONDITION) and
(2). 1⟂ = 0 (BOUNDARY CONDITION) and
(3). (𝑥 ∨ 𝑦)⟂ = 𝑥⟂ ∧ 𝑦⟂ ∀𝑥,𝑦∈𝑋 (DISJUNCTIVE DE MORGAN) and
(4). (𝑥 ∧ 𝑦)⟂ = 𝑥⟂ ∨ 𝑦⟂ ∀𝑥,𝑦∈𝑋 (CONJUNCTIVE DE MORGAN) and
(5). 𝑥 ∨ 𝑥⟂ = 1 ∀𝑥∈𝑋 (EXCLUDED MIDDLE).

✎PROOF: Let 𝑥⟂ ≜ ¬𝑥 , where ¬ is an ortho negation function (Definition 2.14 page 29). Then this theorem
follows directly from Theorem 2.21 (page 30). ✏

Corollary 1.78 Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a LATTICE (Definition 1.31 page 10).

{
𝙇 is orthocomplemented
(Definition 1.72 page 20) } ⟹ {

𝙇 is complemented
(Definition 1.63 page 17) }

✎PROOF: This follows directly from the definition of orthocomplemented lattices (Definition 1.72 page 20)

and complemented lattices (Definition 1.63 page 17). ✏

Example 1.79
1

𝑏𝑎
𝑞𝑝

0

The 𝑂6 lattice (Definition 1.73 page 20) illustrated to the left is
both orthocomplemented (Definition 1.72 page 20) and mul-
tiply complemented (Definition 1.63 page 17). The lattice il-
lustrated to the right is multiply complemented, but is
non-orthocomplemented.

1
𝑎

𝑝 𝑞 𝑟

0

✎PROOF:

(1) Proof that 𝑂6 lattice is multiply complemented: 𝑏 and 𝑞 are both complements of 𝑝 .
(2) Proof that the right side lattice is multiply complemented: 𝑎 , 𝑝 , and 𝑞 are all complements of

𝑟 .

✏

1.3.3 Restrictions resulting in Boolean algebras

Proposition 1.80 ⁵⁸ Let 𝙇 = ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a BOUNDED LATTICE (Definition 1.39 page 12).

{
1. 𝙇 is orthocomplemented (Definition 1.72 page 20) and
2. 𝙇 is distributive (Definition 1.53 page 15) } ⟹ {

𝙇 is Boolean
(Definition 1.69 page 18) }

⁵⁸📘 [98], page 22
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✎PROOF:

{
𝙇 is orthocomplemented and
𝙇 is distributive } ⟹ {

𝙇 is complemented and
𝙇 is distributive } by Corollary 1.78

⟹ { 𝙇 is Boolean } by Definition 1.69

✏

The center of an orthocomplemented lattice is defined later, but here is a characterization
involving it now anyways.

Proposition 1.81 Let 𝙇 = ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a LATTICE (Definition 1.31 page 10).

{
1. 𝙇 is orthocomplemented (Definition 1.72 page 20) and
2. Every 𝑥 ∈ 𝙇 is in the center of 𝙇 (Definition 3.15 page 37) } ⟺ {

𝙇 is
Boolean }

✎PROOF:

(1) Proof that (1,2) ⟹ Boolean: 𝙇 is Boolean because it satisfies Huntington's Fourth Set (Propo-
sition 1.71 page 19), as demonstrated by the following …
(a) Proof that 𝑥 ∨ 𝑥 = 𝑥 (idempotent): 𝙇 is a lattice (by definition of 𝙇), and all lattices are

idempotent (Definition 1.31 page 10).
(b) Proof that 𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 (commutative): 𝙇 is a lattice (by definition of 𝙇), and all lattices

are commutative (Definition 1.31 page 10).
(c) Proof that (𝑥 ∨ 𝑦) ∨ 𝑧 = 𝑥 ∨ (𝑦 ∨ 𝑧) (associative): 𝙇 is a lattice (by definition of 𝙇), and all

lattices are associative (Definition 1.31 page 10).
(d) Proof that (𝑥⟂ ∨ 𝑦⟂)⟂ ∨ (𝑥⟂ ∨ 𝑦)⟂ = 𝑥 (Huntington's axiom):

(𝑥⟂ ∨ 𝑦⟂)⟂ ∨ (𝑥⟂ ∨ 𝑦)⟂

= (𝑥⟂ ⟂ ∧𝑦⟂ ⟂) ∨ (𝑥⟂ ⟂ ∧𝑦⟂) by de Morgan property (Theorem 1.77 page 22)

= (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑦⟂) by involution property (Definition 1.72 page 20)

= 𝑥 by def. of center (Definition 3.15 page 37)

(2) Proof that (1) ⟸ Boolean:
(a) Proof that 𝑥 ∨ 𝑥⟂ = 1 : by definition of Boolean algebras (Definition 1.69 page 18).
(b) Proof that 𝑥 ∧ 𝑥⟂ = 0 : by definition of Boolean algebras (Definition 1.69 page 18).
(c) Proof that 𝑥⟂⟂ = 𝑥 : by involutory property of Boolean algebra (Theorem 1.70 page 19).
(d) Proof that 𝑥 ≤ 𝑦 ⟹ 𝑦⟂ ≤ 𝑥⟂ :

𝑦⟂ ≤ 𝑥⟂ ⟺ 𝑦⟂ = 𝑦⟂ ∧ 𝑥⟂ by Lemma 1.33 page 10
⟺ 𝑦⟂⟂ = (𝑦⟂ ∧ 𝑥⟂)⟂

⟺ 𝑦⟂⟂ = 𝑦⟂⟂ ∨ 𝑥⟂⟂ by de Morgan property (Theorem 1.70 page 19)

⟺ 𝑦 = 𝑦 ∨ 𝑥 by involutory property (Theorem 1.70 page 19)

⟺ 𝑦 = 𝑦 by 𝑥 ≤ 𝑦 hypothesis
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(3) Proof that (2) ⟸ Boolean: for all 𝑥, 𝑦 ∈ 𝙇

(𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑦⟂) = [(𝑥 ∧ 𝑦) ∨ 𝑥] ∧ [(𝑥 ∧ 𝑦) ∨ 𝑦⟂] by distributive property (Theorem 1.70 page 19)

= 𝑥 ∧ [(𝑥 ∧ 𝑦) ∨ 𝑦⟂] by absorptive property (Theorem 1.70 page 19)

= 𝑥 ∧ [(𝑥 ∨ 𝑦⟂) ∧ (𝑦 ∨ 𝑦⟂)] by distributive property (Theorem 1.70 page 19)

= 𝑥 ∧ (𝑥 ∨ 𝑦⟂) ∧ 1 by complement property (Theorem 1.70 page 19)

= 𝑥 by absorptive property (Theorem 1.70 page 19)

⟹ 𝑥Ⓒ𝑦 ∀𝑥, 𝑦 ∈ 𝙇 by Definition 3.9 page 36
⟹ 𝑥 is in the center of 𝙇 by Definition 3.15 page 37

✏

Example 1.82 The 𝑂6 lattice (Definition 1.73 page 20) illustrated
to the left is orthocomplemented (Definition 1.72 page 20) but
non-join-distributive (Definition 1.53 page 15),and hence non-
Boolean. The lattice illustrated to the right is orthocom-
plementedand distributive andhence alsoBoolean (Propo-
sition 1.80 page 23).

1.3.4 Orthomodular lattices

Definition 1.83 ⁵⁹ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a bounded lattice (Definition 1.39 page 12).
𝙇 is orthomodular if

1. 𝙇 is orthocomplemented and
2. 𝑥 ≤ 𝑦 ⟹ 𝑥 ∨ (𝑥⟂ ∧ 𝑦) = 𝑦 ∀𝑥,𝑦∈𝑋 (orthomodular identity)

Theorem 1.84 ⁶⁰ Let 𝙇 = ( 𝑋, ∨, ∧, 0, 1 ; ≤) be an algebraic structure.
⎧⎪
⎨
⎪⎩

𝙇 is an orthomodular lattice and

(𝑥 ∧ 𝑦⟂)⟂ = 𝑦 ∨ (𝑥⟂ ∧ 𝑦⟂)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ELKAN'S LAW

∀𝑥, 𝑦 ∈ 𝑋
⎫⎪
⎬
⎪⎭

⟹
⎧⎪
⎨
⎪⎩

𝙇 is a
Boolean algebra
(Definition 1.69 page 18)

⎫⎪
⎬
⎪⎭

Definition 1.85 Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a bounded lattice (Definition 1.39 page 12).
𝙇 is amodular orthocomplemeted lattice if

1. 𝙇 is orthocomplemented (Definition 1.72 page 20) and
2. 𝙇 ismodular (Definition 1.47 page 14)

⁵⁹📘 [98], page 22,📘 [110], page 90, 📃 [91]
⁶⁰ 📃 [144], page 72
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2 BACKGROUND: FUNCTIONS ON LATTICES Daniel J. Greenhoe page 26

Theorem 1.86 ⁶¹ Let 𝙇 be a lattice.
{𝙇 is BOOLEAN} ⟹ {𝙇 is MODULAR ORTHOCOMPLEMENTED (Definition 1.85 page 25)}

⟹ {𝙇 is ORTHOMODULAR (Definition 1.83 page 25)}
⟹ {𝙇 is ORTHOCOMPLEMENTED (Definition 1.72 page 20)}

2 Background: functions on lattices

2.1 Valuations

Definition 2.1 ⁶² Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a lattice (Definition 1.31 page 10).
A function v ∈ ℝ𝙓 is a valuation on 𝙇 if

v(𝑥 ∨ 𝑦) + v(𝑥 ∧ 𝑦) = v(𝑥) + v(𝑦) ∀𝑥,𝑦∈𝑋

Proposition 2.2 Let v ∈ ℝ𝙓 be a FUNCTION on a LATTICE 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) (Definition 1.31
page 10).

{ 𝙇 is LINEAR (Definition 1.31 page 10) } ⟹ { v is a VALUATION (Definition 2.1 page 26) }

✎PROOF: Let 𝑥, 𝑦 ∈ 𝑋 such that 𝑥 ≤ 𝑦 or 𝑦 ⪇ 𝑥 .

v(𝑥 ∨ 𝑦) + v(𝑥 ∧ 𝑦) = v(𝑥) + v(𝑦) because 𝙇 is linear

✏

Example 2.3 ⁶³ Consider the real valued lattice 𝙇 ≜ ( ℝ, max, min ; ≤).
The absolute value function |⋅| is a valuation on 𝙇.

✎PROOF: 𝙇 is linear (Definition 1.31 page 10), so v is a valuation by Proposition 2.2 (page 26). ✏

Definition 2.4 ⁶⁴ Let 𝑋 be a set and ℝ⊢ the set of non-negative real numbers.
A function 𝖽 ∈ ℝ⊢𝑋×𝑋 is ametric on 𝑋 if

1. 𝖽(𝑥, 𝑦) ≥ 0 ∀𝑥,𝑦∈𝑋 (non-negative) and
2. 𝖽(𝑥, 𝑦) = 0 ⟺ 𝑥 = 𝑦 ∀𝑥,𝑦∈𝑋 (nondegenerate) and
3. 𝖽(𝑥, 𝑦) = 𝖽(𝑦, 𝑥) ∀𝑥,𝑦∈𝑋 (symmetric) and
4. 𝖽(𝑥, 𝑦) ≤ 𝖽(𝑥, 𝑧) + 𝖽(𝑧, 𝑦) ∀𝑥,𝑦,𝑧∈𝑋 (subadditive/triangle inequality).⁶⁵

Ametric space is the pair (𝑋, 𝖽). A metric is also called a distance function.
⁶¹📘 [98], page 32, ⟨20.⟩ , 📓 [94], page 57
⁶²📘 [93], page 127,📘 [18], page 230, ⟨Definition X.1(V1)⟩ ,📘 [22], page 58, ⟨Exercise 4.25⟩ ,

📘 [43], page 105, ⟨(8.1.1)⟩ ,📘 [41], page 143, ⟨§10.3⟩ ,📘 [42], page 193, ⟨§10.3⟩
⁶³📘 [101], page 119, ⟨§5.7⟩
⁶⁴📘 [45], page 28,📘 [31], page 21,📘 [82], page 109,📘 [64],📘 [63], page 30
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2 BACKGROUND: FUNCTIONS ON LATTICES Daniel J. Greenhoe page 27

Definition 2.5 ⁶⁶ Let (𝑋, 𝖽) be a metric space (Definition 2.4 page 26).
An open ball centered at 𝑥 with radius 𝑟 is the set 𝖡 (𝑥, 𝑟) ≜ {𝑦 ∈ 𝑋 |𝖽(𝑥, 𝑦) ⪇ 𝑟}.
A closed ball centered at 𝑥 with radius 𝑟 is the set 𝖡 (𝑥, 𝑟) ≜ {𝑦 ∈ 𝑋 |𝖽(𝑥, 𝑦) ≤ 𝑟}.
A unit ball centered at 𝑥 is the set 𝖡 (𝑥, 1).
A closed unit ball centered at 𝑥 is the set 𝖡 (𝑥, 1).

Theorem2.6 ⁶⁷ Let v ∈ ℝ𝙓 be a function on a LATTICE 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) (Definition 1.31 page 10).

1. v(𝑥 ∨ 𝑦) + v(𝑥 ∧ 𝑦) = v(𝑥) + v(𝑦) ∀𝑥,𝑦∈𝑋 (VALUATION) and
2. 𝑥 ≤ 𝑦 ⟹ v(𝑥) ≤ v(𝑦) ∀𝑥,𝑦∈𝑋 ( ISOTONE) } ⟹

⎧⎪
⎨
⎪⎩

𝖽(𝑥, 𝑦) ≜
v(𝑥 ∨ 𝑦) − v(𝑥 ∧ 𝑦)
is a METRIC on 𝙇

Definition 2.7 ⁶⁸ Let v be a valuation (Definition 2.1 page 26) on a lattice 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) (Defini-
tion 1.31 page 10). Let 𝖽(𝑥, 𝑦) be the metric defined in Theorem 2.6 (page 27).
The pair (𝙇, 𝖽) is called a metric lattice.

For finite modular lattices, the height function 𝗁(𝑥) (Definition 1.42 page 12) can serve as the iso-
tone valuation that induces a metric (next proposition).

Proposition 2.8 ⁶⁹ Let 𝗁(𝑥) be the HEIGHT (Definition 1.42 page 12) of a point 𝑥 in a BOUNDED
LATTICE (Definition 1.39 page 12) 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤).
{ 1. 𝙇 is MODULAR and 2. 𝙇 is FINITE }

⟹ {
1. 𝗁(𝑥 ∨ 𝑦) + 𝗁(𝑥 ∧ 𝑦) = 𝗁(𝑥) + 𝗁(𝑦) ∀𝑥,𝑦∈𝑋 (VALUATION) and
2. 𝑥 ⪇ 𝑦 ⟹ 𝗁(𝑥) ⪇ 𝗁(𝑦) ∀𝑥,𝑦∈𝑋 (POSITIVE) }

⟹ {
1. 𝗁(𝑥 ∨ 𝑦) + 𝗁(𝑥 ∧ 𝑦) = 𝗁(𝑥) + 𝗁(𝑦) ∀𝑥,𝑦∈𝑋 (VALUATION) and
2. 𝑥 ≤ 𝑦 ⟹ 𝗁(𝑥) ≤ 𝗁(𝑦) ∀𝑥,𝑦∈𝑋 ( ISOTONE) }

Theorem 2.9 ⁷⁰ Let v be a VALUATION (Definition 2.1 page 26) on a LATTICE 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤)
(Definition 1.31 page 10). Let 𝖽(𝑥, 𝑦) be the METRIC defined in Theorem 2.6 (page 27).

{
(𝙇, 𝖽) is a METRIC LATTICE

(Definition 2.7 page 27) } ⟹ {
𝙇 is MODULAR

(Definition 1.47 page 14) }

⁶⁵📘 [55], ⟨Book I Proposition 20⟩
⁶⁶📘 [5], page 35
⁶⁷📘 [43], page 105, ⟨(8.1.2)⟩ ,📘 [18], pages 230–231
⁶⁸📘 [43], page 105,📘 [18], page 231, ⟨§X.2⟩
⁶⁹📘 [18], page 230
⁷⁰📘 [18], page 232, ⟨Theorem X.2⟩ ,📘 [43], pages 105–106,📘 [22], page 58, ⟨Exercise 4.25⟩
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Example 2.10
The function 𝗁 on the Boolean (and thus also modular) lattice
𝙇3

2 illustrated to the right is a valuation (Definition 2.1 page 26) that is
positive (and thus also isotone, Proposition 2.8 page 27). Therefore

𝖽(𝑥, 𝑦) ≜ 𝗁(𝑥 ∨ 𝑦) − 𝗁(𝑥 ∧ 𝑦) ∀𝑥,𝑦∈𝑋
is a metric (Definition 2.7 page 27) on 𝙇3

2. For example,
𝖽(𝑏, 𝑞) ≜ 𝗁(𝑏 ∨ 𝑞) − 𝗁(𝑏 ∧ 𝑞) = 𝗁(1) − 𝗁(0) = 3 − 0 = 3 .

The closed unit ball centered at 𝑏 (Definition 2.5 page 27) and illustrated
with solid dots to the right is

𝖡 (𝑏, 1) ≜ {𝑥 ∈ 𝑋 |𝖽(𝑏, 𝑥) ≤ 1} = {𝑏, 𝑝, 𝑟, 0}

𝗁(1) = 3

𝗁(𝑝) = 2 𝗁(𝑞) = 2 𝗁(𝑟) = 2

𝗁(𝑎) = 1
𝗁(𝑏) = 1

𝗁(𝑐) = 1

𝗁(0) = 0

Example 2.11
The height function 𝗁 (Definition 1.42 page 12) on the orthocomple-
mented but non-modular lattice O6 illustrated to the right is not
a valuation because for example

𝗁(𝑎∨𝑐)+𝗁(𝑎∧𝑐) = 𝗁(1)+𝗁(0) = 3+0 = 3 ≠ 2 = 1+1 = 𝗁(𝑎)+𝗁(𝑏).
Moreover, we might expect the “distance” from 𝑎 to 𝑐 to be 2.
However, if we attempt to use 𝗁(𝑥) to define a metric on O6, then
we get

𝖽(𝑎, 𝑐) ≜ 𝗁(𝑎 ∨ 𝑐) − 𝗁(𝑎 ∧ 𝑐) = 𝗁(1) − 𝗁(0) = 3 − 0 = 3 ≠ 2.

𝗁(1) = 3

𝗁(𝑝) = 2 𝗁(𝑟) = 2
𝗁(𝑎) = 1 𝗁(𝑐) = 1

𝗁(0) = 0

2.2 Negation

2.2.1 Definitions

Definition 2.12 ⁷¹ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a bounded lattice (Definition 1.39 page 12).
A function ¬ ∈ 𝑋𝑋 is a subminimal negation on 𝙇 if ⁷²

𝑥 ≤ 𝑦 ⟹ ¬𝑦 ≤ ¬𝑥 ∀𝑥,𝑦∈𝑋 (antitone).

Definition 2.13 ⁷³ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a bounded lattice (Definition 1.39 page 12).

⁷¹📘 [51], pages 4–6,📘 [52], pages 24–26, ⟨2 THE KITE OF NEGATIONS⟩
⁷² In the context of natural language, D. Devidi has argued that, subminimal negation (Definition 2.12

page 28) is “difficult to take seriously as” a negation. For further details see 📓 [40], page 511, 📓 [39],
page 568, 📃 [77], ⟨§2.1.1⟩ ,📘 [78], ⟨§11.1⟩

⁷³📘 [51], pages 4–6,📘 [52], pages 24–26, ⟨2 THE KITE OF NEGATIONS⟩ ,📘 [161], PAGE 4, ⟨1.6
INTUITIONISM. (B)⟩ , 📃 [162], PAGE 11, ⟨DEFINITION 16⟩ , 📘 [70], PAGE 21, ⟨DEFINITION 3.3⟩ , 📘
[132], PAGE 50, ⟨DEFINITION 2.26⟩ ,📘 [131], PAGES 98–99, ⟨5.4 NEGATIONS⟩ ,📃 [10], PAGES 155–156,
⟨(N1) ¬0 = 1 AND ¬1 = 0 , (N3) ¬¬𝑥 = 𝑥 ⟩
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subminimal negation
(Definition 2.12 page 28)

minimal negation
(Definition 2.13 page 28)

fuzzy negation
(Definition 2.13 page 28)

intuitionalistic negation
(Definition 2.13 page 28)

de Morgan negation
(Definition 2.14 page 29)

Kleene negation
(Definition 2.14 page 29)

ortho negation
(Definition 2.14 page 29)

orthomodular negation
(Definition 2.14 page 29)

Figure 5: lattice of negations

A function ¬ ∈ 𝑋𝑋 is a negation, orminimal negation, on 𝙇 if
1. 𝑥 ≤ 𝑦 ⟹ ¬𝑦 ≤ ¬𝑥 ∀𝑥,𝑦∈𝑋 (antitone) and
2. 𝑥 ≤ ¬¬𝑥 ∀𝑥∈𝑋 (weak double negation).

A minimal negation ¬ is an intuitionistic negation on 𝙇 if
3. 𝑥 ∧ ¬𝑥 = 0 ∀𝑥,𝑦∈𝑋 (non-contradiction).

A minimal negation ¬ is a fuzzy negation on 𝙇 if
4. ¬1 = 0 (boundary condition).

Definition 2.14 ⁷⁴ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be a bounded lattice (Definition 1.39 page 12).
A minimal negation ¬ is a deMorgan negation on 𝙇 if

5. 𝑥 = ¬¬𝑥 ∀𝑥∈𝑋 (involutory).
A de Morgan negation ¬ is a Kleene negation on 𝙇 if

6. 𝑥 ∧ ¬𝑥 ≤ 𝑦 ∨ ¬𝑦 ∀𝑥,𝑦∈𝑋 (Kleene condition).
A de Morgan negation ¬ is an ortho negation on 𝙇 if

7. 𝑥 ∧ ¬𝑥 = 0 ∀𝑥,𝑦∈𝑋 (non-contradiction).
A de Morgan negation ¬ is an orthomodular negation on 𝙇 if

8. 𝑥 ∧ ¬𝑥 = 0 ∀𝑥,𝑦∈𝑋 (non-contradiction) and
9. 𝑥 ≤ 𝑦 ⟹ 𝑥 ∨ (𝑥⟂ ∧ 𝑦) = 𝑦 ∀𝑥,𝑦∈𝑋 (orthomodular).

⁷⁴📘 [52], pages 24–26, ⟨2 THEKITE OFNEGATIONS⟩ ,📘 [96], PAGE 283,📘 [98], PAGE 22,📘 [110],
PAGE 90, 📃 [91]
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Remark 2.15 ⁷⁵ The Kleene condition is a weakened form of the non-contradiction and
excluded middle properties in the sense 𝑥 ∧ ¬𝑥 = 0⏟⏟⏟⏟⏟⏟⏟

non-contradiction

≤ 1 = 𝑦 ∨ ¬𝑦⏟⏟⏟⏟⏟⏟⏟
excluded middle

.

Definition 2.16 Let 𝙇 ≜ ( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤) be a bounded lattice (Definition 1.39 page 12) with
a function ¬ ∈ 𝑋𝑋 . If ¬ is a negation (Definition 2.13 page 28), then 𝙇 is a lattice with negation.

2.2.2 Properties of negations

Theorem 2.17 ⁷⁶ Let ¬ ∈ 𝑋𝑋 be a function on a BOUNDED LATTICE 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤).

{
¬ is a
FUZZY NEGATION } ⟹ { ¬0 = 1 (BOUNDARY CONDITION) }

Theorem 2.18 ⁷⁷ Let ¬ ∈ 𝑋𝑋 be a function on a BOUNDED LATTICE 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤).

{
¬ is an
INTUITIONISTIC NEGATION } ⟹

⎧⎪
⎨
⎪⎩

(a) ¬1 = 0 (BOUNDARY CONDITION) and
(b) ¬0 = 1 (BOUNDARY CONDITION) and
(c) ¬ is a FUZZY NEGATION

⎫⎪
⎬
⎪⎭

Theorem 2.19 ⁷⁸ Let ¬ ∈ 𝑋𝑋 be a function on a BOUNDED LATTICE 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤).
⎧⎪
⎨
⎪⎩

¬ is a
minimal
negation

⎫⎪
⎬
⎪⎭

⟹ {
¬𝑥 ∨ ¬𝑦 ≤ ¬(𝑥 ∧ 𝑦) ∀𝑥,𝑦∈𝑋 (CONJUNCTIVE DE MORGAN INEQUALITY) and
¬(𝑥 ∨ 𝑦) ≤ ¬𝑥 ∧ ¬𝑦 ∀𝑥,𝑦∈𝑋 (DISJUNCTIVE DE MORGAN INEQUALITY) }

Theorem 2.20 ⁷⁹ Let ¬ ∈ 𝑋𝑋 be a function on a BOUNDED LATTICE 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤).
¬ is a
de Morgan negation } ⟹ {

¬(𝑥 ∨ 𝑦) = ¬𝑥 ∧ ¬𝑦 ∀𝑥,𝑦∈𝑋 (DISJUNCTIVE DE MORGAN) and
¬(𝑥 ∧ 𝑦) = ¬𝑥 ∨ ¬𝑦 ∀𝑥,𝑦∈𝑋 (CONJUNCTIVE DE MORGAN)

Theorem 2.21 ⁸⁰ Let ¬ ∈ 𝑋𝑋 be a function on a BOUNDED LATTICE 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤).

⎧⎪
⎨
⎪⎩

¬ is an
ortho
negation

⎫⎪
⎬
⎪⎭

⟹

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

1. ¬0 = 1 (BOUNDARY CONDITION) and
2. ¬1 = 0 (BOUNDARY CONDITION) and
3. ¬(𝑥 ∨ 𝑦) = ¬𝑥 ∧ ¬𝑦 ∀𝑥,𝑦∈𝑋 (DISJUNCTIVE DE MORGAN) and
4. ¬(𝑥 ∧ 𝑦) = ¬𝑥 ∨ ¬𝑦 ∀𝑥,𝑦∈𝑋 (CONJUNCTIVE DE MORGAN) and
5. 𝑥 ∨ ¬𝑥 = 1 ∀𝑥∈𝑋 (EXCLUDED MIDDLE) and
6. 𝑥 ∧ ¬𝑥 ≤ 𝑦 ∨ ¬𝑦 ∀𝑥,𝑦∈𝑋 (KLEENE CONDITION).

⎫⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

⁷⁵📘 [26], page 78
⁷⁶ 📃 [77], ⟨§2.1.2⟩ ,📘 [78], ⟨§11.2⟩
⁷⁷ 📃 [77], ⟨§2.1.2⟩ ,📘 [78], ⟨§11.2⟩
⁷⁸ 📃 [77], ⟨§2.1.2⟩ ,📘 [78], ⟨§11.2⟩
⁷⁹ 📃 [77], ⟨§2.1.2⟩ ,📘 [78], ⟨§11.2⟩
⁸⁰ 📃 [77], ⟨§2.1.2⟩ ,📘 [78], ⟨§11.2⟩
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2 BACKGROUND: FUNCTIONS ON LATTICES Daniel J. Greenhoe page 31

2.3 Projections

Definition 2.22 ⁸¹ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be an orthocomplemented lattice (Definition 1.72
page 20). A function 𝜙𝑥 ∈ 𝑋𝑋 is a Sasaki projection on 𝑥 ∈ 𝑋 if 𝜙𝑥(𝑦) ≜ (𝑦 ∨ 𝑥⟂) ∧ 𝑥.
The Sasaki projections 𝜙𝑥 and 𝜙𝑦 are permutable if 𝜙𝑥 ∘ 𝜙𝑦(𝑢) = 𝜙𝑦 ∘ 𝜙𝑥(𝑢) ∀𝑢 ∈ 𝑋 .

Proposition 2.23 Let 𝜙𝑥(𝑦) be the SASAKI PROJECTION OF 𝑦 ONTO 𝑥 (Definition 2.22 page 31) in an
ORTHOCOMPLEMENTED LATTICE 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤).

(1). 𝑥 ≤ 𝑦 ⟹ 𝜙𝑥(𝑦) = 𝑥 ∀𝑥,𝑦∈𝑋
(2). 𝑦 ≤ 𝑥 ⟹ 𝑦 ≤ 𝜙𝑥(𝑦) ≤ 𝑥 ∀𝑥,𝑦∈𝑋
(3). 𝑦 ≤ 𝑥 and 𝙇 is BOOLEAN ⟹ 𝜙𝑥(𝑦) = 𝑦 ∀𝑥,𝑦∈𝑋

✎PROOF:

(1) ⟹ 𝜙𝑥(𝑦) ≜ (𝑦 ∨ 𝑥⟂) ∧ 𝑥 by definition of Sasaki projection (Definition 2.22 page 31)

= 1 ∧ 𝑥 by 𝑥 ≤ 𝑦 hypothesis and Proposition 3.1 page 34
= 𝑥 by property of bounded lattices (Proposition 1.41 page 12)

(2) ⟹ 𝑦 = 𝑦 ∧ 𝑥 by 𝑦 ≤ 𝑥 hypothesis
≤ (𝑦 ∨ 𝑥⟂) ∧ 𝑥 by definition of ∨ (Definition 1.27 page 9)

= 𝜙𝑥(𝑦) by definition of Sasaki projection (Definition 2.22 page 31)

≤ (𝑦 ∨ 𝑥⟂) ∧ 𝑥 by definition of Sasaki projection (Definition 2.22 page 31)

≤ 𝑥 by definition of ∧ (Definition 1.28 page 9)

(3) ⟹ 𝜙𝑥(𝑦) = (𝑦 ∨ 𝑥⟂) ∧ 𝑥 by definition of Sasaki projection (Definition 2.22 page 31)

= (𝑦 ∧ 𝑥) ∨ (𝑥⟂ ∧ 𝑥) by distributive property of Boolean lattices (Theorem 1.70 page 19)

= (𝑦 ∧ 𝑥) ∨ 0 by non-contradiction of Boolean lattices (Theorem 1.70 page 19)

= (𝑦 ∧ 𝑥) by boundary property of bounded lattices (Proposition 1.41 page 12)

= 𝑦 by 𝑦 ≤ 𝑥 hypothesis and definition of ∧ (Definition 1.28 page 9)

✏

Proposition 2.24 Let 𝜙𝑥(𝑦) be the SASAKI PROJECTION OF 𝑦 ONTO 𝑥 (Definition 2.22 page 31) in an
ORTHOCOMPLEMENTED LATTICE ( 𝑋, ∨, ∧, 0, 1 ; ≤).

(1). 𝜙0(𝑦) = 0 ∀𝑦∈𝑋
(2). 𝜙𝑥(0) = 0 ∀𝑥∈𝑋
(3). 𝜙1(𝑦) = 1 ∀𝑦∈𝑋
(4). 𝜙𝑥(1) = 𝑥 ∀𝑥∈𝑋
(5). 𝜙𝑥(𝑥⟂) = 0 ∀𝑥∈𝑋

⁸¹📘 [127], pages 158–159, ⟨equation (S)⟩ ,📘 [152], page 300, ⟨Def.5.1, cf Foulis 1962⟩ ,📘 [98],
page 117
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✎PROOF:

𝜙0(𝑦) = 0 because 0 ≤ 𝑦 and by Proposition 2.23 page 31
𝜙𝑥(0) ≜ (0 ∨ 𝑥⟂) ∧ 𝑥 by definition of Sasaki projection (Definition 2.22 page 31)

= 𝑥⟂ ∧ 𝑥 by property of bounded lattices (Proposition 1.41 page 12)

= 0 by definition of orthocomplemented (Definition 1.72 page 20)

𝜙1(𝑦) ≜ (𝑦 ∨ 1⟂) ∧ 1 by definition of Sasaki projection (Definition 2.22 page 31)

= (𝑦 ∨ 0) ∧ 1 by boundary condition (Theorem 2.21 page 30)

= 𝑦 ∧ 1 by property of bounded lattices (Proposition 1.41 page 12)

= 1 by property of bounded lattices (Proposition 1.41 page 12)

𝜙𝑥(1) = 𝑥 because 𝑥 ≤ 1 and by Proposition 2.23 page 31
𝜙𝑥(𝑥⟂) ≜ (𝑥⟂ ∨ 𝑥⟂) ∧ 𝑥 by definition of Sasaki projection (Definition 2.22 page 31)

= 𝑥⟂ ∧ 𝑥 by idempotency of lattices (Theorem 1.32 page 10)

= 0 by non-contradiction prop. of orthocomplemented lattice (Definition 1.72 page 20)

✏

Example 2.25 Here are some examples of projections in the 𝑂6 lattice onto the element
𝑥:
𝜙𝑝(𝑞) ≜ (𝑞 ∨ 𝑝⟂) ∧ 𝑝 = 𝑝⟂ ∧ 𝑝 = 0 (because 𝑝 ⟂ 𝑞)
𝜙𝑝(𝑝⟂) ≜ (𝑝⟂ ∨ 𝑝⟂) ∧ 𝑝 = 𝑝⟂ ∧ 𝑝 = 0 (because 𝑝 ⟂ 𝑝⟂)
𝜙𝑝(𝑞⟂) ≜ (𝑞⟂ ∨ 𝑝⟂) ∧ 𝑝 = 1 ∧ 𝑝 = 𝑝 (because 𝑝 ≤ 𝑞⟂)
𝜙𝑞⟂(𝑝) ≜ (𝑝 ∨ 𝑞) ∧ 𝑞⟂ = 1 ∧ 𝑞⟂ = 𝑞⟂ (because 𝑞⟂ ≤ 1)
𝜙𝑝(1) ≜ (1 ∨ 𝑝⟂) ∧ 𝑝 = 1 ∧ 𝑝 = 𝑝 (because 𝑝 ≤ 1)
𝜙𝑝(0) ≜ (0 ∨ 𝑝⟂) ∧ 𝑝 = 𝑝⟂ ∧ 𝑝 = 0 (because 𝑝 ⟂ 0)

1

𝑝⟂𝑞⟂

𝑞𝑝

0

Example 2.26
Let ℝ3 be the 3-dimensional Euclidean space (Ex-
ample 1.75 page 22) with subspaces 𝙕 and 𝙑 . Then
the projection operator 𝑃𝙕 ⟂ onto 𝙕 ⟂ is a sasaki
projection 𝜙𝙕 ⟂ . In particular

𝐏𝙕 ⟂𝙑 ≜ 𝜙𝙕 ⟂(𝙑 )
≜ (𝙑 + 𝙕 ⟂⟂) ∩ 𝙕 ⟂

= (𝙑 + 𝙕 ) ∩ 𝙕 ⟂

as illustrated to the right.

𝙕
𝙕 + 𝙑

𝙑

𝐏𝙕 ⟂ 𝙑

𝙕 ⟂
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logic

fuzzy logic

intuitionalistic logic

de Morgan logic

ortho logic

Boolean logic / classic logic

Figure 6: lattice of logics

2.4 Logics

Definition 2.27 ⁸² Let → be an implication function defined on a lattice with negation
𝙇 ≜ ( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤) (Definition 2.16 page 30).

( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤, →) is a logic if ¬ is a minimal negation.
( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤, →) is a fuzzy logic if ¬ is a fuzzy negation.
( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤, →) is an intuitionalistic logic if ¬ is an intuitionalistic negation.
( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤, →) is a deMorgan logic if ¬ is a de Morgan negation.
( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤, →) is a Kleene logic if ¬ is a Kleene negation.
( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤, →) is an ortho logic if ¬ is an ortho negation.
( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤, →) is a Boolean logic if ¬ is an ortho negation and

𝙇 is Boolean.

For examples and a definition of implication, see 📃 [77], ⟨§3.1⟩.

3 Background: relations on lattices

The relations in this section are typically defined on an orthocomplemented lattice (Defini-
tion 1.72 page 20). Here, some relations are generalized to a lattice with negation (Definition 2.16
page 30). A lattice (Definition 1.31 page 10) with an ortho negation successfully defined on it is an
orthocomplemented lattice (Definition 1.72 page 20). In many cases, these relations only work

⁸² 📃 [159], page 136, ⟨Definition 2.1⟩ , 📃 [162], page 11, ⟨Definition 16⟩ , 📃 [77], ⟨§3.1⟩
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well on an orthocomplemented lattice, and thus many results are restricted to orthocom-
plemented lattices.

3.1 Orthogonality

Proposition 3.1 Let ( 𝑋, ∨, ∧, 0, 1 ; ≤) be an ORTHOCOMPLEMENTED LATTICE (Definition 1.72
page 20).

𝑥 ≤ 𝑦 ⟹ {
𝑥⟂ ∨ 𝑦 = 1 and

𝑥 ∧ 𝑦⟂ = 0 } ∀𝑥,𝑦∈𝑋

✎PROOF:

𝑥 ≤ 𝑦 ⟹ 𝑥 ∨ 𝑥⟂ ≤ 𝑦 ∨ 𝑥⟂ by monotone property of lattices (Proposition 1.34 page 11)

⟹ 1 ≤ 𝑦 ∨ 𝑥⟂ by excluded middle property (Definition 1.72 page 20)

⟹ 𝑥⟂ ∨ 𝑦 = 1 by upper bounded property of bounded lattices (Definition 1.39 page 12)

𝑥 ≤ 𝑦 ⟹ 𝑥 ∧ 𝑦⟂ ≤ 𝑦 ∧ 𝑦⟂ by monotone property of lattices (Proposition 1.34 page 11)

⟹ 𝑥 ∧ 𝑦⟂ ≤ 0 by non-contradiction property (Definition 1.72 page 20)

⟹ 𝑥 ∧ 𝑦⟂ = 0 by lower bounded property of bounded lattices (Definition 1.39 page 12)

✏

Definition 3.2 ⁸³ Let ( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤) be a lattice with negation (Definition 2.16 page 30).
The orthogonality relation ⟂∈ 𝟚𝑋𝑋 is defined as

𝑥 ⟂ 𝑦
def

⟺ 𝑥 ≤ ¬𝑦
If 𝑥 ⟂ 𝑦, we say that 𝑥 is orthogonal to 𝑦.

Lemma 3.3 Let ( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤) be a LATTICE WITH NEGATION (Definition 2.16 page 30).
{ 𝑥 ⟂ 𝑦 (ORTHOGONAL Definition 3.2 page 34) } ⟹ { 𝑦 ⟂ 𝑥 ( SYMMETRIC) }

✎PROOF:

𝑥 ⟂ 𝑦 ⟹ 𝑥 ≤ ¬𝑦 by definition of ⟂ (Definition 3.2 page 34)

⟹ (¬¬𝑦) ≤ ¬𝑥 by antitone property (Definition 1.72 page 20)

⟹ 𝑦 ≤ ¬𝑥 by weak double negation property of negation (Definition 2.13 page 28)

⟹ 𝑦 ⟂ 𝑥 by definition of ⟂ (Definition 3.2 page 34)

✏

⁸³📘 [157], page 12,📘 [112], page 3
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Lemma3.4 ⁸⁴Let ( 𝑋, ∨, ∧, 0, 1 ; ≤) beanORTHOCOMPLEMENTEDLATTICE (Definition 1.72 page 20).

𝑥 ⟂ 𝑦⏟
ORTHOGONAL (Definition 3.2 page 34)

⟹ {
1. 𝑥 ∧ 𝑦 = 0 and
2. 𝑥⟂ ∨ 𝑦⟂ = 1 }

Remark 3.5 In an orthocomplemented lattice 𝙇, the orthogonality relation ⟂ is in general
non-associative. That is,

{
𝑥 ⟂ 𝑦 and
𝑦 ⟂ 𝑧 } /⟹ 𝑥 ⟂ 𝑧

✎PROOF: Consider the 𝙇4
2 Boolean lattice in Example 1.74 (page 21).

⛈ 𝑎⟂ ⟂ 𝑝 because 𝑎⟂ ≤ 𝑝⟂.
⛈ 𝑝 ⟂ 𝑟 because 𝑝 ≤ 𝑟⟂.
⛈ But yet 𝑎⟂ is not orthogonal to 𝑟 because 𝑎⟂ ≰ 𝑟⟂.

✏

Example 3.6 In the 𝑂6 lattice (Definition 1.73 page 20), there are a total of (6
2) = 6!

(6−2)!2! = 6×5
2 = 15

distinct unordered (the ⟂ relation is symmetric by Lemma 3.3 page 34 so the order doesn't
matter) pairs of elements.
Of these 15 pairs, 8 are orthogonal to each other,
and 0 is orthogonal to itself, making a total of 9 or-
thogonal pairs:

𝑥 ⟂ 𝑦 𝑥 ⟂ 0 𝑦⟂ ⟂ 0
𝑥 ⟂ 𝑥⟂ 𝑦 ⟂ 0 1 ⟂ 0
𝑦 ⟂ 𝑦⟂ 𝑥⟂ ⟂ 0 0 ⟂ 0

Example 3.7 In lattice 5 of Example 1.74 (page 21), there are a total of (10
2 ) = 10!

(10−2)!2! =
10×9

2 = 45 distinct unordered pairs of elements.

Of these 45 pairs, 18 are orthogonal to
each other, and 0 is orthogonal to it-
self, making a total of 19 orthogonal
pairs:

𝑝 ⟂ 𝑝⟂ 𝑥 ⟂ 𝑥⟂ 𝑦 ⟂ 𝑧 𝑥⟂ ⟂ 0
𝑝 ⟂ 𝑥⟂ 𝑥 ⟂ 𝑦 𝑦 ⟂ 0 𝑦⟂ ⟂ 0
𝑝 ⟂ 𝑦 𝑥 ⟂ 𝑧 𝑧 ⟂ 𝑧⟂ 𝑧⟂ ⟂ 0
𝑝 ⟂ 𝑧 𝑥 ⟂ 0 𝑧 ⟂ 0 0 ⟂ 0
𝑝 ⟂ 0 𝑦 ⟂ 𝑦⟂ 𝑝⟂ ⟂ 0

Example 3.8 In the ℝ3 Euclidean space illustrated in Example 1.75 (page 22),
𝙓 ⊆ 𝙔 ⟂ ⟹ 𝙓 ⟂ 𝙔 𝙔 ⊆ 𝙓 ⟂ ⟹ 𝙔 ⟂ 𝙓
𝙓 ⊆ 𝙕 ⟂ ⟹ 𝙓 ⟂ 𝙕 𝙔 ⊆ 𝙕 ⟂ ⟹ 𝙔 ⟂ 𝙕
𝙓 ∧ 𝙔 = 𝙓 ∧ 𝙕 = 𝙔 ∧ 𝙕 = 𝟬

⁸⁴📘 [87], page 67,📘 [78], ⟨Lemma 13.2⟩
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3.2 Commutativity

The commutes relation is defined next. Motivation for the name “commutes” is provided
by Proposition 3.14 (page 36) which shows that if 𝑥 commutes with 𝑦 in a lattice 𝙇, then 𝑥
and 𝑦 commute in the Sasaki projection 𝜙𝑥(𝑦) on 𝙇.
Definition 3.9 ⁸⁵ Let 𝙇 ≜ ( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤) be a lattice with negation (Definition 2.16 page 30).
The commutes relation Ⓒ is defined as

𝑥Ⓒ𝑦
def

⟺ 𝑥 = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ¬𝑦) ∀𝑥,𝑦∈𝑋 ,
in which case we say, “𝑥 commuteswith 𝑦 in 𝙇”.
That is, Ⓒ is a relation in 𝟚𝑋𝑋 such that

Ⓒ ≜ {(𝑥, 𝑦) ∈ 𝑋2 |𝑥 = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ¬𝑦)}
Proposition 3.10 ⁸⁶ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be an ORTHOCOMPLEMENTED LATTICE.

𝑥Ⓒ0 and 0Ⓒ𝑥 ∀𝑥∈𝑋 𝑥Ⓒ𝑦 ⟺ 𝑥Ⓒ𝑦⟂ ∀𝑥,𝑦∈𝑋
𝑥Ⓒ1 and 1Ⓒ𝑥 ∀𝑥∈𝑋 𝑥 ≤ 𝑦 ⟹ 𝑥Ⓒ𝑦 ∀𝑥,𝑦∈𝑋
𝑥Ⓒ𝑥 ∀𝑥∈𝑋 𝑥 ⟂ 𝑦 ⟹ 𝑥Ⓒ𝑦 ∀𝑥,𝑦∈𝑋

Definition3.11 Let Ⓒ be the commutes relation (Definition 3.9 page 36) ona latticewithnegation
𝙇 ≜ ( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤) (Definition 2.16 page 30). 𝙇 is symmetric if

𝑥Ⓒ𝑦 ⟹ 𝑦Ⓒ𝑥 ∀𝑥,𝑦∈𝑋

In general, the commutes relation is not symmetric. But Proposition 3.12 (next) describes
some conditions under which it is symmetric.
Proposition3.12 ⁸⁷Let ( 𝑋, ∨, ∧, 0, 1 ; ≤) beanORTHOCOMPLEMENTEDLATTICE (Definition 1.72
page 20).

{𝑥Ⓒ𝑦 ⟹ 𝑦Ⓒ𝑥}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Ⓒ is SYMMETRIC at (𝑥, 𝑦) (1)

⟺ {𝑥 ≤ 𝑦 ⟹ 𝑦 = 𝑥 ∨ (𝑥⟂ ∧ 𝑦)} (ORTHOMODULAR IDENTITY) (2)
⟺ {𝑥 ≤ 𝑦 ⟹ 𝑥 = 𝑦 ∧ (𝑥 ∨ 𝑦⟂)} (𝑥 = 𝜙𝑦(𝑥) (SASAKI PROJECTION) ) (3)
⟺ {𝑦 = (𝑥 ∧ 𝑦) ∨ [𝑦 ∧ (𝑥 ∧ 𝑦)⟂]} (4)
⟺ {𝑥 = (𝑥 ∨ 𝑦) ∧ [𝑥 ∨ (𝑥 ∨ 𝑦)⟂]} (5)

Theorem 3.13 ⁸⁸ Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be an ORTHOCOMPLEMENTED LATTICE (Defini-
tion 1.72 page 20).

{𝑥Ⓒ𝑐 ∀𝑥 ∈ 𝑋} ⟺ {𝙇 is ISOMORPHIC to [0, 𝑐] × [0, 𝑐⟂]}
with isomorphism 𝜃(𝑥) ≜ ([0, 𝑐], [0, 𝑐⟂]).

Proposition 3.14 ⁸⁹ Let ( 𝑋, ∨, ∧, 0, 1 ; ≤) be an ORTHOMODULAR lattice.
⁸⁵📘 [98], page 20,📘 [88], page 79, ⟨A. Commutativity⟩ ,📘 [115], page 227, ⟨Hilfssatz (Lemma)

XII.1.2⟩ , 📃 [152], page 301, ⟨Def.5.2, cf Foulis 1962⟩ , 📃 [15], page 833, ⟨“𝑎 = (𝑎 ∩ 𝑥) ∪ (𝑎 ∩ 𝑥′)”⟩
⁸⁶📘 [87], page 67,📘 [78], ⟨Proposition 13.2⟩
⁸⁷📘 [87], page 68, 📃 [127], page 158,📘 [78], ⟨Proposition 13.3⟩
⁸⁸📘 [98], page 20, 📃 [114]
⁸⁹ 📃 [62], page 66, 📃 [152], ⟨cf Foulis 1962⟩
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1
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𝑥 𝑦 𝑧

0
(A) O6 lattice (B) (C) (D) 𝙇3

2 Boolean lattice

Figure 7: Lattices with centers marked with solid dots (see Example 3.17 page 37)

𝑥Ⓒ𝑦 ⟺ 𝜙𝑥(𝑦) = 𝜙𝑦(𝑥) = 𝑥 ∧ 𝑦 ∀𝑥,𝑦∈𝑋

3.3 Center

An element in an orthocomplemented lattice (Definition 1.72 page 20) is in the center of the lattice
if that element commutes (Definition 3.9 page 36) with every other element in the lattice (next
definition). All the elements of an orthocomplemented lattice are in the center if and only
if that lattice is Boolean (Proposition 1.81 page 24).

Definition 3.15 ⁹⁰ Let Ⓒ be the commutes relation (Definition 3.9 page 36) on a lattice with nega-
tion 𝙇 ≜ ( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤) (Definition 2.16 page 30). The center of 𝙇 is defined as

{𝑥 ∈ 𝑋 |𝑥Ⓒ𝑦 ∀𝑦 ∈ 𝑋 }

Proposition 3.16 Let 𝙇 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) be an ORTHOCOMPLEMENTED LATTICE (Defini-
tion 1.72 page 20). The elements 0 and 1 are in the center of 𝙇.

✎PROOF: This follows directly from Definition 3.9 (page 36) and Proposition 3.10 (page 36). ✏

Example 3.17 The centers of the lattices in Figure 7 (page 37) are illustrated with solid
dots. Note that in the caseof theBoolean lattice in (D), everydot is in the center (Proposition 1.81
page 24).

3.4 D-Posets

Definition 3.18 ⁹¹ Let 1 be the upper bound of an ordered set ( 𝑋, ≤).
An operation⧵ is a difference on ( 𝑋, ≤) if

⁹⁰📘 [88], page 80
⁹¹ 📃 [104], page 22,24, ⟨DEFINITIONS 1,2⟩
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1. 𝑥 ≤ 𝑦 ⟹ 𝑦⧵𝑥 ≤ 𝑦 ∀𝑥,𝑦∈𝑋 and
2. 𝑥 ≤ 𝑦 ⟹ 𝑦⧵(𝑦⧵𝑥) = 𝑥 ∀𝑥,𝑦∈𝑋 and
3. 𝑥 ≤ 𝑦 ≤ 𝑧 ⟹ 𝑧⧵𝑦 ≤ 𝑧⧵𝑥 ∀𝑥,𝑦,𝑧∈𝑋 and
4. 𝑥 ≤ 𝑦 ≤ 𝑧 ⟹ (𝑧⧵𝑥)⧵(𝑧⧵𝑦) = 𝑦⧵𝑥 ∀𝑥,𝑦,𝑧∈𝑋 .

The structure (𝑋, ≤,⧵, 1) is called aD-poset.

Proposition 3.19 ⁹² Let 𝑋 be a SET.

⎧⎪
⎨
⎪⎩

(𝑋, ≤,⧵, 1) is a
D-POSET
(Definition 3.18 page 37)

⎫⎪
⎬
⎪⎭

⟹
⎧
⎪
⎨
⎪
⎩

1. 𝑥 ≤ 𝑦 ≤ 𝑧 ⟹ 𝑦⧵𝑥 ≤ 𝑧⧵𝑥 ∀𝑥,𝑦,𝑧∈𝑋 and
2. 𝑥 ≤ 𝑦 ≤ 𝑧 ⟹ 𝑥 ≤ 𝑧⧵(𝑦⧵𝑥) ∀𝑥,𝑦,𝑧∈𝑋 and
3. 𝑥 ≤ 𝑦 ≤ 𝑧 ⟹ (𝑧⧵𝑥)⧵(𝑦⧵𝑥) = 𝑧⧵𝑦 ∀𝑥,𝑦,𝑧∈𝑋 and
4. 𝑥 ≤ 𝑦 ≤ 𝑧 ⟹ [𝑧⧵(𝑦⧵𝑥)]⧵𝑥 = 𝑧⧵𝑦 ∀𝑥,𝑦,𝑧∈𝑋 .

⎫
⎪
⎬
⎪
⎭

Example 3.20 ⁹³ The structure (ℝ+, −, ≤) is a D-poset where ℝ+ is the set of positive real
numbers, − is the standard subtraction operation on ℝ, and ≤ is the standard ordering
relation on ℝ+ .

Example 3.21 ⁹⁴ The structure (𝟚𝑋 ,⧵, ⊆) is a D-poset where 𝟚𝑋 is the power set of a set 𝑋 ,
⧵ is the set difference operator , and ⊆ is the set inclusion relation.

4 Background: MRA-wavelet analysis

4.1 Transversal Operators

Definition 4.1 ⁹⁵
1. 𝐓 is the translation operator on ℂℂ defined as

𝐓𝜏𝖿(𝑥) ≜ 𝖿(𝑥 − 𝜏) and 𝐓 ≜ 𝐓1 ∀𝖿∈ℂℂ

2. 𝐃 is the dilation operator on ℂℂ defined as
𝐃𝛼𝖿(𝑥) ≜ 𝖿(𝛼𝑥) and 𝐃 ≜ √2𝐃2 ∀𝖿∈ℂℂ

0 1 2−1−2
𝑡

𝐓−1𝖿(𝑥) 𝖿(𝑥) 𝐓𝖿(𝑥)

0 1 2−1−2
𝑡

𝐃𝖿(𝑥)

𝖿(𝑥) 𝐃−1𝖿(𝑥)

⁹² 📃 [104], page 23, ⟨PROPOSITION 1.⟩
⁹³ 📃 [104], page 22, ⟨Example 1⟩
⁹⁴ 📃 [104], page 24, ⟨Example 4⟩
⁹⁵📘 [163], pages 79–80, ⟨Definition 3.39⟩ ,📘 [27], pages 41–42,📘 [168], page 18, ⟨Definitions

2.3,2.4⟩ ,📘 [100], page A-21,📘 [8], page 473,📘 [135], page 260,📘 [11], page ,📘 [83], page 250,
⟨Notation 9.4⟩ ,📘 [25], page 74,📘 [69], page 639,📘 [34], page 81,📘 [33], page 2,📘 [75], page 2
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Proposition 4.2 ⁹⁶ Let 𝐓 be the TRANSLATION OPERATOR (Definition 4.1 page 38).

∑
𝑛∈ℤ

𝐓𝑛𝖿(𝑥) = ∑
𝑛∈ℤ

𝐓𝑛𝖿(𝑥 + 1) ∀𝖿∈ℝℝ
( ∑

𝑛∈ℤ
𝐓𝑛𝖿(𝑥) is PERIODIC with period 1

)

Proposition 4.3 ⁹⁷ Let 𝐓 and 𝐃 be as defined in Definition 4.1 page 38.
𝐓 has an inverse 𝐓−1 in ℂℂ expressed by the relation

𝐓−1𝖿(𝑥) = 𝖿(𝑥 + 1) ∀𝖿∈ℂℂ (translation operator inverse).
𝐃 has an inverse 𝐃−1 in ℂℂ expressed by the relation

𝐃−1𝖿(𝑥) = √2
2 𝖿( 1

2 𝑥) ∀𝖿∈ℂℂ (dilation operator inverse).

Proposition 4.4 ⁹⁸ Let 𝐓 and 𝐃 be as defined in Definition 4.1 page 38. Let 𝐃0 = 𝐓0 ≜ 𝐈 be
the IDENTITY OPERATOR.

𝐃𝑗𝐓𝑛𝖿(𝑥) = 2𝑗/2𝖿(2𝑗𝑥 − 𝑛) ∀𝑗,𝑛∈ℤ, 𝖿∈ℂℂ

Example 4.5 (linear functions) ⁹⁹ Let 𝐓 be the translation operator (Definition 4.1 page 38). Let
ℒ(ℂ, ℂ) be the set of all linear functions in 𝙇𝟤

ℝ .
1. {𝑥, 𝐓𝑥} is a basis for ℒ(ℂ, ℂ) and
2. 𝖿(𝑥) = 𝖿(1)𝑥 − 𝖿(0)𝐓𝑥 ∀𝖿 ∈ ℒ(ℂ, ℂ)

✎PROOF: By left hypothesis, 𝖿 is linear ; so let 𝖿(𝑥) ≜ 𝑎𝑥 + 𝑏

𝖿(1)𝑥 − 𝖿(0)𝐓𝑥 = 𝖿(1)𝑥 − 𝖿(0)(𝑥 − 1) by Definition 4.1 page 38
= (𝑎𝑥 + 𝑏)|𝑥=1 𝑥 − (𝑎𝑥 + 𝑏)|𝑥=0 (𝑥 − 1) by left hypothesis and definition of 𝖿
= (𝑎 + 𝑏)𝑥 − 𝑏(𝑥 − 1)
= 𝑎𝑥 + 𝑏𝑥 − 𝑏𝑥 + 𝑏
= 𝑎𝑥 + 𝑏
= 𝖿(𝑥) by left hypothesis and definition of 𝖿

✏

Example 4.6 (Cardinal Series) Let 𝐓 be the translation operator (Definition 4.1 page 38). The
Paley-Wiener class of functions 𝙋𝙒 2

𝜎 are those functions which are “bandlimited” with re-
spect to their Fourier transform. The cardinal series forms an orthogonal basis for such a
space. The Fourier coefficients for a projection of a function 𝖿 onto the Cardinal series ba-
sis elements is particularly simple—these coefficients are samples of 𝖿(𝑥) taken at regular
intervals. In fact, one could represent the coefficients using inner product notation with

⁹⁶📘 [75], page 3
⁹⁷📘 [75], page 3
⁹⁸📘 [75], page 4
⁹⁹📘 [86], page 2
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the Dirac delta distribution 𝛿 as follows:
⟨𝖿(𝑥) | 𝐓𝑛𝛿(𝑥)⟩ ≜ ∫ℝ

𝖿(𝑥)𝛿(𝑥 − 𝑛) d𝑥 ≜ 𝖿(𝑛)

1. {𝐓𝑛 sin (𝜋𝑥)
𝜋𝑥 |𝑛∈ℕ} is a basis for 𝙋𝙒 2

𝜎 and

2. 𝖿(𝑥) =
∞

∑
𝑛=1

𝖿(𝑛)𝐓𝑛 sin (𝜋𝑥)
𝜋𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Cardinal series

∀𝖿 ∈ 𝙋𝙒 2
𝜎 , 𝜎 ≤ 1

2

Example 4.7 (Fourier Series)
1. {𝐃𝑛𝑒𝑖𝑥|𝑛∈ℤ} is a basis for 𝙇(0, 2𝜋) and

2. 𝖿(𝑥) = 1
√2𝜋 ∑

𝑛∈ℤ
𝛼𝑛𝐃𝑛𝑒𝑖𝑥 ∀𝑥∈(0, 2𝜋), 𝖿∈𝙇(0, 2𝜋) where

3. 𝛼𝑛 ≜ 1
√2𝜋 ∫

2𝜋

0
𝖿(𝑥)𝐃𝑛𝑒−𝑖𝑥 d𝑥 ∀𝖿∈𝙇(0, 2𝜋)

Example 4.8 (Fourier Transform)
1. {𝐃𝜔𝑒𝑖𝑥 |𝜔∈ℝ } is a basis for 𝙇𝟤

ℝ and

2. 𝖿(𝑥) = 1
√2𝜋 ∫ℝ

̃𝖿 (𝜔)𝐃𝑥𝑒𝑖𝜔 d𝜔 ∀𝖿∈𝙇𝟤
ℝ where

3. ̃𝖿 (𝜔) ≜ 1
√2𝜋 ∫ℝ

𝖿(𝑥)𝐃𝜔𝑒−𝑖𝑥 d𝑥 ∀𝖿∈𝙇𝟤
ℝ

Example 4.9 (Gabor Transform) ¹⁰⁰
1. {(𝐓𝜏𝑒−𝜋𝑥2

)(𝐃𝜔𝑒𝑖𝑥)|𝜏,𝜔∈ℝ} is a basis for 𝙇𝟤
ℝ and

2. 𝖿(𝑥) = ∫ℝ
𝖦 (𝜏, 𝜔) 𝐃𝑥𝑒𝑖𝜔 d𝜔 ∀𝑥∈ℝ, 𝖿∈𝙇𝟤

ℝ where

3. 𝖦 (𝜏, 𝜔) ≜ ∫ℝ
𝖿(𝑥)(𝐓𝜏𝑒−𝜋𝑥2

)(𝐃𝜔𝑒−𝑖𝑥) d𝑥 ∀𝑥∈ℝ, 𝖿∈𝙇𝟤
ℝ

Example 4.10 (wavelets) Let 𝜓(𝑥) be a mother wavelet .
1. {𝐃𝑘𝐓𝑛𝜓(𝑥)|𝑘,𝑛∈ℤ} is a basis for 𝙇𝟤

ℝ and

2. 𝖿(𝑥) = ∑
𝑘∈ℤ

∑
𝑛∈ℤ

𝛼𝑘,𝑛𝐃𝑘𝐓𝑛𝜓(𝑥) ∀𝖿∈𝙇𝟤
ℝ where

3. 𝛼𝑛 ≜ ∫ℝ
𝖿(𝑥)𝐃𝑘𝐓𝑛𝜓∗(𝑥) d𝑥 ∀𝖿∈𝙇𝟤

ℝ

¹⁰⁰📘 [143], ⟨Chapter 3⟩
📘 [61], page 32, ⟨Definition 1.69⟩
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4.2 The Structure of Wavelets

In Fourier analysis, continuous dilations (Definition 4.1 page 38) of the complex exponential form
a basis for the space of square integrable functions 𝙇𝟤

ℝ such that
𝙇𝟤

ℝ = 𝗌𝗉𝖺𝗇{𝐃𝜔𝑒𝑖𝑥 |𝜔∈ℝ }.

In Fourier series analysis , discrete dilations of the complex exponential form a basis for
𝙇𝟤

ℝ(0, 2𝜋) such that
𝙇𝟤

ℝ(0, 2𝜋) = 𝗌𝗉𝖺𝗇{𝐃𝑗𝑒𝑖𝑥|𝑗∈ℤ}.

In Wavelet analysis, for some mother wavelet (Definition 4.18 page 47) 𝜓(𝑥),
𝙇𝟤

ℝ = 𝗌𝗉𝖺𝗇{𝐃𝜔𝐓𝜏𝜓(𝑥) |𝜔, 𝜏 ∈ ℝ}.

However, the ranges of parameters 𝜔 and 𝜏 can be much reduced to the countable set ℤ
resulting in a dyadic wavelet basis such that for some mother wavelet 𝜓(𝑥),

𝙇𝟤
ℝ = 𝗌𝗉𝖺𝗇{𝐃𝑗𝐓𝑛𝜓(𝑥) |𝑗, 𝑛 ∈ ℤ}.

Wavelets that are bothdyadic and compactly supported have the attractive feature that they
can be easily implemented in hardware or software by use of the Fast Wavelet Transform
(Figure 10 page 49).

In 1989, StéphaneG.Mallat introduced theMultiresolutionAnalysis (MRA, Definition 4.12 page 43)
method for wavelet construction. The MRA has since become the dominate wavelet con-
struction method. Moreover, P.G. Lemarié has proved that all wavelets with compact sup-
port are generated by an MRA.¹⁰¹

The MRA is an analysis of the linear space 𝙇𝟤
ℝ . An analysis of a linear space 𝙓 is any se-

quence ⦅𝙑𝑗⦆𝑗∈ℤ of linear subspaces of 𝙓 . The partial or complete reconstruction of 𝙓
from ⦅𝙑𝑗⦆𝑗∈ℤ is a synthesis.¹⁰² Some analyses are completely characterized by a trans-
form. For example, a Fourier analysis is a sequence of subspaces with sinusoidal bases.
Examples of subspaces in a Fourier analysis include 𝙑1 = 𝗌𝗉𝖺𝗇{𝑒𝑖𝑥}, 𝙑2.3 = 𝗌𝗉𝖺𝗇{𝑒𝑖2.3𝑥}, 𝙑√2 =
𝗌𝗉𝖺𝗇{𝑒𝑖√2𝑥

}, etc. A transform is loosely defined as a function that maps a family of func-
tions into an analysis. A very useful transform (a “Fourier transform”) for Fourier Analysis
is

[�̃�𝖿](𝜔) ≜ 1
√2𝜋 ∫ℝ

𝖿(𝑥)𝑒−𝑖𝜔𝑥 d𝑥

¹⁰¹ 📃 [109],📘 [119], page 240
¹⁰²The word analysis comes from the Greek word ἀvάλυσις, meaning “dissolution” (📘 [140],

page 23, ⟨entry 359⟩), which in turn means “the resolution or separation into component parts”
(📘 [21], http://dictionary.reference.com/browse/dissolution)
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Cosine analysis (even Fourier series) Cosine polynomial analysis
𝙓 = 𝗌𝗉𝖺𝗇{cos(2𝜋𝑛𝑥) |𝑛 = 0, 1, 2, 3 }

𝟬scaling subspace

𝙓 = 𝗌𝗉𝖺𝗇{cos𝑛(2𝜋𝑥) |𝑛 = 0, 1, 2, 3 }

scaling subspace 𝟬

Chebyshev polynomial analysis Hadamard-3 analysis
𝙓 = 𝗌𝗉𝖺𝗇{𝑇 𝑛(𝑥) |𝑛 = 0, 1, 2, 3 }

scaling subspace 𝟬

𝙓 = 𝗌𝗉𝖺𝗇𝐻3

𝟬scaling subspace

Figure 8: Examples of order structures for selected analyses (Example 4.11 page 42)

An analysis can be partially characterized by its or-
der structure with respect to an order relation such
as the set inclusion relation ⊆. Most transformshave
a very simple M-𝑛 order structure, as illustrated to
the right.¹⁰³Ṫhe M-𝑛 lattices for 𝑛 ≥ 3 are modu-
lar (Lemma 1.56 page 16) but not distributive (Theorem 1.57
page 16). Analyses typically have one subspace that is
a scaling subspace; and this subspace is often sim-
ply a family of constants (as is the case with Fourier
Analysis).

⋯

𝙓

𝙑0 𝙑1 𝙑2 𝙑𝑛−1

𝟬

subspaces
scaling subspace

An analysis can be represented using three different structures:
➀ sequence of subspaces
➁ sequence of basis vectors
➂ sequence of basis coefficients

These structures are isomorphic to each other, and can therefore be used interchangeably.

Example 4.11 ¹⁰⁴ Some examples of the order structures of some analyses are illustrated
in Figure 8 (page 42).

¹⁰³📘 [75], page 29, ⟨§2.2⟩
¹⁰⁴📘 [75], pages 30–31
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4.3 Multiresolution analysis

Amultiresolution analysis provides “coarse” approximations of a function in a linear space
𝙇𝟤

ℝ at multiple “scales” or “resolutions”. Key to this process is a sequence of scaling func-
tions. Most traditional transforms feature a single scaling function 𝜙(𝑥) set equal to one
(𝜙(𝑥) = 1). This allows for convenient representation of the most basic functions, such as
constants.¹⁰⁵ A multiresolution system, on the other hand, uses a generalized form of the
scaling concept:¹⁰⁶
(1) Instead of the scaling function simply being set equal to unity (𝜙(𝑥) = 1), a multires-

olution analysis (Definition 4.12 page 43) is often constructed in such a way that the scaling
function 𝜙(𝑥) forms a partition of unity such that ∑𝑛∈ℤ 𝐓𝑛𝜙(𝑥) = 1.

(2) Instead of there being just one scaling function, there is an entire sequence of scaling
functions ⦅𝐃𝑗𝜙(𝑥)⦆𝑗∈ℤ , each corresponding to a different “resolution”.

Definition 4.12 ¹⁰⁷ Let ⦅𝙑𝑗⦆𝑗∈ℤ be a sequence of subspaces on 𝙇𝟤
ℝ . Let 𝐴− be the closure

of a set 𝐴. The sequence ⦅𝙑𝑗⦆𝑗∈ℤ is amultiresolution analysis on 𝙇𝟤
ℝ if

1. 𝙑𝑗 = 𝙑𝑗
− ∀𝑗∈ℤ (closed) and

2. 𝙑𝑗 ⊂ 𝙑𝑗+1 ∀𝑗∈ℤ (linearly ordered) and

3.
(⋃

𝑗∈ℤ
𝙑𝑗)

−

= 𝙇𝟤
ℝ (dense in 𝙇𝟤

ℝ) and

4. 𝖿 ∈ 𝙑𝑗 ⟺ 𝐃𝖿 ∈ 𝙑𝑗+1 ∀𝑗∈ℤ, 𝖿∈𝙇𝟤
ℝ (self-similar) and

5. ∃𝜙 such that {𝐓𝑛𝜙|𝑛∈ℤ} is a Riesz basis for 𝙑0.
A multiresolution analysis is also called an MRA. An element 𝙑𝑗 of ⦅𝙑𝑗⦆𝑗∈ℤ is a scaling
subspace of the space 𝙇𝟤

ℝ . The pair (𝙇𝟤
ℝ, ⦅𝙑𝑗⦆) is a multiresolution analysis space, or

MRA space. The function 𝜙 is the scaling function of the MRA space.

The traditional definition of the MRA also includes the following:
6. 𝖿 ∈ 𝙑𝑗 ⟺ 𝐓𝑛𝖿 ∈ 𝙑𝑗 ∀𝑛,𝑗∈ℤ, 𝖿∈𝙇𝟤

ℝ (translation invariant)
7. ⋂

𝑗∈ℤ
𝙑𝑗 = {𝟘} (greatest lower bound is 𝟬)

However, these follow from the MRA as defined in Definition 4.12 (Proposition 4.13 page 44, Propo-
sition 4.14 page 44).

¹⁰⁵📃 [95], page 8
¹⁰⁶ The concept of a scaling space was perhaps first introduced by Taizo Iijima in 1959 in Japan,

and later as the Gaussian Pyramid by Burt and Adelson in the 1980s in the West. 📘 [118], page 70,
📘 [92],📘 [24],📘 [4],📘 [111],📘 [6],📘 [80],📘 [166], ⟨historical survey⟩

¹⁰⁷📘 [85], page 44, 📘 [119], page 221, ⟨Definition 7.1⟩ , 📘 [118], page 70, 📘 [122], page 21,
⟨Definition 2.2.1⟩ ,📘 [27], page 284, ⟨Definition 13.1.1⟩ ,📘 [8], pages 451–452, ⟨Definition 7.7.6⟩ ,
📘 [163], pages 300–301, ⟨Definition 10.16⟩ ,📘 [35], pages 129–140, ⟨Riesz basis: page 139⟩
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Proposition 4.13 ¹⁰⁸ Let MRA be defined as in Definition 4.12 page 43.

{⦅𝙑𝑗⦆𝑗∈ℤ is an MRA} ⟹ { 𝖿 ∈ 𝙑𝑗 ⟺ 𝐓𝑛𝖿 ∈ 𝙑𝑗 ∀𝑛,𝑗∈ℤ, 𝖿∈𝙇𝟤
ℝ }⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

TRANSLATION INVARIANT

Proposition 4.14 ¹⁰⁹ Let MRA be defined as in Definition 4.12 page 43.

{⦅𝙑𝑗⦆𝑗∈ℤ is an MRA} ⟹ { ⋂
𝑗∈ℤ

𝙑𝑗 = {𝟘} (GREATEST LOWER BOUND is 𝟬)
}

The MRA (Definition 4.12 page 43) is more than just an interesting mathematical toy. Under some
very “reasonable” conditions (next proposition), as 𝑗 → ∞, the scaling subspace 𝙑𝑗 isdense
in 𝙇𝟤

ℝ …meaning that with the MRA we can represent any “reasonable” function to within
an arbitrary accuracy.

Proposition 4.15 ¹¹⁰

⎧⎪
⎨
⎪⎩

(1). ⦅𝐓𝑛𝜙⦆ is a RIESZ SEQUENCE and
(2). ̃𝜙(𝜔) is CONTINUOUS at 0 and
(3). ̃𝜙(0) ≠ 0

⎫⎪
⎬
⎪⎭

⟹
{ (⋃

𝑗∈ℤ
𝙑𝑗)

−

= 𝙇𝟤
ℝ (DENSE in 𝙇𝟤

ℝ)
}

A multiresolution analysis (Definition 4.12 page 43) together
with the set inclusion relation ⊆ form the linearly ordered
set (Definition 1.4 page 4) (⦅𝙑𝑗⦆ , ⊆), illustrated to the right by a
Hasse diagram (Definition 1.6 page 4). Subspaces 𝙑𝑗 increase in
“size” with increasing 𝑗 . That is, they contain more and
morevectors (functions) for larger and larger 𝑗—with the
upper limit of this sequence being 𝙇𝟤

ℝ . Alternatively, we
can say that approximation within a subspace 𝙑𝑗 yields
greater “resolution” for increasing 𝑗 .¹¹¹

⋮

⋮

𝙇𝟤
ℝ

𝙑2

𝙑1

𝙑0

𝙑−1

𝟬

entire linear space

larger subspaces
smaller subspaces

smallest subspace

Remark4.16 ¹¹²Note that the greatest lowerbound (g.l.b.) of the linearlyordered set (⦅𝙑𝑗⦆ , ⊆)
is 𝟬 (Proposition 4.14 page 44): All linear subspaces contain the zero vector. So the intersection of
any two subspaces must at least contain 𝟘. If the intersection of any two linear subspaces
𝙓 and 𝙔 is exactly {𝟘}, then for any vector in the sum of those subspaces (𝒖 ∈ 𝙓 ⨣ 𝙔 )
there are unique vectors 𝖿 ∈ 𝙓 and 𝗀 ∈ 𝙔 such that 𝒖 = 𝖿 + 𝗀. This is not necessarily true
if the intersection contains more than just {𝟘} .

¹⁰⁸📘 [85], page 45, ⟨Theorem 1.6⟩ ,📘 [75], pages 32–33, ⟨Proposition 2.1⟩
¹⁰⁹ 📘 [168], pages 19–28, ⟨Proposition 2.14⟩ , 📘 [85], page 45, ⟨Theorem 1.6⟩ , 📘 [141],

pages 313–314, ⟨Lemma 6.4.28⟩ ,📘 [75], pages 33–35, ⟨Proposition 2.2⟩
¹¹⁰📘 [168], pages 28–31, ⟨Proposition 2.15⟩ ,📘 [75], pages 35–37, ⟨Proposition 2.3⟩
¹¹¹📘 [123], page 83, ⟨Theorem 3.2.12⟩ , 📘 [106], page 67, ⟨Theorem 2.14⟩ ,📘 [76], ⟨Theorem

7.1⟩
¹¹²📘 [75], page 38, ⟨§2.3.2 Order structure⟩

Monday 13th October, 2014 ⛈ MRA-Wavelet subspace architecture for logic, probability, and symbolic sequence processing ⛈ version 0.65

http://books.google.com/books?vid=ISBN0849382742&pg=PA45
http://books.google.com/books?vid=ISBN0983801134&pg=PA32
http://books.google.com/books?vid=ISBN0521578949&pg=PA19
http://books.google.com/books?vid=ISBN0849382742&pg=PA45
http://books.google.com/books?vid=ISBN0534376606&pg=PA313
http://books.google.com/books?vid=ISBN0983801134&pg=PA33
http://books.google.com/books?vid=ISBN0521578949&pg=PA28
http://books.google.com/books?vid=ISBN0983801134&pg=PA35
http://books.google.com/books?vid=ISBN048667598X&pg=PA83
http://books.google.com/books?vid=ISBN0817641742&pg=PA67
http://books.google.com/books?vid=ISBN0983801126
http://books.google.com/books?vid=ISBN0983801126
http://books.google.com/books?vid=ISBN0983801134&pg=PA38


4 BACKGROUND: MRA-WAVELET ANALYSIS Daniel J. Greenhoe page 45

subspace transform approximation

𝙑0

1 2 3−1−2−3

2
𝜋

−2
𝜋

𝑛
1 2 3−1−2−3

2
𝜋

−2
𝜋

𝑥

𝙑1

√2
𝜋

−√2
𝜋

𝑛
√2
𝜋

−√2
𝜋

𝑥

𝙑2

𝑛

Figure 9: Example approximations of sin(𝜋𝑥) in 3 Haar scaling subspaces (see Example 4.17 page 45)

Example 4.17
In the Haar MRA, the scaling function 𝜙(𝑥) is the pulse function

𝜙(𝑥) = {
1 for 𝑥 ∈ [0, 1)
0 otherwise.

0 1 20−1

1

In the subspace 𝙑𝑗 (𝑗 ∈ ℤ) the scaling functions are

𝐃𝑗𝜙(𝑥) = {
(2)𝑗/2 for 𝑥 ∈ [0, (2−𝑗))
0 otherwise.

2−𝑗

2𝑗/2

The scaling subspace 𝙑0 is the span 𝙑0 ≜ 𝗌𝗉𝖺𝗇{𝐓𝑛𝜙|𝑛∈ℤ}. The scaling subspace 𝙑𝑗 is the
span 𝙑𝑗 ≜ 𝗌𝗉𝖺𝗇{𝐃𝑗𝐓𝑛𝜙 |𝑛 ∈ ℤ}. Note that ‖𝐃𝑗𝐓𝑛𝜙‖ for each resolution 𝑗 and shift 𝑛 is unity:

‖𝐃𝑗𝐓𝑛𝜙‖2 = ‖𝜙‖2

= ∫
1

0
|1|2 d𝑥 by definition of ‖⋅‖ on 𝙇𝟤

ℝ

= 1
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Let 𝖿(𝑥) = sin(𝜋𝑥). Suppose we want to project 𝖿(𝑥)
onto the subspaces 𝙑0 , 𝙑1 , 𝙑2 , ….

1

−1
1 2 3−1−2−3

The values of the transform coefficients for the
subspace 𝙑𝑗 are given by 1 2 3−1−2−3

2
𝜋

−2
𝜋

𝑛

[𝐑𝑗𝖿(𝑥)](𝑛) = 1
‖𝐃𝑗𝐓𝑛𝜙‖2 ⟨𝖿(𝑥) | 𝐃𝑗𝐓𝑛𝜙⟩

= 1

���* 1
‖𝜙‖2

⟨𝖿(𝑥) | 2𝑗/2𝜙(2𝑗𝑥 − 𝑛)⟩ by Proposition 4.4 page 39

= 2𝑗/2 ⟨𝖿(𝑥) | 𝜙(2𝑗𝑥 − 𝑛)⟩

= 2𝑗/2
∫

2−𝑗 (𝑛+1)

2−𝑗𝑛
𝖿(𝑥) d𝑥

= 2𝑗/2
∫

2−𝑗 (𝑛+1)

2−𝑗𝑛
sin(𝜋𝑥) d𝑥

= 2𝑗/2
(− 1

𝜋 ) cos (𝜋𝑥)|
2−𝑗 (𝑛+1)

2−𝑗𝑛

= 2𝑗/2

𝜋 [cos (2−𝑗𝑛𝜋) − cos (2−𝑗(𝑛 + 1)𝜋)]

And the projection 𝐀𝑛𝖿(𝑥) of the function 𝖿(𝑥) onto the subspace 𝙑𝑗 is

𝐀𝑗𝖿(𝑥) = ∑
𝑛∈ℤ

⟨𝖿(𝑥) | 𝐃𝑗𝐓𝑛𝜙⟩ 𝐃𝑗𝐓𝑛𝜙

= 2𝑗/2

𝜋 ∑
𝑛∈ℤ

[cos (2−𝑗𝑛𝜋) − cos (2−𝑗(𝑛 + 1)𝜋)]2𝑗/2𝜙(2𝑗𝑥 − 𝑛)

= 2𝑗

𝜋 ∑
𝑛∈ℤ

[cos (2−𝑗𝑛𝜋) − cos (2−𝑗(𝑛 + 1)𝜋)]𝜙(2𝑗𝑥 − 𝑛)

The transforms into the subspaces 𝙑0 , 𝙑1 , and 𝙑2 , as well as the approximations in those
subspaces are as illustrated in Figure 9 (page 45).
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4.4 Wavelet analysis

The term “wavelet” comes from the French word “ondelette”, meaning “small wave”. And
in essence, wavelets are “small waves” (as opposed to the “long waves” of Fourier analysis)
that form a basis for the Hilbert space 𝙇𝟤

ℝ .¹¹³

Definition 4.18 ¹¹⁴ Let 𝐓 and 𝐃 be as defined in Definition 4.1 page 38. A function 𝜓(𝑥)
in 𝙇𝟤

ℝ is awavelet function for 𝙇𝟤
ℝ if

{𝐃𝑗𝐓𝑛𝜓 |𝑗,𝑛∈ℤ } is a Riesz basis for 𝙇𝟤
ℝ .

In this case, 𝜓 is also called themotherwavelet of the basis {𝐃𝑗𝐓𝑛𝜓 |𝑗,𝑛∈ℤ }. The sequence
of subspaces ⦅𝙒𝑗⦆𝑗∈ℤ is the wavelet analysis induced by 𝜓 , where each subspace 𝙒𝑗 is
defined as

𝙒𝑗 ≜ 𝗌𝗉𝖺𝗇{𝐃𝑗𝐓𝑛𝜓|𝑛∈ℤ} .

A wavelet analysis ⦅𝙒𝑗⦆ is often constructed from a multiresolution anaysis (Definition 4.12

page 43) ⦅𝙑𝑗⦆ under the relationship
𝙑𝑗+1 = 𝙑𝑗 ⨣ 𝙒𝑗 , where ⨣ is subspace addition (Minkowski addition).

By this relationship alone, ⦅𝙒𝑗⦆ is in no way uniquely defined in terms of a multiresolu-
tion analysis ⦅𝙑𝑗⦆. In general there are many possible complements of a subspace 𝙑𝑗 . To
uniquely define such a wavelet subspace, one or more additional constraints are required.
One of the most common additional constraints is orthogonality, such that 𝙑𝑗 and 𝙒𝑗 are
orthogonal to each other.

Definition 4.19 Let (𝙇𝟤
ℝ, ⦅𝙑𝑗⦆ , 𝜙, ⦅ℎ𝑛⦆) be a multiresolution system (Definition 4.12 page 43)

and ⦅𝙒𝑗⦆𝑗∈ℤ a wavelet analysis (Definition 4.18 page 47) with respect to ⦅𝙑𝑗⦆𝑗∈ℤ . Let ⦅𝑔𝑛⦆𝑛∈ℤ
be a sequence of coefficients such that 𝜓 = ∑𝑛∈ℤ 𝑔𝑛𝐃𝐓𝑛𝜙.

Awavelet system is the tuple
(𝙇𝟤

ℝ, ⦅𝙑𝑗⦆ , ⦅𝙒𝑗⦆ , 𝜙, 𝜓, ⦅ℎ𝑛⦆ , ⦅𝑔𝑛⦆)
and the sequence ⦅𝑔𝑛⦆𝑛∈ℤ is thewavelet coefficient sequence.

Theorem4.20 ¹¹⁵Let (𝙇𝟤
ℝ, ⦅𝙑𝑗⦆ , ⦅𝙒𝑗⦆ , 𝜙, 𝜓, ⦅ℎ𝑛⦆ , ⦅𝑔𝑛⦆) beaWAVELETSYSTEM (Definition 4.19

page 47). Let 𝙑1 ⨣ 𝙑2 represent MINKOWSKI ADDITION of two subspaces 𝙑1 and 𝙑2 of a Hilbert
space 𝙃 .

𝙇𝟤
ℝ = lim

𝑗→∞
𝙑𝑗 (𝙇𝟤

ℝ is equivalent to one very large scaling subspace)

= 𝙑𝑗 ⨣ 𝙒𝑗 ⨣ 𝙒𝑗+1 ⨣ 𝙒𝑗+2 ⨣ ⋯ (
𝙇𝟤

ℝ is equivalent to one scaling space
and a sequence of wavelet subspaces )

= ⋯ ⨣ 𝙒−2 ⨣ 𝙒−1 ⨣ 𝙒0 ⨣ 𝙒1 ⨣ 𝙒2 ⨣ ⋯ (𝙇𝟤
ℝ is equivalent to a sequence of wavelet subspaces)

¹¹³📘 [158], page ix,📘 [7], page 191
¹¹⁴📘 [168], page 17, ⟨Definition 2.1⟩ ,📘 [75], page 50, ⟨Definition 2.4⟩
¹¹⁵📘 [75], page 53, ⟨Theorem 2.8⟩
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✎PROOF:

(1) Proof for (1):

𝙇𝟤
ℝ = lim

𝑗→∞
𝙑𝑗 by Definition 4.12 page 43

(2) Proof for (2):

𝙑𝑗 ⨣ 𝙒𝑗⏟⏟⏟
𝙑𝑗+1

⨣ 𝙒𝑗+1 ⨣ 𝙒𝑗+2 ⨣ ⋯ = 𝙑𝑗+1 ⨣ 𝙒𝑗+1⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝙑𝑗+2

⨣ 𝙒𝑗+2 ⨣ 𝙒𝑗+3 ⨣ ⋯

= 𝙑𝑗+2 ⨣ 𝙒𝑗+2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝙑𝑗+3

⨣ 𝙒𝑗+3 ⨣ 𝙒𝑗+4 ⨣ ⋯

= 𝙑𝑗+3 ⨣ 𝙒𝑗+3⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝙑𝑗+4

⨣ 𝙒𝑗+4 ⨣ 𝙒𝑗+5 ⨣ ⋯

= 𝙑𝑗+5 ⨣ 𝙒𝑗+5⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝙑𝑗+5

⨣ 𝙒𝑗+6 ⨣ 𝙒𝑗+6 ⨣ ⋯

= lim
𝑗→∞

𝙑𝑗+5 ⨣ 𝙒𝑗+5 ⨣ 𝙒𝑗+6 ⨣ 𝙒𝑗+6 ⨣ ⋯

= 𝙇𝟤
ℝ

(3) Proof for (3):

𝙇𝟤
ℝ = 𝙑0⏟

𝙑−1 ⨣ 𝙒−1

⨣ 𝙒0 ⨣ 𝙒1 ⨣ 𝙒2 ⨣ 𝙒3 ⨣ ⋯ by (2)

= 𝙑−1⏟
𝙑−2 ⨣ 𝙒−2

𝙒−1 ⨣ 𝙒0 ⨣ 𝙒1 ⨣ 𝙒2 ⨣ 𝙒3 ⨣ ⋯

= 𝙑−2⏟
𝙑−3 ⨣ 𝙒−3

𝙒−2 ⨣ 𝙒−1 ⨣ 𝙒0 ⨣ 𝙒1 ⨣ 𝙒2 ⨣ 𝙒3 ⨣ ⋯

= 𝙑−3⏟
𝙑−4 ⨣ 𝙒−4

𝙒−3 ⨣ 𝙒−2 ⨣ 𝙒−1 ⨣ 𝙒0 ⨣ 𝙒1 ⨣ 𝙒2 ⨣ 𝙒3 ⨣ ⋯

⋮
= ⋯ ⨣ 𝙒−3 ⨣ 𝙒−2 ⨣ 𝙒−1 ⨣ 𝙒0 ⨣ 𝙒1 ⨣ 𝙒2 ⨣ 𝙒3 ⨣ ⋯

✏

Remark 4.21 In the special case that two subspaces 𝙒1 and 𝙒2 are orthogonal to each
other, then the subspace addition operation 𝙒1 ⨣ 𝙒2 is frequently expressed as 𝙒1 ⊕ 𝙒2 .
In the case of an orthonormal wavelet system, the expressions in Theorem 4.20 (page 47)
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could be expressed as
𝙇𝟤

ℝ = lim
𝑗→∞

𝙑𝑗

= 𝙑𝑗 ⊕ 𝙒𝑗 ⊕ 𝙒𝑗+1 ⊕ 𝙒𝑗+2 ⊕ ⋯
= ⋯ ⊕ 𝙒−2 ⊕ 𝙒−1 ⊕ 𝙒0 ⊕ 𝙒1 ⊕ 𝙒2 ⊕ ⋯ .

.

4.5 Fast Wavelet Transform (FWT)

Filter banks canbeused to implement a “FastWavelet Transform” (FWT ). This is illustrated
in Figure 10 page 49.¹¹⁶

𝑣𝑗(𝑛) = ⟨ 𝑓(𝑥) | 𝜙𝑗,𝑛(𝑥)⟩

? ?

�̄�(𝑛) �̄�(𝑛)

? ?
↓ 2 ↓ 2

?

-𝑣𝑘−1(𝑛) = ⟨ 𝖿(𝑥) | 𝜙𝑘−1,𝑛(𝑥)⟩ 𝑤𝑘−1(𝑛) = ⟨ 𝖿(𝑥) | 𝜓𝑘−1,𝑛(𝑥)⟩
?

�̄�(𝑛) �̄�(𝑛)

? ?
↓ 2 ↓ 2

?

-𝑣𝑘−2(𝑛) = ⟨ 𝖿(𝑥) | 𝜙𝑘−2,𝑛(𝑥)⟩ 𝑤𝑘−2(𝑛) = ⟨ 𝖿(𝑥) | 𝜓𝑘−2,𝑛(𝑥)⟩
?

⋮ ⋮

?

𝑣1(𝑛) = ⟨ 𝖿(𝑥) | 𝜙1,𝑛(𝑥)⟩ 𝑤1(𝑛) = ⟨ 𝖿(𝑥) | 𝜓1,𝑛(𝑥)⟩
?

�̄�(𝑛) �̄�(𝑛)

? ?
↓ 2 ↓ 2

? -𝑣0(𝑛) = ⟨ 𝖿(𝑥) | 𝜙(𝑥 − 𝑛)⟩ 𝑤0(𝑛) = ⟨ 𝖿(𝑥) | 𝜓(𝑥 − 𝑛)⟩

Figure 10: 𝑘-Stage Fast Wavelet Transform (FWT)

¹¹⁶📘 [119], page 257, ⟨Figure 7.12⟩ ,📘 [75], pages 371–372, ⟨Figure L.1⟩
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𝑦𝘕 = 𝑦𝘕 −1 ∨ 𝑥𝘕 −1

𝑦3 = 𝑦2 ∨ 𝑥2

𝑦2 = 𝑦1 ∨ 𝑥1

𝑦1 = 𝑦0 ∨ 𝑥0

𝑦0 𝑥0 𝑥1 𝑥2 𝑥𝘕 −1

0

atoms

2310
210

30
6

2 3 5 7 11

1

prime numbers

pri
mori

al n
um

be
rs

(A) general p-lattice (B) p-lattice of primorial and prime numbers

ℤ = 𝑦3 ∪ 𝑦4

𝑦3 ≜ 𝑦2 ∪ (3 + 5ℤ)
𝑦2 ≜ 𝑦1 ∪ (2 + 5ℤ)

𝑦1 ≜ (0 + 5ℤ) ∪ (1 + 5ℤ)

0 + 5ℤ
1 + 5ℤ

2 + 5ℤ
3 + 5ℤ

4 + 5ℤ
∅

cosets/partition of ℤ

𝙇𝟤
ℝ

𝙑2

𝙑1

𝙑0 𝙒0 𝙒1

𝟬

⋯

⋯
wavelet subspacessca

lin
g s

ub
spa

ces

(C) p-lattice of cosets (D) p-lattice of MRA and wavelet subspaces

Figure 11: Some selected primorial lattices (see Example 5.2 page 50–Example 5.5 page 51)

5 Main Results

5.1 Primorial Lattices

Definition 5.1 Let 𝑋 ≜ {0, 𝑥0, 𝑥1, … , 𝑥𝘕 , 𝑦0, 𝑦1, … , 𝑦𝘕 } be a set.
A lattice 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) is primorial if

1. 0 is the least element of 𝙇 and
2. 𝙇 is atomic (Definition 1.44 page 13) and {𝑦0, 𝑥0, 𝑥1, … , 𝑥𝘕 } are atoms of 𝙇 and
3. 𝑦𝑛+1 = 𝑦𝑛 ∨ 𝑥𝑛 .

A lattice that is primorial is a primorial lattice, or simply a p-lattice.

Example 5.2 A general primorial lattice is illustrated to in Figure 11 page 50 (A).

Example 5.3 ¹¹⁷ The set of primorial numbers and prime numbers ordered by the divides
(“|”) relation forms a primorial lattice, as illustrated in Figure 11 page 50 (B).

¹¹⁷📘 [75], page 30,💻 [2] ⟨http://oeis.org/A002110⟩
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Haar/Daubechies-𝑝1wavelet analysis Daubechies-𝑝2wavelet analysis

scaling
subspaces

𝟬

scaling
subspaces

𝟬

Figure 12: some MRA-wavelet systems

Example 5.4 Any partition, along with successive unions of the partition elements, gen-
erates a primorial lattice. One example of this is the cosets of ℤ, which generate a finite
primorial lattice, as illustrated in Figure 11 page 50 (C).

Example 5.5 A special characteristic of MRA-wavelet analysis is that it's order structure
with respect to the ⊆ relation is not a simple M𝑛 lattice (as is with the case of Fourier and
several other analyses). Rather, it is a primorial lattice as illustrated in Figure 11 page 50 (D)
and in Figure 12 page 51.

Proposition 5.6 ¹¹⁸ Let 𝙇 ≜ ( 𝑋, ∨, ∧ ; ≤) be a LATTICE.

{
𝙇 is
primorial } ⟹

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

1. 𝙇 is NONDISTRIBUTIVE (Definition 1.53 page 15) and
2. 𝙇 is NONMODULAR (Definition 1.47 page 14) and
3. 𝙇 is COMPLEMENTED ⟺ 𝙇 is FINITE (Definition 1.63 page 17) and
4. 𝙇 is NOT UNIQUELY COMPLEMENTED (Definition 1.63 page 17) and
5. 𝙇 is NONORTHOCOMPLEMENTED (Definition 1.72 page 20) and
6. 𝙇 is NONBOOLEAN (Definition 1.69 page 18) .

⎫⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

¹¹⁷📘 [75], page 72, ⟨Section 2.4.3 Order structure⟩
¹¹⁸📘 [75], page 52, ⟨Proposition 2.6⟩
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✎PROOF:

1

𝑣

𝑥
𝑦

𝑧

0
(1) Proof that 𝙇 is nondistributive:

(a) 𝙇 contains the N5 lattice (Definition 1.49 page 14).
(b) Because 𝙇 contains the 𝑁5 lattice, 𝙇 is nondistributive (Theorem 1.57 page 16).

(2) Proof that 𝙇 is nonmodular and nondistributive:
(a) 𝙇 contains the 𝑁5 lattice (Definition 1.49 page 14).
(b) Because 𝙇 contains the 𝑁5 lattice, 𝙇 is nonmodular (Theorem 1.50 page 14).

(3) Proof that 𝙇 is noncomplemented:

𝑥′ = 𝑦′ = 𝑣′ = 𝑧
𝑧′ = {𝑥, 𝑦, 𝑣}
𝑥″ = (𝑥′)′

= 𝑧′

= {𝑥, 𝑦, 𝑣}
≠ 𝑥

(4) Proof that 𝙇 is nonBoolean:
(a) 𝙇 is nondistributive (item 1 page 52).
(b) Because 𝙇 is nondistributive, it is nonBoolean (Definition 1.69 page 18).

✏

5.2 Reduction operator on boolean lattices

Definition5.7 Let 𝔹 be the set of allbounded lattices (Definition 1.39 page 12). Let 𝙇𝘕
2 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤)

be aBoolean lattice (Definition 1.69 page 18) with 2𝘕 elements and 𝘕 ∈ ℕ (𝘕 is a positive integer).
The operator 𝐑 is the lattice reduction operator of 𝙇𝘕

2 and 𝐑𝙇𝘕
2 is the reduction of 𝙇𝘕

2 if

𝐑𝙇𝘕
2 ≜

⎧⎪
⎪
⎨
⎪
⎪⎩

𝙇 ∈ 𝔹

|
|
|
|
|
||

1. 𝙇 is a 2𝘕 −1 element Boolean lattice and
2. 𝙇 ⊆ 𝙇𝘕

2 and
3. {0, 1} ∈ 𝙇 and
4. {𝑥, 𝑦} is an orthocomplemented pair in 𝙇 ⟹

{𝑥, 𝑦} is an orthocomplemented pair in 𝙇𝘕
2

⎫⎪
⎪
⎬
⎪
⎪⎭
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Note that in Definition 5.7, the order relation ≤ is the same for both 𝙇𝘕
2 and any 𝙇 in 𝐑𝙇𝘕

2 .
That is, if 𝑥 ≤ 𝑦 in 𝙇𝘕

2 , then 𝑥 ≤ 𝑦 in 𝙇 as well.

Example 5.8 Let 𝙇2
2 be a Boolean lattice (Definition 1.69 page 18) of order 2. Let 𝐑 be the lattice

reduction operator 𝐑 and 𝐑𝙇2
2 be the reduction of 𝙇2

2 (Definition 5.7 page 52). Then 𝐑𝙇2
2 yields a

set of exactly one 22−1 value Boolean lattice, as illustrated next:

𝐑
⎛
⎜
⎜
⎜
⎝

1

𝑝⟂

𝑝

0

⎞
⎟
⎟
⎟
⎠

=
{

1

0 }

Example 5.9 Let 𝙇3
2 be a Boolean lattice (Definition 1.69 page 18) of order 3. Let 𝐑 be the lattice

reductionoperator 𝐑 and 𝐑𝙇3
2 be the reductionof 𝙇3

2 (Definition 5.7 page 52). The operation 𝐑𝙇3
2

yields a set of three 22 value Boolean lattices, as illustrated next:

𝐑

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1
𝑟⟂ 𝑞⟂ 𝑝⟂

𝑝 𝑞 𝑟
0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=
⎧⎪
⎨
⎪⎩

1

𝑝⟂

𝑝

0 ,
1

𝑞⟂

𝑞

0 ,
1

𝑟⟂

𝑟

0

⎫⎪
⎬
⎪⎭

Example 5.10 Let 𝙇4
2 be a Boolean lattice (Definition 1.69 page 18) of order 4. Let 𝐑 be the lattice

reductionoperator 𝐑 and 𝐑𝙇4
2 be the reductionof 𝙇4

2 (Definition 5.7 page 52). The operation 𝐑𝙇4
2

yields a set of ten 23 value Boolean lattices, as illustrated in Figure 13 (page 54).

Remark 5.11 In a boolean lattice 𝙇𝘕
2 (Definition 1.69 page 18), besides the pair {0, 1}, there are

a total of 2𝘕 −1 − 1 orthocomplemented (Definition 1.72 page 20) pairs of elements. But note that
any arbitrary 2𝘕 −1 − 2 pairs of orthocomplemented pairs does not in general generate a
boolean lattice. The lattice 𝙇4

2 , for example, has 24−1 − 1 = 7 orthocomplemented pairs
besides {0, 1}. To generate an 𝙇3

2 lattice, we need 3 orthocomplemented pairs. There are
(7
3) = 7!

3!4! = 35 waysof selecting 3pairs from 𝙇4
2 , but only 10of theseways generate aboolean

lattice (Example 5.10 page 53). All other ways fail.

Monday 13th October, 2014 ⛈ MRA-Wavelet subspace architecture for logic, probability, and symbolic sequence processing ⛈ version 0.65



5 MAIN RESULTS Daniel J. Greenhoe page 54

𝐑

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

𝑟⟂ 𝑞⟂ 𝑝⟂

𝑑⟂ 𝑏⟂
𝑎⟂

𝑠

𝑠⟂

𝑎 𝑏 𝑑

𝑝 𝑞 𝑟

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎧⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩

1
𝑟⟂ 𝑞⟂ 𝑝⟂

𝑝 𝑞 𝑟
0 ,

1
𝑠⟂ 𝑞⟂ 𝑝⟂

𝑝 𝑞 𝑠
0 ,

1
𝑠⟂ 𝑟⟂ 𝑝⟂

𝑝 𝑟 𝑠
0 ,

1
𝑠⟂ 𝑟⟂ 𝑞⟂

𝑞 𝑟 𝑠
0 ,

1
𝑠⟂ 𝑏⟂ 𝑞⟂

𝑞 𝑏 𝑠
0 ,

1
𝑠⟂ 𝑐⟂ 𝑝⟂

𝑝 𝑐 𝑠
0 ,

1
𝑠⟂ 𝑎⟂ 𝑟⟂

𝑟 𝑎 𝑠
0 ,

1
𝑞⟂ 𝑎 𝑞⟂

𝑝 𝑎⟂ 𝑞
0 ,

1
𝑟⟂ 𝑐 𝑞⟂

𝑞 𝑐⟂ 𝑟
0 ,

1
𝑟⟂ 𝑏 𝑝⟂

𝑝 𝑏⟂ 𝑟
0

⎫⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪
⎪⎭

Figure 13: reduction of 𝙇4
2 (Example 5.10 page 53)

For example, if we were to select the pairs {0, 𝑤, 𝑤⟂, 𝑎, 𝑎⟂, 𝑏, 𝑏⟂, 1}, we
would get the orthocomplemented, but non-boolean (Definition 1.69 page 18)
lattice illustrated to the right; In particular, it is complemented, but non-
distributive. For example, 𝑤⟂ ∧(𝑎∨𝑏) = 𝑤⟂ ≠ 0 = 0∨0 = (𝑤⟂ ∧𝑎)∨(𝑤⟂ ∧𝑏).
Alternatively, note that the set {1, 𝑎, 𝑤, 0, 𝑏⟂, 𝑤⟂} together with the order-
ing relation ≤ form an O6 sublattice (Definition 1.73 page 20), which contains an
N5 sublattice, which implies that the lattice to the right is non-distributive
(by the Birkhoff distributivity criterion Theorem 1.57 page 16).

1
𝑎

𝑤⟂ 𝑏

𝑏⟂
𝑤

𝑎⟂

0

Example 5.12 Let 𝙇5
2 be a Boolean lattice (Definition 1.69 page 18) of order 5. Let 𝐑 be the lattice

reduction operator 𝐑 and 𝐑𝙇5
2 be the reduction of 𝙇5

2 (Definition 5.7 page 52). The result of the
operation 𝐑𝙇5

2 is partially illustrated in Figure 14 (page 55).

5.3 Difference operator on bounded lattices

Definition 5.13 Let 𝑋 ⧵𝑌 be the standard set difference of a set 𝑋 and a set 𝑌 . Let 𝙇𝑥 ≜
( 𝑋, ∨, ∧, 0, 1 ; ≤) and 𝙇𝑦 ≜ ( 𝑌 , ∨, ∧, 0, 1 ; ≤) be bounded lattices (Definition 1.39 page 12).
The bounded lattice difference 𝙇𝑥 ⦸𝙇𝑦 of 𝙇𝑥 and 𝙇𝑦 is the lattice 𝙇 such that

𝙇 ≜ ( (𝑋⧵𝑌 ) ∪ {0, 1}, ∨, ∧, 0, 1 ; ≤)
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Figure 14: reduction of 𝙇5
2 (Example 5.12 page 54)
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Example 5.14 Let⦸be the bounded lattice difference operator (Definition 5.13 page 54).
1

𝑎 𝑏 𝑐

𝑝 𝑞 𝑟
0

⦸

1

𝑏
𝑞

0

=

1
𝑐𝑎

𝑟𝑝

0

Proposition 5.15 Let 𝔹 be the set of all BOUNDED LATTICEs (Definition 1.39 page 12). Let⦸be the
BOUNDED LATTICE DIFFERENCE operator (Definition 5.13 page 54).
(𝔹,⦸, ⊆) is a D-POSET (Definition 3.18 page 37).

Theorem 5.16 Let 𝙇 ≜ 𝙇𝘕
2 ⦸𝙇𝘕 −1

2 be the BOUNDED LATTICE DIFFERENCE (Definition 5.13 page 54)

of a BOOLEAN LATTICE 𝙇𝘕
2 (Definition 1.69 page 18) and a BOOLEAN LATTICE 𝙇𝘕 −1

2 selected from the
set 𝐑𝙇𝘕

2 (Definition 5.7 page 52). Let 𝑋 ≜ {𝙇𝑛
2 |𝑛 = 1, 2, …} ∪ {𝙇𝑛

2 ⦸𝙇𝑛−1
2 |𝑛 = 2, 3, …}.

1. 𝙇𝘕
2 ⦸𝙇𝘕 −1

2 is an orthocomplemented lattice (Definition 1.72 page 20) and
2. The structure ℙ ≜ ( 𝑋, ∨, ∧ ; ⊆) is a primorial lattice (Definition 5.1 page 50).

✎PROOF:

(1) Proof that 𝙇𝘕
2 ⦸𝙇𝘕 −1

2 is an orthocomplemented lattice:
(a) 𝙇𝘕

2 is a Boolean lattice by definition.
(b) 𝙇𝘕 −1

2 is also a Boolean lattice (Definition 5.7 page 52).
(c) Every lattice that is Boolean is also orthocomplemented (Proposition 1.80 page 23).
(d) By definition of 𝙇𝘕

2 ⦸𝙇𝘕 −1
2 , orthocomplemented pairs are removed from 𝙇𝘕

2 and the or-
thocomplemented pair {0, 1} is put back in.

(e) What remains in 𝙇𝘕
2 ⦸𝙇𝘕 −1

2 is a set of orthocomplemented pairs, ordered with the same
ordering relation ≤ that orders 𝙇𝘕

2 .
(f) All remaining orthocomplemented pairs are still involutory: 𝑥 = 𝑥⟂⟂ ∀𝑥∈𝑋

(g) All remaining orthocomplemented pairs are still antitone because the ordering relation
≤ in 𝙇𝘕

2 and 𝙇𝘕
2 ⦸𝙇𝘕 −1

2 is the same.
(h) All remaining orthocomplemented pairs still have the non-contradiction property be-

cause suppose that in 𝙇𝘕
2 ⦸𝙇𝘕 −1

2 , there is an element 𝑥 such that 𝑥 ∧ 𝑥⟂ = 𝑚 ≠ 0 . Then
in 𝙇𝘕

2 , it would also be true that 𝑥 ∧ 𝑥⟂ ≠ 0 . This cannot be true (is a contradiction); so
therefore for all 𝑥 in 𝙇𝘕

2 ⦸𝙇𝘕 −1
2 , 𝑥 ∧ 𝑥⟂ = 0 (non-contradiction property).

(i) So 𝙇𝘕
2 ⦸𝙇𝘕 −1

2 is an orthocomplemented lattice (Definition 1.72 page 20).
(2) Proof that ( 𝑋 ≜ {𝙇𝑛

2 |𝑛 = 1, 2, …} ∪ {𝙇𝑛
2 ⦸𝙇𝑛−1

2 |𝑛 = 2, 3, …} , ⊆) is a primorial lattice: This
follows directly from the construction of the bounded lattice difference (Definition 5.13 page 54) and
the definition of primorial lattices (Definition 5.1 page 50).

✏
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Figure 15: a primorial lattice generated by 𝙇5
2
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Definition 5.17 Let 𝙇𝘕
2 be a 2𝘕 element Boolean lattice (Definition 1.69 page 18).

The lattice ℙ as described in Theorem 5.16 is a primorial lattice generated by 𝙇𝘕
2 .

Example 5.18 Figure 15 (page 57) illustrates a primorial lattice generated by 𝙇5
2 .

5.4 Projections on primorial lattices

This section introduces three lattice projections. When performing analysis in a primorial
lattice (Definition 5.1 page 50), it is necessary to project a point that exists in a lattice of “high
resolution” onto a lattice 𝙇 of lower resolution that may or may not contain this point. The
three projections introduced here are the

1. zero primorial projection (Definition 5.19 page 58) which assigns to 0 any point that does
not exist in 𝙇

2. Sasaki primorial projection (Definition 5.20 page 58) which assigns a projection value us-
ing the Sasaki projection (Definition 2.22 page 31)

3. metric primorial projection (Definition 5.22 page 59) which assigns a projection value
based on a lattice metric (Definition 2.7 page 27).

Definition 5.19 Let ℙ be a primorial lattice (Definition 5.17 page 58) generated by a Boolean lat-
tice 𝙇𝘕

2 (Definition 1.69 page 18). Let 𝙇 ≜ ( 𝑌 , ∨, ∧, 0, 1 ; ≤) be a lattice in ℙ. Let 𝕩 ≜ ⦅𝑥𝑛⦆ be a
sequence over the set 𝑋 . The zero primorial projection 𝛷𝙇(𝑥) of 𝑥 onto 𝙇 is defined as

𝛷𝑧
𝙇(𝑥) ≜ ⋁

𝙇
[{𝑥, 0} ∩ 𝑌 ] ∀𝑥∈𝑋

The zero primorial projection 𝛷𝑧
𝙇(𝕩) of 𝕩 onto 𝙇 is defined as

𝛷𝑧
𝙇(𝕩) ≜ ⦅𝑦𝑛⦆ where 𝑦𝑛 ≜ 𝛷𝑧

𝙇(𝑥𝑛) ∀𝑥𝑛∈⦅𝑥𝑛⦆, 𝑦𝑛∈⦅𝑦𝑛⦆.

Definition 5.20 Let ℙ and 𝕩 be defined as in Definition 5.19 (page 58). Let ℙ be a pri-
morial lattice (Definition 5.17 page 58) generated by a Boolean lattice 𝙇𝘕

2 (Definition 1.69 page 18). Let
𝙇 ≜ ( 𝑌 , ∨, ∧, 0, 1 ; ≤) be a lattice in ℙ. Let 𝕩 ≜ ⦅𝑥𝑛⦆ be a sequence over the set 𝑋 . The
Sasaki primorial projection 𝛷𝑠

𝙇(𝑥) of 𝑥 onto 𝙇 is defined as
𝛷𝑠

𝙇(𝑥) ≜ ⋁
𝙇

[{𝜙𝑦(𝑥) |𝑦 ∈ 𝑌 } ∩ 𝑌 ] ∀𝑥∈𝙇

where 𝜙𝑦(𝑥) is the Sasaki projection of 𝑥 onto 𝑦 (Definition 2.22 page 31) in the smallest Boolean
lattice 𝙇𝘔

2 that contains both 𝑥 and 𝙇. The Sasaki primorial projection 𝛷𝑠
𝙇(𝕩) of 𝕩 onto 𝙇

is defined as
𝛷𝑠

𝙇(𝕩) ≜ ⦅𝑦𝑛⦆ where 𝑦𝑛 ≜ 𝛷𝑠
𝙇(𝑥𝑛) ∀𝑥𝑛∈⦅𝑥𝑛⦆.

The Sasaki primorial projection yields a kind of maxmini (Theorem 1.35 page 11) result:
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Proposition 5.21 Let 𝛷𝙇(𝑥) be the SASAKI PRIMORIAL PROJECTION of 𝑥 onto 𝙇 in a PRIMO-
RIAL LATTICE ℙ.

𝛷𝑠
𝙇(𝑥) = ⋁

𝙇
[{𝑥 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] ∀𝑥∈𝑋

✎PROOF:

𝛷𝑠
𝙇(𝑥) ≜ ⋁ [{𝜙𝑦(𝑥) |𝑦 ∈ 𝑌 } ∩ 𝑌 ] by def. of Sasaki primorial projection (Definition 5.20 page 58)

≜ ⋁ [{(𝑥 ∨ 𝑦⟂) ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] by definition of Sasaki projection (Definition 2.22 page 31)

= ⋁ [{(𝑥 ∧ 𝑦) ∨ (𝑦⟂ ∧ 𝑦) |𝑦 ∈ 𝑌 } ∩ 𝑌 ] by distributive prop. (Theorem 1.70 page 19)

= ⋁ [{(𝑥 ∧ 𝑦) ∨ (0) |𝑦 ∈ 𝑌 } ∩ 𝑌 ] by noncontradiction property (Theorem 1.70 page 19)

= ⋁ [{𝑥 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] by bounded property (Theorem 1.70 page 19)

✏

Definition 5.22 Let ℙ and 𝕩 be defined as in Definition 5.19.
The metric primorial projection 𝛷𝑚

𝙇 (𝑥) of 𝑥 onto 𝙇 is defined as
𝛷𝑚

𝙇 (𝑥) ≜ ⋀
𝙇

[𝖡 (𝑥, 𝑟) ∩ 𝑌 ] where

1. 𝖡 (𝑥, 𝑟) is the closed ball in (𝙇𝘔
2 , 𝖽) with the smallest radius 𝑟 that contains 𝑥 𝑎𝑛𝑑

2. (𝙇𝘔
2 , 𝖽) is a metric lattice (Definition 2.7 page 27) 𝑎𝑛𝑑

3. 𝙇𝘔
2 is the smallest Boolean lattice (Definition 1.69 page 18) containing 𝑥 𝑎𝑛𝑑

4. the valuation function defining 𝖽 is the height function on 𝙇𝘔
2 .

The metric primorial projection 𝛷𝙇(𝕩) of 𝕩 onto 𝙇 is defined as
𝛷𝙇(𝕩) ≜ ⦅𝑦𝑛⦆ such that 𝑦𝑛 ≜ 𝛷𝙇(𝑥𝑛).

Example 5.23 Here are examples of the primorial projections 𝛷𝑧
𝙊6

(𝑥) (Definition 5.19 page 58),
𝛷𝑠

𝙊6
(𝑥) (Definition 5.20 page 58), and 𝛷𝑚

𝙊6
(𝑥) (Definition 5.22 page 59) in the primorial lattice (Definition 5.1

page 50) generated by the Boolean lattice (Definition 1.69 page 18) 𝙇5
2 ≜ ( 𝑋, ∨, ∧, 0, 1 ; ≤) as illus-

trated in Figure 15 page 57 onto the lattice 𝙊6 ≜ 𝙇3
2 ⦸𝙇2

2 ≜ ( 𝑌 , ∨, ∧, 0, 1 ; ≤).
projection 𝑥 in 𝙊6 ≜ 𝙇3

2 ⦸𝙇2
2 𝑥 in 𝙇3

2 𝑥 in 𝙇4
2 𝑥 in 𝙇5

2
𝑥 = 0 𝑓 𝑡 𝑡⟂ 𝑓 ⟂ 1 𝑞 𝑞⟂ 𝑟 𝑟⟂ 𝑠 𝑠⟂ 𝑔 𝑔⟂ 𝑝 𝑝⟂ 𝑑 𝑑⟂

𝛷𝑧
𝙊6

(𝑥) = 0 𝑓 𝑡 𝑡⟂ 𝑓 ⟂ 1 0 0 0 0 0 0 0 0 0 0 0 0
𝛷𝑠

𝙊6
(𝑥) = 0 𝑓 𝑡 𝑡⟂ 𝑓 ⟂ 1 0 1 0 𝑓 ⟂ 0 𝑓 ⟂ 𝑡 𝑓 0 1 0 𝑡

𝛷𝑚
𝙊6

(𝑥) = 0 𝑓 𝑡 𝑡⟂ 𝑓 ⟂ 1 0 0 0 𝑓 ⟂ 0 𝑓 ⟂ 𝑡 𝑓 0 1 0 𝑡

✎PROOF:
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(1) Proof for zero primorial projection values:

𝛷𝑧
𝙊6

(0) = ⋁ [({0} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0}] = 0

𝛷𝑧
𝙊6

(𝑓 ) = ⋁ [({𝑓} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0, 𝑓}] = 𝑓

𝛷𝑧
𝙊6

(𝑡) = ⋁ [({𝑡} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0, 𝑡}] = 𝑡

𝛷𝑧
𝙊6

(𝑡⟂) = ⋁ [({𝑡⟂} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0, 𝑡⟂}] = 𝑡⟂

𝛷𝑧
𝙊6

(𝑓 ⟂) = ⋁ [({𝑓 ⟂} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0, 𝑓 ⟂}] = 𝑓 ⟂

𝛷𝑧
𝙊6

(1) = ⋁ [({1} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{1, 0}] = 1

𝛷𝑧
𝙊6

(𝑞) = ⋁ [({𝑞} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0}] = 0

𝛷𝑧
𝙊6

(𝑞⟂) = ⋁ [({𝑞⟂} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑞⟂, 1}] = ⋁ [{0, 𝑞⟂}] = 0

𝛷𝑧
𝙊6

(𝑟) = ⋁ [({𝑟} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0}] = 0

𝛷𝑧
𝙊6

(𝑟⟂) = ⋁ [({𝑟⟂} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑟⟂, 1}] = ⋁ [{0, 𝑟⟂}] = 0

𝛷𝑧
𝙊6

(𝑠) = ⋁ [({𝑠} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0}] = 0

𝛷𝑧
𝙊6

(𝑠⟂) = ⋁ [({𝑠⟂} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑟⟂, 1}] = ⋁ [{0}] = 0

𝛷𝑧
𝙊6

(𝑔) = ⋁ [({𝑔} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0}] = 0

𝛷𝑧
𝙊6

(𝑔⟂) = ⋁ [({𝑔⟂} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑟⟂, 1}] = ⋁ [{0}] = 0

𝛷𝑧
𝙊6

(𝑝) = ⋁ [({𝑝} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0}] = 0

𝛷𝑧
𝙊6

(𝑝⟂) = ⋁ [({𝑝⟂} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑟⟂, 1}] = ⋁ [{0}] = 0

𝛷𝑧
𝙊6

(𝑑) = ⋁ [({𝑑} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋁ [{0}] = 0

𝛷𝑧
𝙊6

(𝑑⟂) = ⋁ [({𝑑⟂} ∪ {0}) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑟⟂, 1}] = ⋁ [{0}] = 0

(2) Proof for Sasaki primorial projection (Definition 5.20 page 58):

𝛷𝑠
𝙊6

(0) = ⋁ [{0 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 0, 0, 0, 0, 0} ∩ 𝑌 ] = ⋁ {0} = 0

𝛷𝑠
𝙊6

(𝑓 ) = ⋁ [{𝑓 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑓 , 0, 𝑓 , 0, 𝑓} ∩ 𝑌 ] = ⋁ {0, 𝑓} = 𝑓

𝛷𝑠
𝙊6

(𝑡) = ⋁ [{𝑡 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 0, 𝑡, 0, 𝑡, 𝑡} ∩ 𝑌 ] = ⋁ {0, 𝑡} = 𝑡

𝛷𝑠
𝙊6

(𝑡⟂) = ⋁ [{𝑡⟂ ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑓 , 0, 𝑡⟂, 𝑞, 𝑡⟂} ∩ 𝑌 ] = ⋁ {0, 𝑓 , 𝑡⟂} = 𝑡⟂

𝛷𝑠
𝙊6

(𝑓 ⟂) = ⋁ [{𝑓 ⟂ ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 0, 𝑡, 𝑞, 𝑓 ⟂, 𝑓 ⟂} ∩ 𝑌 ] = ⋁ {0, 𝑡, 𝑓 ⟂} = 𝑓 ⟂

𝛷𝑠
𝙊6

(1) = ⋁ [{1 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑓 , 𝑡, 𝑓 ⟂, 𝑡⟂, 1} ∩ 𝑌 ] = ⋁ 𝑌 = 1

𝛷𝑠
𝙊6

(𝑞) = ⋁ [{𝑞 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 0, 0, 𝑞, 0, 𝑞} ∩ 𝑌 ] = ⋁ {0} = 0

𝛷𝑠
𝙊6

(𝑞⟂) = ⋁ [{𝑞⟂ ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑓 , 𝑡, 𝑓 , 𝑡, 𝑞⟂} ∩ 𝑌 ] = ⋁ {0, 𝑓 , 𝑡} = 1
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𝛷𝑠
𝙊6

(𝑟) = ⋁ [{𝑟 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑟, 0, 𝑟, 0, 𝑟} ∩ 𝑌 ] = ⋁ {0} = 0

𝛷𝑠
𝙊6

(𝑟⟂) = ⋁ [{𝑟⟂ ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑠, 𝑡, 𝑒, 𝑓 ⟂, 𝑟⟂} ∩ 𝑌 ] = ⋁ {0, 𝑡, 𝑓 ⟂} = 𝑓 ⟂

𝛷𝑠
𝙊6

(𝑠) = ⋁ [{𝑠 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑠, 0, 𝑠, 0, 𝑠} ∩ 𝑌 ] = ⋁ {0} = 0

𝛷𝑠
𝙊6

(𝑠⟂) = ⋁ [{𝑠⟂ ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 0, 𝑡, 𝑑, 𝑓 ⟂, 𝑠⟂} ∩ 𝑌 ] = ⋁ {0, 𝑡, 𝑓 ⟂} = 𝑓 ⟂

𝛷𝑠
𝙊6

(𝑔) = ⋁ [{𝑔 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 0, 𝑡, 𝑝, 𝑔, 𝑔} ∩ 𝑌 ] = ⋁ {0, 𝑡} = 𝑡

𝛷𝑠
𝙊6

(𝑔⟂) = ⋁ [{𝑔⟂ ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑓 , 0, 𝑔⟂, 0, 𝑔⟂} ∩ 𝑌 ] = ⋁ {0, 𝑓} = 𝑓

𝛷𝑠
𝙊6

(𝑝) = ⋁ [{𝑝 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 0, 0, 𝑝, 𝑝, 𝑝} ∩ 𝑌 ] = ⋁ {0} = 0

𝛷𝑠
𝙊6

(𝑝⟂) = ⋁ [{𝑝⟂ ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑓 , 𝑡, 𝑔⟂, 𝑡, 𝑝⟂} ∩ 𝑌 ] = ⋁ {0, 𝑓 , 𝑡} = 1

𝛷𝑠
𝙊6

(𝑑) = ⋁ [{𝑑 ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑟, 0, 𝑑, 0, 𝑑} ∩ 𝑌 ] = ⋁ {0} = 0

𝛷𝑠
𝙊6

(𝑑⟂) = ⋁ [{𝑑⟂ ∧ 𝑦 |𝑦 ∈ 𝑌 } ∩ 𝑌 ] = ⋁ [{0, 𝑠, 𝑡, 0, 𝑔, 𝑑⟂} ∩ 𝑌 ] = ⋁ {0, 𝑡} = 𝑡

(3) Proof for metric primorial projection (Definition 5.22 page 59):

𝛷𝑚
𝙊6

(0) = ⋀ [𝖡 (0, 0) ∩ 𝑌 ] = ⋀ [{0} ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋀ {0} = 0

𝛷𝑚
𝙊6

(𝑓 ) = ⋀ [𝖡 (𝑓 , 0) ∩ 𝑌 ] = ⋀ [{𝑓} ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋀ {𝑓} = 𝑓

𝛷𝑚
𝙊6

(𝑡) = ⋀ [𝖡 (𝑡, 0) ∩ 𝑌 ] = ⋀ [{𝑡} ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋀ {𝑡} = 𝑡

𝛷𝑚
𝙊6

(𝑡⟂) = ⋀ [𝖡 (𝑡⟂, 0) ∩ 𝑌 ] = ⋀ [{𝑡⟂} ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋀ {𝑡⟂} = 𝑡⟂

𝛷𝑚
𝙊6

(𝑓 ⟂) = ⋀ [𝖡 (𝑓 ⟂, 0) ∩ 𝑌 ] = ⋀ [{𝑓 ⟂} ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋀ {𝑓 ⟂} = 𝑓 ⟂

𝛷𝑚
𝙊6

(1) = ⋀ [𝖡 (1, 0) ∩ 𝑌 ] = ⋀ [{1} ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}] = ⋀ {1} = 1

𝛷𝑚
𝙊6

(𝑞) = ⋀ [𝖡 (𝑞, 1) ∩ 𝑌 ] = ⋀ [{𝑞, 0, 𝑡⟂} ∩ 𝑌 ] = ⋀ {0, 𝑡⟂} = 0

𝛷𝑚
𝙊6

(𝑞⟂) = ⋀ [𝖡 (𝑞⟂, 1) ∩ 𝑌 ] = ⋀ [{𝑞⟂, 𝑡, 1} ∩ 𝑌 ] = ⋀ {𝑡, 1} = 𝑡

𝛷𝑚
𝙊6

(𝑟) = ⋀ [𝖡 (𝑟, 1) ∩ 𝑌 ] = ⋀ [{𝑟, 0, 𝑑, 𝑓} ∩ 𝑌 ] = ⋀ {0, 𝑓} = 0

𝛷𝑚
𝙊6

(𝑟⟂) = ⋀ [𝖡 (𝑟⟂, 1) ∩ 𝑌 ] = ⋀ [{𝑟⟂, 𝑑⟂, 𝑓 ⟂, 1} ∩ 𝑌 ] = ⋀ {𝑓 ⟂, 1} = 𝑓 ⟂

𝛷𝑚
𝙊6

(𝑠) = ⋀ [𝖡 (𝑠, 1) ∩ 𝑌 ] = ⋀ [{𝑠, 0, 𝑒, 𝑓 , 𝑒⟂} ∩ 𝑌 ] = ⋀ {0, 𝑓} = 0

𝛷𝑚
𝙊6

(𝑠⟂) = ⋀ [𝖡 (𝑠⟂, 1) ∩ 𝑌 ] = ⋀ [{𝑠⟂, 𝑒⟂, 𝑓 ⟂, 𝑑, 1} ∩ 𝑌 ] = ⋀ {𝑓 ⟂, 1} = 𝑓 ⟂

𝛷𝑚
𝙊6

(𝑔) = ⋀ [𝖡 (𝑔, 1) ∩ 𝑌 ] = ⋀ [{𝑔, 𝑝, 𝑓 ⟂, 𝑒⟂, 𝑑⟂, 𝑡} ∩ 𝑌 ] = ⋀ {𝑓 ⟂, 𝑡} = 𝑡

𝛷𝑚
𝙊6

(𝑔⟂) = ⋀ [𝖡 (𝑔⟂, 1) ∩ 𝑌 ] = ⋀ [{𝑔⟂, 𝑑, 𝑒, 𝑓 , 𝑝⟂, 𝑡⟂} ∩ 𝑌 ] = ⋀ {𝑓, 𝑡⟂} = 𝑓

𝛷𝑚
𝙊6

(𝑝) = ⋀ [𝖡 (𝑝, 1) ∩ 𝑌 ] = ⋀ [{𝑝, 0, 𝑝, 𝑎, 𝑏, 𝑐, 𝑔} ∩ 𝑌 ] = ⋀ {0} = 0
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𝛷𝑚
𝙊6

(𝑝⟂) = ⋀ [𝖡 (𝑝⟂, 1) ∩ 𝑌 ] = ⋀ [{𝑝⟂, 𝑎⟂, 𝑏⟂, 𝑐⟂, 𝑔⟂, 1} ∩ 𝑌 ] = ⋀ {1} = 1

𝛷𝑚
𝙊6

(𝑑) = ⋀ [𝖡 (𝑑, 2) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}]
= ⋀ [{0, 𝑎, 𝑏, 𝑑, 𝑒, 𝑓 , ℎ, 𝑖, 𝑞, 𝑟, 𝑐⟂, 𝑔⟂, 𝑗⟂, 𝑝⟂, 𝑠⟂, 𝑡⟂} ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}]
= ⋀ {0, 𝑓 , 𝑡⟂}
= 0

𝛷𝑚
𝙊6

(𝑑⟂) = ⋀ [𝖡 (𝑑⟂, 2) ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}]
= ⋀ [{𝑐, 𝑔, 𝑗, 𝑝, 𝑠, 𝑡, 𝑎⟂, 𝑏⟂, 𝑑⟂, 𝑒⟂, 𝑓 ⟂, ℎ⟂, 𝑖⟂, 𝑞⟂, 𝑟⟂, 1} ∩ {0, 𝑓 , 𝑡, 𝑡⟂, 𝑓 ⟂, 1}]
= ⋀ {𝑡, 𝑓 ⟂, 1}
= 𝑡

✏

5.5 A generalized probability function

This paper introduces a new definition for a lattice-valued probability function (next).

Definition 5.24 Let 𝙇 ≜ ( 𝑋, ∨, ∧, ¬, 0, 1 ; ≤) be a lattice with negation (Definition 2.16 page 30).
Let Ⓓ be the distributivity relation (Definition 1.52 page 15). A function 𝗉 in ℝ𝙓 is a probability
on 𝙇 if

1. 𝗉(0) = 0 (nondegenerate) and
2. 𝗉(1) = 1 (normalized) and
3. 𝑥 ≤ 𝑦 ⟹ 𝗉(𝑥) ≤ 𝗉(𝑦) ∀𝑥,𝑦∈𝑋 (monotone) and

4. {
𝑥 ∧ 𝑦 = 0 and
(𝑧, 𝑥, 𝑦) ∈ Ⓓ ∀𝑧 ∈ 𝑋 } ⟹ 𝗉(𝑥 ∨ 𝑦) = 𝗉(𝑥) + 𝗉(𝑦) ∀𝑥,𝑦∈𝑋 (additive).

If 𝗉 is a probability on a lattice with negation 𝙇, then (𝙇, 𝗉) is a probability space.

Remark 5.25 Definition 5.24 page 62 (previous) is not any standard definition of the prob-
ability function. On a Boolean lattice, themeasure-theoretic probability function, due to
A. N. Kolmogorov, is defined as¹¹⁹

(1). 𝗉(1) = 1 (normalized) and
(2). 𝗉(𝑥) ≥ 0 ∀𝑥∈𝑋 (nonnegative) and

(3).
∞

⋀
𝑛=1

𝑥𝑛 = 0 ⟹ 𝗉
(

∞

⋁
𝑛=1

𝑥𝑛)
=

∞

∑
𝑛=1

𝗉(𝑥𝑛) ∀𝑥𝑛∈𝑋 (σ-additive) .

¹¹⁹📘 [13], pages 22–23, ⟨ProbabilityMeasures⟩ ,📘 [103],📘 [102], page16, ⟨field of probability ⟩ ,
📘 [137], pages 8–9, ⟨Definition 2.3(13)⟩ ,📘 [99], page 27
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The advantage of this definition is that 𝗉 is a measure, and hence all the power of mea-
sure theory is subsequently at one's disposal in using 𝗉. However, it has often been ar-
gued that the requirement of σ-additivity is unnecessary for a probability function. Even
as early as 1930, de Finetti arguedagainst it, inwhat becameakindof polite runningdebate
with Fréchet.¹²⁰ In fact, Kolmogorov himself provided some argument against σ-additivity
when referring to the closely related Axiom of Continuity saying, “Since the new axiom is
essential for infinite fields of probability only, it is almost impossible to elucidate its em-
pirical meaning…For, in describing any observable random process we can obtain only
finite fields of probability.…” But in its support he added, “This limitation has been found
expedient in researches of the most diverse sort.”¹²¹

There are several other definitions of probability that only require additivity rather than
σ-additivity. On a Boolean lattice, the traditional probability function is defined as¹²²

(1). 𝗉(1) = 1 (normalized) and
(2). 𝗉(𝑥) ≥ 0 ∀𝑥∈𝑋 (nonnegative) and
(3). 𝑥 ∧ 𝑦 = 0 ⟹ 𝗉(𝑥 ∨ 𝑦) = 𝗉(𝑥) + 𝗉(𝑦) ∀𝑥,𝑦∈𝑋 (additive) .

This definition implies (on a Boolean lattice) that
(a). 𝗉(0) = 0 (nondegenerate) and
(b). 𝗉(𝑥) ≤ 1 ∀𝑥∈𝑋 (upper bounded) and
(c). 𝗉(𝑥) = 1 − 𝗉(¬𝑥) ∀𝑥∈𝑋 and
(d). 𝗉(𝑥 ∨ 𝑦) ≤ 𝗉(𝑥) + 𝗉(𝑦) ∀𝑥,𝑦∈𝑋 (subadditive) and
(e). 𝗉(𝑥 ∨ 𝑦) = 𝗉(𝑥) + 𝗉(𝑦) − 𝗉(𝑥 ∧ 𝑦) ∀𝑥,𝑦∈𝑋 and
(f). 𝑥 ≤ 𝑦 ⟹ 𝗉(𝑥) ≤ 𝗉(𝑦) ∀𝑥,𝑦∈𝑋 (monotone) .

On a distributive pseudocomplemented lattice, the generalized probability function has
been defined as¹²³

(1). 𝗉(0) = 0 (nondegenerate) and
(2). 𝗉(1) = 1 (normalized) and
(3). 0 ≤ 𝗉(1) ≤ 1 and
(4). 𝗉(𝑥 ∨ 𝑦) = 𝗉(𝑥) + 𝗉(𝑦) − 𝗉(𝑥 ∧ 𝑦) ∀𝑥,𝑦∈𝑋 .

On an orthomodular lattice, or a finite modular lattice, the quantumprobability function
is defined as¹²⁴

(1). 𝗉(0) = 0 (nondegenerate) and
(2). 𝗉(1) = 1 (normalized) and
(3). 𝑥 ⟂ 𝑦 ⟹ 𝗉(𝑥 ∨ 𝑦) = 𝗉(𝑥) + 𝗉(𝑦) ∀𝑥,𝑦∈𝑋 (additive) .

However, for lattices that are not distributive, modular , or orthomodular , none of these
definitions work out so well. Take for example the O6 lattice with the “very reasonable”

¹²⁰ 📃 [60], 📃 [65], 📃 [59], 📃 [66], 📃 [58], 📃 [28], pages 258–260
¹²¹📘 [102], page 15
¹²²📘 [138], pages 21–22,📘 [102], page 2, ⟨§1. Axioms I–V⟩
¹²³ 📃 [129], page 118,📘 [128]
¹²⁴ 📃 [74], page 126, ⟨DEFINITIONS⟩ , 📃 [129], page 118
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probability function given in Example 5.31 (page 66). This probability space (O6 , 𝗉) fails
to be any of the 4 probability functions defined in this Remark. It fails to be a measure-
theoretic or traditional probability function because

𝑎 ∧ 𝑏 = 0 but 𝗉(𝑎 ∨ 𝑏) = 𝗉(1) = 1 ≠ 1
3 + 1

2 = 𝗉(𝑎) + 𝗉(𝑏) .
It fails to be a generalized probability function because

𝗉(𝑎 ∨ 𝑏) = 𝗉(1) = 1 ≠ 1
3 + 1

2 − 0 = 𝗉(𝑎) + 𝗉(𝑏) − 𝗉(0) = 𝗉(𝑎) + 𝗉(𝑏) − 𝗉(𝑎 ∧ 𝑏) .
It fails to be an quantum probability function because

𝑎 ⟂ 𝑏 = 0 but 𝗉(𝑎 ∨ 𝑏) = 𝗉(1) = 1 ≠ 1
3 + 1

2 = 𝗉(𝑎) + 𝗉(𝑏) .
In each of these cases, the function 𝗉 fails to be additive. The solution of Definition 5.24
(page62) is simply to “switchoff”additivity when the lattice isnotdistributive. Thismethod
is a little “crude”, but at least it allows us to define probability on a very wide class of lat-
tices, while retaining compatibility with the Boolean case (Proposition 5.26 page 64, Proposition 5.27
page 64, Proposition 5.28 page 65).

Proposition 5.26 ¹²⁵ Let (𝙇, 𝗉) be a PROBABILITY SPACE (Definition 5.24 page 62).
0 ≤ 𝗉(𝑥) ≤ 1 ∀𝑥∈𝑋

✎PROOF:

0 = 𝗉(0) by previous result
≤ 𝗉(𝑥) because 0 ≤ 𝑥 and monotone property (Definition 5.24 page 62)

𝗉(𝑥) ≤ 𝗉(1) because 𝑥 ≤ 1 and monotone property (Definition 5.24 page 62)

= 1 by property of 𝗉 (Definition 5.24 page 62)

✏

Proposition 5.27 ¹²⁶ Let (𝙇, 𝗉) be a PROBABILITY SPACE (Definition 5.24 page 62).

{
𝙇 is
ORTHOCOMPLEMENTED } ⟹ { 𝗉(𝑥) = 1 − 𝗉(¬𝑥) ∀𝑥∈𝑋 }

✎PROOF:

1 − 𝗉(¬𝑥) = 𝗉(1) − 𝗉(¬𝑥) by Definition 5.24 page 62
= 𝗉(𝑥 ∨ ¬𝑥) − 𝗉(¬𝑥) by excluded middle property of ortho negation (Definition 2.14 page 29)

= 𝗉(𝑥) + 𝗉(¬𝑥) − 𝗉(¬𝑥) because (𝑥)(¬𝑥) = 0 and additive property (Definition 5.24 page 62)

= 𝗉(𝑥)

✏

¹²⁵📘 [138], page 21, ⟨(2-11)⟩
¹²⁶📘 [138], page 21, ⟨(2-12)⟩
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Proposition 5.28 ¹²⁷ Let (𝙇, 𝗉) be a PROBABILITY SPACE (Definition 5.24 page 62).

{
𝙇 is
BOOLEAN } ⟹ {

1. 𝗉(𝑥 ∨ 𝑦) = 𝗉(𝑥) + 𝗉(𝑦) − 𝗉(𝑥 ∧ 𝑦) ∀𝑥,𝑦∈𝑋 and
2. 𝗉(𝑥 ∨ 𝑦) ≤ 𝗉(𝑥) + 𝗉(𝑦) ∀𝑥,𝑦∈𝑋 (BOOLE'S INEQUALITY)

✎PROOF:

(1) lemma: Proof that 𝗉((¬𝑥) ∧ 𝑦) = 𝗉(𝑦) − 𝗉(𝑥 ∧ 𝑦) :

𝗉(𝑦) − 𝗉(𝑥𝑦) = 𝗉(1 ∧ 𝑦) − 𝗉(𝑥𝑦) by definition of 1 and ∧ (Definition 1.28 page 9)

= 𝗉[(𝑥 ∨ ¬𝑥)𝑦] − 𝗉(𝑥𝑦) by excluded middle property of Boolean lattices
= 𝗉(𝑥𝑦 ∨ ¬𝑥𝑦) − 𝗉(𝑥𝑦) by distributive property of Boolean lattices
= 𝗉(𝑥𝑦) + 𝗉(¬𝑥𝑦) − 𝗉(𝑥𝑦) because (𝑥𝑦)(¬𝑥𝑦) = 0 and by additive property
= 𝗉(¬𝑥𝑦)

(2) Proof that 𝗉(𝑥 ∨ 𝑦) = 𝗉(𝑥) + 𝗉(𝑦) − 𝗉(𝑥 ∧ 𝑦) :

𝗉(𝑥 ∨ 𝑦) = 𝗉(𝑥 ∨ ¬𝑥𝑦) by property of Boolean lattices
= 𝗉(𝑥) + 𝗉(¬𝑥𝑦) because (𝑥)(¬𝑥𝑦) = 0 and by additive property
= 𝗉(𝑥) + 𝗉(𝑦) − 𝗉(𝑥 ∧ 𝑦) by item 1 (page 65)

✏

Example5.29 The function ¬ on the lattice 𝙇 as illustrated to the right
is a Kleene negation (Definition 2.14 page 29). Together with the probability
function 𝗉, also illustrated to the right, the pair (𝙇, 𝗉) is a probability
space (Definition 5.24 page 62).

1 = ¬0
𝑎 = ¬𝑎
0 = ¬1

𝗉(1) = 1
𝗉(𝑎) = 1

2
𝗉(0) = 0

Example 5.30 The lattice with negation 𝙇 (Defini-
tion 2.16 page 30) illustrated to the right is a Boolean lat-
tice. Together with the probability function 𝗉, also
illustrated to the right, the pair (𝙇, 𝗉) is a probability
space (Definition 5.24 page 62).

1 = ¬0 𝗉(1) = 1

𝑏 = ¬𝑎 𝗉(𝑏) = 2
3𝑎 = ¬𝑏 𝗉(𝑎) = 1

3

0 = ¬1 𝗉(0) = 0

¹²⁷📘 [138], page 21, ⟨(2-13)⟩ ,📘 [57], pages 22–23, ⟨(7.4),(7.6)⟩
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Example 5.31 The lattice with negation 𝙇 (Defini-
tion 2.16 page 30) illustrated to the right is an orthocom-
plemented O6 lattice (Definition 1.73 page 20). Together
with the probability function 𝗉, also illustrated to
the right, the pair (𝙇, 𝗉) is a probability space (Defini-
tion 5.24 page 62).

1 = ¬0 𝗉(1) = 1
𝑑 = ¬𝑎 𝗉(𝑑) = 2

3𝗉(𝑐) = 1
2 𝑐 = ¬𝑏

𝑏 = ¬𝑐 𝗉(𝑏) = 1
2𝗉(𝑎) = 1

3 𝑎 = ¬𝑑
0 = ¬1 𝗉(0) = 0

5.6 Applications

This section discusses some possible applications of primorial lattices.

5.6.1 Logic analysis

Let 𝙇𝘕
2 be a 2𝘕 -valued Boolean logic (Definition 2.27 page 33). Let ℙ be the primorial lattice gen-

erated by 𝙇𝘕
2 (Definition 5.17 page 58). The sequence of lattices ⦅𝙇𝘕

2 , 𝙇𝘕 −1
2 , … , 𝙇2

2, 𝙇2⦆ in ℙ are
Boolean logics with decreasing “resolution” (higher values of 𝑛 in 𝙇𝑛

2 correspond to greater
resolution). Thus, we can reduce a very complex logic in 𝙇𝘕

2 to a simpler lower resolution
logic.
Moreover, the sequence of ortho logics (Definition 2.27 page 33) in ℙ

⦅𝙇𝘕
2 ⦸𝙇𝘕 −1

2 , 𝙇𝘕 −1
2 ⦸𝙇𝘕 −2

2 , … , 𝙇3
2 ⦸𝙇2

2, 𝙇2⦆
represents the Boolean logic 𝙇𝘕

2 at 𝘕 − 1 progressively lower “frequencies”. Alternatively,
we could say that the Boolean logic at resolution 𝘕 is “decomposed” into (or analyzed by)
𝘕 − 1 ortho logics. Moreover, a proposition 𝑝 in a higher resolution space can be projected
into a lower resolution space (including the two-value classic logic space) by a projection
operator (Section 5.4 page 58).

5.6.2 Fuzzy logic analysis

Fuzzy logics (Definition 2.27 page 33) can be constructed on Boolean and orthocomplemented lat-
tices¹²⁸ such that together with the subset ordering relation ⊆, form of a primorial lattice
ℙ (Definition 5.1 page 50). A Boolean fuzzy logic 𝙇𝘕

2 can then be rendered at 𝘕 − 1 different “res-
olutions” using the Boolean lattices of ℙ and analyzed at 𝘕 − 1 “frequencies” using the
orthocomplemented lattices of ℙ, as described in Section 5.6.1 (page 66).

¹²⁸📃 [77], ⟨§2.2⟩
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𝙇3
2

𝙇3
2 ⦸𝙇2

2

𝙇2
2

𝙇2

1
1
2

𝑥𝕞1(𝑥) = ¬𝕞0(𝑥)

1
1
2

𝑥
𝕞𝑅(𝑥) = ¬𝕞𝐴(𝑥)

1
1
2

𝑥
𝕞𝑄(𝑥) = ¬𝕞𝐵(𝑥)

1
1
2

𝑥
𝕞𝑃 (𝑥) = ¬𝕞𝐶 (𝑥)

1
1
2

𝑥
𝕞𝐶 (𝑥) = ¬𝕞𝑃 (𝑥)

1
1
2

𝑥
𝕞𝐵(𝑥) = ¬𝕞𝑄(𝑥)

1
1
2

𝑥
𝕞𝐴(𝑥) = ¬𝕞𝑅(𝑥)

1
1
2

𝑥

𝕞0(𝑥) = ¬𝕞1(𝑥)

1
1
2

𝑥
𝕞1(𝑥) = ¬𝕞0(𝑥) = 1

1
1
2

𝑥
𝕞𝑅(𝑥) = ¬𝕞𝐴(𝑥)

1
1
2

𝑥
𝕞𝑃 (𝑥) = ¬𝕞𝐶 (𝑥)

1
1
2

𝑥
𝕞𝐶 (𝑥) = ¬𝕞𝑃 (𝑥)

1
1
2

𝑥
𝕞𝐴(𝑥) = ¬𝕞𝑅(𝑥)

1
1
2

𝑥
𝕞0(𝑥) = ¬𝕞1(𝑥) = 0

1
1
2

𝑥
𝕞1(𝑥) = ¬𝕞0(𝑥) = 1

1
1
2

𝑥
𝕞𝑄(𝑥) = ¬𝕞𝐵(𝑥)

1
1
2

𝑥
𝕞𝐵(𝑥) = ¬𝕞𝑄(𝑥)

1
1
2

𝑥
𝕞0(𝑥) = ¬𝕞1(𝑥) = 0

1
1
2

𝑥
𝕞1(𝑥) = ¬𝕞0(𝑥) = 1

1
1
2

𝑥
𝕞0(𝑥) = ¬𝕞1(𝑥) = 0

Figure 16: primorial lattice for fuzzy subset logic (Example 5.32 page 68)
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Example 5.32 Figure 16 (page 67) illustrates a fuzzy subset logic¹²⁹ on a primorial lattice.
The lattice 𝙇3

2 contains bothmonotonic and non-monotonic membership functions. These
are separated into lower resolution spaces 𝙇2

2 containing the non-monotonic membership
functions (neglecting 1 and 0), 𝙇3

2 ⦸𝙇2
2 containing the monotonic membership functions,

and 𝙇2 containing crisp set logic. A projection operator (Section 5.4 page 58) can be used to
project a membership function onto any of these spaces as perhaps called for by a given
application.

5.6.3 Probability analysis

A logic is a latticewith negation (Definition 2.16 page 30) andwith an implication function defined
on it. A probability is a lattice with negation and with a probability function (Definition 5.24
page 62) defined on it.
Let 𝙇𝘕

2 be the 2𝘕 -element Boolean lattice generated by an 𝘕 -event Boolean probability
space (Definition 5.24 page 62). Let ℙ be the primorial lattice (Definition 5.1 page 50) generated by 𝙇𝘕

2 .
Then in ℙ, the probability space can be rendered at progressively lower resolutions using
the Boolean lattices of ℙ, and can be analyzed at assorted “frequencies” using the ortho-
complemented lattices of ℙ.

Example 5.33 A primorial lattice with a probability function is illustrated in Figure 17
(page 69).

5.6.4 Symbolic sequence analysis

Definitions. Finding some properties of a sequence 𝕩 that is constructed over a field 𝔽
may be referred to as sequence analysis or discrete-time signal analysis. If we somehow
mathematically alter 𝕩 with an operator 𝐀 to produce a new sequence 𝕪 ≜ 𝐀𝕩, then this
may be referred to as sequence processing, or more commonly as discrete-time signal pro-
cessing or digital signal processing (DSP).

Basis theory. Sequenceanalysis and sequenceprocessing typicallymakeuseof basis the-
ory. In basis theory in general (of which Fourier analysis and wavelet analysis are special
cases), we represent some point 𝕩 (𝕩 is a sequence) in a Banach space (a complete normed
linear space) by a linear combination of a basis sequence ⦅𝑥𝑛⦆ such that

𝕩 ≛ ∑
𝑛∈𝑍

𝑎𝑛𝑥𝑛

¹²⁹📃 [77], ⟨§3.2⟩
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Boolean/
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2 ⦸𝙇3

2𝙇3
2 ⦸𝙇2

2𝙇2
2

𝙇2
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𝗉(𝑟⟂) = 13
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2
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4

𝑐⟂ 𝑏⟂ 𝗉(𝑎⟂) = 1
4

𝗉(𝑠) = 1
16

𝗉(𝑠⟂) = 15
16

𝗉(𝑎) = 3
4 𝑐𝑏

𝗉(𝑝) = 1
2 𝗉(𝑞) = 1
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𝗉(1) = 1

𝗉(𝑎) = 3
4 𝗉(𝑝⟂) = 1

2

𝗉(𝑞⟂) = 3
4

𝗉(𝑝) = 1
2 𝗉(𝑞) = 1

4

𝗉(𝑎⟂) = 1
4

𝗉(0) = 0

1
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0

1
𝑎𝑞⟂

𝑞𝑎⟂

0

𝗉(1) = 1

𝗉(𝑝⟂) = 1
2𝗉(𝑝) = 1

2
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Figure 17: primorial lattice with probability function (Example 5.33 page 68)
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where ≛ represents strong convergence with respect to the norm ‖⋅‖ of the Banach space.
Each element 𝑎𝑛 is a member of the field 𝔽 of the Banach space and the sequence ⦅𝑎𝑛⦆
is often referred to as a “transform” (Fourier transform, discrete-time Fourier transform,
wavelet transform, etc.)
In order to be able to successfully compute any transform (such as a Fourier transform or
wavelet transform) in a Banach space or even a finite linear space, the sequence 𝕩 needs
to be somehow related to the field 𝔽 over which the Banach space is constructed.

Theproblem. Let �̃� be the discrete-timeFourier transformoperator and 𝐖 be adiscrete-
timewavelet transform. Supposewewant to compute �̃�𝕩 or 𝐖𝕩. This is a problem in sym-
bolic sequence analysis and symbolic signal processing in general because of the following
reasons:

1. The symbols in 𝕩 have no field structure; so we can't even add them.
2. The symbols in 𝕩 have no order structure; so if 𝘈, 𝘉 , and 𝘊 are symbols, we can't

say, for example, 𝘈 < 𝘉 or 𝘉 < 𝘊 , etc.
3. The symbols in 𝕩 have no topology except for some arguably trivial topologies;¹³⁰

so we can't say, for example, that 𝘈 is “closer” to 𝘉 than it is to 𝘊 , etc.
In fact, symbol sequence analysis does not just cause problems for Fourier or wavelet anal-
ysis only—it causes problems for basis theory in general because a basis is constructed in
a Banach space, and symbolic sequences are in general not constructed in Banach spaces.
A kind of “hack” solution may be to map the symbols to points ⦅𝑝1, 𝑝2, … , 𝑝𝘕 ⦆ in the com-
plex plane ℂ. If these points are chosen such that they are distinct, not on either the real
or imaginary axes, and |𝑝1| = |𝑝2| = … = |𝑝𝘕 |, then that would seem to be a good start,
because now the mapped symbols have a field structure, and they are arguably unordered
(arguably we can't say any one of them is greater or less than any other, just as in the orig-
inal symbol sequence).
But we still have the topology problem. If wemap, say, 4 symbols to 4 points in ℂ as 𝑝1 = 1,
𝑝2 = −1, 𝑝3 = 𝑖, and 𝑝4 = −𝑖, then “𝑝1” is closer (with respect to the metric induced by the
norm |⋅|) to “𝑝3” then it is to “𝑝2”:

𝖽(𝑝1, 𝑝3) = |𝑝1 − 𝑝3| = (𝑝2
1 − 𝑝2

3)
1/2 = (12 − 𝑖2)

1/2 = √2 ⪇ 2 = (22 − 02)
1/2 = 𝖽(𝑝1, 𝑝2)

This unwanted topological property is introduced by the mapping, will affect the trans-
form, but yet is not a property of the original symbolic sequence.

¹³⁰ These topologies include the indiscrete topology {∅, 𝑋} where 𝑋 ≜ {𝘈, 𝘉, 𝘊} , discrete
topology 𝟚𝑋 (references: 📘 [126], page 77, 📘 [107], page 107, ⟨Example 3.J⟩ , 📘 [156],
pages 42–43, ⟨II.4⟩ , 📘 [44], page 18 ), and the topology induced by the discrete metric 𝖽(𝑥, 𝑦) ≜
{1 for 𝑥 ≠ 𝑦 , 0 for 𝑥 = 𝑦} (references: 📘 [67], page 13, 📘 [31], page 24, 📘 [101], page 19,
⟨Example 2.1⟩ ).
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“Frequency” propertiesmay be useful in symbolic sequence analysis and symbolic sequence
processing. But the point here is that any kind of basis theory technique (including Fourier
or wavelet techniques) may result in a kind of imperfect “hack” solution.

Proposed solution. The solution proposed here is to perform symbolic sequence analy-
sis using primorial lattices. Suppose we have a sequence 𝕩 over a set of 𝘕 symbols (each
element in the sequence can be any one of 𝘕 different symbols). Let ℙ be the primorial
lattice generated by 𝙇𝘕

2 . The orthogonal 𝘕 atoms of 𝙇𝘕
2 represent the 𝘕 symbols. The

element 𝘈 ∨ 𝘉 in 𝙇𝘕
2 , where 𝘈 and 𝘉 are 2 symbols, represents the event of a particular po-

sition in the sequence being 𝘈 OR 𝘉 (it is not possible for a particular position to be both
𝘈 AND 𝘉 ).
Any symbol in 𝙇𝘕

2 can be projected onto any other Boolean or orthocomplemented lattice
in ℙ byuseof a latticeprojection (Section 5.4 page 58). The result of projectinganentire sequence
onto a lattice in ℙ is another sequence (Definition 5.19 page 58). So after projection, a sequence
on 𝙇𝘕

2 results in 𝘕 − 1 sequences of lower resolution and 𝘕 − 1 sequences of assorted
frequencies. This is similar in form to the FastWavelet Transform, as illustrated in Figure 10
(page 49).

5.6.5 Symbolic sequence processing (SSP)

Introduction. The previous section discusses symbolic sequence analysis—meaning we
are not trying to change the properties of the sequence, we are only trying to understand
its properties. This section discusses symbolic sequence processing (or symbolic signal pro-
cessing )—meaning we are trying to change the properties of the sequence.
Digital signal processing (DSP) or discrete-time signal processing operates on a sequence
constructed over a field 𝔽 , where 𝔽 is typically either ℝ or ℂ. Often by use of simple multi-
plication and addition operations on elements of the sequence, one can change the prop-
erties of the sequence. Often when the properties are related to Fourier analysis, the DSP
operations are called “filtering”.

The problem. Multiplication and addition operations commonly used in DSP require
field properties. In symbolic sequence processing, we don't in general have a field.

Proposed solution. Sequence processing of, or “filtering” on, a symbolic sequence 𝕩 can
be performed by judicious selection and/or rejection of the various projections onto the
logics in the primorial lattice ℙ.
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For example, if one wants 𝕩 at a lower “resolution”s, then simply select the sequence from
a projection onto the Boolean logic at resolution lower than 𝘕 . If one wants to “filter out”
the “high frequency” components of 𝕩, then simply discard theprojections onto thehigher
frequency orthocomplemented lattices before synthesizing a new sequence from the “low
frequency” component sequences.
Synthesis of two projection sequences 𝕪 and 𝕫 into a new sequence 𝕩′ can be performed,
for example, by pointwise join such that

𝕪 ⊕ 𝕫 ≜ ⦅𝑦𝑛⦆𝑛∈ℤ ⋁ ⦅𝑧𝑛⦆𝑛∈ℤ

≜ ⦅𝑦𝑛 ∨ 𝑧𝑛⦆𝑛∈ℤ
≜ ⦅𝑥𝑛⦆𝑛∈ℤ
≜ 𝕩

5.6.6 Genomic Signal Processing (GSP)

Genomic Signal Processing (GSP) is simply a special case of Symbolic Sequence Processing
with 𝘕 = 4. In GSP, the 4 symbols are commonly referred to as 𝘈, 𝘊 , 𝘛 , and 𝘎 , each
of which corresponds to a nucleobase (adenine, thymine, cytosine, and guanine, respec-
tively).¹³¹ The sequence itself is called a genome. A typical genome sequence contains a
large number of symbols (about 3 billion for humans, 29751 for the SARS virus).¹³²

Example 5.34 Traditionally in GSP, the symbols (𝘈 ∨ 𝘛 ) and (𝘊 ∨ 𝘎) are of special interest.
Portions of a genome sequence high in (𝘈∨𝘛 ) content separate at lower temperatures than
do those with high (𝘊 ∨ 𝘎) content.¹³³ Therefore, one could construct a primorial lattice
induced by 𝙇4

2 that allows for convenient analysis of 𝘈 ∨ 𝘛 and/or 𝘊 ∨ 𝘎 in some lower
resolution space. An example is illustrated in Figure 18 (page 73).

Example 5.35 In some cases, genomic sequences with more than 4 symbols (𝘕 > 4) have
been studied.¹³⁴ Figure 19 (page 74) illustrates a primorial lattice with an extra symbol 𝘟

¹³¹📃 [121], ⟨Mendel (1853): gene coding uses discrete symbols⟩ ,📃 [165], page 737, ⟨Watson and
Crick (1953): gene coding symbols are adenine, thymine, cytosine, andguanine⟩ ,📃 [164], page 965,
📘 [142], page 52

¹³²💻 [1], ⟨http://www.ncbi.nlm.nih.gov/genome/guide/human/⟩ , ⟨Homo sapiens,
NC_000001–NC_000022 (22 chromosome pairs), NC_000023 (X chromosome), NC_000024 (Y
chromosome), NC_012920 (mitochondria)⟩ , 💻 [1], ⟨http://www.ncbi.nlm.nih.gov/nuccore/
30271926⟩ , ⟨SARS coronavirus, NC_004718.3⟩ 📃 [150], ⟨homo sapien chromosome 1⟩ , 📃 [149],
⟨SARS coronavirus⟩

¹³³📘 [32], page 13, ⟨Remark 1.2⟩
¹³⁴ 📃 [30], 📃 [53]
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Figure 18: primorial lattice for genomic signal processing (GSP) with 𝘈 ∨ 𝘛 and 𝘊 ∨ 𝘎 analysis
features (Example 5.34 page 72)
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Figure 19: primorial lattice for genomic signal processing (GSP) with extra symbol 𝘟 (Example 5.35
page 72)
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REFERENCES Daniel J. Greenhoe page 75

in the higher resolution 𝙇5
2 Boolean lattice, but with only the symbols 𝘈, 𝘊 , 𝘎 , and 𝘛 in

the lower resolution 𝙇4
2 Boolean lattice. The symbol 𝘟 can be projected onto any of the

lower resolution spaces using a projection operator (Section 5.4 page 58).
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