
SPARSE MATRICES DESCRIBING ITERATIONS OF
INTEGER-VALUED FUNCTIONS

BERND C. KELLNER

Abstract. We consider iterations of integer-valued functions φ, which have no fixed
points in the domain of positive integers. We define a local function φn, which is a sub-
function of φ being restricted to the subdomain {0, . . . , n}. The iterations of φn can be
described by a certain n × n sparse matrix Mn and its powers. The determinant of the

related n× n matrix M̂n = I −Mn, where I is the identity matrix, acts as an indicator,
whether the iterations of the local function φn enter a cycle or not. If φn has no cycle, then

det M̂n = 1 and the structure of the inverse M̂−1
n can be characterized. Subsequently, we

give applications to compute the inverse M̂−1
n for some special functions. At the end, we

discuss the results in connection with the 3x+ 1 and related problems.

1. Introduction

Let Z and N be the set of integers and positive integers, respectively. Let N0 = N∪{0}.
Let n,m denote positive integers in this paper. Define the finite domain Dn = {1, . . . , n}
and let Dn,0 = Dn ∪ {0}.

We consider integer-valued functions on domains S ⊂ N, where

φS : S → N, φ(x) 6= x (x ∈ S).

We may define a function φ induced by φS by

φ(x) =

{
φS(x), if x ∈ S,
0, else,

which has the properties that

φ : N0 → N0, φ(0) = 0, φ(x) 6= x (x ∈ N), (1.1)

having no fixed points in N. Let Φ be the set of all such functions satisfying (1.1).
Note that a function φ does not have to be analytic, i.e. being an integer-valued polyno-

mial. It can be arbitrarily defined, for example, using piecewise functions or tables of any
complexity.
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We construct a local function φn, that is a sub-function of φ ∈ Φ being restricted to the
domain Dn,0, by

φn : Dn,0 → Dn,0, φn(x) =

{
φ(x), if (x, φ(x)) ∈ D2

n,

0, else.

We denote φm = φ ◦ · · · ◦ φ as an m-fold iteration of φ. We say that an iteration stops,
if there exists an index k such that φk(x) = 0, since all successive values of the iteration
also vanish by definition. We say that φ has a cycle of length m ≥ 2, if there exists x ∈ N
such that φm(x) = x and φm

′
(x) 6= x for m′ < m. If φ has a cycle of length m containing

x, then we may define the set

C(φ,m, x) = {φ(x), . . . , φm(x)}, (1.2)

describing all elements of this cycle. By definition this set has the properties that

x ∈ C(φ,m, x) and |C(φ,m, x)| = m ≥ 2. (1.3)

Regarding φn, we require that x ∈ Dn to define a cycle C(φn,m, x) of length m ≥ 2. Note
that φn cannot have a fixed point x ∈ Dn by definition.

Lemma 1.1. Let φ ∈ Φ. Assume that there exists a cycle C(φ,m, x). Then

C(φ,m, x) = C(φn,m, x) ⇐⇒ n ≥ max C(φ,m, x).

Proof. Set N = max C(φ,m, x). If n ≥ N , then we have

(φ(x), φ2(x)), . . . , (φm−1(x), φm(x)) ∈ D2
n,

which also holds for φn having the same function values by definition. Therefore φn has
the same cycle as φ in this case.

Conversely, if n < N , then there exists an index i, such that φi(x) > n showing that
φi(x), φin(x) /∈ Dn, where φin(x) = 0. Accordingly, C(φ,m, x) = C(φn,m, x) implies that
n ≥ N must hold. �

Lemma 1.2. Let φ ∈ Φ and n ≥ 1. Assume that φn has no cycle. We define the height of
x ∈ Dn regarding φn by

h(x) = min {k ∈ N : φkn(x) = 0}.
We then have

1 ≤ h(x) ≤ n (x ∈ Dn).

Proof. Let x ∈ Dn. The property h(x) ≥ 1 follows by definition. Next, we show that
h(x) ≤ n. Assume to the contrary that φnn(x) ∈ Dn implying that h(x) > n. Since φn has
no cycle, we then obtain that

X = {x, φn(x), . . . , φnn(x)} ⊂ Dn,

where X must contain n+ 1 distinct elements. This gives a contradiction to |Dn| = n. �
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We define the i-th unit vector of size n by ei and the zero vector by e0, which we shall use
in an unambiguous context. Let A,B,En(·, ·), In be n× n matrices. As usual, In denotes
the identity matrix, where we use I instead, if possible. Define the matrix

En(i, j) = eie
t
j,

which only has the entry 1 at row i and column j and zeros elsewhere. Let #A denote the
total number of nonzero entries of A. The term #Ak should be read as #(Ak). We define
for A and B that

A ∩B =
∑

1≤i,j≤n
AijBij 6=0

1,

counting all entries, where both matrices have nonzero entries in common. We call A and
B to be disjoint, if

A ∩B = 0

implying that

#(A+B) = #A+ #B.

The main aim of the paper is to construct n×n matrices, which are connected with the
properties of a function φ ∈ Φ as well as its local function φn. We define the following
matrix by column vectors induced by the local function φn by

Mn(φ) =

(
eφn(1), . . . , eφn(n)

)
∈ Zn×n (φ ∈ Φ, n ≥ 2), (1.4)

being a binary matrix with {0, 1} entries. Further we define the related matrix

M̂n(φ) = I −Mn(φ) ∈ Zn×n (φ ∈ Φ, n ≥ 2),

which consists of entries with {−1, 0, 1}. Since φn has no fixed points in Dn, the diagonal of

Mn(φ) and M̂n(φ) has only entries with 0 and 1, respectively. By construction the matrices

Mn(φ) and M̂n(φ) are sparse matrices, since #Mn(φ) ≤ n and #M̂n(φ) ≤ 2n, both being
of order O(n).

The main property of Mn(φ) is that for x ∈ Dn the mapping

x 7→ φn(x)

coincides with

Mn(φ) ex = eφn(x). (1.5)

If there exists a cycle of φ, then det M̂n(φ) acts as an indicator for this event. This is
shown by the following theorems.

Theorem 1.3. Let φ ∈ Φ and n ≥ 2. If there exists a cycle C(φn,m, x), then

det M̂n(φ) = 0
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and Mn(φ) has an eigenvector v with eigenvalue 1 defined by

v =
∑

y∈C(φn,m,x)

ey.

Corollary 1.4. Let φ ∈ Φ. If φ has a cycle, then there exists an integer N ≥ 2 such that

det M̂n(φ) = 0 (n ≥ N).

Proof. By assumption φ has a cycle, say C(φ,m, x). By Lemma 1.1 we can find an integer
N ≥ 2 such that

C(φ,m, x) = C(φn,m, x) (n ≥ N).

Applying Theorem 1.3 for n ≥ N gives the result. �

Theorem 1.5. Let φ ∈ Φ and n ≥ 2. If φn has no cycle, then we have the following
statements:

(1) The matrix Mn(φ) is nilpotent of degree at most n.
(2) The powers of Mn(φ) are binary matrices satisfying

#Mn(φ)k ≤ n− k (1 ≤ k ≤ n).

They are disjoint for different exponents that

Mn(φ)k ∩Mn(φ)l = 0 (k 6= l, k, l ≥ 1).

(3) The related matrix M̂n(φ) is invertible, where

det M̂n(φ) = 1.

(4) The inverse M̂n(φ)−1 is a binary matrix with the properties that

M̂n(φ)−1 = I +Mn(φ) + · · ·+Mn(φ)n−1

and

#M̂n(φ)−1 = n+
n−1∑
k=1

#Mn(φ)k ≤
(
n+ 1

2

)
.

Remark 1.6. The bounds of Theorem 1.5 are sharp. If we consider the function φ ∈ Φ
being induced by f(x) = x+ 1, then Mn(φ) is nilpotent of degree n, #Mn(φ)k = n− k for

1 ≤ k ≤ n, and consequently #M̂n(φ)−1 =
(
n+1

2

)
. This will be shown by Proposition 5.1 as

an example. The next theorem shows that one can compute exact values for an arbitrary
local function φn, in case it has no cycle.

Theorem 1.7. Let φ ∈ Φ and n ≥ 2. Assume that φn has no cycle. Let

pν = |{x ∈ Dn : h(x) = ν}| (1 ≤ ν ≤ n)

and
m = max

1≤ν≤n
{ν : pν ≥ 1}.

Define
π = (p1, . . . , pm).
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Then π is an ordered partition of n and length m with 1 ≤ m ≤ n, where p1, . . . , pm ≥ 1.
We have the following statements:

(1) The matrix Mn(φ) is nilpotent of degree m.
(2) We have

Mn(φ)k =
∑

(φkn(x),x)∈D2
n

En(φkn(x), x) (1 ≤ k ≤ m),

where

#Mn(φ)k = n−
k∑
ν=1

pν (1 ≤ k ≤ m).

(3) We have

M̂n(φ)−1 =

(
v1, . . . ,vn

)
,

where the column vectors satisfy that

vj = ej +

h(j)−1∑
ν=1

eφνn(j) (1 ≤ j ≤ n).

Moreover,

#M̂n(φ)−1 =
∑
x∈Dn

h(x) =
m∑
ν=1

νpν ≤ nm−
(
m

2

)
.

An ordered partition of an integer, where the order of its summands is relevant, is also
called a composition (cf. [2, Chap. II, p. 123]). We will prove the theorems above in the
following sections. We will give some applications of the theorems in Sections 5 and 6. See

the figures therein for illustrations of examples of the matrices M̂n(φ) and M̂n(φ)−1.

2. Iterations

Recall that φn : Dn,0 → Dn,0 can be any exotic function, i.e. φn can be composed of
piecewise functions of any complexity. This situation will be reflected in the following
lemmas and propositions in this section. First, we define an orbit of an element x ∈ Dn,
collecting the iterations φkn(x). Regarding these orbits we can define an equivalence relation
on Dn, which leads to a disjoint decomposition of Dn. Second, these disjoint sets in question
can be interpreted as labeled trees, whose properties establish the results. For basic graph
theory see [2, Chap. I.17, pp. 60].

Lemma 2.1. Let φ ∈ Φ and k, l, n ∈ N, where k 6= l. If φ has no cycle, then

φk(x) 6= φl(x) (x, φk(x), φl(x) ∈ N).

Accordingly, if φn has no cycle, then

φkn(x) 6= φln(x) (x, φkn(x), φln(x) ∈ Dn).
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Proof. By symmetry we may assume that k > l. Set y = φl(x). Assume to the contrary
that we have φk(x) = φl(x). This implies that φk−l(y) = y, contradicting that φ has no
cycle or no fixed point. Similarly, if x, φkn(x), φln(x) ∈ Dn, then φkn(x) = φln(x) also would
imply, that φn has a cycle or a fixed point. �

Lemma 2.2. Let φ ∈ Φ and n ≥ 1. Assume that φn has no cycle. Define the orbit of
x ∈ Dn by

Ω(x) = {φkn(x) : 0 ≤ k < h(x)} ⊂ Dn,

where φ0
n(x) = x is defined to be the identity function on Dn and h(x) is the height of x.

Then
1 ≤ |Ω(x)| = h(x) ≤ n (x ∈ Dn).

There exists an equivalence relation on Dn induced by φn, such that

x ∼ y ⇐⇒ Ω(x) ∩ Ω(y) 6= ∅ (x, y ∈ Dn). (2.1)

Let denote [x] the equivalence class of x and

D̃n = Dn/∼
the set of these classes. Define the set

Ω[x] =
⋃
x′∈[x]

Ω(x′), (2.2)

which covers all orbits of x′ ∈ [x]. Then

Dn =
⋃̊

[x]∈D̃n

Ω[x] (2.3)

gives a disjoint decomposition.

Proof. By Lemma 1.2 we have the bounds

1 ≤ h(x) ≤ n (x ∈ Dn).

Lemma 2.1 implies that

1 ≤ |Ω(x)| = h(x) ≤ n (x ∈ Dn).

It is easy to see that

x ∼ y ⇐⇒ φh(x)−1
n (x) = φh(y)−1

n (y) (x, y ∈ Dn) (2.4)

defines an equivalence relation on Dn. We show that this relation transfers to (2.1) as
follows. If there exists

z ∈ Ω(x) ∩ Ω(y) 6= ∅,
then we have

Ω(z) = {z, φn(z), . . . , φh(z)−1
n (z)} ⊂ Ω(x) ∩ Ω(y).

By construction of Ω(·) and Lemma 2.1, the elements of an orbit can be uniquely ordered
by height. Thus, there exists only one element of height 1 in Ω(·). We then infer that

φh(z)−1
n (z) = φh(x)−1

n (x) = φh(y)−1
n (y),
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showing that x ∼ y. Conversely, if x ∼ y, then

φh(x)−1
n (x), φh(y)−1

n (y) ∈ Ω(x) ∩ Ω(y) 6= ∅,
using the same arguments as above. After all, this shows (2.1). The construction of Ω[x]

in (2.2) implies that
Ω[x] ∩ Ω[y] = ∅, if [x] 6= [y],

applying (2.1). This finally establishes the disjoint decomposition in (2.3). �

Lemma 2.3. Let φ ∈ Φ and n ≥ 1. Assume that φn has no cycle. Define

φ̂n((x, k)) = (φn(x), k − 1) (x ∈ Dn, k ≥ 1).

Let [x] ∈ D̃n. Then there exists a labeled tree

T[x]
∼= Ω[x],

which can be uniquely defined by its labeled nodes by

T[x] = {(y, h(y)) : y ∈ Ω[x]}, (2.5)

preserving the structure induced by φ̂n. The tree T[x] has the following properties:

(1) There exists a unique root node (e, 1) ∈ T[x], where φ̂n((e, 1)) = (0, 0).
(2) If a node (d, k) ∈ T[x] (k ≥ 1) has m child nodes, then they are given by

{(ci, k + 1)}1≤i≤m satisfying φ̂n((ci, k + 1)) = (d, k) (1 ≤ i ≤ m).

Proof. By construction of Ω[x], we obviously have a one-to-one correspondence

y ←→ (y, h(y)) (y ∈ Ω[x]). (2.6)

We can define a labeled tree by

T[x] = {(y, h(y)) : y ∈ Ω[x]},
labeling the nodes with (y, h(y)) uniquely. We will show that

T[x]
∼= Ω[x]

having the same structure. By Lemmas 2.1 and 2.2 we infer that an orbit Ω(y) represents
a simple path

{y, φn(y), . . . , φh(y)−1
n (y)}, (2.7)

where the elements are ordered by height. The set Ω[x] covers all orbits Ω(y), respectively
simple paths as in (2.7), where y ∈ [x]. Since the equivalence relation on Dn satisfies (2.4),
all such simple paths are closed by a common element e, where

e = φh(y)−1
n (y) for all y ∈ [x], (2.8)

being the only element with height h(e) = 1 in Ω[x]. The structure of Ω[x] is induced by
φn, where each element y ∈ Ω[x] has its height and a successor φn(y) ∈ Ω[x], if y 6= e. By

(2.6) and the definition of φ̂n the properties of Ω[x] are transferred to T[x]. As a result,
the tree T[x] is a cover of simple paths. Each node (y, h(y)) ∈ T[x] has a parent node

φ̂n((y, h(y))) = (φn(y), h(y)− 1) ∈ T[x], if y 6= e.
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Property (1): By (2.8) there exists only one element e with h(e) = 1. Thus, (e, 1) ∈ T[x]

is the unique root node with φ̂n((e, 1)) = (0, 0).
Property (2): We assume that (d, k) ∈ T[x] has m child nodes. Since T[x] is a cover of

simple paths, there exist m different paths, such that

{(ci, h(ci)), φ̂n((ci, h(ci))) = (d, h(ci)− 1), . . . , (e, 1)} ⊂ T[x] (1 ≤ i ≤ m),

where h(c1) = · · · = h(cm) = k + 1. �

Proposition 2.4. Let φ ∈ Φ and k, n ≥ 1. Assume that φn has no cycle. Define

Jn,k(φ) = {x ∈ Dn : φkn(x) ∈ Dn}.
Then we have

|Jn,k(φ)| ≤ max(n− k, 0).

In particular,

|Jn,1(φ)| = n− |D̃n|.

Proof. Since φn has no cycle, we have by Lemma 1.2 that

φnn(x) = 0 (x ∈ Dn),

which implies that

|Jn,k(φ)| = 0 (k ≥ n). (2.9)

Define the complementary set

Jn,k(φ) = {x ∈ Dn : φkn(x) = 0},
such that

Jn,k(φ) ∪ Jn,k(φ) = Dn. (2.10)

In view of (2.9) and (2.10), we will equivalently show for the remaining cases that

|Jn,k(φ)| ≥ k (1 ≤ k < n). (2.11)

By Lemmas 2.2 and 2.3, there exist unique labeled trees T[x] for [x] ∈ D̃n, where∑
[x]∈D̃n

|T[x]| = n.

More precisely, they build a disjoint decomposition of Dn, if we only consider the first
component of the elements (y, h(y)) ∈ T[x]. We will count those elements in all trees, that
vanish under φkn. Since the elements can be ordered by height, we can write

|Jn,k(φ)| = |{x ∈ Dn : φkn(x) = 0}| =
∑

[x]∈D̃n

∑
(y,j)∈T[x]
j≤k

1. (2.12)

In particular, we obtain by counting the root nodes via (2.12) and using (2.10) that

|Jn,1(φ)| = |D̃n| ≥ 1 and |Jn,1(φ)| = n− |D̃n|, (2.13)
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showing the special case k = 1. Define Jn,0(φ) = ∅. Instead of (2.12), it is more convenient
to consider

sk = |Jn,k(φ)\Jn,k−1(φ)| =
∑

[x]∈D̃n

∑
(y,k)∈T[x]

1 (1 ≤ k ≤ n), (2.14)

where sk is the number of elements having height k. We derive that
n∑
k=1

sk = |Jn,n(φ)| = n,

utilizing the telescoping sum induced by (2.14), where the last equation follows by (2.9)
and (2.10). Hence, S = (s1, . . . , sn) describes an ordered partition of n, where s1 ≥ 1
follows by (2.13). Now, we use the properties of a tree T[x] given by Lemma 2.3:

(1) A tree T[x], being a labeled tree, is connected.
(2) The heights of a parent node (d, h(d)) ∈ T[x] and its child nodes (ci, h(ci)) ∈ T[x]

differ by 1, such that h(ci) = h(d) + 1.

As a consequence, we infer that the sequence (sν)1≤ν≤n, counting elements of height 1 up
to n, cannot have gaps, i.e. zero elements, in the middle, such that

S = (s1, . . . , sl−1, 0, sl+1, . . . , sn)

with some index l, where 1 < l < n, and s1, sn ≥ 1. Therefore, we either must have

S = (1, . . . , 1) or S = (s1, . . . , sr, 0, . . . , 0), (2.15)

where 1 ≤ r < n and s1, . . . , sr ≥ 1. In any case, we finally conclude by an easy counting
argument that

|Jn,k(φ)| =
k∑
ν=1

sν ≥ k (1 ≤ k < n), (2.16)

since S is an ordered partition of n. This shows (2.11) completing the proof. �

Proposition 2.5. Let φ ∈ Φ and k, n ≥ 1. Assume that φn has no cycle. Let

pν = |{x ∈ Dn : h(x) = ν}| (1 ≤ ν ≤ n)

and

m = max
1≤ν≤n

{ν : pν ≥ 1}.

Define

π = (p1, . . . , pm).

Then π is an ordered partition of n and length m with 1 ≤ m ≤ n, where p1, . . . , pm ≥ 1.
Moreover,

|Jn,k(φ)| = n−
k∑
ν=1

pν (1 ≤ k ≤ m)

and |Jn,k(φ)| = 0 for k ≥ m.
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Proof. We use and extend the proof of Proposition 2.4. Regarding (2.15) the sequence
(sν)1≤ν≤n counts elements of height 1 up to n. Therefore, we observe with m = r that

π = (p1, . . . , pm) = (s1, . . . , sr),

except for the case where π = (1, . . . , 1) and m = n. By (2.10) and (2.16) it follows that

|Jn,k(φ)| = n−
k∑
ν=1

pν (1 ≤ k ≤ m).

Since π is an ordered partition of n, we have |Jn,m(φ)| = 0 and consequently that |Jn,k(φ)| =
0 for k ≥ m. �

Lemma 2.6. Let π = (p1, . . . , pm) be an ordered partition of n and length m, where
1 ≤ m ≤ n. Then

m∑
ν=1

νpν ≤ nm−
(
m

2

)
.

Proof. Let Pn,m be the set of ordered partitions of n and length m. Define

%(π) =
m∑
ν=1

νpν (π ∈ Pn,m).

We fix m ≥ 1 for now and use induction on n. For n = m, we only have π = (1, . . . , 1) ∈
Pn,n. Then it follows that

%(π) =

(
m+ 1

2

)
= m2 −

(
m

2

)
≤ nm−

(
m

2

)
.

Now assume the result is true for n ≥ m. Let π = (p1, . . . , pm) ∈ Pn,m. We set

π′j = (p1, . . . , pj−1, pj + 1, pj+1, . . . , pm) (1 ≤ j ≤ m), (2.17)

observing that π′j ∈ Pn+1,m. We then obtain that

%(π′j) = %(π) + j ≤ nm+ j −
(
m

2

)
≤ (n+ 1)m−

(
m

2

)
(1 ≤ j ≤ m). (2.18)

The set Pn+1,m can be constructed from Pn,m using (2.17). Since π ∈ Pn,m has been chosen
arbitrarily, we infer that (2.18) holds for any π′ ∈ Pn+1,m showing the claim for n+ 1. �

3. Matrix properties

Recall the n× n matrix
En(i, j) = eie

t
j,

which only has the entry 1 at row i and column j and zeros elsewhere.

Lemma 3.1. Let n ≥ 2 and a, b, c, d ∈ Dn. Then

En(a, b)En(c, d) =

{
En(a, d), if b = c,

0, else.
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Proof. By definition we can write

En(a, b)En(c, d) = (eae
t
b)(ece

t
d) = ea(e

t
bec)e

t
d = δbcEn(a, d),

using Kronecker’s delta. �

Lemma 3.2. Let A be an n× n matrix with n ≥ 2. If A is nilpotent of degree k, then we
have

det(I − A) = 1 and (I − A)−1 = I + A+ · · ·+ Ak−1.

Proof. We first consider the decomposition

I = (I − A)(I + A+ · · ·+ Ak−1),

since Ak = 0. This shows that I −A is invertible with the inverse as given above. Since A
is nilpotent, there exists a similar matrix U = T−1AT , that is an upper triangular matrix
having zeros in its diagonal. Thus, we obtain that I −A = T (I −U)T−1 and consequently
that det(I − A) = 1. �

Proposition 3.3. Let φ ∈ Φ and n ≥ 2. Then we have

Mn(φ)k =
∑

(φkn(x),x)∈D2
n

En(φkn(x), x) (k ≥ 1).

Proof. We use induction on k. For k = 1, we infer by (1.4) that

Mn(φ) =

(
eφn(1), · · · , eφn(n)

)
=

∑
(φn(x),x)∈D2

n

En(φn(x), x).

Now assume the result is true for k. We then obtain that

Mn(φ)k+1 = Mn(φ)Mn(φ)k

=
∑

(φn(y),y)∈D2
n

En(φn(y), y)
∑

(φkn(x),x)∈D2
n

En(φkn(x), x)

=
∑

(φn(y),y)∈D2
n

(φkn(x),x)∈D2
n

y=φkn(x)

En(φn(y), y)En(φkn(x), x)

=
∑

(φk+1
n (x),x)∈D2

n

En(φk+1
n (x), x).

In the last two steps we have used Lemma 3.1 to exclude those products that provide a
zero matrix. This shows the claim for k + 1. �

Corollary 3.4. Let φ ∈ Φ and n ≥ 2. If φn has no cycle, then

#Mn(φ)k = |Jn,k(φ)| ≤ n− k (1 ≤ k ≤ n).
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Proof. By Propositions 2.4 and 3.3 we conclude that

#Mn(φ)k =
∑

(φkn(x),x)∈D2
n

1 = |{(x, φkn(x)) ∈ D2
n}| = |Jn,k(φ)| ≤ n− k (1 ≤ k ≤ n). �

Proposition 3.5. Let φ ∈ Φ and n ≥ 2. If φn has no cycle, then

Mn(φ)k ∩Mn(φ)l = 0 (k 6= l, k, l ≥ 1).

Proof. Assume to the contrary that we have

Mn(φ)k ∩Mn(φ)l 6= 0

for some k 6= l. We then have an entry of both Mn(φ)k and Mn(φ)l, such that

En(φkn(y), y) = En(φln(x), x)

using Proposition 3.3. This implies that y = x ∈ Dn and consequently φkn(x) = φln(x) ∈ Dn.
The last condition gives a contradiction in view of Lemma 2.1. �

4. Proof of theorems

Proof of Theorem 1.3. The local function φn has a cycle C(φn,m, x) by assumption. Using
(1.5) we have

Mn(φ) ey = eφn(y) (y ∈ C(φn,m, x)).

In view of (1.2) and (1.3), φn maps C(φn,m, x) onto itself in a cyclic way. Define

v =
∑

y∈C(φn,m,x)

ey.

We then infer that
Mn(φ)v = v.

As a result, the vector v is an eigenvector of Mn(φ) with eigenvalue 1. Consequently, we
obtain that

det M̂n(φ) = det(I −Mn(φ)) = 0. �

Proof of Theorem 1.5. By assumption φn ∈ Φ has no cycle.
(1), (2): By Propositions 3.3 and 3.5 the matrices Mn(φ)k are binary matrices for k ≥ 1,

which are disjoint for different exponents. The estimate

#Mn(φ)k ≤ n− k (1 ≤ k ≤ n) (4.1)

is given by Corollary 3.4. This implies that Mn(φ)n is the zero matrix and consequently
Mn(φ) is nilpotent of degree at most n.

(3), (4): By definition we have M̂n(φ) = I −Mn(φ). Since Mn(φ) is nilpotent of degree

at most n, we obtain by Lemma 3.2 that det M̂n(φ) = 1 and

M̂n(φ)−1 = I +Mn(φ) + · · ·+Mn(φ)n−1. (4.2)

Recall that Mn(φ)k ∩ I = 0, because φn has no fixed points in Dn, and that powers of

Mn(φ) are disjoint for different exponents. Therefore M̂n(φ)−1 is a binary matrix composed
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of binary matrices given on the right-hand side of (4.2). Counting entries of these matrices
above, we conclude by using the estimate in (4.1) that

#M̂n(φ)−1 = n+
n−1∑
k=1

#Mn(φ)k ≤
(
n+ 1

2

)
. �

Proof of Theorem 1.7. By assumption φn ∈ Φ has no cycle. The properties of π are given
by Proposition 2.5.

(1), (2): By Proposition 3.3 we have

Mn(φ)k =
∑

(φkn(x),x)∈D2
n

En(φkn(x), x) (k ≥ 1). (4.3)

From Proposition 2.5 and Corollary 3.4 we infer that

#Mn(φ)k = |Jn,k(φ)| = n−
k∑
ν=1

pν (1 ≤ k ≤ m). (4.4)

Since |Jn,m(φ)| = 0, the matrix Mn(φ) is nilpotent of degree m.
(3): Since the nilpotent degree of Mn(φ) is m ≤ n, we have by Lemma 3.2 that

M̂n(φ)−1 = I +Mn(φ) + · · ·+Mn(φ)m−1. (4.5)

As already argued in (4.2) and below, the matrices of the right-hand side of (4.5) are
disjoint to each other. Counting entries we obtain by means of (4.4) that

#M̂n(φ)−1 = n+
m−1∑
k=1

#Mn(φ)k =
m−1∑
k=0

m∑
ν=k+1

pν =
m∑
ν=1

νpν , (4.6)

using the fact that π is a partition of n and thus

n−
k∑
ν=1

pν =
m∑

ν=k+1

pν (0 ≤ k < m).

Alternatively, from (4.5) and using (4.3), we derive that

M̂n(φ)−1 = I +
m−1∑
k=1

∑
(φkn(x),x)∈D2

n

En(φkn(x), x)

= I +
∑
x∈Dn

h(x)−1∑
ν=1

En(φνn(x), x). (4.7)

This implies that

#M̂n(φ)−1 =
∑
x∈Dn

h(x). (4.8)
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Finally, combining (4.6) and (4.8), we achieve by applying Lemma 2.6 that

#M̂n(φ)−1 =
∑
x∈Dn

h(x) =
m∑
ν=1

νpν ≤ nm−
(
m

2

)
.

It remains to show the structure of the inverse matrix M̂n(φ)−1. Let

M̂n(φ)−1 =

(
v1, . . . ,vn

)
.

From (4.7) we conclude for j = x that

vj = ej +

h(j)−1∑
ν=1

eφνn(j) (1 ≤ j ≤ n). �

5. Simple patterns

In this section we shall give some applications. Define an n× n sub-diagonal matrix as

Dn,k =
n−k∑
j=1

En(j + k, j) (0 ≤ k < n)

and as a zero matrix otherwise.

Proposition 5.1. Let φ be induced by f(x) = x + 1. Then φ ∈ Φ and has no cycle. We
have the following statements for n ≥ 2:

(1) The matrix Mn(φ) is nilpotent of degree n.
(2) We have

Mn(φ)k = Dn,k, #Mn(φ)k = n− k (1 ≤ k ≤ n).

(3) The inverse M̂n(φ)−1 is a full lower triangular matrix whose entire entries are 1.

Consequently, #M̂n(φ)−1 =
(
n+1

2

)
.

Proof. It is easily seen that φk(x) = x + k for x ∈ N. Therefore, φ cannot have a cycle or
a fixed point in N, hence φ ∈ Φ. By Theorem 1.7 we then obtain that

Mn(φ)k =
∑

(φkn(x),x)∈D2
n

En(φkn(x), x) = Dn,k (1 ≤ k ≤ n),

implying that #Mn(φ)k = n − k. This shows that Mn(φ) is nilpotent of degree n. Theo-
rem 1.5 provides that

M̂n(φ)−1 = I +
n−1∑
k=1

Mn(φ)k =
n−1∑
k=0

Dn,k,

which is a full lower triangular matrix having only entries with 1. As a consequence, we

have #M̂n(φ)−1 =
(
n+1

2

)
. �
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Remark 5.2. If one chooses f(x) = x + t with t ∈ Z\{0}, where f is defined on the
subdomain N>|t| in case t < 0, then one similarly obtains the following shapes of the

matrix M̂n(φ)−1, where φ is induced by f :

(1) Case t = 1: M̂n(φ)−1 is a full lower triangular matrix shown by Proposition 5.1.

(2) Case t > 1: M̂n(φ)−1 is a lower triangular matrix with

M̂n(φ)−1 =

bn−1
t
c∑

j=0

Dn,jt.

For t = 2 this gives a checkerboard pattern.

(3) Case t = −1: M̂n(φ)−1 is a full upper triangular matrix.

(4) Case t < −1: M̂n(φ)−1 is an upper triangular matrix, which equals the transposed
matrix of the case |t| > 1.

The cases t 6= 1 will be left to the reader. See Figure 5.1 for an example.

Figure 5.1. Matrices M̂n(φ) and M̂n(φ)−1

Case n = 50: φ is induced by f(x) = x− 7.
Red entries: 1, blue entries: −1.

For a second example, let P = {q1, q2, . . .} be the set of primes and Π(x) be the prime-
counting function. Define

ω : P→ P, ω(qj) = qj+1

giving the next prime.

Proposition 5.3. Let φ be induced by ω. Then φ ∈ Φ and has no cycle. We have the
following statements for n ≥ 2:

(1) The matrix Mn(φ) is nilpotent of degree Π(n).
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(2) We have

Mn(φ)k =

Π(n)−k∑
j=1

En(qj+k, qj), #Mn(φ)k = Π(n)− k, (1 ≤ k ≤ Π(n)).

(3) We have

M̂n(φ)−1 = I +
∑

1≤j<i≤Π(n)

En(qi, qj), #M̂n(φ)−1 = n+

(
Π(n)

2

)
.

Proof. Since ωk(qj) = qj+k > qj for qj ∈ P and j, k ≥ 1, the induced function φ cannot
have a cycle or a fixed point in N. Thus, we have φ ∈ Φ. By construction, φ(x) = 0
for x ∈ N0\P. Let N = Π(n), then Dn ∩ P = {q1, . . . , qN}. Using these properties and
Theorem 1.7 we infer that

Mn(φ)k =
∑

(φkn(x),x)∈D2
n

En(φkn(x), x) =
N−k∑
j=1

En(qj+k, qj) (1 ≤ k ≤ N).

As a result, #Mn(φ)k = N − k for 1 ≤ k ≤ N , implying that Mn(φ) is nilpotent of degree
N . The last part follows by Theorem 1.5 and reordering the above sums that

M̂n(φ)−1 = I +
N−1∑
k=1

Mn(φ)k = I +
N−1∑
k=1

N−k∑
j=1

En(qj+k, qj) = I +
∑

1≤j<i≤N

En(qi, qj).

Counting entries of M̂n(φ)−1 in the equation above, we finally obtain that

#M̂n(φ)−1 = n+
N−1∑
k=1

(N − k) = n+

(
N

2

)
. �

Figure 5.2. Matrices M̂n(φ) and M̂n(φ)−1

Case n = 50: φ is induced by ω.
Red entries: 1, blue entries: −1.
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6. The 3x+ 1 problem

A variant of the Collatz function may be defined by

c(x) =

{
x/2, if x is even,

(3x+ 1)/2, if x is odd.

The behavior of the iterations of this function is known as the 3x + 1 problem. It is still
an open problem to decide, whether a sequence of iterations Ic(x) = (ck(x))k≥1, starting
from a positive integer x, eventually returns to 1 entering a trivial cycle {1,2} afterwards.
It is conjectured that all such iterations eventually return to 1. For a wide survey of the
3x+ 1 problem see Lagarias [3].

There are three possible cases of the behavior of a sequence Ic(x):

(1) It eventually enters the trivial cycle {1,2}.
(2) It eventually enters a cycle other than {1,2}.
(3) It is unbounded.

We can establish a connection between the cases (1), (2), and the given theory in the
former sections. To get rid of the trivial cycle {1,2}, we define

φc(x) =


0, if x ≤ 2,

x/2, if x > 2 is even,

(3x+ 1)/2, if x > 2 is odd.

Then we have φc ∈ Φ. As a result of Corollary 1.4, if φc has a cycle, then there exists an
integer N ≥ 2 such that

det M̂n(φc) = 0 (n ≥ N).

See Figure 6.1 for the simple shape of M̂n(φc) and the complicated shape of its inverse
in the case n = 50. Regarding the local function φc,n for this case, we can compute the
following parameters using Theorem 1.7:

π = (10, 4, 3, 3, 3, 3, 4, 2, 2, 2, 2, 2, 3, 2, 2, 1, 1, 1), m = 18.

Consequently, the nilpotent degree of Mn(φc) is 18 and

#M̂n(φc)
−1 =

m∑
ν=1

νpν = 348.

Remark 6.1. Zeilberger [4] asked for an evaluation of determinants of certain 2d × 2d
matrices M(d) occurring in an enumeration problem. Actually, this was intended as a semi-
joke [5], because these matrices were disguised intentionally, hiding their close relationship
to the 3x+ 1 problem at first glance.

Chapman [1] pointed out, that one obtains, after swapping columns of M(d), that

detM(d) = (−1)d det(I −N(d)),
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where N(d) is the matrix describing the local iteration of

ψ(x) =

{
(x− 1)/2, if x is odd,

3x/2 + 1, if x is even.

Chapman showed that either N(d) is nilpotent and detM(d) = (−1)d or N(d) has an
eigenvector with eigenvalue 1 and detM(d) = 0, induced by a cycle of ψ. Furthermore, he
established the connection to the 3x+ 1 problem via c(x) = ψ(x− 1) + 1.

Figure 6.1. Matrices M̂n(φc) and M̂n(φc)
−1

Case n = 50. Red entries: 1, blue entries: −1.

As a last example, we consider a more complicated function with r = 3 branches:

φr(x) =


0, if x ≤ 1,

x/3, if x > 1 and x ≡ 0 (mod 3),

(2x+ 1)/3, if x > 1 and x ≡ 1 (mod 3),

(5x− 1)/3, if x > 1 and x ≡ 2 (mod 3).

Such functions are called generalized Collatz functions or residue-class-wise affine functions,
which can be defined for any r ≥ 2, r being the number of branches, respectively, residue
classes (cf. [3, (4.1), p. 12]).

The modification here, that φr(1) = 0, is only to prevent a fixed point at x = 1. In
this way, we have φr ∈ Φ. Again, we compute the parameters of the local function φr,n for
n = 50:

π = (8, 2, 5, 5, 6, 4, 5, 8, 4, 2, 1), m = 11.

Consequently, the nilpotent degree of Mn(φr) is 11 and

#M̂n(φr)
−1 =

m∑
ν=1

νpν = 267.
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Figure 6.2. Matrices M̂n(φr) and M̂n(φr)
−1

Case n = 50. Red entries: 1, blue entries: −1.

The 3x+ 1 problem, as treated in Remark 6.1, was the starting point for the author to
give a general theory here. All computations were performed using Mathematica.
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