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Abstract

We offer a pedestrian level review of the wall-crossing invariants. The story begins from the scattering
theory in quantum mechanics where the spectrum reshuffling can be related to permutations of S-matrices.
In non-trivial situations, starting from spin chains and matrix models, the S-matrices are operator-valued
and their algebra is described in terms of R- and mixing (Racah) U-matrices. Then, the Kontsevich-
Soibelman (KS) invariants are nothing but the standard knot invariants made out of these data within the
Reshetikhin-Turaev-Witten approach. The R and Racah matrices acquire a relatively universal form in
the quasiclassical limit, where the basic reshufflings with the change of moduli are those of the Stokes line.
Natural from this point of view are matrices provided by the modular transformations of conformal blocks
(with the usual identification R = T and U = S), and in the simplest case of the first degenerate field
(2, 1), when the conformal blocks satisfy a second order Shrödinger-like equation, the invariants coincide
with the Jones (N = 2) invariants of the associated knots. Another possibility to construct knot invariants
is to realize the cluster coordinates associated with reshufflings of the Stokes lines immediately in terms of
check-operators acting on the solutions to the Knizhnik-Zamolodchikov equations. Then, the R-matrices
are realized as products of successive mutations in the cluster algebra and are manifestly described in terms
of quantum dilogarithms ultimately leading to the Hikami construction of knot invariants.
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1 Introduction
The string theory approach to any problem is to consider it together with all possible deformations and as a

particular representation of some general structure appearing in many other, seemingly unrelated problems in
other fields of science. One of the fresh application of this approach is the study of the wall-crossing phenomena
(phase transitions) and associated invariants, which remain the same after the reshuffling. The outcome of this
study is that the Kontsevich-Soibelman (KS) invariants [1] found so far on this way, are probably not that new:
they belong to an old class of invariants of the Reshetikhin-Turaev-Witten type, of which the most well-known
are knot invariants [2, 3]. At the same time, what naturally arises in wall-crossing problems, are quantum
R-matrices in representations less trivial than the Verma modules of SUq(N), and this can further stimulate
the study of knot invariants in non-trivial representations.

An archetypical example of the wall-crossing is the spectrum dependence on the scattering potential in
quantum mechanics. Consider a particle in the infinite well with some localized potential, for example:(

− ∂2
x + uδ(x)− k2

)
ψ(x) = 0, ψ(−L1) = ψ(L2) = 0 (1.1)

The spectrum k(u) is defined by the spectral equation

sin
(
kL1 + kL2

)
− u

k
sin(kL1) sin(kL2) = 0 (1.2)

and changes from the set

kn =
πn

L1 + L2
at u = 0 (1.3)

to a union of two sets1

kIn =
πn

L1
, kIIn =

πn

L2
at u =∞ (1.4)

The smooth evolution with u is shown in Fig.1, but the net result is the rather radical reshuffling of (1.3) into
(1.4). The task can be to study this reshuffling and to ask if there are quantities that remain the same after
the reshuffling.

The question is actually uninvestigated, but its more sophisticated versions were studied and some invariants
were revealed (it is, however, unclear if they reduce to triviality in this original problem).

The point is that there is nothing special about the δ-function potential: the pattern remains the same for
arbitrary barrier, vanishing in the vicinity of the box walls. Any such a problem is described in terms of the
2× 2 scattering matrix

S : e±ikx
∣∣
x near −L1

−→ α±(k)e±ikx + β±(k)e∓ikx
∣∣
x near L2

(1.5)

1For u > L1+L2
L1L2

there are also two bound states with k = ±iκ, where κ solves the equation

sinh
(
κL1 + κL2

)
−
u

κ
sinh(κL1) sinh(κL2) = 0
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Figure 1: The picture of energy levels as function of u at L1 = 2L2 := 2L.

The spectral equation states that S converts sin
(
k(x+L1)

)
∼ eik(x+L1)− e−ik(x+L1) into sin

(
k(x−L2)

)
∼

eik(x−L2) − e−ik(x−L2). For the δ-function potential, the scattering matrix is just

S =

 1− u
2ik − u

2ik

u
2ik 1 + u

2ik

 (1.6)

For the two isolated barriers, the scattering matrix is a product

S1 ◦ S2 = S1 ·
(
eikl12 0

0 e−ikl12

)
· S2 (1.7)

where l12 is the distance between the two and so on: in general one has a product ◦iSi.
Changing the shape of the potential reduces to a composition of reshufflings, when constituents of the

product change order, i.e. to a composition of operations:

Kj : ◦i<jSi ◦ Sj ◦ Sj+1 ◦i>j+1 Si −→ ◦i<jSi ◦ Sj+1 ◦ Sj ◦i>j+1 Si (1.8)

This operation is of course very familiar: in the theory of quantum groups, if Si are the group elements [4, 5],
this permutation is described by the quantum R-matrix, i.e. one can suspect that actually Kj = Rj and,
further, Rj+1 = UjRjU†j , where U is the quantum mixing (Racah) matrix, see [6]. Then from this data it is
straightforward to build invariants: these are the ordinary knot invariants in the Reshetikhin-Turaev-Witten
(RTW) formalism (graded traces and certain matrix elements of the ordered products of the R-matrices), which
in the context of wall-crossing theory are known as KS invariants.

To make this story really non-trivial, one needs to promote scattering matrices S to operator-valued quan-
tities Ŝ. In quantum group theory this is achieved by making the elements of the algebra of functions non-
commutative, in quantum mechanics it is enough to introduce internal degrees of freedom like spins or, more
generally, to consider matrix models (e.g. matrix quantum mechanics). This makes R- and U-matrices different
from just ordinary permutation matrices: they start to realize the far less simple braid group structures.

Emergence of braids is, of course, not universal for quantum mechanical problems, they arise only when the
space is 2-dimensional and there are topologically different ways to adiabatically carry one point around another,
producing a Berry phase. This is, however, a generic situation for algebraically integrable dynamics, where the
separation of variables reduces the study to a complex curve (sometime called spectral or Seiberg-Witten curve,
the Liouville torus being its Jacobian). Though formally integrable systems are pretty rare, there is a growing
evidence that typical effective field theory obtained after integration over fast variables is integrable [5, 7], and
this explains the growing interest to this type of theories.

Even in this integrability context, naturally appearing representations of the braid group can be quite
sophisticated and difficult to study. Still there are two immediate classes of examples (in addition to the
ordinary Verma modules of ordinary quantum groups like SUq(N) widely used in conventional knot theory).
One of them is provided by the WKB limit of quantum mechanics, where the R-matrices actually describe
reshufflings of the Stokes lines. Another one is provided by the modular transformations of conformal blocks:
the modular kernels Ti and Si provide an interesting set of Ri and Ui matrices, which can be used to construct
a priori new families of knot invariants. In the simplest case, however, the family is not new: one gets just the

3



ordinary Jones polynomials (and probably HOMFLY at the next step), but more sophisticated examples seem
capable to provide a long awaited group theory (RTW) interpretation of the Hikami invariants.

The plan of the paper is as follows.
We begin in sec.2 from the general review of the WKB approach involving the theory of Stokes lines, their

reshufflings and KS invariants.
Then, in sec.3 we consider from this perspective the standard example of the double-well potential.
After that, in sec.4 we switch to matrix models and reformulate the problem in terms of the operator-valued

(check) resolvents.
In sec.5 we consider KS/RTW invariants, associated with the simplest knots and links and show that the

R-matrices, provided by the modular transformations of conformal blocks, give rise to various types of knot
invariants: the Jones polynomials and the Hikami integrals.

A natural part of this presentation are the distinguished (Fock-Goncharov [8]) coordinates on the moduli
space provided by the WKB theory, where the R-matrices act via peculiar rational transformations (known also
as mutations in cluster algebra [9] and related to discrete change of coordinates in the algebra of functions [10]).

Conclusion in sec.6 describes (incomplete) list of relations between different subjects in theoretical physics,
which are brought together by consideration of the wall-crossing phenomena.

2 Wall crossing formulas as a piece of the WKB theory

2.1 Asymptotic behavior
In Seiberg-Witten (SW) theory describing the low-energy limit of N = 2 supersymmetric gauge theory [11],

the central charge and the mass of an excitation are given by the contour integrals of the SW differential λ:

Zγ =

∮
γ

λ, Mγ =

∮
γ

|λ| (2.1)

BPS states have M = |Z|, therefore they are associated with the Stokes contours σ(x) ∈ Σ on the spectral
surface Σ, such that the Seiberg-Witten differential λ (which is a meromorphic differential on Σ whose variations
with respect to moduli are holomorphic) along these contours has a definite phase φσ:

Arg
(
e−iφσλ

[
σ(x)

])
= 0 (2.2)

so that

Arg

(
e−iφσ

∫
σ(x)

λ

)
= 0 (2.3)

If the gauge theory is described via M-theory [12], then these σ are interpreted as intersections of the main M5-
brane with the M2-branes, see [13]. The spectral surface Σ is a ramified covering of the original bare curve Σ0,
and λ is the eigenvalue of the Lax 1-form [14]. The mass of the BPS state is given by the absolute value of the
same integral, and the mass is finite when the contour is closed. To make the Stokes contour closed, one should
adjust the phase φσ, this possibility to adjust the phase of the Planck constant is the main new peculiarity
of the BPS state counting as compared to the usual WKB theory. When the moduli of the spectral surface
change, so do the phase and the shape of the contour, and at some values of moduli the change can be abrupt:
discontinuous. Such a jump in the multiplicities of the BPS states takes place along the real-codimension-one
surfaces in the moduli space and is called the wall-crossing phenomenon. What remains invariant are peculiar
combinations of multiplicities, encoded in the form of Kontsevich-Soibelman formula.

Our purpose in this paper is to discuss a pedestrian approach to this kind of problems, relating them to the
elementary textbook consideration of Stokes phenomena for the WKB approximation.

For this purpose we consider the Wilson line

WΓ(φ) = P exp

(
ieiφ

~

∫
Γ

L
)

(2.4)

of the N × N -matrix valued Lax form along an open contour Γ ∈ Σ0 on the bare Riemann surface Σ0. The
N eigenvalues of L define the Seiberg-Witten differential λi on the N sheets of the spectral surface Σ which N
times covers Σ0, so that one can roughly write WΓ(φ) as

wΓ(φ) = diag

{
exp

(
ieiφ

~

∫
γi

λi

)}
(2.5)

4



where γi are pre-images of Γ on Σ. However, if one wishes to treat wΓ as a quasiclassical approximation to an
evolution operator for some quantum-mechanical system, then one should switch between different branches i
when Γ crosses the Stokes lines. For example, if one has a two-sheet covering with λ± = ±λ, and one considers

Figure 2: Intersecting one Stokes line.

the evolution along the contour, which goes from the point A to B and crosses a Stokes line, originating at
ramification point P (see Fig.2), then

Ψ(B) =

(
ψ(B+)
ψ(B−)

)
=


exp

(
ieiφ

~
∫ B+

A+
λ
)

exp
(
ieiφ

~

(∫ B+

P
λ−

∫ P
A−

λ
))

0 exp
(
− ie

iφ

~
∫ B−
A−

λ
)

( ψ(A+)
ψ(A−)

)
(2.6)

while for the inverse path from B to A one would rather encounter a low-triangular matrix. Thus, instead of the
naive wΓ one gets for the quasiclassical Abelization of the Wilson operator WAB(φ) a sum of three elementary
matrices

Ψ(B) =
(
wB+A+

(φ) + wB+PA−(φ) + wB−A−(φ)
)

Ψ(A) (2.7)

Figure 3: Intersecting two Stokes lines.

2.2 Jumps of WKB network topology on the curve
Let us call the set of WKB lines (WKB network) Γ ∈ Σ0 such that its preimages compose the contour σ

satisfying (2.2). The WKB network gives a triangulation of the spectral surface Σ0. This triangulation depends
on the phase φ and it can jump at some specific critical values φc making a kind of flips of the triangulation.

When a flip occurs, two different Stokes lines merge into a single line of finite length (we denote its pre-
image on Σ as γc) so that the integral (2.1) giving the central charge Zγc =

∮
γc

λ becomes convergent. We can

immediately define the value of the critical phase as

φc = ArgZγc (2.8)

Now we observe how the value of the asymptotic expansion of a Wilson operator changes. If two Stokes
lines which originate at the ramification points P1 and P2 were crossed on the way from A to B (see Fig.3), we
would obtain a Wilson operator

WAB(φ−) = wB+A+(φ−) + wB−A−(φ−) + wB+P1A−(φ−) + wB−P2A+(φ−) + wB−P2P1A−(φ−) =

= wB+A+
(φc) + (1 + wσ)wB−A−(φc) + wB+P1A−(φc) + wB+P2A−(φc)

(2.9)
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where φ− = φc − 0. For the other value of phase φ+ = φc + 0 configuration of the Stokes lines can be different,
and one obtains another decomposition

WAB(φ+) = wB+A+(φ+) + wB+P1A−(φ+) + wB−P2A+(φ+) + wB−P1P2A−(φ+) =

= (1 + wσ)wB+A+(φc) + wB−A−(φc) + wB+P1A−(φc) + wB+P2A−(φc)
(2.10)

differing not only by the value of φ but also by reordering of the points P1 and P2. At the critical value φc of
phase, where reshuffling of the Stokes lines occurs and a closed Stokes line σ appears, the two expressions differ
exactly by wσ, i.e. an abrupt reshuffling takes place

WAB −→ K̂σWAB (2.11)

where a morphism K̂ acts as

K̂σ : wα = (1 + wσ)<σ,α>wα (2.12)

Note that this is not an ordinary operator. This morphism acts as a change of coordinates on the moduli
space of flat connections. So we apply it to every term in the sum independently, in detail:

K̂σ(WAB(φ−)) = K̂σ(wB+A+(φc)) + (1 + K̂σ(wσ))K̂σ(wB−A−(φc)) + K̂σ(wB+P1A−(φc)) + K̂σ(wB+P2A−(φc)) =

= (1 + wσ)

〈σ,B+A+〉︸ ︷︷ ︸
1 wB+A+(φc) +

1 + (1 + wσ)

〈σ, σ〉︸ ︷︷ ︸
0 wσ

 (1 + wσ)

〈σ,B−A−〉︸ ︷︷ ︸
−1 wB−A−(φc)+

+(1 + wσ)

〈σ,B+P1A−〉︸ ︷︷ ︸
0 wB+P1A−(φc) + (1 + wσ)

〈σ,B+P2A−〉︸ ︷︷ ︸
0 wB+P2A−(φc) = WAB(φ+)

(2.13)

2.3 Non-trivial moduli space invariants: wall-crossing formulae in the moduli
space

As we have seen the asymptotics of Wilson lines is not smooth. The discontinuity is of order wσ(φc), which
is asymptotically small.

Nevertheless, the very value of the observable is expected to be smooth. This fact allows one to construct
non-trivial invariants of the morphisms K̂ on the Coulomb branch, called spectrum generators [53] tightly
related to the spectra of BPS states arising in the effective theory.

In general, when one starts increasing the phase φ from 0 to π, a number of reshufflings take place, when
particular closed Stokes lines σa appear at critical values φa, and disappear with the further increase of φ. This
provides a sequence of actions

←−∏
a

K̂σa (2.14)

The number of factors here is actually the number of BPS states on the given spectral curve, i.e. at the given
point of the moduli space. If one now starts changing moduli of the spectral curve this very product can change,
reflecting the change of the ordered set A of the BPS states, including their number (the number of factors in
the product), and the order in which they occur with increase of the phase φ. However, at the domain wall
in moduli space (at the hypersurface of marginal stability) given by the condition φ = φc the two different
products should coincide:

←−−∏
a∈A

K̂σa =
←−∏
b∈B

K̂σb (2.15)

thus we obtain the Kontsevich-Soibelman (KS) invariant, taking values in functors, acting on the space of
w-variables often called the Fock-Goncharov coordinates of the flat connection moduli space.

Basic example: For two conjugated A and B cycles on a torus with < A,B >= 1 the KS relation states:

K̂AK̂B = K̂BK̂A+BK̂A (2.16)

6



where the operator action is defined as

K̂mA+nBwγ = (1 + wmAw
n
B)m<A,γ>+n<B,γ>wγ (2.17)

Note that the coordinates wAwB = wBwA commute, and also wA+B = wAwB , while neither of these is true for
the operators K̂. With these definitions eq.(2.16) is just an identity, indeed, applying both sides to, say wA,
one gets

K̂AK̂BwA = K̂A
1

1 + wB
wA =

1

1 + (1 + wA)wB
wA =

wA
1 + wB + wAwB

, (2.18)

and

K̂BK̂A+BK̂AwA = K̂BK̂A+BwA = K̂B
1

1 + wAwB
wA =

1

1 + 1
1+wB

wAwB
· 1

1 + wB
wA =

wA
1 + wB + wAwB

(2.19)

Similarly, in application to wB :

K̂AK̂BwB = (1 + wA)wB , (2.20)

and

K̂BK̂A+BK̂AwB = K̂BK̂A+B(1 + wA)wB = K̂B

(
1 +

1

1 + wAwB
wA

)
(1 + wAwB)wB =

=

(
1 +

1

1 + 1
1+wB

wAwB

1

1 + wB
wA

)(
1 +

1

1 + wB
wAwB

)
wB =

1 + wA + wB + wAwB
1 + wB

wB = (1 + wA)wB

3 Classical problem of quantum mechanics: double well potential
Consider the Schrödinger equation with the quartic potential[

~2∂2
z − (z − x1)(z − x2)(z − x3)(z − x4)

]
Ψ(z) = 0 (3.1)

Depending on the choice of zeroes xk, the structure of levels is rather different.
At the first glance, this may seem a little bit controversial. According to the well-known theorem in ODE

theory, solutions to the Cauchy problem are continuous functions of parameters if the coefficients of equation are
continuous. Nevertheless, the problem of finding eigenvalues of self-adjoint operators (Sturm-Liouville problem)
is quite different. Once found integrable in the usual Hilbert norm, the eigenfunctions at some chosen values of
parameters are not expected to keep integrability at another choice of the parameters.

The integrability of function depends on its asymptotic behavior. In this particular case there are two
asymptotics e±

z3

~ . Choose two linearly independent solutions Ψ1,2 with the asymptotics behaviour being

Ψ1(z) ∼
z→±∞

c1+(±∞)e
z3

~ + c1−(±∞)e−
z3

~ (3.2)

Ψ2(z) ∼
z→±∞

c2+(±∞)e
z3

~ + c2−(±∞)e−
z3

~ (3.3)

We define an “S-matrix” as

S =

(
σ++ σ−+

σ+− σ−−

)
=

(
c1+(+∞) c1−(+∞)
c2+(+∞) c2−(+∞)

)−1(
c1+(−∞) c1−(−∞)
c2+(−∞) c2−(−∞)

)
(3.4)

Note that this matrix is independent of the choice of the basis in solutions. For a generic choice of parameters
this S-matrix is unphysical.

To define an eigenfunction we require it to be integrable for real ~, i.e. to behave as

Ψ(z) ∼
z→±∞

e∓
z3

~ (3.5)

This imposes a condition on the S-matrix entries

σ−−(x1, x2, x3, x4) = σ++(x1, x2, x3, x4) = 0 (3.6)

The crucial point is that the S-matrix is discontinuous on the moduli space (xk, ~) (see also [15]).
To observe this, we consider two well-known physical situations:

7



I. The ground energy level is below the level of the wall between the wells: all the zeroes xk are real. The
problem can be described by a particle localized either at the left well or at the right well so that there are
almost degenerate two levels (with the wavefunctions symmetric and antisymmetric w.r.t. interchanging
the wells) which differ only due to instanton jumps between the wells.

Topology of the WKB lines is depicted in Fig.4

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 4: Topology of the WKB lines when all zeroes are real

The first WKB approximation gives the following expression for σ−−:

σ−−(xk) ∼ −4 sinh

1

~

x2∫
x1

λ


︸ ︷︷ ︸
first well level

sinh

1

~

x4∫
x3

λ


︸ ︷︷ ︸
second well level

+ e
− 2

~

x3∫
x2

λ︸ ︷︷ ︸
instanton

e
− 1

~

x2∫
x1

λ

e
− 1

~

x4∫
x3

λ

(3.7)

II. The ground energy level is above the level of the wall between the wells: two zeroes are real, two zeroes
have opposite imaginary parts. In this case there are no two almost degenerate energy levels.

Topology of the WKB lines is depicted in Fig.5

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 5: Topology of the WKB lines when two zeroes are real and two zeroes have opposite imaginary parts

The first WKB approximation gives the following expression for σ−−:

σ−−(xk) ∼ −e
1
2~
∮
∞
λ
− 2 sin

1

~

x4∫
x1

λ

 (3.8)

S jumps discontinuously, the jump being described by the operator K̂ which is a counterpart of the KS-
operator in ordinary quantum mechanics:

K̂(S(I)) = S(II) (3.9)

However, S depends only on the point xk not belonging to the path in the moduli space. Hence, all the
jumps along a closed contractible loop should cancel∏

loop

K̂ = 1 (3.10)

8



4 Check- = “quantum, refined”

4.1 Intuitive remarks
In many applications matrix elements of the N × N Lax form are themselves operators. As we saw, such

are the Seiberg-Witten differentials λ(i) and the Abelianized monodromies wΓ. In such cases, the Kontsevich-
Soibelman relations include the Fock-Goncharov coordinates, which take values in the operators rather than in
numbers.

Here first we give some intuitive remarks about possible “refinement” of the Abelianization map construction
then we give a more solid description using “check”-operators [16, 17, 18].

Speculations are quite “hand-waving” so far, nevertheless we would try to draw several important conclusions:

1. Gauge covariance: The commutation relations inherited from the natural Poisson structure on the Lax
operator [19]

$ =

∫
d2z Tr δL ∧ δL (4.1)

is not gauge invariant. Similarly, the same-time commutator in Chern-Simons theory is known to be
induced by (4.1) only in the temporal gauge. There is no problem to define an invariant commutator∮

γ

λ̂,

∮
γ′

λ̂

 = ~′ 〈γ, γ′〉 (4.2)

where γ’s are paths on the spectral curve, and 〈?, ?〉 is the cycle pairing on the curve.

2. “Anomaly”: The commutator before integration
[
λ̂(i)(z), λ̂(j)(z′)

]
is a kind of “anomalous”: one can

smoothly modify the paths unless one touches the intersection points where the commutator contributes.
This breaks the initial holomorphicity of the problem, so that the expression

∮
γ

λ̂ depends now on the reg-

ular homotopy class of γ rather than on the homology class of γ. Suppose we can choose a representative
[γ] in the homology class of γ without self-intersections, then

Pexp

∮
γ

λ̂ = qwr γe

∮
[γ]

λ̂

(4.3)

where wr is a writhe, a signed sum over self-intersections.
Similarly, one defines the coordinates depending only on the homology class [γ]

w[γ] = exp

(
ieiφ

~

∫
[γ]

λ

)
(4.4)

They form a non-commutative algebra

w[γ]w[γ′] = q〈[γ],[γ′]〉w[γ]+[γ′] (4.5)

where q = exp
(
ieiφ~′/2~

)
(note that ~ and ~′ are generally two independent constants). To derive this

consider a product of two exponents:

Pexp

∮
γ

λ̂ Pexp

∮
γ′

λ̂ = Pexp

∮
γ◦γ′

λ̂ (4.6)

Where ◦ denotes a consequent concatenation of two paths. Equivalently, this relation can be rewritten in
terms of w-variables:

qwr γw[γ] q
wr γ′w[γ′] = qwr(γ◦γ′)w[γ◦γ′] (4.7)

Using relations

[γ ◦ γ′] = [γ] + [γ′] (4.8)
wr(γ ◦ γ′) = wr γ + wr γ′ + 〈[γ], [γ′]〉 (4.9)
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one reproduces algebraic relation (4.5). The second relation says that the writhe function is a quadratic
refinement of the intersection form, for details see [20, Appendix C].
As in the previous section, the Wilson lines are polynomials in w-variables, though now over Z[q, q−1]

Tr Pexp

∮
L ∼

∑
γ

qwr γw[γ] (4.10)

To conclude this section we mention that this quite heuristic consideration can be applied to physical
problems [20]. K̂-jumps of expansion (4.10) similarly to the jumps discussed in the previous section allow one
to calculate characteristics of the BPS spectra in N = 2 SYM theories. These invariants are refined now with
a deformation parameter q and take into account the spin of BPS multiplets.

4.2 Beta-ensemble construction
Beta-ensembles naturally extend matrix models and inherit their basic properties. The model is given by

the partition function of 2d Coulomb gas (here we consider an example when the gas is placed on the sphere)

Z =
∏
i

∮
γi

dzi
∏
i<j

(zi − zj)2β
e
− 1
g

∑
i
V (T |zi)

(4.11)

where g, β are two parameters similar to ~ and ~′, and the potential V (T |z) determines the moduli space of the
partition function: it is parameterized by the parameters Tk of the potential and by the choice of the integration
contours. For the sake of definiteness, we choose the potential to be a polynomial and Tk to be coefficients of
this polynomial:

V (z) =

n∑
k=0

Tkz
k (4.12)

We consider only closed contours so that changing the variables

zi → zi +
ε

ζ − zi
(4.13)

does not change the integral, which leads to the following Ward identity in the first order of ε〈∑
i

1

(ζ − zi)2
+ β

∑
i 6=j

1

(ζ − zi)(ζ − zj)
− 1

g

∑
i

V ′(zi)

〉
= 0 (4.14)

After some algebra this equation can be represented in the following form

(β − 1)∂ζ

〈∑
i

1

ζ − zi

〉
+ β

〈(∑
i

1

ζ − zi

)2〉
− V ′(ζ)

g

〈∑
i

1

ζ − zi

〉
+

1

g

〈∑
i

V ′(ζ)− V ′(zi)
ζ − zi

〉
= 0 (4.15)

Let us define the resolvent as

ρ(ζ) :=
1

Z
∇̂(ζ)Z := g

√
β

〈∑
i

1

ζ − zi

〉
(4.16)

where the operator ∇̂(ζ) can be described by the action of g
√
β
∑

1
zk+1

∂
∂tk

on the partition function with the
modified potential V (z)→ V (z)− g

∑
k tkz

k, treated as a formal (perturbative) series in the variables tk:

Z =
∏
i

∮
γi

dzi
∏
i<j

(zi − zj)2β
e
− 1
g

∑
i
V (T |zi)+

∑
i,k tkz

k
i

(4.17)

We use Z for the partition function Z restricted to all tk = 0.
The last term in (4.15) can be reproduced by the action of the differential operator in Tk’s:

P̌ (ζ) = −g2
n∑
k=2

kTk

k−2∑
n=0

ζn∂Tk−2−n (4.18)
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We call such operators check-operators since they act on moduli Tk’s (in variance with ∇̂(ζ)). Note that the
Miwa transform of Tk-moduli

Tk =
∑
j

αjλ
k
j

k
(4.19)

transforms the check-operator P̌ (ζ) into

P̌ (ζ) ∼
∑
j

∂λj
ζ − λj

(4.20)

One also can introduce the check-operator that generates the resolvents:

∇̌Z = ∇̂Z (4.21)

This operator can be constructed recursively from y̌ :=
√
V ′(T |z)2 − 4βP̌ , its derivatives and V ′(T |z) [17]. The

recursion is provided by the g2-expansion, and, in the leading order, ∇̌(0) = g
√
βy̌.

Then the Ward identity can be rewritten in the form[
gQ∂ζ∇̌(ζ) + :∇̌(ζ)2:− V ′(ζ)√

β
∇̌(ζ) + P̌ (ζ)

]
Z = 0 (4.22)

where Q :=
√
β − 1√

β
and the normal ordering means that the operator ∇̌(ζ) acts only on Z, but not on itself.

4.3 Determinant check-operator: quantizing the spectral curve
In the leading order of the WKB approximation (i.e. g2 → 0), the Ward identity (4.22) becomes the algebraic

equation for the resolvent (4.16):

ρ(0)(ζ)2 − V ′(ζ)√
β
ρ(0)(ζ) + f(ζ) = 0 (4.23)

where the polynomial f(ζ) := P̌ logZ. This algebraic equation is nothing but the spectral curve. Note that
the monodromies of these check-operators along A- and B-periods of these spectral curve form the Heisenberg
algebra [17]: [∮

Ai

∇̌(ζ)dζ,

∮
Bj

∇̌(ζ)dζ

]
= δij (4.24)

One may ask what are the ways of quantizing the spectral curve (4.23) (which has to become the Baxter
equation after quantization). There are two possibilities. One of the possibilities is to consider the limit of
(4.11) when g2/β = ~′2 → 0 with g2β = ~2 kept fixed. In this limit (called Nekrasov-Shatashvili limit [21])
the Ward identity (4.22) gets the Ricatti (or Schrödinger) equation equivalent to the Baxter equation [22] and
corresponding to a quantum integrable system [21, 23, 24, 25, 26].

However, this system depends only on one parameter g
√
β = ~. However, there is a possibility of quantizing

the spectral curve which still preserves the β-ensemble representation for the wavefunction and depends on two
parameters β, g. To this end, in [24] it was suggested to consider the equation for the β-ensemble average of
the would-be determinant in matrix model: the average Ψ(ζ) = 〈

∏
i(ζ − zi)〉. To dealing with this average, one

introduces another check-operator:

1

Z
Ď[1](ζ)Z :=

〈∏
i

(ζ − zi)

〉
(4.25)

In order to understand the meaning of Ψ(ζ) let us rewrite it as (the number of integrations in the β-ensemble
partition function is denoted through N)

Ψ(ζ) = ζN

〈∏
i

(
1− zi

ζ

)〉
= ζN

〈
exp

{∑
i

(
1− zi

ζ

)}〉
= ζN

〈
exp

(
−
∑
k

∑
i z
k
i

kζk

)〉
(4.26)
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This expression is equal both to

Ψ(ζ) = ζN
1

Z
exp

(∫ ζ

dz
∑
k

1

zk+1

∂

∂tk

)
Z =

exp
(

1
~
∫ ζ
dz∇̂(z)

)
Z

Z
(4.27)

where N is treated as zero time t0, and to

Ψ(ζ) =
Z
(
tk − 1

kζk

)
Z(tk)

(4.28)

Let us consider the case of β = 1 when the β-ensemble reduces to the Hermitean matrix model. Within the
AGT, this case corresponds to the conformal field theory with central charge 1 [27, 28]. In this case, Z is a
τ -function of the Toda-chain hierarchy [29] in time variables tk, and Ψ(ζ) given by formula (4.28) is the Baker-
Akhiezer function. It corresponds to insertion of the fermion ψ(ζ) at the point ζ (and a fermion ψ at infinity).
This can be easily understood, since in c = 1 theory (free fields) the fermion is described in terms of the free
field φ(ζ) by the exponential : exp(iφ(ζ)) : which being inserted into the conformal correlator representation
of the matrix model [30] gives exactly the determinant [24]. This fermion describes the simplest fundamental
representation of the SL(N) group which can be understood from the realization of its N -plet as [31]

ψi|0 >= T i−1
− |0 > (4.29)

where the fermion modes are defined by ψ(ζ) =
∑N
i ψiζ

i and T− =
∑N−1
i T−αi is the sum of all raising

operators associated with the negative simple roots of SL(N). Then all other fundamental representations
are defined as products of fermions. This connection with the fundamental representations can be also made
manifest via the expansion of the determinant into the fundamental representations:∏

i

(
1− zi

ζ

)
=
∑
k

χ[1k](zi)

(
−1

ζ

)k
(4.30)

where χ[1k](zi) is the Schur function, i.e. the characters of group SL(N) associated with the fundamental
representations.

One now can convert the Ward identity (4.22) into the equation for Ψ(ζ). To this end, one needs to rewrite
the Ward identity in terms of shifted time-variables and of operators acting on Z:[

gQ∂ζ∇̂(ζ) + ∇̂(ζ)2 − 1√
β

(
V ′
(
tk −

1

kζk

∣∣∣ζ)∇̂(ζ)

)
−

]
Z
(
tk −

1

kζk

)
= 0 (4.31)

where the subscript "-" refers to negative powers of ζ and ∇̂(ζ) does not need to be normal ordered, since it
does not act on itself. We will use further(

V ′
(
tk −

1

kζk

∣∣∣ζ)∇̂(ζ)

)
−

= g
√
β
∑
n≥−1

1

ζn+2

∑
k≥1

k

(
tk −

1

kζk

)
∂

∂tk+n
=

=
(
V ′(t|ζ)∇̂(ζ)

)
−
− g
√
β
∑
k,n

1

ζk+n+2

∂

∂tk+n
=
(
V ′(t|ζ)∇̂(ζ)

)
−
− ∂ζ∇̂(ζ) (4.32)

where at the last step we compared the coefficient k+1 in ∂ζ∇̂(ζ) = g
√
β
∑
m≥0

m+1
zm+2

∂
∂tm

with
∑

k≥1

n≥−1
δk+n,m =

m+ 1.
Since, for the “non-normalized” Ψ̃(ζ) := Z

(
tk − 1

kζk

)
, one directly checks that g

√
β∂ζΨ̃(ζ) = ∇̂(ζ)Ψ̃(ζ) and

g2β∂2
ζ Ψ̃ =

(
∇̂2(ζ) + g

√
β∂ζ∇̂(ζ)

)
Ψ̃(ζ), one finally obtains a differential equation

[
g2β∂2

ζ − V ′(ζ)∂ζ + P̌ (ζ, Tk)
]

Ψ(ζ) = 0 (4.33)

which is a quantization of the algebraic spectral curve which depends on the both parameters of deformation
g and β. With rescaling the wave function Ψ(ζ) = exp

(
V (ζ)/(g2β)

)
Ψ̃(ζ), one can recast this equation to the

form [
g2β∂2

ζ +
1

2

(
V ′′(ζ)− V ′2(ζ)

2g2β
+

1

g2β

[
P̌ (ζ, Tk)V (ζ)

])
+ P̌ (ζ, Tk)

]
Ψ̃(ζ) = 0 (4.34)
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Now one can easily construct action of the determinant check operator on the partition function using (4.27):〈∏
i

(ζ − zi)

〉
Z = e

1
~

ζ∫
dz∇̂(z)Z = :e

1
~

ζ∫
dz∇̌(z):Z (4.35)

It is certainly clear how to construct the ordinary operator itself in terms of time variables tk [32]:

D̂[1](ζ) = : exp

 ζ∫
dzĴ(z)

 : (4.36)

Ĵ(z) =
∑
k

(1

2
ktkz

k−1 +
1

zk+1

∂

∂tk

)
(4.37)

since this is nothing but the exponential of the free field realized via its action on functions of time variables tk
which corresponds to the fermion (see above). The normal ordering here means that all the tk-derivatives are
put to the right.

The equation for the determinant operator is of the second order in the variable ζ, and as we move along
some closed contour γ the two solutions might have some monodromy. We define a gauge-invariant operator
Ǒ[1] as a trace of this monodromy matrix

Ǒ[1](γ) = Tr Mon(γ, ζ)Ď[1](ζ) (4.38)

If one takes unto account the both branches and corrections from “the measure anomaly”, extra conjugation
factors [38]:

Ǒ[1](γ) =
∑
r=±

Z−1(V → 0, ∇̌(r))e
1

g
√
β

∮
γ

dx∇̌(r)(x)

Z(V → 0, ∇̌(r)) (4.39)

Hence we establish the following dictionary between integrable models and beta-ensembles:

λ ! ∇̌
~ ! g

√
β

~′ ! g/
√
β

TrR Pexp
∮
γ
L ! ǑR(γ)

wγ ! exp
(

1
g
√
β

∮
γ

∇̌
) (4.40)

4.4 Higher weight operators and spectral covers
We denoted the determinant operator by a subscript [1] to stress that the operator defined in this way

represents a Wilson line in the fundamental representation. Hence, one expects a natural generalization

TrR Pexp

∮
γ

L! ǑR(γ) (4.41)

A naive expression for this operator is expected to be the trace of monodromy of the determinant operator
ĎR(ζ) that inserts something like detR(ζ −M) into the beta-ensemble averaging:

ǑR(γ) = Tr Mon(γ, ζ)ĎR(ζ) (4.42)

We expect that these operators should satisfy the Wilson loop OPE algebra

ǑR ⊗ ǑR′ =
∑

Q`|R|+|R′|

CQR,R′ǑQ (4.43)

where CQR,R′ are the corresponding Clebsh-Gordon coefficients.
In the case of SU(2) these operators are usually associated to degenerate operators in the Liouville conformal

field theory (see s.5.2 below)

Ď[j](ζ) ∼ Φ(j+1,1)(ζ) (4.44)
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with the following fusion algebra

Φ(j+1,1) ⊗ Φ(j′+1,1) =

j+j′⊕
s=|j−j′|

Φ(s+1,1) (4.45)

Translating this remark back to the beta-ensemble framework we define

Ď[j](ζ)Z :=

〈∏
i

(ζ − zi)j
〉
Z (4.46)

Nevertheless the naive form of R-dependence reveals itself in the form of the spectral curve. One can define
a generic spectral cover as

DetR(λ− L(z)) = 0 (4.47)

According to this remark, for a symmetric representation [r] one expects the spectral curve to be a polynomial
in λ of degree r + 1, the same is the order of the differential equation.

Here we present an explicit example of the differential equation satisfied by Ď[2].
We are looking for a variation such that the variation of measure in the partition function (4.11) can be

rewritten as a derivative acting on Ď[2](ζ). Denote variation (4.13) as δ(ζ), we expect some linear combination
of variations δ(ζ)∂ζ and ∂ζδ(ζ) to give a desired result. Indeed,{(

1 +
2

β

)
δ(ζ)∂ζ +

(
1− 2

β

)
∂ζδ(ζ)

}
Ď[2](ζ)Z ={

β

2
∂3
ζ +

1

g2
Ť[2](ζ)

}
Ď[2](ζ)Z = 0

(4.48)

Where Ť[2](ζ) is a contribution from the potential V :

Ť[2](ζ) =

(
1− 2

β

)(
−∂ζP̌ (ζ) +

V ′(ζ)

2
∂2
ζ

)
−
(

1 +
2

β

)
P̌ (ζ)∂ζ +

2

β
V ′(ζ)

(
1 + β

2
∂2
ζ +

1

g2
P̌ (ζ) +

V ′(ζ)

2g2
∂ζ

)
(4.49)

The operators OR are counterparts of the linear group (Schur) characters for the corresponding representa-
tions R.

To clarify this point, first assume that the flat connection A is not quantized, then the naive asymptotic
form reads

TrR Pexp
1

~

∮
γ

A ∼ PR

(
e

1
~
∮
γ

λ(i)
)

(4.50)

where λ(i) are solutions to the equation

detR(λ−A) = 0 (4.51)

and the polynomial PR depends only on the representation R. One can make use of this latter fact and assume
that A is a constant field. Hence, one can substitute the ordered exponential by the ordinary exponential and
omit the integral rewriting this equation as

TrRe
α
~A = PR(e

α
~ λ

(i)

) (4.52)

where α is a constant, the “length” of the integration contour γ. We notice that this relation is nothing but the
Weyl determinant formula relating characters to the Schur polynomials

PR(e
α
~ λ

(i)

) = χR

(
tk =

1

k

∑
i

e
kα
~ λ(i)

)
(4.53)

χR(t) = det
ij
sλi−i+j(t), e

∑
k

tkz
k

=
∑
k

sk(t)zk (4.54)
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The integrals over γ ∈ Σ0 of the eigenvalues λ(i) are thought of as integrals over different pre-image contours γ̃
on the spectral cover Σ of a SW differential λ∮

γ

λ(i) :=

∮
γ̃(i)

λ, π(γ̃(i)) = γ (4.55)

And the exponent of the latter expression we define as a Fock-Goncharov coordinate (cluster variable):

wγ̃ := e
1
~
∮̃
γ

λ

(4.56)

Thus by analogy one writes an naive asymptotic form as

TrR Pexp
1

~

∮
γ

A ∼ χR

tk =
1

k

∑
γ̃|π(γ̃)=γ

wkγ̃

 (4.57)

The basic example is the line in the fundamental representation for SU(2). In this case the cover is 2-fold, and
the contour γ has two pre-images γ̃1 = γ̃ and γ̃2 = −γ̃. The fundamental character reads then:

Tr [1] Pexp
1

~

∮
γ

A = χ[1](t) = t1 = wγ̃ + w−γ̃ = wγ̃ +
1

wγ̃
(4.58)

This expression should be compared to the usual sl2 character

Tr [1]y
σ3 = y

1
2 +

1

y
1
2

(4.59)

Notice that this asymptotic form holds when one considers the quantized connection and the differential on
the spectral curve, though it misses two important effects: the Stokes phenomenon and measure contributions
described in s.2 and s.4.3 respectively.

A similar approach taking into account instanton corrections from the quantum mechanics description of
integrable systems is developed in [26]. Unfortunately, calculations are made in the Nekrasov-Shatashvili limit
(~′ = 0 in our language), though non-perturbative Stokes’ corrections are applied to construct an extra non-
perturbative contribution to the prepotential in this limit. It is natural to assume consequent non-perturbative
corrections to the Nekrasov partition function for N = 2 SUSY gauge theory.

A similar deformation of characters can be encountered under similar circumstances in [33] (so called qq-
characters).

To consider not only symmetric representations one needs to introduce multiple covers representing higher
rank groups or multi-matrix models.

In such models eigenvalues z(j)
i acquire an extra “flavour” index (j) running from 1 to n−1 for SU(n). Thus

one expects the following kind of expression for the determinant operator

Ď[r1,...,rn−1](ζ) ∼

〈
n−1∏
j=1

∏
i

(ζ − z(j)
i )rj

〉
(4.60)

5 Knot invariants from WKB morphisms

5.1 Reidemeister invariants from quantum field theory
Let us consider the Chern-Simons theory with gauge group G [34], and the Wilson averages in this theory,

which is knot polynomial can be associated with conformal blocks of two-dimensional conformal theory with
positions of points changing in time [2]. Since the theory is topological, one can consider just monodromies of
the conformal blocks. The conformal theory that corresponds to this gauge theory is the Wess-Zumino-Witten-
Novikov (WZWN) model [35] so that its correlators satisfy the Knizhnik-Zamolodchikov equation [36], and they
can be considered as a wave function in Chern-Simons theory [58].

These picture of the Wilson averages allows one to connect knots with the Knizhnik-Zamolodchikov equation.
Indeed, consider a knot on a 3-manifold M3 = C × [0, 1] in a braid representation. The braid is given by n
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trajectories γi : zi(t) ∈ C, t ∈ [0, 1]. The wave function on a time slice t depends on the positions of the strands
in the braid zi. Consider a

⊗
j Qj

⊗
j Q̄j bundle over the configuration space Cn with connection

Dj = ∂zj −A(zj) (5.1)

If the connection is flat

[Di,Dj ] = 0 (5.2)

one can construct the wave function as its flat section

DiΨ = 0 (5.3)

The evolution operators can be interpreted as open Wilson lines in the ambient 3d theory:

I = Pexp

1∫
0

dt
⊕
j

A (zj(t)) żj(t) (5.4)

They are braid invariants (due to the flatness condition):

δ

δγj(t)
I = 0 (5.5)

The Wilson operators have a natural structure of the Hopf algebra. Correspondingly the space of wave functions
can be endowed with the structure of a tensor category:⊗

j

Rj =
⊕

Q`
∑
j
|Rj |

MQ ⊗Q (5.6)

The Wilson operators diagonalize under this decomposition:

I(
⊗
j

Rj) =
⊕

Q`
∑
j
|Rj |

I(MQ)⊗ 1(Q) (5.7)

There are two generating elements of the braid group which present two following cobordisms:

Cobordism Trajectory Representations Diagram

Ti,i+1 (V1(z1)⊗ V2(z2)) −→ (V1(z2)⊗ V2(z1))

Q1
Q1Q2

Q2

Si,i+1,i+2 (V1(z1)⊗ V2(z2))⊗ V3(z3) −→ V1(z1)⊗ (V2(z2)⊗ V3(z3))

Q1
Q1Q2

Q2Q3
Q3

Now in order to construct the knot invariant colored by a representation Q from the braid, one has to
construct a projector onto Q:

PQ

(⊕
R

MR ⊗R

)
=MQ ⊗Q (5.8)

and then to “remove” the free ends of the braid either by taking trace or by gluing “caps” to its pairwise ends:
the wave functions with vacuum quantum numbers ΨQ(z1, z2) P∅(Q⊗Q).

There is another set of important operators which inserting the Wilson line into the fixed time slice. Since
the lines are completely within the slice, these operators are colorless and act on the wave functions as

WQ = TrQ

[
Pexp

∮
A(z)dz Q⊗

]
= UnknotQ P∅

(
Q⊗ Pexp

∮
A(z)dz Q

)
⊗ (5.9)
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Figure 6: WQ

By trace here we mean only the trace over the representation of the gauge group, hence, the operator is a
well-defined scalar. Decorating knots with operations of this kind was considered in detail in [37]. In fact,
one can easily understand that for the one-point conformal block (or for the operator WQ that inserts a loop
surrounding only one point)

WQΨQ′ =
HQ,Q′

dimq(Q′)
ΨQ′ (5.10)

where HQ,Q′ is the Hopf link HOMFLY polynomial and dimq(Q) is the quantum dimension of Q, which is
the same as the (unreduced=non-normalized) HOMFLY polynomial of the unknot. If now one applies such
an operator to a few strands, it can be expanded into the cluster coordinates which are a kind of basis in the
Hilbert space. Then, generalizing [24, 38] one has to expect that WQ is a polynomial in these coordinates which
is a character in full analogy with s.4.4,

WQ = χQ(Y1, . . . , Yk) (5.11)

and Yk are the Darboux coordinates on the C flat connections moduli space.
In the next two subsections we present two different realizations of the described scheme, which is basically

related with two different realizations of R-matrices.

5.2 Knot invariants from RTW representation via duality kernels
5.2.1 The basic idea

One of the possibilities to realize this general construction due to E.Witten [2] is the Reshetikhin-Turaev
scheme [3], which was realized in detail in [39] and in [40, 6] for different braid representations of knots/links.
The approach is based on assigning with any cross of the braid the R-matrix of Uq(G). This R-matrix can
either come as a monodromy (modular) matrix of the WZWN theory [39] or can be treated as just a numeric
R-matrix from representation theory [6]. Here we will propose a third possibility: to reproduce the R-matrix
by the modular kernel of the conformal field theory. Since this case is described by the Virasoro algebra, the
obtained R-matrix is associated with SUq(2) and the corresponding knot invariants are the Jones polynomials.

Let us explain how to apply the modular transformations to evaluation of the knot polynomials. The idea
is that, if there are three strands, one can describe the crossing of the first two strands and the second and the
third strands correspondingly as

R⊗ I = T, I ⊗R = STS† (5.12)

i.e. the modular matrix T plays the role of the R-matrix acting in the space of intertwining operatorsMQ (5.6)
and S plays the role of the mixing matrix in the RTW formalism, see details in [6]. These transformations, S
and T , are known to form a Moore-Seiberg grouppoid [58, 42].

Now one has to check the Reidemeister moves:

• 3-rd Reidemeister = YB relation(
I ⊗R

)(
R⊗ I

)(
I ⊗R

)
=
(
R⊗ I

)(
I ⊗R

)(
R⊗ I

)
(5.13)

i.e.

STS†TSTS† = TSTS†T (5.14)
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is solved by the anzatz

SS† = 1,

STS†TST = I (5.15)

because it can be rewritten as(
STS†TST

)
S† = T

(
STS†TST

)
T−1S−1 (5.16)

In the simplest situation (the four-point spherical conformal block) we additionally have S† = S, and
therefore (5.15) reduce to

S2 = 1 and (ST )3 = 1 (5.17)

• 2-nd Reidemeister: TT−1 = 1

• 1-st Reidemeister:

T ijklP
k
i = P jl (5.18)

where P is the cap projector.

The simplest non-trivial solution to (5.17) is in 2×2 matrices. If T is diagonalized, then S is the elementary
mixing matrix of [6]:

T =

 q 0

0 − 1
q

 , S =


1
[2]

√
[3]

[2]

√
[3]

[2] − 1
[2]

 (5.19)

where quantum numbers [2] = q + q−1 and [3] = q2 + 1 + q−2.

5.2.2 S in (5.19) as the Racah matrix

Consider the representation-product diagrams from [6] for the particular choice of external legs:

@
@

@
@

�
�
�
�

�
�

@
@
@

@

�
�
�
�

@
@

[1] [1]

[1] [1] [1] [1] [1] [1]

i J
=

∑
J SiJ

 [1] [1]

[1] [1]



Both sets of intermediate states are 2-dimensional, but different: i = [2], [11] and J = 0, Adj, i.e. J =
[0], [21N−1]. Note also that the conjugate fundamental representation [1] = [1N−1]. For N = 2 there are
coincidences: [1] = [1], Adj = [2], [11] = [0], therefore the two diagrams are the same, moreover the matrix SiJ
coincides with that for the Racah matrix for [1]⊗3 −→ [1], which is known from ref.[6] to be exactly (5.19).

5.2.3 S and T matrices from conformal theory

Instead of trying to find solutions to eqs.(5.17) within the group theory framework, one can use another
possibility: the same equations are solved by the modular kernels that control modular transformations of the
conformal blocks. In the generic case, these transformations are given by integral kernels. However, in the
case degenerate fields they become matrices. Since the Virasoro algebra is associated with SU(2), one expects
obtained in this way the S- and T -matrices to generate the colored Jones polynomials, while going further
to SU(N) with N > 2 would require modular transformations of the conformal blocks of the corresponding
WN -algebras.
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Thus, we are going to consider the conformal blocks with the fields Φ(m,n) degenerate at level m · n which
have conformal dimensions [41]

∆(m,n) = α(m,n)

(
α(m,n) − b+

1

b

)
, α(m,n) =

1

2

(m− 1

b
− (n− 1)b

)
(5.20)

and b parameterizes the central charge of conformal theory: c = 1 − 6(b − 1/b)2. At the same time, choosing
different n changes the spin of representation (of the colored Jones polynomial).

Now we are going to read off the matrix S from the modular transformation

Bjs

[
j2 j3
j1 j4

]
(x) =

∑
jt

Sjs jt

[
j2 j3
j1 j4

]
Bjt

[
j2 j1
j3 j4

]
(1− x) (5.21)

The fundamental representation. Let us consider the simplest example of the fundamental representation
of SU(2). In this case, one may expect that the end of the Wilson line in the fundamental representation [1]
behaves as Φ(1,2) in the conformal theory

Φ(1,2) ⊗ Φ(1,2) = Φ(1,3) ⊕ Φ(1,1) (5.22)

Then, one has (where index means a projection in the intermediate channel on the corresponding state)

B[11](x) =
〈
Φ(1,2)(0)Φ(1,2)(x)

∣∣
(1,1)

Φ(1,2)(1)Φ(1,2)(∞)
〉

= xδ(1− x)δ2F1

[
α, β
γ

]
(x), (5.23)

B[2](x) =
〈
Φ(1,2)(0)Φ(1,2)(x)

∣∣
(1,3)

Φ(1,2)(1)Φ(1,2)(∞)
〉

= xδ̄(1− x)δ2F1

[
α− γ + 1, β − γ + 1

2− γ

]
(x) (5.24)

where

α =
3

2b2
+

7

2
, β =

1

2b2
+

3

2
, γ =

1

b2
+ 3, δ =

3b2

4
+

1

4b2
+

3

2
, δ̄ =

3b2

4
− 3

4b2
− 1

2
(5.25)

Then, the matrix S reads in this case (S2 = 1)

S =

 Γ(2+ 2
b2

)Γ(− 2
b2
−1)

Γ(1+ 1
b2

)Γ(− 1
b2

)
Γ(2+ 2

b2
)Γ( 2

b2
+1)

Γ(1+ 1
b2

)Γ( 3
b2

+2)
Γ(− 2

b2
)Γ(− 2

b2
−1)

Γ(− 1
b2

)Γ(− 3
b2
−1)

Γ(− 2
b2

)Γ( 2
b2

+1)
Γ(− 1

b2
)Γ( 1

b2
+1)

 = eiπ

 1
[2]

√
[3]

[2] γ
2

√
[3]

[2] γ
−2 − 1

[2]

 = U ·

 1
[2]

√
[3]

[2]√
[3]

[2] − 1
[2]

 · U−1(5.26)

where

γ2 = (2 + b2)
[2]√
[3]

Γ2
(
1 + 2

b2

)
Γ
(

1
b2

)
Γ
(

2 + 3
b2

) (5.27)

and

U = e
iπ
2

(
γ 0
0 γ−1

)
(5.28)

while the matrix T is2 ((ST )3 ∼ 1)

T ∼
(
q 0
0 − 1

q

)
(5.29)

The overall normalization of the matrix T is an inessential overall state space phase, it can be fixed from the
requirement (ST )3 = 1. When checking various relations here, we used

Γ(z)Γ(1− z) =
π

sinπz
, cos(παb−2) =

qα + q−α

2
, sin(παb−2) =

qα − q−α

2i
(5.30)

Note that this matrix S differs from that in (5.19) by the additional U -conjugation (5.28). However, this
conjugation influences neither on the relation (ST )3 = 1, nor on S2 = 1, and does not change the answers for
the knot polynomials.

2In this section q = eπib
−2

.
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Higher spin representations. So far we considered only the fundamental representation of SU(2). Similarly,
one can consider representations of higher spins. To this end, one has to use Φ(1,2)⊗Φ(1,2)⊗Φ(1,s+1)⊗Φ(1,s+1)

with the fusion matrices

S =

 Γ(2+ 2
b2

)Γ(− s+2

b2
+ 1
b2
−1)

Γ(1+ 1
b2

)Γ(− s+2

b2
+ 2
b2

)
Γ(2+ 2

b2
)Γ( s+2

b2
− 1
b2

+1)
Γ(1+ 1

b2
)Γ( s+2

b2
+2)

Γ(− 2
b2

)Γ(− s+2

b2
+ 1
b2
−1)

Γ(− 1
b2

)Γ(− s+2

b2
−1)

Γ(− 2
b2

)Γ( s+2

b2
− 1
b2

+1)
Γ(− 1

b2
)Γ( s+2

b2
− 2
b2

+1)

 (5.31)

T =

(
q
s+1
2 e

iπ
2 0

0 q−
s+1
2 e−

iπ
2

)
(5.32)

These matrices can be obtained either directly from the equations for the degenerate conformal fields, or from
the general expression for the modular kernel due to B.Ponsot and J.Teschner [42]. This latter procedure is
discussed in the Appendix.

Using these S and T matrices, one can easily generate the Jones polynomials as it was explained above.
Note that one can easily construct the most generic modular kernel S, when the only field is degenerate at the
second level: the general degenerate conformal block with j2 = 1 is described by the hypergeometric function

B(x) ∼ 2F1

[
2 + b−2

2 (3 + j1 + j3 + j4) 1 + b−2

2 (1 + j1 + j3 − j4)
2 + b−2(1 + j1)

]
(x) (5.33)

The corresponding monodromy matrix reads3

S(j1, 1, j3, j4) =


Γ( j1+1

b2
+2)Γ

(
− b

2+j3+1

b2

)
Γ
(

2b2+j1−j3+j4+1

2b2

)
Γ(− 1−j1+j3+j4

2b2
)

Γ( j1+1

b2
+2)Γ

(
b2+j3+1

b2

)
Γ
(

2b2+j1+j3−j4+1

2b2

)
Γ
(

4b2+j1+j3+j4+3

2b2

)
Γ(− j1+1

b2
)Γ

(
− b

2+j3+1

b2

)
Γ(− j1+j3−j4+1

2b2
)Γ
(
− 2b2+j1+j3+j4+3

2b2

) Γ(− j1+1

b2
)Γ

(
b2+j3+1

b2

)
Γ(− j1−j3+j4+1

2b2
)Γ
(

2b2−j1+j3+j4+1

2b2

)

 (5.35)

The higher spin matrix is generated from the recursion formula derived [43] from the “cabling” procedure
([r]⊗ [1] = [r + 1]⊕ [r − 1]):

Sq,q′

[
r + 1 j3
j1 j4

]
=
∑
s,p

Sr+1,s

[
1 q
r j1

]
Sq,p

[
1 j3
s j4

]
Ss,q′

[
r p
j1 j4

]
Sp,r+1

[
r 1
q′ j3

]
(5.36)

5.2.4 Plat representation of link diagrams (spherical conformal block)

Since operators S and T , satisfying (5.15) naturally arise as modular transformations of conformal blocks,
one can associate them with the link diagrams in the plat representation in the following way.

We begin with examples.

1 cap There is nothing to consider in the case of one cap: independently of the number of interweavings
between two strands, it is always the unknot:

(Tn)22 = (−q)−n (5.37)

2 caps Our notation should be clear from the picture, where the bottom pictures present the conformal
block one starts with, the middle pictures present the monodromy of points in the conformal block and the top
pictures present the resulting conformal block:

3To be precise, this matrix is related to the modular kernel as

Sjs jt

[
1 j3
j1 j4

]
=

∑
h,h′=±1

δ(js − j1 − h)δ(jt − j3 − h′)S(j1, 1, j3, j4)h,h′ (5.34)

20



?
6

?
6

H
H
��

�
�

HH

0

H
H
��

�
�

HH

0�
U

?
6

?
6

H
H
��

�
�

HH

0

�� HH

HH ��

j

r̄1 r1 r2 r̄2

r̄1

r1 r2

r̄2

r̄1 r1 r2 r̄2

r̄1

r1 r2

r̄2

r̄1

r1 r2

r̄2

⊕
j

Expressions for the two operations are respectively T0(r̄1, r1) and Sj0
(
r1 r̄2

r̄1 r2

)
.

Generic knot/link in this sector is a sequence of T -twists between parallel strands in the channel 23 and
antiparallel strands in the channel 12 (numbers 1, 2, 3, 4 here label the vertical lines in the picture). This family
includes 2-strand links and knots, twist knots, antiparallel 2-strand links, double braids from [44] and in general
is known as a family of 2-bridge links.

• Two unknots

If no S operators are applied, we get two disconnected unknots. The answer for two fundamental repre-
sentations of SU(2) is obtained with the help of (5.19):(

Tn1
)

22

(
Tn2

)
22

= (−q)−n1−n2 (5.38)

Up to the framing factor this is the fully reduced knot polynomial (i.e. unreduced expression [2]2 is divided
by square of the quantum dimension [2]).

• 2-strand torus links

The plat diagram and the sequence of modular transformations in this case are:
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?
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. . .

?

6

?

6

H
H
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HH

0

HH�
�

��H
H

0

�� HH

HH ��

j

	 R

T 2k
j

r̄1 r1 r2 r̄2 r̄1

r1 r2

r̄2

r̄1

r1 r2

r̄2

⊕
j

r1

r̄1 r̄2

r2

6

6

Sj0

S0j
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The corresponding analytical expression is∑
j

S0j

[
r̄1 r̄2

r1 r2

]
Tj
[
r1, r2

]2k
Sj0

[
r1 r2

r̄1 r̄2

]
(5.39)

In the case of two fundamental representations, r1 = r2 = [1] of SU(2), one can use matrices (5.19) and
obtain:

ST 2kS
(5.19)

=
1

[2]2

 q2k + q−2k[3]
(
q2k − q−2k

)√
[3](

q2k − q−2k
)√

[3] q2k[3] + q−2k

 (5.40)

Expression in the right lower corner (the matrix element 22) is exactly the reduced Jones polynomial

J
[2,2k]
[1],[1] =

1

[N ]2

(
q2k [N ][N + 1]

[2]
+ q−2k [N ][N − 1]

[2]

)∣∣∣∣
N=2

=
1

[2]2

(
[3]q2k + q−2k

)
(5.41)

for the 2-strand torus links (in the Rosso-Jones framing [45]).

• 2-strand torus knots

The only difference in this case is that even power 2k is substituted by the odd one 2k + 1, but this is
only possible for two coincident representations r1 = r2. This restriction is obvious from the plat diagram
on the left side of the above picture, on the right side, one would get as the top picture the diagram

HH
��

��
HH

0

r̄1

r2 r1

r̄2

and again this is possible (the singlet can run in the intermediate line) only if r1 = r2.

As to formula (5.40), it remains just the same, with the obvious change 2k −→ 2k+ 1, and the 22 element
of the matrix reproduces the reduced Jones polynomial

ST 2k+1S
(5.19)

=
1

[2]2

 q2k+1 − q−2k−1[3] (q2k+1 − q−2k−1)
√

[3]

(q2k+1 − q−2k−1)
√

[3] q2k+1[3]− q−2k−1

 =

 . . . . . .

. . . 1
[2]J

[2,2k+1]
[1]

(5.42)
where

J
[2,2k+1]
[1] =

1

[N ]

(
q2k+1 [N ][N + 1]

[2]
− q−2k−1 [N ][N − 1]

[2]

)∣∣∣∣
N=2

=
1

[2]

(
[3]q2k+1 − q−2k−1

)
(5.43)

Note that in variance with links only one of the two factors [2] is eliminated by expressing the answer
through the reduced knot polynomial. Also note that, like in (5.41), the Jones polynomial appeared in the
Rosso-Jones framing rather than in the topological one.

• Twist knots differ by insertion of two additional twists in the channel 12:
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Note that in order to have a closed oriented line one should no change the order in which representation
and its conjugate appear in the last two vertical lines.

The analytical expression is now∑
l,j

S0l

[
r r̄
r̄ r

]
Tl
[
r, r
]2
Slj

[
r r̄
r̄ r

]
Tj
[
r, r̄
]2k

Sj0

[
r r̄
r̄ r

]
(5.44)

In the case of the fundamental representation r = [1] = [1] of SU(2) one can use (5.19) and obtain:

ST 2ST 2kS
(5.19)

=
1

[2]2


q2k−1(q2 + q−2) + q−2k{q3}

(
q2k−1(q2 + q−2)− q−2k{q}

)√
[3]

(
q2k{q}+ q1−2k(q2 + q−2)

)√
[3] q2k{q3} − q1−2k(q2 + q−2)

 =

=

 . . . . . .

. . . − q
−2k−2

[2] J
Tw(k)
[1]

(5.45)

J
Tw(k)
[1] = 1 +

Ak+1{A−k}
{A}

{Aq}{A/q}
∣∣∣∣
A=q2

=
1

[2]

(
− q4k+2{q3}+ q3(q2 + q−2)

)
=

= −q
2k+2

[2]

(
q2k{q3} − q1−2k(q2 + q−2)

)
(5.46)
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3 caps The initial state in this case can be represented as
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This picture shows one of the possible mutual orientations of the three lines, which is suitable for the
following example. One can now make the chain of modular transformations (from the above 2-cap examples
it should be clear what is the associated link diagram, but analytical expressions can be read from the chain of
modular transformations):
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?

Sk0 ⊗ Sl0

� Smj

Now one can apply T transformations in any of the channels, moving back and forth along this chain.
The typical analytical expression begins from:

. . . Tm
[
r, r̄
]a
Smj

[
k l
t̄ r

]
Tk
[
r, r̄
]b
Tl
[
r, r̄
]c
Sl0

[
r̄ r̄
j̄ r̄

]
Sk0

[
r r
r̄ j̄

]
Sj0

[
r r̄
0 0

]
(5.47)

As usual, it is read from right to left, and one can add arbitrary many S transforms and their conjugate of the
same type to the left.

Note that the obvious selection rule dictates that j = r, thus actually there is no sum involving arguments
(not just indices) of the matrix S. However, such sums can appear after additional applications of S.

5.3 Hikami knot invariants from check-operators
There is another, alternative construction of R-matrices, which has a geometric origin and is associated with

tetrahedra volume [46, 47, 48, 49]. It is basically associated with Chern-Simons theory with a complex gauge
group GC [50].

5.3.1 Quantum spectral curve in Chern-Simons theory

The Chern-Simons theory on a 3d manifold M with a complex gauge group SL(2,C) is defined by the
following action [51]

S(A, Ã) =
t+
8π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+
t−
8π

∫
M

Tr

(
Ã ∧ dÃ+

2

3
Ã ∧ Ã ∧ Ã

)
(5.48)

where

t± = k ± is, k ∈ Z, s ∈ R (5.49)

24



and the path integral runs over both A and Ā:∫
DADĀ eiS(A,Ā) (5.50)

Here we are going to deal with correlation functions of only fields A. Since we are interested in constructing
knot polynomials in this theory, i.e. the Wilson averages, we follow the logic of s.5.1: consider a monodromy
of the wave function as a time evolution. We consider the case when C is represented by a sphere and the
gauge group is SL(2,C). Fixing the representations along the Wilson lines, one can represent the average of
the Wilson lines that begin at points vi and finish at points xi as the tensor

ρ

〈⊗
i

Pexp

xi∫
vi

A

〉 =
⊗
i

ρi(g(xi))
⊗
j

ρj(g
−1(xj))Ψ(x1, . . . , xn, v1, . . . , vn) (5.51)

The tensor-valued wave function Ψ here is a conformal block of the WZWN theory, which satisfies the Knizhnik-
Zamolodchikov equation with respect to the both sets of variables vi and xi:

(t+ − 2)∂xiΨ =
∑
j 6=i

ρi(τ
a)⊗ ρj(τa)

xi − xj
Ψ (5.52)

Let one of the representations be fundamental and denote the corresponding end-point as z, while the remaining
ones are xi. Then,

(t+ − 2)∂zΨ = Φ(z)Ψ, Φ(z) :=
∑
i

σa ⊗ ρi(τa)

z − xi (5.53)

where σa are the Pauli matrices. The equation for the first component Ψ1 is

~∂2
zΨ1 = Φ11∂z log

(
Φ11

Φ12

)
·Ψ1 + ~∂z log Φ12 · ∂zΨ1 +

1

~

(
Φ2
)

11
·Ψ1 (5.54)

with ~ = t+− 2. In the quasiclassical limit, only the last term at the r.h.s. of this equation survives so that one
finally obtains

~∂2
zΨ1 =

∑
i

c2(ρi)

(z − xi)2
Ψ1 +

∑
i

1

z − xi

∑
j 6=i

ρi(τ
a)⊗ ρj(τa)

xi − xj︸ ︷︷ ︸
~∂xi

Ψ1 (5.55)

with c2(ρ) being the second Casimir element. This is the spectral curve equation of the form (4.34), with the
potential parameterized by zi and, hence, the check-operator acts on zi. The potential itself can be restored from
comparing this equation and (4.34). This similarity of (5.55) and (4.34) allows one to make “β-ensemble inter-
pretations” in Chern-Simons theory. The derivative ∂z is definitely replaced in the quasiclassical approximation
with the spectral parameter λ.

5.3.2 Verlinde operators

Consider an operator that acts on the Hilbert space in Chern-Simons theory

O(R)
γ : HCS → HCS (5.56)

and define from the Knizhnik-Zamolodchikov equation (5.52) an “evolution” operator that moves points of the
wave function, or conformal block from their initial positions zi (the initial moment of the evolution, t = 0) to
the final positions after monodromy transformation made vi (the final moment of the evolution, t = T ):

U(Knot) :=
⊗
i

Pexp

∫
ith strand

Aidζi =
⊗
i

Pexp

∫ vi

zi

dζi
1

~
∑
j 6=i

ρi(τ
a)⊗ ρj(τa)

ζi − ζj
(5.57)

so that one can generate knots invariants evaluating either the trace of this operator in
⊗
i

Ri or its projection.

In the Heisenberg representation

U(Knot)−1O(R)
γ (0) U(Knot) = O(R)

γ (T ) (5.58)
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and if one knows both O(R)
γ (0) and O(R)

γ (T ), it is possible to evaluate U(Knot) from the equation

O(R)
γ (0) U(Knot) = U(Knot) O(R)

γ (T ) (5.59)

Let us introduce a set of “Verlinde operators” acting on the space of conformal blocks HCS as the monodromy
trace (straight analogs of WR from s.5.1):

O(R)
γ := TrR Pexp

∮
γ

dζ
1

~
∑
i

~τ ⊗ ~τi
ζ − zi

(5.60)

They can be rewritten following “the β-ensemble interpretation” in terms of check-operators as the trace of
monodromy:

O(R)
γ = TrRe

1
~
∮
γ

∇̌
(5.61)

while the counterparts of monodromy itself are the (Fock-Goncharov) cluster coordinates

wγ := e
1
~
∮
γ

∇̌
(5.62)

which form a Heisenberg algebra:

wγwγ′ = q〈γ,γ
′〉wγ+γ′ (5.63)

Then, one can solve equation (5.59) in terms of this algebra:

U(Knot) = f(wγ) (5.64)

This algebra admits a realization in the space of conformal blocks [38] with manifest realization wA =
ea, wB = q∂a so that the evolution operator is realized as U(Knot) = f(ea, q∂a) and reduces to a modular
transformation of the conformal block in terms of S- and T -matrices/kernels.

5.3.3 Knots and flips

Quasiclassical limit. As we described, one can associate with eachWZWN conformal block the corresponding
Knizhnik-Zamolodchikov equation (and its derivative (5.55)), and with this later a WKB network. When the
points of the conformal block are subject to monodromy transformations, this Chern-Simons evolution can be
described by reconstructions of the WKB network by a series of flips (mutations). In terms of the Heisenberg
algebra (5.63) associated with the Stokes lines γ’s, we reinterpret flips as an action of some evolution operators
u on wγ , and the discretized smooth evolution is now

U(Knot) 
∏

γ∈flips

uγ(X) (5.65)

Therefore, one can consider the spectral curve that emerges in the “quasiclassical” limit ~ → 0, (5.55):
∇̌2(z) − T (z) = 0 and the Stokes lines Im ~−1∇̌ = 0 (see (2.2)) so that we are able to present quasiclassical
expressions for the operators:

O(R)
γ ∼

∑
sheets

e

∮
γ

∇̌
+ Stokes detours (5.66)

A single flip along the edge γ is calculated as in s.2.2 and is equal (see eq.(2.12))

Flipγ(wγ′) =

{
wγ′ , 〈γ, γ′〉 = 0
wγ′(1 + wγ), 〈γ, γ′〉 = 1

(5.67)
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Quantization. Similarly to s.4.1, using technique presented in [20] one can calculate the quantum flip. The
result is

Flipγ(wγ′) =

 wγ′ , 〈γ, γ′〉 = 0

wγ′
∏|〈γ,γ′〉|
a=1

(
1 + q2a−1w

〈γ,γ′〉
γ

)〈γ,γ′〉
, |〈γ, γ′〉| = 1

(5.68)

This flip is described by the adjoint action of uγ :

wγ′uγ(w) = uγ(w)Flipγ(wγ′) (5.69)

which means that

uγ(w) ∼ Φ(logwγ) (5.70)

where quantum dilogarithm is defined as [52]

Φ(z|τ) = exp

(
−1

4

∫
R+i0

dw

w

e−2iwz

sinh b−1w · sinh bw

)
(5.71)

5.3.4 Hikami invariant as a KS invariant

Thus, one is able to rewrite the evolution operator U(Knot) as a product of R-matrices each of them, in its
term, being a product of mutations:

R =:
∏
i

uγi : (5.72)

Having the manifest expression for uγ in terms of quantum dilogarithm (5.71), one can construct a manifest
representation for the R-matrix. This can be done either by using our manifest realization of the cluster
coordinates (5.62), or in a more formal way [49], the answer for the R-matrix being a product of ratios of
quantum dilogarithms. In order to obtain the knot polynomial one still has to calculate the trace of a product
of R-matrices.

Afterwards the R-matrix can be rewritten in terms of tensor categories after substitution of values for
cluster coordinates in terms of tensor categories. From this point of view Virc and Uq(sl2) are equivalent tensor
categories [42]4.

Quasiclassical limit [48]. As was demonstrated in [48, 49], the R-matrix can be associated with an ideal
hyperbolic octahedron. This is not surprising since the quantum dilogarithm (5.71) in the quasiclassical limit
(q → 1) is related to the hyperbolic volume of ideal tetrahedron ∆ so that the R-matrix has the asymptotic
form

R ∼ e
1
~2

∑
i

∆i

(5.73)

5.4 Stokes phenomenon in conformal blocks
5.4.1 WKB approximation

As we have seen the spectral curve for a braid of n strands placed at xi reads (5.55)

λ2 =

n∑
i=1

(
c2(ρi)

(z − xi)2
+

ui
z − xi

)
dz2 (5.74)

The web of WKB lines is constructed as trajectories of solutions to equation (2.2)

Im ~−1λ = 0 (5.75)

Here we present the evolution of the WKB lines for six strands associated to the premutation of two middle
strands in order to mimic the action of the R-matrix. The blue dots mark positions of zeroes of the discriminant,
while the red ones mark positions of the strands (singularities of the curve).
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Figure 7: Evolution of WKB lines.

Figure 8: Cycles associated to the flips corresponding to the permutation of two strands.
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It is simple to observe four simple flips associated to cycles γ1, γ2, γ3, γ4 in the order as they are mentioned
as it is depicted in Fig.8.

Hence, the action of the R-matrix is mimiced by the following operator (cf. with [49, eq.(3.15)])

R ∼ Φ(wγ4)Φ(wγ3)Φ(wγ2)Φ(wγ1) (5.76)

To clarify the relation to what is discussed in [49], we should mention the relation between the Fock-
Goncharov and the Kashaev coordinates on triangulations. Consider a triangulation of a punctured Riemann
surface depicted in fig.9. Here the singularities are marked as red dots, branching points are marked as purple
crosses, and the WKB lines are dashed lines. Then, we restore the triangulation edges as it is marked by
the blue lines. One can associate the Kashaev coordinates to these edges. Notice that the Fock-Goncharov
coordinates are associated with the cycles that are projected to the green lines connecting the branching points,
the centers of triangles. In other words, the Fock-Goncharov coordinates are associated with the graph dual to
the triangulation and are dual to the Kashaev coordinates correspondingly.

Figure 9: Triangulation.

The antisymmetric matrix Bij associated with a quiver (see [49, eq.(2.1)]) represents an intersection pairing
matrix associated to the corresponding cycles.

In the next fig.10, we present the WKB triangualtion of the spectral curve under consideration and flips of
its edges associated with γ1, γ2, γ3, and γ4 respectively marked by the corresponding colors (the initial edge is
marked by the solid line, the mutated edge is marked by the dashed line.) Comparing this triangulation to that
presented in [49, Figure 2], we notice that all the horizontal edges are flipped from the very beginning in that
paper as compared with the present ones, and the top and bottom tips are not glued together.

Figure 10: Flips of the triangulation associated with the conformal block spectral curve.

4Indeed this equivalence can be explicitly demonstrated [38], and on general grounds it is a consequence of a mythical mirror
symmetry in a mythical Virq,t-tensor category.
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6 Conclusion and Discussion
In this short review we tried to give a simple intuitive description for various new interesting phenomena de-

scribed recently in the literature. The story includes such issues as quantum spectral curves, Teichmüller theory,
cluster varieties, moduli space of flat connections, different theories produced by M5-brane compactification,
etc...

Many of these subjects are related to a 2d Coulomb gas system (β-ensemble), maybe via different chains of
dualities or correspondences. The usual technique to derive correlators in the β-ensemble system, the topological
recursion gives rise to an infinite chain of linked equations: the loop equations. We argued that the loop
equations arising within this approach are much similar to those arising within the WKB approach to solving
differential equations. The major modification is that in β-ensembles there are two deformation coefficients: g,
a string coupling constant, and β. This can be reinterpreted in such a way that, to the usual Plank constant
~ controlling WKB expansion of, say, Schrödinger equation one should add another deformation parameter
~′ that will control commutation relations of eikonals. Thus, the eikonals become non-commutative operators
acting on some modified Hilbert space, where the β-ensemble partition function behaves as a wave function on
the moduli space.

As we discussed, the main characters of this construction are: the flat connection on Riemann surface, the
holonomy of this connection, the spectral parameter or eikonal, the cluster coordinates arising as holonomies of
this eikonal, and the Hilbert space associated with the partition faction playing a role of the wave function. As
well, many theories are tightly related to some dualities. Here we present various avatars of the same notions
emerging in different theories. Some of the avatars have been so far not discussed in the literature, hence, we
leave the corresponding boxes blank:

Theory Hilbert space Flat connec-
tion

holonomy spectral pa-
rameter

cluster coor-
dinate

duality

2d CFT conf. block T (z) Verlinde
operator[54,
43]

chiral
current[55]

Y-functions fusion rules

β-ensembles part. func. resolvent S-duality
top. strings part. func. U(1)-Chern-

Simons
Wilson loops

Knizhnik-
Zamolodchikov-
Bernard

conf. block,
CS wave
function

g-connection Wilson loops Reidemeister
moves

Quantum
Hitchin

Landau-
Ginsburg
wave func.

Lax Lax
holonomies

spectral
dualities
MMZZ

q-Teichmühler wave func. spin connec-
tion

spin conn.
holonomies

geodesics Fock-
Goncharov,
Kashaev

Moore-
Seiberg
groupoid

Nekrasov part. func. 2d defect UV 1d defect UV 2d defect IR 1d defect IR S-duality

To complete this table with references we present the following list and web of correspondences between
different theories and references:

1. 2d CFTs: [27, 28]

2. CS/topological strings: [57]

3. CS/KZB-equations: [58]

4. β-ensembles: [59]

5. Quantum integrable systems (q-Hitchin, Painlevé): [60, 61]

6. R-twisted tt∗-equations: [57, 53, 19]

7. Quantum Teichmühler theory: [62]

8. N = 2 4d theory in Ω-background: [27, 28]
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9. Reps of quantum groups: [42]

M-theoryOO

[57]

��

66

((

CS/topological strings oo
[57] //

jj
[63]

**

R-twisted tt∗-equation oo
[56] // q-Hitchtin (Peinlevé)

OO

[64]

��

RR

[60]

cc

(2,0) 6d theory
jj

[27, 28]

**

OO

[27, 28]

��

β-ensemblesOO

[22, 65, 66, 38, 67]

��

tt

[61]
44

CS/KZB-equations
OO

��
N = 2 in Ω-background oo

[27, 28] // 2d CFT oo
[42] //

tt

44

OO

[42]

��

reps of q-groups

Quantum Teichmühler
tt [42]

44

In this note we only tried to touch a hip of this iceberg by applying the described framework, in particular,
to constructing the Hikami invariants for knots. Nevertheless, the framework seems to be general enough to be
extended to include a third deformation allowing to include quantum W-algebras, 5d SYM theory and desirably
superpolynomial invariants for knots.

Appendix
In this Appendix we demonstrate as manifest expressions for the duality matrices can be obtained within

the approach due to B.Ponsot and J.Teschner [42]. We start with a simpler case of q = eπib
2 → 1, which

corresponds to b→ 0, c→∞ in the conformal theory. The answers for the generic q are obtained just replacing
all hypergeometric functions for the q-hypergeometric functions, and the Γ-functions for the q-Γ-functions.

A1. A special case of q → 1

Preliminaries

The Ponsot-Teschner approach is made explicitly invariant with respect to b↔ b−1, so in this limit one can
not use already obtained formulas directly. However, one can apply the their framework. The crucial point is
that in the limit c→∞ the conformal blocks become “conformal blocks” of sl2 (see e.g. [68, 69])

Ψ∆(x) = B∆

[
∆2 ∆3

∆1 ∆4

]
→ x∆−∆1−∆2

2F1

[
∆ + ∆2 −∆1, ∆ + ∆3 −∆4

2∆

]
(x) (A.1)

It is an eigenfunction of the operator[(
x
d

dx
+ ∆1 + ∆2 −

1

2

)2

− x
(
x
d

dx
+ ∆1 + ∆2 + ∆3 −∆4

)(
x
d

dx
+ 2∆1

)]
Ψ∆(x) =

(
∆− 1

2

)2

Ψ∆(x)(A.2)

This operator is self-adjoint with respect to the measure

dµ(x) = x2(∆1+∆2−1)(x− 1)∆1−∆2+∆3−∆4 (A.3)

Thus, one can calculate the modular kernel as

S∆∆′

[
∆2 ∆3

∆1 ∆4

]
=

∫
dµ(x) Ψ

(s)
∆ (x)Ψ

(t)
∆′(1− x) (A.4)

Finite-dimensional representations

Finite-dimensional representations are described by half-integer spins and correspond to degenerate fields,
their dimensions being enumerated by the Kac determinant zeroes, (5.20)

∆([s]) = ∆1,s+1 =
b2s2

4
− s

2
→ −s

2
(A.5)
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For the degenerate fields the conformal blocks are just finite polynomials

Ψj/2(x) = B[j]

[
[s] [s]
[s] [s]

]
→ xs−

j
2 2F1

[
− j2 , −

j
2

−j

]
(x), j/2 = 0, 1, 2, . . . , s (A.6)

In this case, the modular kernel is just a finite matrix, since

Ψj/2(x) =

s∑
j′/2=0

S[2j][2j′]

[
[s] [s]
[s] [s]

]
Ψj′/2(1− x) (A.7)

For instance,

S[j/2][j′/2]

[
[1] [1]
[1] [1]

]
=

(
− 1

2 1
3
4

1
2

)
(A.8)

S[j/2][j′/2]

[
[5] [5]
[5] [5]

]
=


− 1

6
5
7 − 25

14
25
9 − 5

2 1
7
60 − 31

70
23
28 − 11

18 − 1
4

1
2

− 7
90

23
105 − 1

12 − 29
54

7
12

1
6

7
100 − 33

350 − 87
280

79
180

19
40

1
20

− 1
10 − 3

49
15
28

95
126

1
4

1
70

11
36

275
294

1375
1176

1375
2268

55
504

1
252

 (A.9)

The other matrix T in this case is just T = diag(1,−1, 1,−1, . . .). In this case, the measure is

dµ(x) = x−2(s+1) (A.10)

and the orthogonality condition for Ψj is

〈
Ψj/2,Ψj′/2

〉
=

∞∫
1

dx xj/2+j′/2−2

(
2F1

[
− j2 , −

j
2

−j

]
(x)

)(
2F1

[
− j
′

2 , −
j′

2
−j′

]
(x)

)
= δj,j′

(2j)!4

(4j)!(4j + 1)!
(A.11)

Particular values of matrix elements are

S[0][j/2]

[
[s] [s]
[s] [s]

]
=

1

||Ψj/2||2
S[2j][0]

[
[s] [s]
[s] [s]

]
(A.12)

S[j/2][0]

[
[s] [s]
[s] [s]

]
=

∞∫
1

dx (1− x)sx−s−j/2−2
2F1

[
− j2 , −

j
2

−j

]
(x) =

= (−1)s
∞∑
n=0

π(n− j/2)

sinπ(n− j/2)

Γ(1− j/2 + n)

Γ(1− j + n)Γ(s+ j/2 + 2− n)n!

(A.13)

Explicit calculations

In (A.7) we consider the normalized matrix S

Skk′ = (−1)k+k′−s

∞∫
1

dx xk−k
′−s−2

2F1

[
−k − k
−2k

] (
x−1

)
2F1

[
−k′ − k′
−2k′

]
(x)

∞∫
1

dx x−2(k′+1)
2F1

[
−k′ − k′
−2k′

]
(x)2

, k, k′ = 0, . . . , s (A.14)

The normalizing multiplier is independent of s, thus, one can evaluate it, for instance, using the OEIS [70]:

∞∫
1

dx x−2(k′+1)
2F1

[
−k′ − k′
−2k′

]
(x)2 =

k!4

(2k)!(2k + 1)!
=

Γ(k + 1)4

Γ(2k + 1)Γ(2k + 2)
(A.15)

Now the problem of constructing the matrix S is reduced to evaluating the unnormalized integrals

S̃kk′ =

∞∫
1

dx xk−k
′−s−2

2F1

[
−k − k
−2k

] (
x−1

)
2F1

[
−k′ − k′
−2k′

]
(x), k, k′ = 0, . . . , s (A.16)
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In this case, for instance, at s = 1

S̃ =


1

2

1

12

3

4
− 1

24

 (A.17)

We use the Barnes’ integral representation for the hypergeometric function

2F1

[
α β
γ

]
(z) =

Γ(γ)

Γ(α)Γ(β)

1

2πi

i∞∫
−i∞

ds
Γ(α+ s)Γ(β + s)Γ(−s)

Γ(γ + s)
(−z)s (A.18)

Thus

S̃kk′ =
Γ(−2k)Γ(−2k′)

Γ(−k)2Γ(−k′)2

(
1

2πi

)2
i∞∫
−i∞

dt
Γ(t− k)2Γ(−t)

Γ(t− 2k)

i∞∫
−i∞

dt′
Γ(t′ − k′)2Γ(−t′)

Γ(t′ − 2k′)

∞∫
1

dx xk−k
′−s−2

(
− 1

x

)t
(−x)t

′

︸ ︷︷ ︸
(−1)t+t

′

k−k′+t′−t−s−1

(A.19)

The last term gives a pole so one of the integrals can be calculated

S̃kk′ = (−1)k−k
′−s+1 Γ(−2k)Γ(−2k′)

Γ(−k)2Γ(−k′)2

i∞∫
−i∞

dt

2πi

Γ(t− k′ − s− 1)2Γ(−t− k + k′ + s+ 1)

Γ(t− k − k′ − s− 1)

Γ(t− k′)2 Γ(−t)
Γ(t− 2k′)

(A.20)

The boxed term gives the poles contributing to the answer. For example,

S̃11 =
Γ(−2)2

Γ(−1)4

(
Γ(−3)2Γ(2)

Γ(−4)

Γ(−1)2

Γ(−2)
− Γ(−2)2Γ(1)

Γ(−3)

Γ(0)2

Γ(−1)

)
= − 1

24
(A.21)

Similarly, one can calculate

S̃k0 = (−1)k−s
Γ(−2k)

Γ(−k)2

Γ(−s− 1)2Γ(s+ 1− k)

Γ(−s− 1− k)
(A.22)

S̃0k = (−1)k+s+1 Γ(−2k)

Γ(−k)2

Γ(s+ 1)2Γ(−k − s− 1)

Γ(s+ 1− k)
(A.23)

A2. Explicit calculations for q 6= 1

Similarly to the previous consideration

Skk′ =

∞∫
1

dqx x
k−k′−s−2

2φ1

[
−k − k
−2k

]
(x−1)2φ1

[
−k′ − k′
−2k′

]
(x)

∞∫
1

dqx x−2(k′+1)
2φ1

[
−k′ − k′
−2k′

]
(x)2

(A.24)

where

2φ1

[
α β
γ

]
(z) =

∞∑
n=0

(−z)n

(
n−1∏
j=0

[α+ j]q

)(
n−1∏
j=0

[β + j]q

)
(
n−1∏
j=0

[γ + j]q

)
[n]q!

, (A.25)

[n]q =
qn − q−n

q − q−1
, (A.26)

∞∫
1

dqx x
−n =

(−1)n

[n− 1]q
(A.27)

33



Formulas of the q → 1 case are generalized straightforwardly:

∞∫
1

dqx x
−2(k′+1)

2φ1

[
−k′ − k′
−2k′

]
(x)2 =

([k]q!)
4

[2k]q! [2k + 1]q!
(A.28)

and

S̃k0 = (−1)k−s+1 Γq(−2k)

Γq(−k)2

Γq(−s− 1)2Γq(s+ 1− k)

Γq(−s− 1− k)
(A.29)

S̃0k = (−1)k+s+1 Γq(−2k)

Γq(−k)2

Γq(s+ 1)2Γq(−k − s− 1)

Γq(s+ 1− k)
(A.30)

where,

Γq(x+ 1) =
qx − q−x

q − q−1
Γq(x) (A.31)
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