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Abstract

We consider several families of binomial sum identities whose defi-
nition involves the absolute value function. In particular, we consider
centered double sums of the form

Sα,β(n) :=
∑

k, ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

|kα − ℓα|β ,

obtaining new results in the cases α = 1, 2. We show that there is a
close connection between these double sums in the case α = 1 and the
single centered binomial sums considered by Tuenter.
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1 Introduction

The problem of finding a closed form for the binomial sum

∑

k, ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

|k2 − ℓ2| (1)

arises in an application of the probabilistic method to the Hadamard maximal
determinant problem [7]. Because of the double-summation and the absolute
value occurring in (1), it is not obvious how to apply standard techniques [10,
15, 19]. A closed-form solution

2n2

(

2n

n

)2

(2)

was proved by Brent and Osborn in [6], and simpler proofs were subsequently
found [5, 8, 16]. In this paper we consider a wider class of binomial sums with
the distinguishing feature that an absolute value occurs in the summand.

Specifically, we consider certain d-fold binomial sums of the form

S(n) :=
∑

k1,...,kd

d
∏

i=1

(

2n

n + ki

)

|f(k1, . . . , kd)|, (3)

where f : Zd → Z is a homogeneous polynomial and |f | will be called the
weight function. For example, a simple case is d = 1, f(k) = k. This case
was considered by Best [1] in an application to Hadamard matrices. The
closed-form solution is

∑

k

(

2n

n+ k

)

|k| = n

(

2n

n

)

.

A generalization f(k) = kr (for a fixed r ∈ N) was considered by Tuenter [18],
and shown to be expressible using Dumont-Foata polynomials [9]. Tuenter
gave an interpretation in terms of the moments of the distance to the origin in
a symmetric Bernoulli random walk. It is easy to see that this interpretation
generalizes: 4−ndS(n) is the expectation of |f(k1, . . . , kd)| if we start at the
origin and take 2n random steps ±1

2
in each of d dimensions, thus arriving

at the point (k1, . . . , kd) ∈ Z
d with probability

4−nd
d
∏

i=1

(

2n

n + ki

)

.
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A further generalization replaces
(

2n
n+ki

)

by
(

2ni

ni+ki

)

, allowing the number of
random steps (2ni) in dimension i to depend on i. With a suitable modifi-
cation to the definition of S, we could also drop the restriction to an even
number of steps in each dimension.1 We briefly consider such a generalization
in §2.

Tuenter’s results for the case d = 1 were generalized by the first author [3].
In this paper we concentrate on the case d = 2. Generalizations of some of the
results to arbitrary d are known. More specifically, the paper [4] gives closed-
form solutions for the d-dimensional generalization of the sum (9) below in
the cases α, β ∈ {1, 2}.

There are many binomial coefficient identities in the literature, e.g. 500
are given by Gould [11]. Many such identities can be proved via generating
functions [12, 19] or the Wilf-Zeilberger algorithm [15]. Nevertheless, we
hope that the reader will find our results interesting, in part because of the
applications mentioned above, and also because it is a challenge to generalize
the results to higher values of d.

A preliminary version of this paper, with some of the results conjectural,
was made available on arXiv [5]. All the conjectures have since been proved
by Bostan, Lairez and Salvy [2], Krattenthaler and Schneider [14], Brent,
Krattenthaler and Warnaar [4], and the present authors.

An outline of the paper follows.
In §2 we consider a special class of double sums that can be reduced to

the single sums of [3, 18].
In §3 we consider a generalization of the motivating case (1) described

above: f(k, ℓ) = (kα − ℓα)β. In the case α = 2 we give recurrence relations
that allow such sums to be evaluated in closed form for any given positive
integer β. The recurrence relations naturally split into the cases where β is
even (easy) and odd (more difficult).

Theorem 6 in §4 gives a closed form for an analogous triple sum. In [5,
Conjecture 2] a closed form for the analogous quadruple sum was conjec-
tured. This conjecture has now been proved by Brent, Krattenthaler and
Warnaar [4]; in fact they give a generalization to arbitrary positive integer d.

In §5 we state several double sum identities that were proved or con-
jectured by us [5]. The missing proofs have now been provided by Bostan,
Lairez and Salvy [2] and by Krattenthaler and Schneider [14].

1For example, in the case d = 1 we could consider
∑

k

(

n

k

)

|f(n− 2k)|.
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Notation

The set of all integers is Z, and the set of non-negative integers is N,
The binomial coefficient

(

n
k

)

is defined to be zero if k < 0 or k > n (and
hence always if n < 0). Using this convention, we often avoid explicitly
specifying upper and lower limits on k or excluding cases where n < 0.

In the definition of the weight function |f |, we always interpret 00 as 1.

2 Some double sums reducible to single sums

Tuenter [18] considered the binomial sum

Sβ(n) :=
∑

k

(

2n

n+ k

)

|k|β, (4)

and a generalization2 to

Uβ(n) :=
∑

k

(

n

k

)

∣

∣

∣

n

2
− k

∣

∣

∣

β

(5)

was given by the first author [3].
Tuenter showed that

S2β(n) = Qβ(n)2
2n−β, S2β+1(n) = Pβ(n)n

(

2n

n

)

, (6)

where Pβ(n) and Qβ(n) are polynomials of degree β with integer coefficients,
satisfying certain three-term recurrence relations, and expressible in terms
of Dumont-Foata polynomials [9]. Closed-form expressions for Sβ(n), Pβ(n),
Qβ(n) are known [3].

In this section we consider the double sum

Tβ(m,n) :=
∑

k, ℓ

(

2m

m+ k

)(

2n

n+ ℓ

)

|k − ℓ|β (7)

and show that it can be expressed as a single sum of the form (4).

2It is a generalization because Sβ(n) = Uβ(2n), but Uβ(n) is well-defined for all n ∈ N.
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Theorem 1. For all β,m, n ∈ N, we have

Tβ(m,n) = Sβ(m+ n),

where Tβ is defined by (7) and Sβ is defined by (4).

Proof. If β = 0 then T0(m,n) = 22(m+n) = S0(m + n). Hence, we may
assume that β > 0 (so 0β = 0). Let d = |k−ℓ|. We split the sum (7) defining
Tβ(m,n) into three parts, corresponding to k > ℓ, k < ℓ, and k = ℓ. The
third part vanishes. If k > ℓ then d = k − ℓ and k = d + ℓ; if k < ℓ then
d = ℓ− k and ℓ = d+ k. Thus, we get

Tβ(m,n) =
∑

d>0

∑

ℓ

(

2m

m+d+ℓ

)(

2n

n+ℓ

)

dβ +
∑

d>0

∑

k

(

2m

m+k

)(

2n

n+k+d

)

dβ

=
∑

d>0

dβ
∑

ℓ

(

2m

m+d+ℓ

)(

2n

n− ℓ

)

+
∑

d>0

dβ
∑

k

(

2n

n+k+d

)(

2m

m− k

)

.

By Vandermonde’s identity, the inner sums over k and ℓ are both equal to
(

2m+2n
m+n+d

)

. Thus,

Tβ(m,n) = 2
∑

d>0

(

2m+ 2n

m+ n+ d

)

dβ =
∑

d

(

2m+ 2n

m+ n + d

)

|d|β = Sβ(m+ n).

Remark 1. If m = n then, by the shift-invariance of the weight |k− ℓ|β, we
have

Tβ(n, n) =
∑

k, ℓ

(

2n

k

)(

2n

ℓ

)

|k − ℓ|β = Sβ(2n). (8)

There is no need for the upper argument of the binomial coefficients to be
even in (8). We can adapt the proof of Theorem 1 to show that, for all n ∈ N,

∑

k, ℓ

(

n

k

)(

n

ℓ

)

|k − ℓ|β = Sβ(n).
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3 Centered double sums

In this section we consider the centered double binomial sums defined by3

Sα,β(n) :=
∑

k, ℓ

(

2n

n + k

)(

2n

n + ℓ

)

|kα − ℓα|β. (9)

Note that S1,β(n) = Tβ(n, n), so the case α = 1 is covered by Theorem 1.
Thus, in the following we can assume that α ≥ 2. Since we mainly consider
the case α = 2, it is convenient to define

Wβ(n) := S2,β(n) =
∑

k, ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

|k2 − ℓ2|β. (10)

Remark 2. The sequences (Sα,β(n))n≥1 for α ∈ {1, 2} and 1 ≤ β ≤ 4 are in
the OEIS [17]. Specifically, (S1,1(n))n≥1 is a subsequence of A166337 (the en-
try corresponding to n = 0 must be discarded). (S2,1(n))n≥0 is A254408, and
(Sα,β(n))n≥0 for (α, β) = (1, 2), (2, 2), (1, 3), (2, 3), (1, 4), (2, 4) are A268147,
A268148, . . . , A268152 respectively.

3.1 Wβ for odd β

The analysis ofWβ(n) naturally splits into two cases, depending on the parity
of β. We first consider the case that β is odd. A simpler approach is possible
when β is even, as we show in §3.3.

As mentioned in §1, the evaluation of W1(n) was the motivation for this
paper, and is given in the following theorem.

Theorem 2 (Brent and Osborn).

W1(n) =
∑

k, ℓ

(

2n

n+ k

)(

2n

n+ ℓ

)

|k2 − ℓ2| = 2n2

(

2n

n

)2

.

Numerical evidence suggested the following generalization of Theorem 2. It
was conjectured by the present authors [5, Conjecture 2], and proved by
Krattenthaler and Schneider [14].

3The double sum Sα,β(n) should not be confused with the single sum Sα(n) of §2.
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Theorem 3 (Krattenthaler and Schneider). For all m,n ∈ N,

∑

k, ℓ

(

2m

m+ k

)(

2n

n+ ℓ

)

|k2 − ℓ2| ≥ 2mn

(

2m

m

)(

2n

n

)

,

with equality if and only if m = n.

3.2 Recurrence relations for the odd case

Theorem 2 gives W1(n). We show how W3(n),W5(n), . . . can be computed
using recurrence relations. More precisely, we express the double sums
W2k+1(n) in terms of certain single sums Gk(n,m), and give a recurrence
for the Gk(n,m). We then show that W2k+1(n) is a linear combination of
Pk(n), . . . , P2k(n), where the polynomials Pm(n) are as in (6), and the coef-
ficients multiplying these polynomials satisfy another recurrence relation.

Define

fq =

{

1 if q 6= 0;
1
2
if q = 0.

Using symmetry and the definition (10) of Wk(n), we have

W2k+1(n) = 8

n
∑

q=0

n
∑

p=q

(

2n

n + p

)(

2n

n + q

)

(p2 − q2)2k+1fq; (11)

the factor fq allows for terms which would otherwise be counted twice.
Let m = p− q. Since p2 − q2 = m(m+ 2q), we can write the double sum

W2k+1(n)/8 in (11) as

n
∑

q=0

n
∑

p=q

(

2n

n+ p

)(

2n

n+ q

)

(p2 − q2)2k+1fq =
∑

m≥0

m2k+1Gk(n,m), (12)

where

Gk(n,m) :=
∑

q≥0

(

2n

n+m+ q

)(

2n

n + q

)

(m+ 2q)2k+1fq. (13)

Observe that Gk(0, m) = 0. For convenience we define Gk(−1, m) = 0. We
observe that Gk(n,m) satisfies a recurrence relation, as follows.
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Lemma 1. For all k,m, n ∈ N,

Gk+2(n,m) = 2(4n2 +m2)Gk+1(n,m)− (4n2 −m2)2Gk(n,m)

+ 64n2(2n− 1)2Gk(n− 1, m). (14)

Proof. If n = 0 the proof of (14) is trivial, since Gk(0, m) = Gk(−1, m) = 0.
Hence, suppose that n > 0. We observe that

[(m+ 2q)4 − 2(4n2 +m2)(m+ 2q)2 + (4n2 −m2)2]

(

2n

n+m+ q

)(

2n

n + q

)

= 16(n+m+ q)(n−m− q)(n+ q)(n− q)

(

2n

n+m+ q

)(

2n

n+ q

)

= 64n2(2n− 1)2
(

2n− 2

n− 1 +m+ q

)(

2n− 2

n− 1 + q

)

.

Now multiply each side by (m+ 2q)2k+1fq and sum over q ≥ 0.

The recurrence (14) may be used to compute Gk(n,m) for given (n,m)
and k = 0, 1, 2, . . ., using the initial values

G0(n,m) =
n

2

(

2n

n

)(

2n

n +m

)

and

G1(n,m) =
4n2 + (2n− 5)m2

2n− 1
G0(n,m).

These initial values may be verified from the definition (13) by standard
methods [15] – we omit the details.

Write gk(n,m) = 0 if Gk(n,m) = 0, and otherwise define gk(n,m) by

Gk(n,m) =

(

2n

n

)(

2n

n+m

)

gk(n,m).

The recurrence (14) for Gk gives a corresponding recurrence for gk:

gk+2(n,m) = 2(4n2 +m2)gk+1(n,m)− (4n2 −m2)2gk(n,m)

+ 16n2(n2 −m2)gk(n− 1, m), (15)

with initial values

g0(n,m) =
n

2
, g1(n,m) =

4n2 + (2n− 5)m2

2n− 1
g0(n,m).
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Note that the gk(n,m) are rational functions in n and m; if computation
with bivariate polynomials over Z is desired then gk(n,m) can be multiplied
by (2n − 1)(2n − 3) · · · (2n − (2k − 1)). If n is fixed, then gk(n,m) is an
even polynomial in m and, from the recurrence (15), the degree is 2k. This
suggests that we should define rational functions γk,j(n) by

gk(n,m) =

k
∑

j=0

γk,j(n)m
2j .

For j < 0 or j > k we define γk,j(n) = 0. From the recurrence (15), we
obtain the following recurrence for the γk,j(n):

γk+2,j(n) = 8n2γk+1,j(n) + 2γk+1,j−1(n)− 16n4γk,j(n) + 8n2γk,j−1(n)

− γk,j−2(n) + 16n4γk,j(n− 1)− 16n2γk,j−1(n− 1). (16)

The γk,j(n) can be computed from (16), using the initial values

γ0,0(n) = n/2,

γ1,0(n) = 2n3/(2n− 1), (17)

γ1,1(n) = n(2n− 5)/(4n− 2).

Using the definition of γk,j(n) and (11)–(13), we obtain

W2k+1(n) = 4

(

2n

n

) k
∑

j=0

γk,j(n)S2k+2j+1(n).

Since S2r+1(n) = Pr(n)n
(

2n
n

)

, we obtain the following theorem, which shows
that the double sums W2k+1(n) may be expressed in terms of the same poly-
nomials Pm(n) that occur in expressions for the single sums of [3, 18].

Theorem 4.

W2k+1(n) = 4n
k

∑

j=0

γk,j(n)Pk+j(n) ·

(

2n

n

)2

, (18)

where the polynomials Pk+j(n) are as in (6), and the γk,j(n) may be computed

from the recurrence (16) and the initial values given in (17).

9



The factor before the binomial coefficient in (18) is a rational function
ωk(n) with denominator (2n − 1)(2n − 3) · · · (2n − 2⌈k/2⌉ + 1). Thus, we
have the following corollary of Theorem 4.

Corollary 1. If k ∈ N and Wk(n) is defined by (10), then

W2k+1(n) = ωk(n)

(

2n

n

)2

,

where

ωk(n)

⌈k/2⌉
∏

j=1

(2n− 2j + 1)

is a polynomial of degree 2k + ⌈k/2⌉ + 2 over Z. The first four cases are:

ω0(n) = 2n2,

ω1(n) =
2n3(8n2 − 12n+ 5)

2n− 1
,

ω2(n) =
2n3(128n4 − 512n3 + 800n2 − 568n+ 153)

2n− 1
, and

ω3(n) =
2n3 ω3(n)

(2n− 1)(2n− 3)
, where

ω3(n) = 9216n7 − 86016n6 + 350464n5 − 802304n4+

1106856n3 − 914728n2 + 417358n− 80847.

3.3 Wβ for even β

Now we consider Wβ(n) for even β. This case is easier than the case of odd β
because the absolute value in the definition (10) has no effect when β is
even. Theorem 5 shows that W2r(n) can be expressed in terms of the single
sums S0(n), S2(n), . . . , S4r(n) or, equivalently, in terms of the polynomials
Q0(n), Q1(n), . . . , Q2r(n). It follows that 22r−4nW2r(n) is a polynomial over
Z of degree 2r in n.

Theorem 5. For all n ∈ N,

W2r(n) =
∑

k

(−1)k
(

2r

k

)

S2k(n)S4r−2k(n)

= 24n−2r
∑

k

(−1)k
(

2r

k

)

Qk(n)Q2r−k(n),

10



where Qr(n) and Sr(n) are as (4)–(6) of §2, and Wβ(n) is defined by (10).

Proof. From the definition of W2r(n) we have

W2r(n) =
∑

i

∑

j

(

2n

n + i

)(

2n

n+ j

)

(i2 − j2)2r.

Write

(i2 − j2)2r =
∑

k

(−1)k
(

2r

k

)

i4r−2kj2k,

change the order of summation in the resulting triple sum, and observe that
the inner sums over i and j separate, giving S4r−2k(n)S2k(n). This proves
the first part of the theorem. The second part follows from (6).

For example, the first four cases are

W0(n) = 24n,

W2(n) = 24n−1 n(2n− 1),

W4(n) = 24n−2 n(2n− 1)(18n2 − 33n+ 17),

W6(n) = 24n−3 n(2n− 1)(900n4 − 4500n3 + 8895n2 − 8055n+ 2764).

It follows from Theorem 5 that the coefficients of 22r−4nW2r(n) are in Z, but it
is not obvious how to prove the stronger result, suggested by the cases above,
that the coefficients of 2r−4nW2r(n) are in Z. We leave this as a conjecture.

4 A triple sum

In Theorem 6 we give a triple sum that is analogous to the double sum of
Theorem 2. A straightforward but tedious proof is given in [5, Appendix].
The result also follows from the case d = 3 of a more general result proved
in [4, Proposition 1.1] for the analogous d-fold sum, where the weight function
is generalized to the absolute value of a Vandermonde |∆(i21, i

2
2, . . . , i

2
d)|.

Theorem 6. For all n ∈ N,

∑

i, j, k

(

2n

n+ i

)(

2n

n+ j

)(

2n

n+ k

)

|(i2 − j2)(i2 − k2)(j2 − k2)|

= 3n3(n− 1)

(

2n

n

)2

22n−1.

11



5 Further identities

In this section we give various identities that were stated in [5]. Of these,
(25), (26), (27), (30) and (32) were conjectural. The conjectures have since
been proved by Bostan, Lairez and Salvy [2, §7.3.2].

Centered double sums

Recall that, from the definition (9), we have

Sα,1(n) =
∑

i, j

(

2n

n + i

)(

2n

n+ j

)

|iα − jα|. (19)

We give closed-form expressions for Sα,1(n), 1 ≤ α ≤ 8. Observe that (24)
follows from Theorem 1 since S1,1(n) = T1(n, n), and (20) is equivalent to
Theorem 2. It appears that, for even α, Sα,1(n) is a rational function of n

multiplied by
(

2n
n

)2
, but for odd α, it is a rational function of n multiplied

by
(

4n
2n

)

. This was conjectured in [5], and has been proved by Krattenthaler
and Schneider [14].

S2,1(n) = 2n2

(

2n

n

)2

, (20)

S4,1(n) =
2n3(4n− 3)

2n− 1

(

2n

n

)2

, (21)

S6,1(n) =
2n3(11n2 − 15n+ 5)

2n− 1

(

2n

n

)2

, (22)

S8,1(n) =
2n3(80n4 − 306n3 + 428n2 − 266n+ 63)

(2n− 1)(2n− 3)

(

2n

n

)2

, (23)

S1,1(n) = 2n

(

4n

2n

)

, (24)

S3,1(n) =
4n2(5n− 2)

4n− 1

(

4n− 1

2n− 1

)

, (25)

12



S5,1(n) =
8n2(43n3 − 70n2 + 36n− 6)

(4n− 2)(4n− 3)

(

4n− 2

2n− 2

)

, (26)

S7,1(n) =
16n2P7,1(n)

(4n− 3)(4n− 4)(4n− 5)

(

4n− 3

2n− 3

)

, n ≥ 2, where

P7,1(n) = 531n5 − 1960n4 + 2800n3 − 1952n2 + 668n− 90, (27)

(S7,1(1) = 12 is a special case).

Following are some similar identities. We observe that, since i4 − j4 =
(i2+ j2)(i2− j2), (28) is easily seen to be equivalent to (21). Similarly, since
i6 − j6 = (i4 + i2j2 + j4)(i2 − j2), any two of (22), (29) and (31) imply the
third. Higher-dimensional generalizations of (30)–(31) are known [4].

∑

i, j

(

2n

n+i

)(

2n

n+j

)

|i2(i2 − j2)| =
n3(4n− 3)

2n− 1

(

2n

n

)2

, (28)

∑

i, j

(

2n

n+i

)(

2n

n+j

)

|i4(i2 − j2)| =
n3(10n2 − 14n+ 5)

2n− 1

(

2n

n

)2

, (29)

∑

i, j

(

2n

n+i

)(

2n

n+j

)

|ij(i2 − j2)| =
2n3(n− 1)

2n− 1

(

2n

n

)2

, (30)

∑

i, j

(

2n

n+i

)(

2n

n+j

)

|i2j2(i2 − j2)| =
2n4(n− 1)

2n− 1

(

2n

n

)2

, (31)

∑

i, j

(

2n

n+i

)(

2n

n+j

)

|i3j3(i2 − j2)| =
2n4(n− 1)(3n2 − 6n+ 2)

(2n− 1)(2n− 3)

(

2n

n

)2

. (32)
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