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THE SUPER PATALAN NUMBERS

THOMAS M. RICHARDSON
ADA, MI 49301

ABSTRACT. We introduce the super Patalan numbers, a generalization of the
super Catalan numbers in the sense of Gessel, and prove a number of properties
analagous to those of the super Catalan numbers. The super Patalan numbers
generalize the super Catalan numbers similarly to how the Patalan numbers
generalize the Catalan numbers.

1. INTRODUCTION

We introduce the super Patalan numbers as a gneralization of the super Catalan
numbers. The super Catalan numbers [6, A068555] were studied by Gessel in his
paper on the super ballot numbers [2]. (The term super Catalan numbers is also
used to refer to a different sequence, we are generalizing the term as used by Gessel.)
Just as the super Catalan numbers form a two dimensional array that extends the
Catalan numbers, the super Patalan numbers of order p form a two dimensional
array that extends the Patalan numbers of order p.

We start with the definitions of the super Catalan numbers and of the Patalan
numbers.

Definition 1.1. Define the super Catalan numbers S(m,n) by
(2m)!(2n)!
m!n!(m + n)!’

S(m,n) =

The Catalan numbers C,, are contained in the super Catalan numbers as 2C,, =
S(n, 1) 2(2n)!
n1l)=——72_—.
’ nl(n+1)!

Definition 1.2. Let p be a positive integer with p > 1, and let ¢ be a positive
integer with ¢ < p. Define the Patalan numbers of order p to be the sequence a(n)
with a(0) =1, and

a(n) = p(pn — Da(n —1)/(n+1). (1)
Also define the (p, q)-Patalan numbers to be the sequence b(n) with b(0) = ¢, and
b(n) = p(pn — q)b(n —1)/(n+1). (2)

The Patalan numbers of order p [6, A025748, A025749, ..., A025757] generalize
the Catalan numbers. In particular the Catalan numbers are the Patalan num-
bers of order 2. Also, the Patalan numbers of order p have generating function
1—+/1—p3x

px

Now we define the super Patalan numbers as an extension of the Patalan num-
bers, and generalizing the super Catalan numbers.

1

, which generalizes the generating function of the Catalan numbers.
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Definition 1.3. Define the sequence Q(i,7) of (p, q)-super Patalan numbers by

Q(iv 0) = p(pi - Q)Q(l -1, O)/iv (4)
and
Qi j) =ppj —p+ Q. j — 1)/(i + j). (5)

Let the super Patalan numbers of order p be the (p, 1)-super Patalan numbers.

The super Patalan numbers contain the Patalan numbers similarly to how the
super Catalan numbers contain the Catalan numbers, but they do not have quite
as simple an expression as the super Catalan numbers. In particular, they do not
form a symmetric array. While the super Patalan numbers are not symmetric, they
do have a twisted symmetry in that the arrays of (p, ¢)-super Patalan numbers and
(p, p — ¢)-super Patalan numbers are transposes of each other.

The Patalan numbers are contained in the super Patalan numbers just as the
Catalan numbers are contained in the super Catalan numbers. If a(n) is the se-
quence of Patalan numbers of order p, and P(i,j) are the super Patalan numbers
of order p, then the Patalan numbers are contained in the super Patalan numbers
as

pa(n) = P(n,1). (6)
It is the author’s opinion that to be consistent with equation (@) concerning
column 1 of the super Patalan matrix, the Patalan numbers of order p should start

1, <Z2)) [6, A097188], and not start 1,1, <I2)> [6l A025748]. The fact that the Catalan
numbers start 1,1 is explained by the Catalan numbers being the Patalan number

of order 2, and <§> =1.

2. GENERATING FUNCTIONS

Theorem 2.1. The (p,q) super Patalan numbers @ satisfy the identity

Q) = (-1 (M09, (7)

m+4+n

Proof. Let R(m,n) = (—1)"p*(m+m) (m —+q/p) . Then R satisfies equations (B])-(&l).
m+n

We give some details showing that R satisfies (B):

N e )
— (—1)ip2td) —J ti; q/p (Z_i;jqipl) (9)
—  (—1)1pEtiD) p(pji:L pj +9) (Z_i+—jq£p1) (10)
- pi(pji_fj“L D Ri,j—1). (11)
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Equation (7)) generalizes an identity of Gessel [2] unlabelled equation before equa-
tion (31)]. This indicates that P(m,n) is the coefficient of %" in the generating
function of (—=1)™(1 — p2x)™~9/P.

More generally, the above definitions may be extended to define super Patalan
numbers for all m and n.

Definition 2.1. Let m,n be integers. Define the extended (p,q)-super Pata-
lan numbers E(m,n) to be the coefficient of 2" in the generating function of
(=1)™(1 = pPa)ym 7.

While F is defined in terms of the generating functions of its rows, the twisted
symmetry of the super Patalan matrix implies that E(m,n) is also the coefficient
of 2™*™ in (=1)"(1 — p2z)"~ P/,

The lower triangular matrix L formed by permuting the columns of E has the
interesting property that it has order 2 under matrix multiplication.

Theorem 2.2. Let L be the lower triangular matriz given by L(m,n) = E(m, —n),
where E is an extended super Patalan matriz. Then L? is the identity.

Proof. Consider the (m,n) entry of L? for n < m. The product of row m of L
and column n of L is the convolution of row m of E and column —n of E. The
generating function of row m of E is (—1)™(1 — pQ:C)m_‘J/”, while the generating
function of column —n of E is (—=1)7"(1 — p?z) ™"~ P~9/P_ Thus the (m,n) entry
of L? is the coefficient of 2™ " in (—1)™""(1 — p*x)™ "' which equals 0. O

Next we consider the two variable generating function of P.

Theorem 2.3. Let F(x,y) = Z P(i, j)x'y’ be the generating function of the super
Patalan numbers P(i,j). Then

T Y 1
F - . 12
(=:9) ((1 — p2x)(p=/p - (1 —pzy)l/”> x4y — pPry (12)

Proof. By Theorem[.1] the generating function of the first row of the super Patalan
matrix of order p is g(y) = (1 — p?y)~ /P and the generating function of the first
column of the super Patalan matrix of order p is f(x) = (1 — p2z)~P~1/P,

We will take advantage of the recurrence

P*P(i,§) = P(i,j + 1) + P(i + 1, 7). (13)
Equation ([3) implies the equation

sz(:Z?,y) — F(Iay)x_ g(y) + F('rvy)y— f(:E) (14)

Solving equation (Id]) for F'(z,y) gives equation ([I2), as required. O

Equation (I3) generalizes an identity attributed to D. Rubenstein by Gessel [2]
equation (36)]. Also, equation (I2]) generalizes a similar expression given by Gessel
for the generating function of the super Catalan numbers [2 equation (37)].
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3. CONVOLUTIONAL RECURRENCE

The Catalan numbers have a very simple, well known, and interesting convolu-
tional recurrence,

n—1
Cn=> CiCp_y. (15)
k=0

We show that the Patalan numbers of order p have a similar convolutional recur-
rence of degree p, and give the explicit recurrence for the Patalan numbers of order
3.

One could derive the recurrences by brute force, exploiting the fact that the
generating function for column 1 of the extended super Patalan numbers is given
by the expression —(1 — p2$)1/ P, We will instead work directly with the generating
function of the Patalan numbers. Let A(z) be the generating function of the Pata-

1—(1—p?x)l/P
lan numbers of order p, so that A(x) = M Gessel observed that for
px
p =3, vA(x) is the compositional inverse of x — 32 + 32> [6, A097188]. More gen-
1—(1—px)? &
erally, xA(x) is the compositional inverse of % =- Z (i) PP (=)
p
k=1
Applying the compositional inverse to the generating function results in a coeffi-
cient of zero for the higher degree terms. Thus we can set the compositional inverse
equal to 0, solve for x, and derive a convolutional recurrence from the expression
for x. Setting the compositional inverse equal to zero and solving for = gives

z= ij (i)pk_2(—x)k. (16)

k=2

Because we are working with the compositional inverse of xA(x), not of A(x), we
have to be careful when we translate equation (I6) to a convolutional recurrence,
by subtracting the number of factors of each term from the total degree in the
recurrence. We thus get a recurrence for the Patalan numbers

=3 (D)0t ¥ lay (17)
k=2 i1t Aig=n—k+1

It is easily verified that for p = 2, equation (7)) reduces to equation (IH). For
p = 3, equation (I7T) reduces to

n—1
a(n) =Y 3a(k)a(n—k—1)— > 3a(i)a(j)a(k). (18)
k=0 i+j+k=n—2
Equation ([IT) for n = 1 has only one non-trivial term on the right hand side,

and it implies that a(1) = (g)

4. FACTORIZATION OF THE SUPER PATALAN MATRIX

Definition 4.1. Define the reciprocal Pascal matriz to be the matrix R with

R(i,j) = (itj)_l.
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Lemma 4.1. Let Q be the (p, q)-super Patalan numbers, and let G, 4 be the diag-
onal matriz with Gy, 4(i,1) = Q(%,0). Then

Q= Gp,qRGp,p*q- (19)

The author previously used the factorization of equation ([9) to prove that the
inverse of the reciprocal Pascal matrix is an integer matrix [5].

Next we prove that the inverse of the Hadamard inverse of the super Patalan
matrix is an integer matrix.

Theorem 4.1. Let Q be the (p,q) super Patalan matriz, and let H be the n X n
1
matriz given by H(i,j) = ———= for 0 < i,j < n. Then the inverse of H is an

. ‘ Q(i. )
nteger matriz.
Proof. By Lemma [£1]
H =G, \BG,, (20)

p,p—q’

where B is the Pascal matrix with B(i, j) = <Z +]) Then
i

~1 ~1

H™ =Gpp—gB Gpy. (21)
Since B!, G4, and G, are all integer matrices, it follows that H ' also is an
integer matrix. O

5. CONCLUSION

We have proposed a definition of super Patalan numbers that generalizes the
super Catalan numbers of Gessel, in that the super Catalan numbers are the super
Patalan numbers of order p. The super Patalan numbers have a number of prop-
erties that generalize the corresponding properties of the super Catalan numbers,
in particular equations (@), (@), (I3) and ([I2)). We also prove a multiplicative iden-
tity for the extended super Patalan matrix, and we give a convolutional recurrence
generalizing the well known recurrence for the Catalan numbers.
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