A MONOTONICITY PROPERTY FOR GENERALIZED FIBONACCI SEQUENCES

Toufik Mansour
Department of Mathematics, University of Haifa, 31905 Haifa, Israel
tmansour@univ.haifa.ac.il
Mark Shattuck
Department of Mathematics, University of Tennessee, Knoxville, TN 37996
shattuck@math.utk.edu

Abstract

Given $k \geq 2$, let a_{n} be the sequence defined by the recurrence $a_{n}=\alpha_{1} a_{n-1}+\cdots+$ $\alpha_{k} a_{n-k}$ for $n \geq k$, with initial values $a_{0}=a_{1}=\cdots=a_{k-2}=0$ and $a_{k-1}=1$. We show under a couple of assumptions concerning the constants α_{i} that the ratio $\frac{\sqrt[n]{a_{n}}}{n-\sqrt[1]{a_{n-1}}}$ is strictly decreasing for all $n \geq N$, for some N depending on the sequence, and has limit 1. In particular, this holds in the cases when all of the α_{i} are unity or when all of the α_{i} are zero except for the first and last, which are unity. Furthermore, when $k=3$ or $k=4$, it is shown that one may take N to be an integer less than 12 in each of these cases.

Keywords: monotonicity, log-concavity, k-Fibonacci numbers, tribonacci numbers
2010 Mathematics Subject Classification: 05A10, 11B39, 11B75

1. Introduction

In 1982, Firoozbakht conjectured that the sequence $\left\{\sqrt[n]{p_{n}}\right\}_{n \geq 1}$ is strictly decreasing, where p_{n} denotes the n-th prime. A stronger conjecture was later made by Sun 12 that in fact

$$
\frac{\sqrt[n+1]{p_{n+1}}}{\sqrt[n]{p_{n}}}<1-\frac{\log \log n}{2 n^{2}}, \quad n>4
$$

which has been verified for all $n \leq 3.5 \cdot 10^{6}$. Inspired by this and [11, Sun posed several conjectures in [12] concerning the monotonicity of sequences of the form $\left\{\sqrt[n]{y_{n}}\right\}_{n \geq N}$, where $\left\{y_{n}\right\}_{n \geq 0}$ is a familiar number theoretic or combinatorial sequence. Partial progress has been made in this direction, including Chen et al. [3] for Bernoulli numbers, Hou et al. 4] for Fibonacci and derangement numbers, and Wang and Zhu [13] for Motzkin and (large) Schröder numbers.
Recall that a sequence $\left\{y_{n}\right\}_{n>0}$ is said to be (strictly) log concave (see, e.g., 2, 10) if the sequence of ratios $\left\{\frac{y_{n}}{y_{n-1}}\right\}_{n \geq 1}$ is (strictly) decreasing. If the sequence of ratios is increasing, then y_{n} is said to be \log convex (see [6]). Suppose $A>0$ and $B \neq 0$ are integers such that $A^{2}-4 B>0$. Let u_{n} denote the sequence defined by the second order recurrence $u_{n}=A u_{n-1}-B u_{n-2}$ if $n \geq 2$, with initial values $u_{0}=0$ and $u_{1}=1$. In [4, Theorem 1.1], it was shown that $\sqrt[n]{u_{n}}$ is strictly \log-concave for all $n \geq N$, for some N depending on the sequence, and has limit 1 . In the special case $A=1$ and $B=-1$, which corresponds to the Fibonacci sequence, it is shown that one may take $N=5$. Here, we consider the question of monotonicity of $\frac{\sqrt[n]{a_{n}}}{\sqrt[n-1]{a_{n-1}}}$ for a class of sequences a_{n} defined by a more general linear recurrence.

Given $k \geq 2$, let a_{n} be a sequence of non-negative real numbers defined by the recurrence

$$
\begin{equation*}
a_{n}=\alpha_{1} a_{n-1}+\alpha_{2} a_{n-2}+\cdots+\alpha_{k} a_{n-k}, \quad n \geq k \tag{1.1}
\end{equation*}
$$

with $a_{0}=a_{1}=\cdots=a_{k-2}=0$ and $a_{k-1}=1$. One combinatorial interpretation for a_{n}, which follows from [1. Section 3.1], is that it counts the weighted linear tilings of length $n-k+1$ in which the tiles have length at most k, where a tile of length i is assigned the weight α_{i}. It will be shown that the sequence $\left\{\sqrt[n]{a_{n}}\right\}$ is strictly log-concave for all n sufficiently large under a couple of assumptions concerning the constants α_{i} (see Theorem[2.4 below). As a special case, one obtains the log-concavity result mentioned in the previous paragraph for the second-order sequence u_{n}.

We now recall two well-known classes of recurrences. Letting $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}=1$ in (1.1), one gets the k-Fibonacci sequence, which we will denote here by $f_{n}^{(k)}$. The sequence $f_{n}^{(k)}$ was first considered by Knuth [5] and has been given interpretations in terms of linear tilings [1, Chapter 3] and k-filtering linear partitions [8. When $\alpha_{1}=\alpha_{k}=1$ and all other α_{i} are zero, one gets a class of sequences known as the k-bonacci numbers (see, e.g., [1, Section 3.4]), which we will denote by $g_{n}^{(k)}$. Note that both $f_{n}^{(k)}$ and $g_{n}^{(k)}$ reduce to the usual Fibonacci numbers when $k=2$. It will be shown that the ratio $\frac{\sqrt[n]{a_{n}}}{\sqrt[n-1]{a_{n-1}}}$ is decreasing for all $n \geq N$ for some N depending on k whenever $a_{n}=f_{n}^{(k)}$ or $g_{n}^{(k)}$.

In the third section, we consider the special cases of $f_{n}^{(k)}$ and $g_{n}^{(k)}$ when $k=3$ and $k=4$ and show that one may take N to be an integer less than 12 in each of these cases. Our method will apply to finding the best possible N for any given sequence a_{n} satisfying a recurrence of the form (1.1) for which $\sqrt[n]{a_{n}}$ is eventually log-concave.

2. Main Results

Given $k \geq 2$, let a_{n} be a sequence of non-negative real numbers defined by the recurrence

$$
\begin{equation*}
a_{n}=\alpha_{1} a_{n-1}+\alpha_{2} a_{n-2}+\cdots+\alpha_{k} a_{n-k}, \quad n \geq k \tag{2.1}
\end{equation*}
$$

with $a_{0}=a_{1}=\cdots=a_{k-2}=0$ and $a_{k-1}=1$, where the α_{i} are fixed real numbers and $\alpha_{k} \neq 0$. The characteristic equation associated with the sequence a_{n} is defined by

$$
\begin{equation*}
f(x):=x^{k}-\alpha_{1} x^{k-1}-\alpha_{2} x^{k-2}-\cdots-\alpha_{k}=0 \tag{2.2}
\end{equation*}
$$

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ denote the roots of (2.2). By [7] Lemma 5.2], we have

$$
\begin{equation*}
a_{n}=c_{1} \lambda_{1}^{n}+c_{2} \lambda_{2}^{n}+\cdots+c_{k} \lambda_{k}^{n}, \quad n \geq 0 \tag{2.3}
\end{equation*}
$$

where

$$
c_{i}=\frac{1}{\prod_{j=1, j \neq i}^{k}\left(\lambda_{i}-\lambda_{j}\right)}, \quad 1 \leq i \leq k
$$

whenever the λ_{i} are distinct. Upon writing

$$
f(x)=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{k}\right)
$$

we have by the product rule of differentiation that

$$
f^{\prime}\left(\lambda_{i}\right)=\prod_{j=1, j \neq i}^{k}\left(\lambda_{i}-\lambda_{j}\right)=\frac{1}{c_{i}}, \quad 1 \leq i \leq k
$$

Definition 2.1. A zero of a polynomial g will be called dominant if it is simple and is strictly greater in modulus than all of its other zeros.

Note that if g has real coefficients, then a dominant zero must be real since non-real zeros come in conjugate pairs.

Lemma 2.2. If $f(x)$ defined by (2.2) has a dominant zero λ, then $\lambda>0$ and $f^{\prime}(\lambda)>0$.

Proof. Suppose $\lambda=\lambda_{1}$. Define

$$
\begin{equation*}
e_{n}=\frac{\sum_{i=2}^{k} c_{i} \lambda_{i}^{n}}{c_{1} \lambda_{1}^{n}}, \quad n \geq 0 \tag{2.4}
\end{equation*}
$$

Note that $a_{n}=c_{1} \lambda_{1}^{n}\left(1+e_{n}\right)$, by (2.3). Thus λ_{1} and $c_{1}=\frac{1}{f^{\prime}\left(\lambda_{1}\right)}$ real implies e_{n} is real. Note further that $e_{n} \rightarrow 0$ as $n \rightarrow \infty$ since λ_{1} is dominant. Taking n to be large and even implies $c_{1}>0$ and thus $f^{\prime}\left(\lambda_{1}\right)=\frac{1}{c_{1}}>0$. Taking n to be large and odd then implies λ_{1} is positive.

The following limit holds for the numbers e_{n}.
Lemma 2.3. Suppose that the polynomial $f(x)$ defined by (2.2) has dominant zero λ. Then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1+e_{n}\right)^{p(n)}=1 \tag{2.5}
\end{equation*}
$$

for any polynomial $p(n)$.
Proof. We provide a proof only in the case when the λ_{i} are distinct, the proof in the case when some of the λ_{i} are repeated being similar. We will show

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1+\left|e_{n}\right|\right)^{p(n)}=\lim _{n \rightarrow \infty}\left(1-\left|e_{n}\right|\right)^{p(n)}=1 \tag{2.6}
\end{equation*}
$$

from which (2.5) follows. (Note that $1-\left|e_{n}\right|$ is positive for n sufficiently large, which implies that the expression $\left(1-\left|e_{n}\right|\right)^{p(n)}$ is real for all such n.) Let

$$
r=\frac{\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{3}\right|, \ldots,\left|\lambda_{k}\right|\right\}}{\lambda_{1}}
$$

and

$$
M=\frac{\max \left\{\left|c_{2}\right|,\left|c_{3}\right|, \ldots,\left|c_{k}\right|\right\}}{c_{1}}
$$

Note that

$$
\left|e_{n}\right| \leq(k-1) M r^{n}, \quad n \geq 0
$$

so to show (2.6), we only need to show

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1+c r^{n}\right)^{p(n)}=\lim _{n \rightarrow \infty}\left(1-c r^{n}\right)^{p(n)}=1 \tag{2.7}
\end{equation*}
$$

for constants $c>0$ and $0<r<1$. The limits in (2.7) can be evaluated by taking a logarithm and applying l'Hôpital's rule, which completes the proof.

Theorem 2.4. Suppose that the characteristic polynomial $f(x)$ associated with the sequence a_{n} has dominant zero λ such that $f^{\prime}(\lambda)>1$. Then the sequence of ratios $\frac{\sqrt[n]{a_{n}}}{\sqrt[n-1]{a_{n-1}}}$ is strictly decreasing for all $n \geq N$, for some N depending on the α_{i}, and has limit 1 .

Proof. We provide a proof only in the case when the λ_{i} are distinct. First observe that

$$
\frac{\sqrt[n]{a_{n}}}{\sqrt[n-1]{a_{n-1}}}>\frac{\sqrt[n+1]{a_{n+1}}}{\sqrt[n]{a_{n}}}
$$

if and only if

$$
\left[c_{1} \lambda_{1}^{n}\left(1+e_{n}\right)\right]^{2 / n}>\left[c_{1} \lambda_{1}^{n+1}\left(1+e_{n+1}\right)\right]^{1 /(n+1)}\left[c_{1} \lambda_{1}^{n-1}\left(1+e_{n-1}\right)\right]^{1 /(n-1)},
$$

which may be rewritten as

$$
\begin{equation*}
\frac{\left(1+e_{n}\right)^{2\left(n^{2}-1\right)}}{\left(1+e_{n-1}\right)^{n(n+1)}\left(1+e_{n+1}\right)^{n(n-1)}}>c_{1}^{2} \tag{2.8}
\end{equation*}
$$

By Lemma 2.3, we have

$$
\lim _{n \rightarrow \infty}\left(1+e_{n}\right)^{2\left(n^{2}-1\right)}=\lim _{n \rightarrow \infty}\left(1+e_{n-1}\right)^{n(n+1)}=\lim _{n \rightarrow \infty}\left(1+e_{n+1}\right)^{n(n-1)}=1
$$

which implies (2.8) since $c_{1}=\frac{1}{f^{\prime}\left(\lambda_{1}\right)}<1$.
For the last statement, note that

$$
\log \left(\frac{\sqrt[n+1]{a_{n+1}}}{\sqrt[n]{a_{n}}}\right)=\frac{1}{n+1} \log a_{n+1}-\frac{1}{n} \log a_{n}=\frac{\log c_{1}+\log \left(1+e_{n+1}\right)}{n+1}-\frac{\log c_{1}+\log \left(1+e_{n}\right)}{n}
$$

and take limits as $n \rightarrow \infty$.
Corollary 2.5. If a_{n} is a sequence such that $f(x)$ has a dominant zero λ satisfying $f^{\prime}(\lambda)>1$, then $\sqrt[n]{a_{n}}$ is strictly increasing for all sufficiently large n.

Remark: If we allow the sequence a_{n} to contain negative terms, then modifying slightly the proof of Theorem 2.4 yields the result for $\left|a_{n}\right|$.

Let us exclude for now from consideration recurrences of the form

$$
a_{n}=\alpha_{d} a_{n-d}+\alpha_{2 d} a_{n-2 d}+\cdots+\alpha_{k} a_{n-k}, \quad n \geq k
$$

for some divisor $d>1$ of k and subject to the same initial conditions. Observe that such recurrences may be reduced, upon letting $b_{m}=a_{d m+d-1}$, to those of the form

$$
b_{m}=\alpha_{d} b_{m-1}+\alpha_{2 d} b_{m-2}+\cdots+\alpha_{k} b_{m-\frac{k}{d}}, \quad m \geq \frac{k}{d}
$$

where $b_{0}=b_{1}=\cdots=b_{\frac{k}{d}-2}=0$ and $b_{\frac{k}{d}-1}=1$ (note that $a_{d m+r}=0$ for all m if $0 \leq r<d-1$, by the initial conditions).

We now describe a class of recurrences frequently arising in applications for which the characteristic polynomial has a dominant zero.

Lemma 2.6. Suppose that $\alpha_{i} \geq 0$ for all i in (2.1) with $\alpha_{k} \neq 0$ and furthermore that it is not the case that $\alpha_{i}=0$ for all $i \in[k]-\{d, 2 d, \ldots, k\}$ for some divisor $d>1$ of k. Then $f(x)$ has a dominant zero.

Proof. Let $f(x)=x^{k}-\alpha_{1} x^{k-1}-\cdots-\alpha_{k}$, where the α_{i} satisfy the given hypotheses. By Descartes' rule of signs, the equation $f(x)=0$ has a single (simple) positive root, which we will denote by λ. Let ρ be any root of the equation $f(x)=0$ other than λ. We will show that the numbers $\alpha_{i} \rho^{k-i}$, $1 \leq i \leq k$, cannot all be non-negative real numbers. Suppose, to the contrary, that this is the case.

Let $\left\{i_{1}, i_{2}, \ldots, i_{a}\right\}$ denote the set of indices i such that $\alpha_{i} \neq 0$. Let $b=\min \left\{i_{j+1}-i_{j}: 1 \leq j \leq a-1\right\}$ and ℓ be an index such that $i_{\ell+1}-i_{\ell}=b$. Then

$$
\alpha_{i_{\ell+1}} \rho^{i_{\ell+1}}=r \alpha_{i_{\ell}} \rho^{i_{\ell}}
$$

for some $r>0$ implies

$$
\rho=\left(\frac{r \alpha_{i_{\ell}}}{\alpha_{i_{\ell+1}}}\right)^{1 / b} \xi
$$

where ξ denotes a primitive b^{\prime}-th root of unity for some positive divisor b^{\prime} of b. Note that $b^{\prime}>1$ since $f(x)$ has only one positive real zero. If b^{\prime} does not divide k, then ρ^{k} is not a positive real since $\xi^{k} \neq 1$ in this case. But this contradicts the equality $\rho^{k}=\alpha_{1} \rho^{k-1}+\cdots+\alpha_{k}$, since the right-hand side is a positive real. Thus b^{\prime} divides k and so it must be the case that there exists some index m such that the difference $c=i_{m+1}-i_{m}$ is not divisible by b^{\prime} (for otherwise, the second hypothesis concerning the α_{i} would be contradicted). But then

$$
\alpha_{i_{m+1}} \rho^{\alpha_{i_{m+1}}}=s \alpha_{i_{m}} \rho^{\alpha_{i_{m}}}
$$

for some $s>0$ implies ρ^{c} is a positive real number and hence $\xi^{c}=1$, which implies b^{\prime} divides c, a contradiction.
Thus, the $\alpha_{i} \rho^{k-i}$ cannot all be non-negative real numbers. Suppose i^{\prime} is such that $\alpha_{i^{\prime}} \rho^{k-i^{\prime}}$ is either negative or not real. Note that the assumption $\alpha_{k}>0$ implies $i^{\prime}<k$. Then we may write

$$
\begin{aligned}
|\rho|^{k} & =\left|\rho^{k}\right|=\left|\sum_{i=1}^{k} \alpha_{i} \rho^{k-i}\right|=\left|\alpha_{k}+\alpha_{i^{\prime}} \rho^{k-i^{\prime}}+\sum_{i=1, i \neq i^{\prime}}^{k-1} \alpha_{i} \rho^{k-i}\right| \\
& \leq\left|\alpha_{k}+\alpha_{i^{\prime}} \rho^{k-i^{\prime}}\right|+\left|\sum_{i=1, i \neq i^{\prime}}^{k-1} \alpha_{i} \rho^{k-i}\right| \leq\left|\alpha_{k}+\alpha_{i^{\prime}} \rho^{k-i^{\prime}}\right|+\sum_{i=1, i \neq i^{\prime}}^{k-1} \alpha_{i}|\rho|^{k-i} \\
& <\alpha_{k}+\alpha_{i^{\prime}}|\rho|^{k-i^{\prime}}+\sum_{i=1, i \neq i^{\prime}}^{k-1} \alpha_{i}|\rho|^{k-i}=\sum_{i=1}^{k} \alpha_{i}|\rho|^{k-i}
\end{aligned}
$$

where the last inequality is strict since $\alpha_{i^{\prime}} \rho^{k-i^{\prime}}$ is not a positive real number. But then we have $|\rho|^{k}<\sum_{i=1}^{k} \alpha_{i}|\rho|^{k-i}$, which implies $f(|\rho|)<0$. Since $f(x)>0$ if $x>\lambda$ and $f(x)<0$ if $0<x<\lambda$, it follows that $|\rho|<\lambda$, as desired.

Remark: By Theorem 2.4, for sequences a_{n} defined by a recurrence of the form (2.1), where the α_{i} satisfy the hypotheses of Lemma [2.6, one needs only to verify the condition $f^{\prime}(\lambda)>1$ in order to establish the log-concavity of $\sqrt[n]{a_{n}}$ for large n.
We now apply the previous results to the sequences $\sqrt[n]{f_{n}^{(k)}}$ and $\sqrt[n]{g_{n}^{(k)}}$ where $k \geq 2$.
Theorem 2.7. The characteristic polynomial $f(x)$ associated with either the sequence $f_{n}^{(k)}$ or $g_{n}^{(k)}$ has a dominant zero λ such that $f^{\prime}(\lambda)>1$. Thus, for $k \geq 2$, the sequences $\sqrt[n]{f_{n}^{(k)}}$ and $\sqrt[n]{g_{n}^{(k)}}$ are log-concave for all $n \geq N$ for some constant N depending on k.

Proof. We need only to verify the first statement in each case. Note that both $f_{n}^{(k)}$ and $g_{n}^{(k)}$ are defined by recurrences such that the constants α_{i} satisfy the conditions given in Lemma 2.6. Thus,
we need only to verify $f^{\prime}(\lambda)>1$. In the case of $f_{n}^{(k)}$, this follows easily since

$$
\begin{aligned}
f^{\prime}(\lambda) & =k \lambda^{k-1}-(k-1) \lambda^{k-2}-\cdots-1=k\left(\lambda^{k-2}+\lambda^{k-3}+\cdots+\frac{1}{\lambda}\right)-(k-1) \lambda^{k-2}-\cdots-1 \\
& =\frac{k}{\lambda}+\lambda^{k-2}+2 \lambda^{k-3}+\cdots+(k-1)>1 .
\end{aligned}
$$

In the case of $g_{n}^{(k)}$, note that $\lambda>1$ since $f(1)<0$. Then $f^{\prime}(\lambda)=\lambda^{k-2}(1+k(\lambda-1))>1$ since $\lambda>1$, which completes the proof.

3. Third and fourth order sequences

In this section, we will determine the smallest possible N in Theorem 2.4 in some particular cases. The method illustrated here can be applied to other sequences in finding the smallest N. Let us denote the $k=3$ cases of the sequences $f_{n}^{(k)}$ and $g_{n}^{(k)}$ by t_{n} and r_{n}, respectively. The t_{n} and r_{n} are known as the tribonacci and 3-bonacci numbers, respectively. See, e.g., [1 Section 3.3] and also the sequences A000073 and A000930 in [9.
We have the following estimates for the values of the c_{i} and λ_{i} in (2.3) in the cases of t_{n} and r_{n}.
Values corresponding to the sequence t_{n} :

$$
\begin{array}{ccc}
c_{1}=0.182803, & c_{2}=-0.091401+0.340546 i & \text { and } \quad c_{3}=\overline{c_{2}} \\
\lambda_{1}=1.839286, & \lambda_{2}=-0.419643+0.606290 i & \text { and } \quad \lambda_{3}=\overline{\lambda_{2}}
\end{array}
$$

Values corresponding to the sequence r_{n} :

$$
\begin{aligned}
& c_{1}=0.284693, \quad c_{2}=-0.142346+0.305033 i \quad \text { and } c_{3}=\overline{c_{2}}, \\
& \lambda_{1}=1.465571, \quad \lambda_{2}=-0.232785+0.792551 i \quad \text { and } \quad \lambda_{3}=\overline{\lambda_{2}} .
\end{aligned}
$$

We will make use of these estimates in the proof of the following result.
Theorem 3.1. The ratio $\frac{\sqrt[n]{a_{n}}}{\sqrt[n-1 / a_{n-1}]{\sqrt{a_{2}}}}$ is strictly decreasing for all $n \geq 4$ when $a_{n}=t_{n}$ and for all $n \geq 8$ when $a_{n}=r_{n}$.

Proof. We first consider the case t_{n}. One can verify by direct computation that

$$
\frac{\sqrt[n]{t_{n}}}{\sqrt[n-1]{t_{n-1}}}>\frac{\sqrt[n+1]{t_{n+1}}}{\sqrt[n]{t_{n}}}
$$

for $4 \leq n \leq 9$, so we may assume $n \geq 10$. By (2.8), it suffices to show

$$
\begin{equation*}
\left(1+e_{n}\right)^{2\left(n^{2}-1\right)}>c_{1}^{2 / 3}, \quad\left(1+e_{n-1}\right)^{n(n+1)}<c_{1}^{-2 / 3} \quad \text { and } \quad\left(1+e_{n+1}\right)^{n(n-1)}<c_{1}^{-2 / 3} \tag{3.1}
\end{equation*}
$$

for $n \geq 10$.
To do so, first note that

$$
\left|e_{n}\right|=\left|\frac{2 \operatorname{Re}\left(c_{2} \lambda_{2}^{n}\right)}{c_{1} \lambda_{1}^{n}}\right| \leq \frac{2\left|c_{2}\right|}{c_{1}}\left(\frac{\left|\lambda_{2}\right|}{\lambda_{1}}\right)^{n}=\frac{\left|\lambda_{1}-\lambda_{2}\right|}{\left|\operatorname{Im}\left(\lambda_{2}\right)\right|}\left(\frac{\left|\lambda_{2}\right|}{\lambda_{1}}\right)^{n}<(3.86)(0.41)^{n} .
$$

Thus, to show (3.1), it is enough to show

$$
\begin{equation*}
\left(1-M_{n}\right)^{2\left(n^{2}-1\right)}>c_{1}^{2 / 3}, \quad\left(1+M_{n-1}\right)^{n(n+1)}<c_{1}^{-2 / 3} \quad \text { and } \quad\left(1+M_{n+1}\right)^{n(n-1)}<c_{1}^{-2 / 3} \tag{3.2}
\end{equation*}
$$

where $M_{n}=(3.86)(0.41)^{n}$. Since M_{n} is a decreasing positive sequence, we have $\left(1+M_{n-1}\right)^{n(n+1)}>$ $\left(1+M_{n+1}\right)^{n(n-1)}$, so we only need to show the first two inequalities in (3.2).
The first inequality in (3.2) holds if and only if $\log \left(1-M_{n}\right)>\frac{\log c_{1}}{3\left(n^{2}-1\right)}$. For this last inequality, we can show

$$
\begin{equation*}
M_{n}+M_{n}^{2}<-\frac{\log (0.19)}{3\left(n^{2}-1\right)}, \quad n \geq 10 \tag{3.3}
\end{equation*}
$$

since $c_{1}<0.19$ and $-\log (1-y)<y+y^{2}$ for $0<y<\frac{1}{2}$. To show (3.3), let $a(x)=-\frac{\log (0.19)}{3\left(x^{2}-1\right)}$ and $b(x)=M_{x}+M_{x}^{2}$, where M_{x} has the obvious meaning. Observe that $a(10)>b(10)$ and $\lim _{x \rightarrow \infty}(a(x)-$ $b(x))=0$. Thus to prove $a(x)>b(x)$ for $x \geq 10$, it suffices to show $a^{\prime}(x)<b^{\prime}(x)$ for $x \geq 10$. Since $\frac{2}{3 x^{3}}<\frac{2 x}{3\left(x^{2}-1\right)^{2}}$, it is enough to show

$$
\frac{(3.86) \log (0.41)}{\log (0.19)}(0.41)^{x}+\frac{2(3.86)^{2} \log (0.41)}{\log (0.19)}(0.41)^{2 x}<\frac{2}{3 x^{3}}
$$

and for this, it is enough to show

$$
\begin{equation*}
\frac{\log (0.19)}{(3.86) \log (0.41)}(0.41)^{-x}>3 x^{3}, \quad x \geq 10 \tag{3.4}
\end{equation*}
$$

Note that (3.4) holds for $x=10$, with the derivative of the difference of the two sides seen to be positive for all $x \geq 10$. This finishes the proof of the first inequality in (3.2).
We proceed in a similar manner to verify the second inequality in (3.2). Since $\log (1+y)<y$ for $y>0$, it suffices to show $c(x)>d(x)$ for $x \geq 10$, where $c(x)=-\frac{2 \log (0.19)}{3 x(x+1)}$ and $d(x)=M_{x-1}$. Since $c(10)>d(10)$ and $\lim _{x \rightarrow \infty}(c(x)-d(x))=0$, we only need to show that $c^{\prime}(x)<d^{\prime}(x)$ for $x \geq 10$. Now $c^{\prime}(x)<d^{\prime}(x)$ if and only if

$$
\begin{equation*}
\frac{2(2 x+1)}{3 x^{2}(x+1)^{2}}>\frac{(3.86) \log (0.41)}{\log (0.19)}(0.41)^{x-1}, \quad x \geq 10 \tag{3.5}
\end{equation*}
$$

Since

$$
\frac{2(2 x+1)}{3 x^{2}(x+1)^{2}}>\frac{2(2 x+1)}{3\left(x+\frac{1}{2}\right)^{4}}=\frac{4}{3\left(x+\frac{1}{2}\right)^{3}}
$$

to prove (3.5), one can show

$$
(0.41)^{1-x}>\frac{3}{4}(2.08)\left(x+\frac{1}{2}\right)^{3}, \quad x \geq 10
$$

which can be done by comparing the derivatives of the two sides. This establishes the second inequality in (3.2) and completes the proof in the case when $a_{n}=t_{n}$.
A similar proof can be given when $a_{n}=r_{n}$, which we outline as follows. We first verify by computation that

$$
\frac{\sqrt[n]{r_{n}}}{\sqrt[n-1]{r_{n-1}}}>\frac{\sqrt[n+1]{r_{n+1}}}{\sqrt[n]{r_{n}}}
$$

for $8 \leq n \leq 17$. Thus, we may assume $n \geq 18$ in showing (3.1) for r_{n}. We use the bounding function of $M_{n}=(2.37)(0.57)^{n}$ in proving the first two inequalities in (3.2). For the first inequality, instead of (3.4), one needs to show

$$
\frac{\log (0.29)}{(2.37) \log (0.57)}(0.57)^{-x}>3 x^{3}, \quad x \geq 18
$$

which can be done by a comparison of the derivatives of the two sides. In proving the second inequality in (3.2) above for r_{n}, it is enough to verify

$$
(0.57)^{1-x}>\frac{3}{4}(1.08)\left(x+\frac{1}{2}\right)^{3}, \quad x \geq 18
$$

This can be done by comparing derivatives of the two sides for $x \geq 18$, which completes the proof in the r_{n} case.

By Theorems 2.4 and 3.1 and direct computation, we obtain the following.
Corollary 3.2. The sequence $\sqrt[n]{a_{n}}$ is strictly increasing for $n \geq 5$ when $a_{n}=t_{n}$ or r_{n}.
Let p_{n} and q_{n} denote the respective $k=4$ cases of the $f_{n}^{(k)}$ and $g_{n}^{(k)}$. The p_{n} and q_{n} are known as the tetranacci and 4-bonacci numbers and occur, respectively, as sequences A000078 and A017898 in 9]. A proof comparable to the previous one yields the following result.
Theorem 3.3. The ratio $\frac{\sqrt[n]{a_{n}}}{\sqrt[n-1]{a_{n-1}}}$ is strictly decreasing for all $n \geq 5$ when $a_{n}=p_{n}$ and for all $n \geq 11$ when $a_{n}=q_{n}$.

Given the prior two results, one might wonder if one can find some bound for the best possible N as a function of k. In the case of $f_{n}^{(k)}$, such a bound seems possible in light of the fact (see [7, Lemma $5.2]$) that the dominant zero of the associated characteristic polynomial approaches 2 as k approaches infinity, with all other zeros of modulus strictly less than 1 and distinct. By the present method, one would need an estimate of the magnitude of the constants c_{i} in (2.3). In particular, it would be useful to have a lower bound (as a function of k) for the quantity

$$
m(k):=\min _{2 \leq i \leq k}\left|\prod_{j=1, j \neq i}^{k}\left(\lambda_{i}-\lambda_{j}\right)\right| .
$$

If $m(k)$ can be shown, for example, to be no smaller than $a b^{-k}$ for some constants a and b with $b>\frac{1}{2}$, then a bound for N in terms of k could probably be obtained.

References

[1] A. T. Benjamin and J. J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Association of America, 2003.
[2] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Contemp. Math. 178 (1994) 71-89.
[3] W. Y. C. Chen, J. J. F. Guo and L. X. W. Wang, Zeta functions and the log-behavior of combinatorial sequences, Proc. Edinb. Math. Soc. (2), in press.
[4] Q.-H. Hou, Z.-W. Sun and H. Wen, On monotonicity of some combinatorial sequences, Publ. Math. Debrecen, in press, arXiv:1208.3903
[5] D. E. Knuth, The Art of Computer Programming: Sorting and Searching, Vol. 3, Addison-Wesley, 1973.
[6] L. L. Liu and Y. Wang, On the log-convexity of combinatorial sequences, Adv. in Appl. Math. 39 (2007) $453-476$.
[7] T. Mansour and M. Shattuck, Polynomials whose coefficients are k-Fibonacci numbers, Ann. Math. Inform. 40 (2012) 57-76.
[8] E. Munarini, A combinatorial interpretation of the generalized Fibonacci numbers, Adv. in Appl. Math. 19 (1998) 306-318.
[9] N. J. A. Sloane, The On-Line Enyclopedia of Integer Sequences, available at http://oeis.org, 2010.
[10] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci. 576 (1989) 500-534.
[11] Z.-W. Sun, On a sequence involving sums of primes, Bull. Aust. Math. Soc. 88 (2013) 197-205.
[12] Z.-W. Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangri-La, Proceedings of the 6th China-Japan Seminar (Shaghai, 2011), World Scientific (2013) 244-258.
[13] Y. Wang and B. X. Zhu, Proofs of some conjectures on monotonicity of number theoretic and combinatorial sequences, Sci. China Math. 57 (2014) 2429-2435.

