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BINARY DETERMINANTAL COMPLEXITY

JESKO HÜTTENHAIN∗ AND CHRISTIAN IKENMEYER†

Abstract. We prove that for writing the 3 by 3 permanent polynomial as a determinant of a matrix
consisting only of zeros, ones, and variables as entries, a 7 by 7 matrix is required. Our proof is
computer based and uses the enumeration of bipartite graphs.

Furthermore, we analyze sequences of polynomials that are determinants of polynomially sized
matrices consisting only of zeros, ones, and variables. We show that these are exactly the sequences
in the complexity class of constant free polynomially sized (weakly) skew circuits.
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1. Introduction

Let Sm denote the symmetric group on m letters and let perm :=
∑

π∈Sm

∏m

i=1 xi,π(i) denote the

m×m permanent polynomial in m2 variables. The flagship problem in algebraic complexity theory is
finding superpolynomial lower bounds for the determinantal complexity of the permanent polynomial,
a question whose roots date back to Valiant’s seminal paper [Val79a], with an additional emphasis on
the special role of the permanent in [Val79b].

We call a matrix whose entries are only variables or integers an integer variable matrix. One main
implication of [Val79a] is the following theorem.

Theorem 1.1. For every polynomial f with rational coefficients one can always find a square matrix A
whose entries are variables or rational numbers such that det(A) = f . Moreover, if f has only integer
coefficients, then A can be chosen as an integer variable matrix. �

For example,

det





0 x11 x21

x12 0 1
x22 1 0



 = x11x22 + x12x21 = per2. (1.2)

For an n × n square matrix we refer to n as its size. What is the minimal size of a matrix whose
determinant is perm and whose entries are only variables and rational numbers? For a given m
we take dc(perm) to be this minimal size. It is famously conjectured by Valiant that the sequence
m 7→ dc(perm) of natural numbers grows superpolynomially fast. In modern terms we can concisely
phrase this conjecture as VPws 6= VNP, see for example [MP08]. A graph construction by Grenet
[Gre11], see Section 6.I, has the following consequence.

Theorem 1.3. For every natural number m there exists an integer variable matrix A of size 2m − 1
such that perm = det(A). Moreover, A can be chosen such that the entries in A are only variables,
zeros, and ones, but no other constants. �

Theorem 1.3 gives rise to the following definition. We call a matrix whose entries are only zeros,
ones, or variables, a binary variable matrix. We will prove in Corollary 2.4 that every polynomial f
with integer coefficients can be written as the determinant of a binary variable matrix and that the
size is almost the size of the matrix from Theorem 1.1, see Proposition 2.3 for a precise statement. We
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then denote by bdc(f) the smallest n such that f can be written as a determinant of an n× n binary
variable matrix. It turns out that the complexity class of sequences (fm) with polynomially bounded
binary determinantal complexity bdc(fm) is exactly VP0

ws
, the constant free version of VPws, see

Section 5 for definitions and proofs.
Theorem 1.3 shows that bdc(perm) ≤ 2m − 1. It is easy to see that this upper bound is sharp for

m = 1 and for m = 2.
The best known general lower bound is bdc(perm) ≥ m2

2 due to [MR04] in a stronger model of
computation, see also [LMR10] for the same bound in an even stronger model of computation. This
implies that bdc(per3) is either 5, 6, or 7.

The main result of this paper is the following.

Theorem 1.4. bdc(per3) = 7.

We use a computer aided proof and enumeration of bipartite graphs in our study. The binary
determinantal complexity of perm is now known to be exactly 2m− 1 for m ∈ {1, 2, 3}. Unfortunately,
determining bdc(per4) is currently out of reach with our methods.

Acknowledgments. We thank Peter Bürgisser, Gordon Royle, and JM Landsberg very much for
interesting and helpful discussions. We are very grateful to the Simon’s Institute for the Theory of
Computing in Berkeley for hosting us during this project.

Ancillary files. Since the proof of Theorem 1.4 is computer-based, you can find attached to this note
the source code of a C programm called ptest, which performs the algorithm outlined in Section 3.I.

We also include the file output-ptest-on-7x7.txt containing the output of ptest on the nauty-
based enumeration of all 7× 7 binary variable matrices. This list will be relevant for the observations
made in Section 4.

2. Binary Algebraic Branching Programs and the Cost of Computing Integers

The main purpose of this section is to prove that even though we only allow the constants 0 and 1, all
polynomials with integer coefficients can be obtained as the determinant of a binary variable matrix,
see Corollary 2.4. Moreover, the size of the matrices is not much larger than the size of matrices
from Theorem 1.1, see Proposition 2.3. We use standard techniques from algebraic complexity theory,
heavily based on [Val79a], but a certain attention to the signs has to be taken.

In what follows, a digraph is always a finite directed graph which may possibly have loops, but which
has no parallel edges. We label the edges of a digraph by polynomials. We will almost exclusively be
concerned with digraphs whose labels are only variables or the constant 1. Note that we consider only
labeled digraphs.

A cycle cover of a digraph G is a set of cycles in G such that each vertex of G is contained in exactly
one of these cycles. If a cycle in G has i edges with labels e1, . . . , ei, then its weight is defined as
(−1)i−1 · e1 · · · ei. The weight of a cycle cover is the product of the weights of its cycles. The value of
G is the polynomial that arises as the sum over the weights of all cycle covers in G. We then define
the directed adjacency matrix A of a digraph G as the matrix whose entry Aij is the label of the edge
(i, j) or 0 if that edge does not exist.

In what follows, we will often construct matrices as the directed adjacency matrices of digraphs.
The reason is the following well-known observation, see for example [Val79a].

Observation 2.1. The value of a digraph G equals the determinant of its directed adjacency matrix.

As an intermediate step, we will often construct a binary algebraic branching program: This is an
acyclic digraph Γ = (Γ, s, t) where every edge is labeled by either 1 or a variable. The digraph Γ
has two distinguished vertices, the source s and the target t, where s has no incoming and t has no
outgoing edges. If an s-t-path in Γ has i edges with labels e1, . . . , ei, then its path weight is defined
as the value (−1)i−1 · e1 · · · ei. The path value of Γ is the polynomial that arises as the sum over the
path weights of all s-t-paths in Γ. We remark that this notion of weight differs from the literature by
a sign.
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Proposition 2.2. For a nonzero constant c ∈ Z, there is a binary algebraic branching program Γ with
at most O(log |c|) vertices whose path value is c.

Proof. We can assume without loss of generality that c > 0: Given a binary algebraic branching
program Γ with path value c > 0 and at most O(log c) vertices, we can add a single vertex t′ and an
edge from t to t′ with label 1 to obtain a new program (Γ′, s, t′) with path value −c.

For a natural number c, an addition chain of length ℓ is a sequence of distinct natural numbers
1 = c0, c1, . . . , cℓ = c together with a sequence of tuples (j1, k1), . . . , (jℓ, kℓ) such that ci = cji + cki

and ji, ki < i for all 1 ≤ i ≤ ℓ. However, we will think of this data as a digraph Γ̃ on the vertices
{c0, . . . , cℓ} with edges (cji , ci) and (cki

, ci) for all 1 ≤ i ≤ ℓ. The labels of all edges are equal to 1.
Note that we allow double edges in these digraphs temporarily. We set s := c0 and t := cℓ. Thus, we
view an addition chain as an acyclic digraph where every vertex except for c0 has indegree two. This
already strongly resembles a binary algebraic branching program, but Γ̃ might have parallel edges.
Observe that there are exactly ci many paths from c0 to ci in the digraph Γ̃. In particular, there are
exactly c paths from s to t in Γ̃.

Using the algorithm of repeated squaring [Knu97, Sec. 4.6.3, eq. (10)] one can construct an addition

chain Γ̃ as above with at most O(log c) vertices and such that there are exactly c paths from s to t in Γ̃.

For every edge (v, w) in Γ̃ we add a new vertex u and replace the edge (v, w) by two new edges (v, u)
and (u,w). We call the resulting digraph Γ = (Γ, s, t). Observe that the binary algebraic branching
program Γ has no parallel edges any more and all s-t-paths in Γ have even length. Also, the digraph Γ
still has O(log c) many vertices. Labelling all edges in Γ with 1, the path value of Γ is equal to c. �

Proposition 2.3. Let C be an n×n matrix whose entries are variables and arbitrary integer entries.
Let cmax be the integer entry of C with the largest absolute value. Then there is a binary variable
matrix A of size O(n2 · log |cmax|) with det(A) = det(C).

Proof. We will interpret C as the directed adjacency matrix of a digraph. Any edge that has an
integer label which is neither 1 nor 0 will be replaced by a subgraph of size O(log |cmax|) arising from
the construction of the previous Lemma 2.2. The directed adjacency matrix of the resulting graph will
be the desired matrix A. Formally, we proceed by induction.

Denote by q the number of integer entries in the matrix C that are neither equal to 0 nor 1. By
induction on q, we will prove the slightly stronger statement that there is a binary variable matrix A
of size n+ q · O(log |cmax|) with det(A) = det(C). Since q ≤ n2, this implies the statement. Note that
the case q = 0 is trivial, so we assume q ≥ 1 and perform the induction step.

Let H be the digraph whose directed adjacency matrix is C. Recall that this means the following:
H is a digraph on the vertices 1, . . . , n and there is an edge (i, j) with label Cij if Cij 6= 0 and otherwise
no such edge exists. Let e = (i, j) be the edge corresponding to an integer entry c = Cij which is
neither 0 nor 1. Let Γ = (Γ, s, t) be a binary algebraic branching program with path value c and
O(log |c|) many vertices, which exists by Proposition 2.2.

We will now replace the edge (i, j) by Γ (see Figure 1): Let G be the digraph that arises from H ∪Γ
by removing the edge (i, j), adding edges (i, s) and (t, j) with label 1 and adding loops with label 1 to
all vertices of Γ. The directed adjacency matrix of G has size n + O(log |c|) ≤ n + O(log |cmax|) and
contains q − 1 integer entries which are neither 0 nor 1. By applying the induction hypothesis to the
directed adjacency matrix of G, we obtain a matrix A of size

n+O(log |cmax|) + (q − 1) · O(log |cmax|) = n+ q · O(log |cmax|)

whose determinant equals the value of G. We are left to show that the value of G is equal to det(C),
i.e., the value of H .

For this purpose, we will analyze the relation between cycle covers of G and H , which is straight-
forward (see Figure 1): Consider a cycle cover K of G. Any vertex of Γ which is not covered by its
loop must be part of a cycle whose intersection with Γ is a path from s to t. To K we can therefore
associate a cycle cover KH of H as follows: If every vertex of Γ is covered by its loop in K, let KH be
K without these loops. Otherwise, there is unique cycle κK in K that restricts to an s-t-path πK in Γ.
Let κH

K be the intersection κK ∩H together with the edge (i, j) and note that κH
K is a cycle in H . We

obtain KH from K by replacing κK with κH
K and removing all remaining loops from inside Γ.
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All cycle covers L of H are of the form L = KH for some cycle cover K of G. If L is a cycle cover
of H containing the edge (i, j) then the cycle covers K of G with L = KH are in bijection with the
s-t-paths in Γ. We now fix such a cycle cover L. By definition of the value of a digraph, it suffices to
show that

∑

K cycle cover of G

such that L=KH

weight(K) = weight(L).

Note that K and L = KH differ only in loops and in the cycles κK and κH
K , respectively. Since loops

contribute a factor of 1 to the weight of a cycle cover, we are left to prove that
∑

K cycle cover of G

such that L=KH

weight(κK) = weight(κH
K).

x 3 y

−2

x

x 3 y

−2

x

x 3 yx

x 3 yx

x 3 yx

C =





3 0 −2
0 x 0
x 0 y





det(C) = 3xy + 2x2

Figure 1. Given a matrix C we construct a digraph H with directed adjacency
matrix C (left hand side) and the digraph G (right hand side) by replacing the edge
with label −2 in H by a binary algebraic branching program. We omit the labels for
edges that have label 1. The right hand side depicts the cycle covers K of G and the
left hand side shows the corresponding cycle covers KH of H .
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Let e1, . . . , er be the labels of the edges of κK ∩H . These are the edges shared by κK and κH
K . Thus,

weight(κH
K) = (−1)r · c · e1 · · · er

=







∑

π is s-t-path
inside P

weight(π)






· (−1)r · e1 · · · er =









∑

K cycle cover of G

such that L=KH

weight(πK)









· (−1)r · e1 · · · er

=









∑

K cycle cover of G

such that L=KH

weight(πK) · (−1)r · e1 · · · er









=
∑

K cycle cover of G

such that L=KH

weight(κK)

is precisely the desired equality. �

Corollary 2.4. For every polynomial f with integer coefficients there exists a binary variable matrix
whose determinant is f .

Proof. Combine Theorem 1.1 and Proposition 2.3. �

3. Lower Bounds

This section is dedicated to the proof of Theorem 1.4. Let B := {0, 1}. A sequential numbering
makes the proof much easier to read, so we think of the variables as arranged in a 3× 3 matrix

x =





x1 x2 x3

x4 x5 x6

x7 x8 x9



 .

In this section, we will understand per3 = per(x) as a polynomial in the variables x1, . . . , x9 instead
of the variables xij with 1 ≤ i, j ≤ 3.

Proof Outline. Let n ∈ N and A an n× n binary variable matrix. The binary matrix B(A) ∈ B
n×n

is defined as the matrix arising from A by setting all variables to 1. We call B(A) the support matrix

of A. If we set all variables to 1 in per3, we obtain the value 6, so if per3 = det(A), then substituting 1
for all variables on both sides of the equation, we obtain the condition

6 = det(B(A)). (3.1)

In [EZ62, Slo14], the maximal values of determinants of binary matrices are computed for small values
of n. Since

∀B ∈ B
5×5 : det(B) ≤ 5, (3.2)

we immediately obtain the lower bound bdc(per3) ≥ 6.
Unfortunately, there are several matrices B ∈ B

6×6 that satisfy det(B) = 6. We proceed in two
steps to verify that nevertheless, none of these matrices B is the support matrix B(A) of a candidate
matrix A with per3 = det(A). A rough outline is the following:

(a) Enumerate all matrices B ∈ B
6×6 with det(B) = 6 up to symmetries.

(b) For all those matrices B prove that B is not the support matrix B(A) of a binary variable matrix A
with det(A) = per3. We describe this process in the next subsection.

3.I. Stepwise Reconstruction. Let us make part (b) precise. In the hope of failing, we attempt to
reconstruct a binary variable matrix A that has support B and which also satisfies det(A) = per3.
During the reconstruction process, we successively replace 1’s in B by the next variable. The process
is as follows:

Given a binary matrix B ∈ B
6×6, let

S := {(i, j) |Bij = 1}

be the set of possible variable positions. For any set of positions I ⊆ S, we consider the matrix BI that
arises from B by placing a variable y in every position in I. If B is the support of a binary variable
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matrix A with det(A) = per3 and I contains exactly the positions where y := x1 occurs in A, then
det(BI) must be equal to

per3





y 1 1
1 1 1
1 1 1



 = 2y + 4. (3.3)

We define the set
S := {I ⊆ S | det(BI) = 2y + 4} .

Claim 3.4. Let A be a binary variable matrix with support B and det(A) = per3. Let k ∈ {1, . . . , 9}
and define Ik := {(i, j) | Aij = xk} as the set of positions where the variable xk occurs in A. Then, we
have Ik ∈ S.

Proof. By the symmetry of the permanent, we may assume that k = 1. In the matrix A, setting every
variable except y := x1 to 1 yields the matrix BI and therefore, det(BI) = 2y + 4 as in (3.3), because
det(A) = per3. This means Ik ∈ S by definition. �

Therefore, if B is the support matrix B(A) of a binary variable matrix A with det(A) = per3, we
can find 9 pairwise disjoint sets in S, one for each variable xk, that specify precisely where to place
these variables in A.

By a recursive search and backtracking, we now look for sets I1, . . . , Ik ∈ S such that

(i) I1, . . . , Ik are pairwise disjoint.
(ii) Placing xi into B at every position from Ii for 1 ≤ i ≤ k yields a matrix Ak such that det(Ak)

is equal to per3(x1, . . . , xk, 1, . . . , 1).

The search is recursive in the following sense: First, the possible choices at depth k = 1 are given by S.
Enumerating the possible choices for depth k+1 works as follows: For each choice I1, . . . , Ik ∈ S with
the above two properties, we enumerate all Ik+1 ∈ S that have empty intersection with I1 ∪ · · · ∪ Ik
and check whether condition (b) is satisfied.

If the recursive search never reaches k = 9 or fails there, then B is not the support of a binary
variable matrix A with det(A) = per3. If we reach level 9 however and do not fail there, we have found
such an A.

In practice, the process is sped up significantly by working over a large finite field Fp and choosing
random elements x1, . . . , x9 ∈ Fp \ {0, 1}.

3.II. Exploiting Symmetries in Enumeration. Let us call two matrices equivalent if they arise
from each other by transposition and/or permutation of rows and/or columns. A key observation
is that equivalent matrices have the same determinant up to sign. Therefore we do not have to
list all binary matrices B ∈ B

6×6 with det(B) = 6, but it suffices to list one representative matrix
B with det(B) = ±6 for each equivalence class. It happens to be the case that the equivalence
classes of 6 × 6 binary matrices are in bijection to graph isomorphy classes of undirected bipartite
graphs G = (V ∪ W,E) with |V | = |W | = 6, V ∩ W = ∅ as follows: For V = {v1, . . . , v6} and
W = {w1, . . . , w6}, the bipartite adjacency matrix B(G) ∈ B

6×6 of G is defined via B(G)i,j = 1 if and
only if {vi, wj} ∈ E. Row and column permutations in B(G) are reflected by renaming vertices in G.
Transposition of B(G) amounts to switching V and W in G.

The computer software nauty [MP13] can enumerate all 251 610 of these bipartite graphs, which is
already a significant improvement over the 236 = 68 719 476 736 elements of B6×6. To further limit the
number of bipartite graphs that have to be considered, we make the following observations:

• We need not consider binary matrices B containing a row i with only a single entry Bij equal to 1.
Indeed, Laplace expansion over the i-th row yields that det(B) is equal to the determinant of a 5×5
binary matrix, which can at most be 5, see (3.2). Translating to bipartite graphs, we only need to
consider those bipartite graphs where all vertices have at least two neighbours.

• If two distinct vertices in G have the same neighbourhood, then the bipartite adjacency matrix B(G)
has two identical rows (or columns) which would imply det(B(G)) = 0. Hence, we only need to
enumerate bipartite graphs where all vertices have distinct neighbourhoods. Unfortunately nauty
can impose this restriction only on rows and not on columns.

With these restrictions, the nauty command
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genbg -d2:2 -z 6 6

generates 44 384 bipartite graphs, only 263 of which have a bipartite adjacency matrix with determinant
equal to ±6. We then preprocess this list by swapping the first two rows of any matrix with negative
determinant.

Finally, the stepwise reconstruction (section 3.I) fails for all of these 263 matrices, proving that
bdc(per3) ≥ 7. The algorithm takes 28 seconds on an Intel CoreTM i7-4500U CPU (2.4 GHz) to finish.

Unfortunately, bdc(per4) can currently not be determined in this fashion because the enumeration
of all apropriate bipartite graphs, already on 9 + 9 vertices, is infeasible.

4. Uniqueness of the Grenet construction in the 7 by 7 case

The methods from Section 3 can be used to determine all 7 × 7 binary variable matrices A with
the property that det(A) = per3. By means of a cluster computation over the course of one week, we
determined all 463 binary variable matrices with this property and made some noteworthy discoveries.

The Grenet construction (see Section 6.I) yields the matrix




















x11 x12 x13 0 0 0 0
1 0 0 x32 x33 0 0
0 1 0 x31 0 x33 0
0 0 1 0 x31 x32 0
0 0 0 1 0 0 x23

0 0 0 0 1 0 x22

0 0 0 0 0 1 x21





















. (4.1)

It is the unique “sparse” 7 × 7 binary variable matrix from among the 463, in the sense that every
other matrix from the list has more than three nonzero entries in some row or column.

Motivated by the above observation, we verified by hand (with computer support) that in fact, all
of the 463 matrices can be reduced to (4.1) by means of elementary row and column operations. This
can be summarized as follows:

Proposition 4.2. Every 7×7 binary variable matrix A with det(A) = per3 is equivalent to the Grenet
construction (4.1) under the following two group actions:

(1) The action of {(g, h) | det(g) = det(h)} ⊆ GL7(Z) × GL7(Z) on 7 × 7 matrices via left and right
multiplication, together with transposition of 7× 7 matrices.

(2) The action of S3 ×S3 on the variables xij with 1 ≤ i, j ≤ 3, and the corresponding transposition
(i.e. the map xij 7→ xji.)

Note that (1) leaves the determinant of any 7 × 7 binary variable matrix invariant and (2) leaves the
permanent polynomial invariant. �

Example 4.3. One of the matrices that occur in our enumeration is the matrix

A :=





















x31 x32 x31 0 x32 1 x23

1 x33 0 x31 x33 x31 x22

x33 0 x33 x32 1 x32 x21

1 0 1 0 0 0 x22

0 x11 x12 x13 0 0 0
0 1 0 0 1 0 x21

0 0 0 1 0 1 x23





















.

One can check that indeed det(A) = per3. In this case, the matrices

g :=





















0 0 0 0 −1 0 0
0 0 1 0 0 −1 0
0 1 0 −1 0 0 0
1 0 0 0 0 0 −1
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 0 1 0





















, h :=





















0 1 0 0 1 0 0
−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
1 0 0 0 0 1 0
0 0 1 1 0 0 0
0 0 0 0 0 0 1
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are both invertible over Z and gAh is precisely (4.1).

5. Algebraic Complexity Classes

In this section we relate binary determinantal complexity to classical complexity measures. An
algebraic circuit C over the rational numbers is a directed acyclic digraph whose vertices have indegree
0 or 2 with a single vertex having outdegree 0. Those with indegree 0 are labeled with an integer or
a variable, and are called input gates. Those with indegree 2 are labeled with either + or × and are
called addition gates and multiplication gates, respectively. At each addition or multiplication gate
the circuit C defines a polynomial with rational coefficients via adding/multiplying the polynomials of
its two parents. For the polynomial f which is defined at the unique vertex with outdegree 0 we say
that the circuit C computes f . If all input gates are labeled with either 1, −1, or a variable, the circuit
is called constant-free. Note that every constant-free circuit computes a polynomial that has integer
coefficients. An algebraic circuit is called skew if for every multiplication gate at least one of its two
parents is an input gate. An algebraic circuit is called weakly skew if for every multiplication gate
α there is at least one of its two parents β for which the circuit graph splits into disjoint connected
components if we remove the edge between α and β. The skew complexity of f is defined as the
minimal number of vertices required for a skew algebraic circuit to compute f . Analogously, the
weakly skew complexity of f is defined as the minimal number of vertices required for a weakly skew
algebraic circuit to compute f . Moreover, the constant-free skew complexity of f is defined as the
minimal number of vertices required for a constant-free skew algebraic circuit to compute f and the
constant-free weakly skew complexity of f is defined as the minimal number of vertices required for
a constant-free weakly skew algebraic circuit to compute f . The complexity class VPs is defined as
the set of sequences of polynomials with polynomially bounded skew complexity. Analogously, the
complexity class VPws is defined as the set of sequences of polynomials with polynomially bounded
weakly skew complexity, the complexity class VP0

s
is defined as the set of sequences of polynomials

with polynomially bounded constant-free skew complexity, and the complexity classVP0
ws

is defined as
the set of sequences of polynomials with polynomially bounded constant-free weakly skew complexity,
see also [Mal03]. A fundamental result in [Tod92] (see also [MP08]) is that VPws = VPs. Analyzing
the constants which appear in the proof of VPws = VPs in [Tod92], we see that the proof immediately
yields VP0

ws
= VP0

s
. For the sake of comparison with VP0

s
, let us make the following definition.

Definition 5.1. The complexity class DETP0 consists of all sequences of polynomials that have
polynomially bounded binary determinantal complexity bdc.

The main purpose of this section is to show the following statement.

Proposition 5.2. VP0
s
= DETP0.

Proof. The proof of [Tod92, Lemma 3.4] immediately shows that DETP0 ⊆ VP0
s
. To show that

VP0
s
⊆ DETP0 we want to adapt the proof of [Tod92, Lemma 3.5 or Theorem 4.3], but a subtlety

arises: The proof shows that from a weakly skew or skew circuit C we can construct a matrix A′ of
size polynomially bounded in the number of vertices in C such that det(A′) is the polynomial compute
by C with the drawback that A′ is not a binary variable matrix, but A′ has as entries variables and
constants 0, 1, and −1. Fortunately Proposition 2.3 establishes DETP0 = VP0

s
= VP0

ws
. �

Remark 5.3. In the past, other models of computation with bounded coefficients have already given
way to stronger lower bounds than their corresponding unrestricted models: [Mor73] on the fast fourier
transform, [Raz03] on matrix multiplication, and [BL04] on arithmetic operations on polynomials.

From Valiant’s completeness result [Val79a] we deduce that VP 6= VNP implies perm /∈ VP0
ws

. A
main goal is to prove perm /∈ VP0

ws
unconditionally. This could be a simpler question than VP 6=

VNP or even VP0 6= VNP0, because with what is known today, from perm ∈ VP0
ws

we cannot
conclude VP0 = VNP0, see [Koi04, Thm. 4.3]. If we replace the permanent polynomial by the
Hamiltonian Cycle polynomial

HCm :=
∑

π∈Sm

π is m-cycle

m
∏

i=1

xi,π(i),
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then the question HCm /∈ VPws is indeed equivalent to separating VP0
ws

from VNP0, see [Koi04,
Thm. 2.5], mutatis mutandis. We ran our analysis for HCm, m ≤ 4 and proved bdc(HC1) = 1,
bdc(HC2) = 2, bdc(HC3) = 3, bdc(HC4) ≥ 7. This means that 7 ≤ bdc(HC4) ≤ 13, where the upper
bound follows from considerations analogous to Grenet’s construction, see Section 6.II.

6. Graph Constructions for Polynomials

In this section, we review the proof of Theorem 1.3 from [Gre11]. Furthermore, we use the same
methods to prove the following result about the Hamiltonian Cycle polynomial:

Theorem 6.1. For all natural numbers m ∈ N, we have bdc(HCm+1) ≤ m · 2m−1 + 1.

In this section, we denote by [m] := {1, . . . ,m} the set of numbers between 1 and m.

6.I. Grenet’s Construction for the Permanent. In this subsection, we prove Theorem 1.3. The
construction of Grenet is a digraph Γ whose vertices V := {vI | I ⊆ [m]} are indexed by the subsets of
[m]. Hence, |V | = 2m. We partition V = V0 ∪ · · · ∪ Vm such that Vi contains the vertices belonging
to subsets of size i. We set s := v∅ and t := v[m], so V0 = {s} and Vm = {t}. Edges will go
exclusively from Vi−1 to Vi for i ∈ [m]. In fact, we insert an edge from vI to vJ if and only if there
is some j ∈ [m] with J = I ∪ {j}. This edge is then labeled with the variable xij , where i = |J |.
For example, there are m edges going from V0 to V1, one for each variable x1j with 1 ≤ j ≤ m. It
is clear that for each permutation π ∈ Sm, there is precisely one s-t-path in Γ whose path weight
is (−1)m−1 · x1,π(1) · · ·xm,π(m). Consequently, the path value of the algebraic branching program

Γ = (Γ, s, t) is equal to (−1)m−1 · perm. Theorem 1.3 then follows from the following lemma:

Lemma 6.2. Let Γ = (Γ, s, t) be a binary algebraic branching program on n ≥ 3 vertices with path
value ±f . Then, there is a binary variable matrix of size n− 1 whose determinant is equal to f .

Proof. We first construct a graph G from Γ by identifying the two vertices s and t and adding loops
with label 1 to every other vertex. The s-t-paths in Γ are then in one-to-one correspondence with the
cycle covers of G: Indeed, any cycle cover in G must cover the vertex s = t and this cycle corresponds
to an s-t-path in Γ. Every other vertex can only be covered by its loop because Γ is acyclic. The
graph G now has the value ±f by definition and its directed adjacency matrix A has size n− 1. Since
n− 1 ≥ 2, we can exchange the first two rows of A to change the sign of its determinant. �

6.II. Hamiltonian Cycle Polynomial. In this subsection, we prove Theorem 6.1 using Lemma 6.2.
In order to construct a binary algebraic branching program Γ = (Γ, s, t) with path value HCm+1, we
proceed similar to subsection 6.I. We will refer to cyclic permutations in Sm+1 of order m+ 1 simply
as cycles because no cyclic permutations of lower order will be considered. Observe that the cycles in
Sm+1 are in bijection with the permutations in Sm. This can be seen by associating to π ∈ Sm the
cycle σ = (π(1), . . . , π(m),m + 1) ∈ Sm+1. In other words, σ maps m + 1 to π(1), it maps π(1) to
π(2) and so on.

In addition to two vertices s and t, our binary algebraic branching program will have a vertex v(I,i)
for every nonempty subset I ⊆ [m] and i ∈ I. By our above Lemma 6.2, the resulting binary variable
matrix will have a size of

1 +

m
∑

i=1

(

m

i

)

· i = m · 2m−1 + 1.

For m = 3, this is equal to 3 · 22 + 1 = 13.
We will construct the edges in Γ in such a way that every cycle σ = (a1, . . . , am,m+1) corresponds

to an s-t-path which has v(I,i) as its k-th vertex if and only if I = {a1, . . . , ak} and i = ak. We insert
the following edges:

• from s to v({i},i) for each i ∈ [m] with label xm+1,i

• from v(I,i) to v(I∪{j},j) for each i ∈ I ⊆ [m] and j ∈ [m] \ I with label xi,j

• from v([m],i) to t for each i ∈ [m] with label xi,m+1.
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We can again partition the set of vertices as V = V0 ∪ V1 ∪ · · · ∪ Vm+1 where V0 = {s}, Vm+1 = {t}
and for k ∈ [m], the set Vk consists of all vertices v(I,i) with |I| = k. Then, edges go only from
Vk to Vk+1, in particular Γ is acyclic. Furthermore, all s-t-paths in Γ have the same lengths and
correspond uniquely to cycles in Sm+1 . This concludes the proof of Theorem 6.1.

We know no better construction for arbitrary m, but for small m we have

HC2 = det

(

x12 0
0 x21

)

HC3 = det





0 x12 x13

x21 0 x23

x31 x32 0



 .
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