
Optimal Encodings for Range Top-k, Selection,
and Min-Max

Pawe l Gawrychowski1? and Patrick K. Nicholson2

1 Institute of Informatics, University of Warsaw, Poland
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We consider encoding problems for range queries on arrays.
In these problems the goal is to store a structure capable of recovering the
answer to all queries that occupies the information theoretic minimum
space possible, to within lower order terms. As input, we are given an
array A[1..n], and a fixed parameter k ∈ [1, n]. A range top-k query on an
arbitrary range [i, j] ⊆ [1, n] asks us to return the ordered set of indices
{`1, ..., `k} such that A[`m] is the m-th largest element in A[i..j], for
1 ≤ m ≤ k. A range selection query for an arbitrary range [i, j] ⊆ [1, n]
and query parameter k′ ∈ [1, k] asks us to return the index of the k′-th
largest element in A[i..j]. We completely resolve the space complexity of
both of these heavily studied problems—to within lower order terms—for
all k = o(n). Previously, the constant factor in the space complexity was
known only for k = 1. We also resolve the space complexity of another
problem, that we call range min-max, in which the goal is to return the
indices of both the minimum and maximum elements in a range.

1 Introduction

Many important algorithms make use of range queries over arrays of values
as subroutines [14,18]. As a prime example, text indexes that support pattern
matching queries often maintain an array storing the lengths of the longest
common prefixes between consecutive suffixes of the text. During a search for
a pattern this array is queried in order to find the position of the minimum
value in a given range. That is, a subroutine is needed that can preprocess an
array A in order to answer range minimum queries. Formally, as input to such
a query we are given a range [i, j] ⊆ [1, n], and wish to return the index k =
arg mini≤`≤j A[`]. In text indexing applications memory is often the constraining
factor, so the question of how many bits are needed to answer range minimum
queries has been heavily studied. After a long line of research (see [2,17]), it has
been determined that such queries can be answered in constant time, by storing
a data structure of size 2n + o(n) bits [7]. Furthermore, this space bound is
optimal to within lower order terms (see [7, Sec. 1.1.2]). The interesting thing is
that the space does not depend on the number of bits required to store individual

? Currently holding a post-doctoral position at Warsaw Center of Mathematics and
Computer Science.

ar
X

iv
:1

41
1.

65
81

v2
 [

cs
.D

S]
 1

5
Ju

n
20

15

elements of the array A. After constructing the data structure we can discard
the array A, while still retaining the ability to answer range minimum queries.

Results of this kind, where it is shown that the solutions to all queries can
be stored using less space than is required to store the original array, fall into
the category of encodings, and, more generally, succinct data structures [11].
Specifically, given a set of combinatorial objects χ we wish to represent an ar-
bitrary member of χ using lg |χ|+ o(lg |χ|) bits3, while still supporting queries,
if possible. If queries can be supported by the representation then we refer to it
as a data structure, but if not, then we refer to it as an encoding. For the case
of range minimum queries or range maximum queries, the set χ turns out to
be Cartesian trees, which were introduced by Vuillemin [19]. For a given array
A, the Cartesian tree encodes the solution to all range minimum queries, and
similarly, if two arrays have the same solutions to all range minimum queries,
then their Cartesian trees are identical [7].

Recently, there has been a lot of interest the following two problems, that
generalize range maximum queries in two different ways. The input to each of
the following problems is an array A[1..n], that we wish to preprocess into an
encoding occupying as few bits as possible, such that the answers to all queries
are still recoverable. We assume a value k ≥ 1 is fixed at preprocessing time.

– Range top-k: Given an arbitrary query range [i, j] ⊆ [1, n] and k′ ∈ [1, k],
return the indices of the k′ largest values in [i, j]. This problem is the natural
generalization of range maximum queries and has been the focus of a several
papers, leading to asymptotically optimal lower and upper space bounds of
Ω(n lg k) andO(n lg k) bits, proved by Grossi et al. [10] and Navarro, Raman,
and Rao [15], respectively. The latter upper bound is a data structure that
can answer range top-k′ queries in optimal O(k′) time.

– Range k-selection: Given an arbitrary query range [i, j] ⊆ [1, n] and k′ ≤ k,
return the index of the k′-th largest value in [i, j]. This problem was studied
in a series of recent papers (see [8] and [3] for further references), culminating
in data structures that occupy a linear number of words, and can answer
queries in O(lg k′/ lg lg n+ 1) time [4]. This query time matches a cell-probe
lower bound for near-linear space data structures [12]. It is straightforward
to see that any encoding of range top-k queries is also an encoding for range
k-selection queries, though the question of how much time is required during
a query remains unclear [15]. Very recently, Navarro, Raman, and Rao [15]
described a data structure that can be used to answer range k-selection
queries in optimal O(lg k′/ lg lg n + 1) time [15], and, like the range top-k
data structure, occupies O(n lg k) bits of space.

Our Results We present the first space-optimal encodings to range top-k—
and therefore range selection also—as well as a new problem that we call range
min-max, in which the goal is to return the indices of both the minimum and
maximum element in the array. We emphasize that, on their own, the encodings

3 We use lg x to denote log2 x.

2

Table 1. Old and new results. Both upper and lower bounds are expressed in bits.
Our bounds make use of the binary entropy function H(x) = x lg(1

x
) + (1−x) lg(1

1−x
).

For the entry marked with a † the claimed bound holds when k = o(n).

Ref. Query Lower Bound Upper Bound Query Time

[7] max 2n−Θ(lgn) 2n+ o(n) O(1)
[10,15] top-k Ω(n lg k) O(n lg k) O(k′)
[5] top-2 2.656n−Θ(lgn) 3.272n+ o(n) O(1)

Thm. 1, 2 min-max 3n−Θ(lg(n)) 3n+ o(n) O(1)
Thm. 3, 4 top-2 3nH(1

3
)−Θ(polylog(n)) 3nH(1

3
) + o(n) —

Thm. 3, 4 top-k (k + 1)nH(1
k+1

)(1− o(1))† (k + 1)nH(1
k+1

) + o(n) —

for range top-k and selection do not support queries efficiently: they merely
store the solutions to all queries in a compressed form. However, our encoding
for range min-max can be augmented with o(n) additional bits of data to create
a data structure that supports queries in O(1) time. Furthermore, even without
query support, our encodings for range top-k and selection address a problem
posed in the papers of Grossi et al. [10] and Navarro et al. [15].

In Table 1 we present a summary of previous and new results. Prior to this
work, the only value for which the exact coefficient of n was known was the
case in which k = 1 (i.e., range maximum queries). For even k = 2 the best
previous estimate was that the coefficient of n is between 2.656 and 3.272 [5]. The
lower bound of 2.656 was derived using generating functions and an extensive
computational search [5]. In contrast, our method is purely combinatorial and
gives the exact coefficient for all k = o(n). For k = 2, 3, 4 the coefficients are
(rounding up) 2.755, 3.245, and 3.610, respectively.

As mentioned above, a negative aspect of our encodings is that they appear
to be somewhat difficult to use as the basis for a data structure. However, in
Section 4, we present a data structure based on our encoding that nearly matches
the optimal space bound. Explicitly, we can achieve a space bound of (k +
1.5)nH(1.5

k+1.5) + o(n lg k) bits with query time O(poly(k lg n)). Thus, our data
structure achieves space much closer to the optimal bound than the previous best
result [15], but the query time is worse. We leave the following data structure
problem open: how can range top-k and selection queries be supported with
optimal query time using space matching our encodings (to within lower order
terms)?

Finally, we wish to point out that although our formulation of the range top-
k problem returns the indices in sorted order, the constant factor in our lower
bound also holds for the unsorted version, in which we return the indices in an
arbitrary order, provided k = o(n). This follows since any encoding strategy
for unsorted range top-k can be used to construct a sorted top-k encoding, by
padding the end of the input array with k − 1 values larger than any other.
The unsorted encoding of this padded array can be used to infer the solution
to an arbitrary sorted top-k query [i, j] by examining the solutions to queries
[i, j], [i, j + 1], ..., [i, n+ k − 1]: see Appendix A for details.

3

Discussion of Techniques and Road Map Prior work for top-k, for k ≥ 2,
focused on encoding a decomposition of the array, called a shallow cutting [10,15].
Since shallow cuttings are a general technique used to solve many other range
searching problems [13,12], these previous works [10,15] required additional in-
formation beyond storing the shallow cutting in order to recover the answers
to top-k queries. Furthermore, in these works the exact constant factor is not
disclosed, though we estimate it to be at least twice as large as the bounds we
present. For the specific case of range top-2 queries a different encoding has been
proposed based on extended Cartesian trees [5]. In contrast to both of the pre-
vious approaches, our encoding is based the approach of Fischer and Heun [7],
who describe what is called a 2D min-heap (resp. max-heap) in order to encode
range minimum queries (resp. range maximum queries). We begin in Section 2
by showing how to generalize their technique to simultaneously answer both
range minimum and range maximum queries. Our encoding provides the answer
to both using 3n+o(n) bits in total, compared to 4n+o(n) bits using the trivial
approach of constructing both encodings separately. We then show this bound
is optimal by proving that any encoding for range min-max queries can be used
to distinguish a certain class of permutations. We move on in Section 3 to gen-
eralize Fischer and Heun’s technique in a clean and natural way to larger values
of k. Indeed, the encoding we present—like that of Fischer and Heun—is simple
enough to implement. The main difficulty is proving that the bound achieved by
our technique is optimal. For this we enumerate a particular class of walks, via
an application of the so-called cycle lemma of Dvoretzky and Motzkin [6].

Finally, in Section 4 we show that our encoding can be used as the basis for
a range top-k data structure. Though the resultant space bound and query time
are suboptimal, we note that interesting challenges had to be overcome to design
a data structure based on our encoding. Concisely, we required the ability to de-
compose the encoding into smaller blocks in order to support queries efficiently.
To do this we, in some sense, generalized the pioneers approach of Jacobson [11]
via a non-trivial decomposition theorem. Since balanced parentheses represen-
tations appear in many succinct data structures, we believe this will likely be of
independent interest.

2 Optimal Encodings of Range Min-Max Queries

In this section we describe our encoding for range min-max queries. We use
RMinMax(A[i..j]) to denote a range min-max query on a subarray A[i..j].
The solution to the query is the ordered set of indices {`1, `2} such that `1 =
arg max`∈[i,j]A[`] and `2 = arg min`∈[i,j]A[`].

2.1 Review of Fischer and Heun’s Technique

We review the algorithm of Fischer and Heun [7] for constructing the encoding
of range minimum (resp. maximum) queries.

4

Tmax : 00000101100110111010111

Tmin : 00001101100110010111011Min Max
i Stack Emit Stack Emit
1 1 1 1 1
2 2 01 1,2 1
3 2,3 1 1,3 01
4 2,3,4 1 1,4 01
5 2,3,5 01 1,4,5 1
6 2,6 001 1,4,5,6 1
7 2,6,7 1 1,4,5,7 01
8 2,8 001 1,4,5,7,8 1
9 2,8,9 1 1,4,5,9 001

10 2,8,10 01 1,4,5,9,10 1
11 2,8,10,11 1 1,4,5,9,11 01

00001 000001

Fig. 1. A trace of Fischer and Huen’s algorithm for constructing the encoding for range
minimum and maximum queries on an array A[1..11] = (11, 1, 7, 10, 9, 3, 4, 2, 8, 5, 6).

Consider an array A[1..n] storing n numbers. Without loss of generality we
can alter the values of the numbers so that they are a permutation, breaking ties
in favour of the leftmost element. To construct the encoding for range minimum
queries we sweep the array from left to right4, while maintaining a stack. A string
of bits Tmin (resp. Tmax) will be emitted in reverse order as we scan the array.
Whenever we push an element onto the stack, we emit a one bit, and whenever
we pop we emit a zero bit. Initially the stack is empty, so we push the position
of the first element we encounter on the stack, in this case, 1. Each time we
increment the current position, i, we compare the value of A[i] to that of the
element in the position t, that is stored on the top of the stack. While A[t] is not
less than (resp. not greater than) A[i], we pop the stack. Once A[t] is less than
(resp. greater than) the current element or the stack becomes empty, we push
i onto the stack. When we reach the end of the array, we pop all the elements
on the stack, emitting a zero bit for each element popped, followed by a one bit.
An example illustrating a trace of the algorithm described here can be found in
Figure 1.

Fischer and Heun showed that the string of bits output by this process can
be used to encode a rooted ordinal tree in terms of its depth first unary degree
sequence or DFUDS [7]. To extract the tree from a sequence, suppose we read
d zero bits until we hit the first one bit. Based on this, we create a node v
of degree d, and continue building first child of v recursively. Since there are
at most 2n stack operations, the tree is therefore represented using 2n bits.
We omit the technical details of how a query is answered, but the basic idea

4 In the original paper the sweeping process moves from right to left, but either direc-
tion yields a correct algorithm by symmetry.

5

is to augment this tree representation with succinct data structures supporting
navigation operations. The following corollary summarizes part of their result:

Lemma 1 (Corollary 5.6 [7]). Given the DFUDS representation of Tmin (resp.
Tmax) any query RMin(A[i..j]) (resp. RMax(A[i..j])) can be answered in con-
stant time using an index occupying O(n log logn

logn) = o(n) additional bits of space.

2.2 Upper Bound for Range Min-Max Queries

We propose the following encoding for a simultaneous representation of Tmin and
Tmax. Scan the array from left to right and maintain two stacks: a min-stack for
range minimum queries, and a max-stack for range maximum queries. Notice
that in each step except for the first and last, we are popping an element from
exactly one of the two stacks. This crucial observation allows us to save space. We
describe our encoding in terms of the min-stack and the max-stack maintained
as above. Unlike before however, we maintain two separate bit strings, T and U .
If the new element causes δ ≥ 1 elements on the min-stack to be popped, then
we prepend 0δ−11 to the string T , and prepend 0 to the string U . Otherwise, if
the new element causes δ elements on the max-stack to be popped, we prepend
0δ−11 to the string T , and 1 to the string U . Since exactly 2n elements are
popped during n push operations, the bit string T has length 2n, and the bit
string U has length n, for a total of 3n bits.

Before stating our theorem, we require the following result by Raman, Ra-
man, and Rao [16]:

Lemma 2 ([16]). Let V be a bit vector of length n bits, containing m one bits.
In the word-RAM model with word size Θ(lg n) bits, there is a data structure of
size lg

(
n
m

)
+ O(n lg lgn

lgn) ≤ nH(mn) + O(n lg lgn
lgn) bits that supports the following

operations in O(1) time, for any i ∈ [1, n]:

1. access(V, i): return the bit at index i in V.
2. rankα(V, i): return the number of bits with value α ∈ {0, 1} in V[1..i].
3. selectα(V, i): return the index of the i-th bit with value α ∈ {0, 1}.

Next, we show that by using our encoding and Lemma 2 it is possible to also
support queries on this encoding in O(1) time.

Theorem 1. There is a data structure that occupies 3n + o(n) bits of space,
such that any query RMinMax(A[i..j]) can be answered in O(1) time.

Proof. By Corollary 1, to prove the theorem, it is sufficient to show that there
is a data structure that occupies 3n + o(n) bits of space, and can recover any
block of lg n consecutive bits from both Tmin and Tmax in O(1) time.

If we have such a structure that can extract any block from either DFUDS
representation, then we can use it as an oracle to access the DFUDS representa-
tion of either tree. Thus, we need only apply Lemma 1 to complete the theorem.
The data structure makes use of the bit strings T and U , as well as the following
auxiliary data structures:

6

1. We precompute a lookup table L of size Θ(
√
n lg n) bits. The lookup table

takes two bit strings as input, s1 and s2, both with length lgn
4 , as well as a

single bit b. We conceptually think of the bit string s1 as having the format
0γ110γ21...0γt−110γt1, where each γi ≥ 0. The table returns a new bit string
s3, of length no greater than lgn

4 , that we will define next. Let · be the
concatenation operator, and define the function:

f(x, y, y′) =

{
0 · x if y = y′

1 otherwise.

If ui = 0γi1 then s3 = f(u1, s2[1], b)·f(u2, s2[2], b) · · · f(uk, s2[k], b), and s2[i]
denotes the i-th bit of s2. Such a table occupies no more than the claimed
amount of space, and can return s3 (as well as k) in O(1) time.

2. Each bit in T corresponds to at least one bit in Tmin or Tmax. Also recall
that at each step during preprocessing we append the value δ − 1 in unary
to T rather than δ (as in the representation of Fischer and Heun). Thus,
we can treat each push operation (with the exception of the first and last)
corresponding to a single one bit in T as representing three bits: two bits in
Tmin and one bit in Tmax or two bits in Tmax and one bit in Tmin, depending
on the corresponding value in U . We store a bit vector Bmin of length 2n
which marks the position in T of the bit corresponding to the (i lg n+ 1)-th
bit of Tmin, for 0 ≤ i ≤ b 2n

lgnc. We do the analogous procedure for Tmax and
call the resulting bit vector Bmax.

Suppose now that we support the operations rank and select on Bmin, Bmax,
and T . We use the data structure of Lemma 2 that for Bmin and Bmax will
occupy

O

(
lg

(
n
n

lgn

)
+
n lg lg n

lg n

)
= O

(
n lg lg n

lg n

)
bits, and for T will occupy no more than 2n + O(n lg lgn

lgn) bits. Thus, our data

structures at this point occupy 3n + o(n) bits in total, counting the space for
U . We will describe how to recover lg n consecutive bits of Tmin; the procedure
for Tmax is analogous. Consider the distances between two consecutive 1 bits
having indices xi and xi+1 in Bmin. Suppose xi+1−xi ≤ c lg n in Bmin, for some
constant c ≥ 9. In this case we call the corresponding block βi of lg n consecutive
bits of Bmin min-good, and otherwise we call βi min-bad. We also define similar
notions for max-good and max-bad blocks. The problem now becomes recovering
any block (good or bad), since if the lg n consecutive bits we wish to extract
are not on block boundaries we can simply extract two consecutive blocks which
overlap the desired range, then recover the bits in the range using bit shifting
and bitwise arithmetic.

If βi is min-good, then we can recover it in O(c) = O(1) time, since all
we need to do is scan the corresponding segment of T between the two 1s, as
well as the segment of U starting at rank1(T, xi). We process the bits of T and

7

U together in blocks of lgn
4 each, using the lookup table L: note that we can

advance in U correctly by determining t by counting the number of 1 bits in
either in s1 or s3. This can be done using either an additional lookup table of
size Θ(

√
n) using constant time, or by storing the answer explicitly in L. When

we do this, there is one border case which we must handle, which occurs when
the last bit in s1 is not a 1. However, we can simply append a 1 to end of s1 in
this case, and then delete either 1 or 01 from the end of s3, depending on the
value of s2[t]. This correction can be done in O(1) time using bit shifting and
bitwise arithmetic.

If βi is min-bad, then we store the answer explicitly. This can be done by
storing the answer for each bad βi in an array of size z lg n bits, where z is the
number of bad blocks. Since z ≤ d n

c lgne this is dnc e bits in total. We also must
store yet another bit vector, encoded using Lemma 2, marking the start of the
min-bad blocks, which occupies another O(n lg lgn

lgn) bits by a similar calculation

as before. Thus, we can recover any block in Bmin using 3n+ dnc e+ o(n) bits in
O(c) = O(1) time.

In fact, by examining the structure of Lemma 2 in more detail we can argue
that it compresses T slightly for each bad block, to get a better space bound
than 2n + o(n) bits. Consider all the min-bad blocks β1, ..., βz in Bmin and the
max-bad blocks β′1, ..., β

′
z′ in Bmax. For a given min-bad block βi, any max-bad

block β′j can only overlap its first or last 2 lg n bits in T . This follows since each
bit in T corresponds to at least one bit in either Tmin or Tmax, and because less
than half of these 2 lg n bits can correspond to bits in Tmin (since the block is
min-bad). Thus, each bad block has a middle part of at least (c − 4) lg n bits,
which are not overlapped by any other bad block. We furthermore observe that
these (c− 4) lg n middle bits are highly compressible, since they contain at most
lg n one bits, by the definition of a bad block. Since these (c−4) lg n middle bits
are compressed to their zeroth-order entropy in chunks of lgn

2 consecutive bits
by Lemma 2, we get that the space occupied by each of them is at most⌈

lg

(
(c− 4) lg n

lg n

)⌉
+Θ(c) ≤ (c− 4)H

(
1

c− 4

)
lg n+Θ(c) .

The cost of explicitly storing the answer for the bad block was lg n bits. Since
c ≥ 9, and assuming n is sufficiently large, we get that this additional lg n bits
of space can be added to the cost of storing the middle part of the bad block
in compressed form, without exceeding the cost of storing the middle part of
the bad block in uncompressed form. The value of c ≥ 9 came from a numeric
calculation by finding the first value of c such that (c− 4)H(1

c−4) + 1 < (c− 4).
Thus, the total space bound is 3n+ o(n) bits. ut

2.3 Lower Bound for Range Min-Max Queries

Given a permutation π = (p1, ..., pn), we say π contains the permutation pattern
s1-s2-...-sm if there exists a subsequence of π whose elements have the same
relative ordering as the elements in the pattern. That is, there exist some x1 <

8

x2 < ... < xm ∈ [1, n] such that for all i, j ∈ [1,m] we have that π(xi) < π(xj)
if and only if si < sj . For example, if π = (1, 4, 2, 5, 3) then π contains the
permutation pattern 1-3-4-2: we use this hyphen notation to emphasize that the
indices need not be consecutive. In this case, the series of indices in π matching
the pattern are x1 = 1, x2 = 2, x3 = 4 and x4 = 5. If no hyphen is present
between elements si and si+1 in the permutation pattern, then the indices xi
and xi+1 must be consecutive: i.e., xi+1 = xi + 1. In terms of the example, π
does not contain the permutation pattern 1-34-2.

A permutation π = (p1, ..., pn) is a Baxter permutation if there exist no
indices 1 ≤ i < j < k ≤ n such that π(j + 1) < π(i) < π(k) < π(j) or π(j) <
π(k) < π(i) < π(j+1). Thus, Baxter permutations are those that do not contain
2-41-3 and 3-14-2. Permutations with less than 4 elements are trivially Baxter
permutations, and for permutations on 4 elements the non-Baxter permutations
are exactly (2, 4, 1, 3) and (3, 1, 4, 2). Baxter permutations are well studied, and
their asymptotic behaviour is known (see, e.g., OEIS A001181 [1]).

We have the following lemma:

Lemma 3. Suppose π is a Baxter permutation, stored in an array A[1..n] such
that A[i] = π(i). If an encoding that can recover all range minimum and maxi-
mum queries is constructed on A, then π can be recovered from the encoding.

Proof. In order to recover the permutation, it suffices to show that we can per-
form pairwise comparisons on any two elements in A using range minimum and
range maximum queries. The proof follows by induction on n.

For the base case, for n = 1 there is exactly one permutation, so there is
nothing to recover. Thus, let us assume that the lemma holds for all permutations
on less than n ≥ 2 elements. For a permutation on n elements, consider the sub-
permutation induced by the array prefix A[1..(n − 1)] and suffix A[2..n]. These
subpermutations must be Baxter permutations, since deleting elements from
the prefix or suffix of a Baxter permutation cannot create a 2-41-3 or a 3-14-2.
Thus, it suffices to show that we can compare A[1] and A[n], as all the remaining
pairwise comparisons can be performed by the induction hypothesis.

Let x = RMin(A[1..n]) and y = RMax(A[1..n]) be the indices of the mini-
mum and maximum elements in the array, respectively. If x ∈ {1, n} or y ∈ {1, n}
we can compare A[1] and A[n], so assume x, y ∈ [2, n− 1]. Without loss of gen-
erality we consider the case where x < y: the opposite case is symmetric (i.e.,
replacing 3-14-2 with 2-41-3), and x 6= y because n ≥ 2. Consider an arbitrary
index i ∈ [x, ..., y], and the result of comparing A[1] to A[i] and A[i] to A[n]
(that can be done by the induction hypothesis, as i ∈ [2, n− 1]). The result is a
partial order on three elements, and is either:

1. One of the two chains A[1] < A[i] < A[n] or A[n] < A[i] < A[1], in which
case we are done since A[1] and A[n] can be compared; or

2. A partial order in which A[i] is the minimum or maximum element, and A[1]
is incomparable with A[n].

If we are in the latter case for all i ∈ [x, y], then let f(i) = 0 if A[i] is the
minimum element in this partial order, and f(i) = 1 otherwise. Because of how

9

x and y were chosen, f(x) = 0 and f(y) = 1. If we consider the values of f(i)
for all i ∈ [x, y], there must exist two indices i, i + 1 ∈ [x, y] such that f(i) = 0
and f(i+ 1) = 1. Therefore, the indices 1, i, i+ 1, n form the forbidden pattern
3-14-2, unless A[1] < A[n]. ut

Theorem 2. Any data structure encoding range minimum and maximum queries
simultaneously must occupy 3n−Θ(log n) bits, for sufficiently large values of n.

Proof. Let L(n) be the number of Baxter permutations on n elements. It is

known (cf. [1]) that limn→∞
L(n)π

√
3n4

23n+5 = 1. Since we can encode and recover
each one by the procedure discussed in Lemma 3, our encoding data structure
must occupy at least lgL(n) = 3n−Θ(log n) bits, if n is sufficiently large. ut

3 Optimal Encodings for Top-k Queries

In this section we use RTopK(A[i..j]) to denote a range top-k query on the sub-
array A[i..j]. The solution to such a query is an ordered list of indices {`1, ..., `k}
such that A[`m] is the m-th largest element in A[i..j].

3.1 Upper Bound for Encoding Top-k Queries

Like the encoding for range min-max queries, our encoding for range top-k
queries is based on representing the changes to a certain structure as we scan
through the array A. Each prefix in the array will correspond to a different
structure. We denote the structure, that we will soon describe, for prefix A[1..j]
as Sk(j), for all 1 ≤ j ≤ n. The structure Sk(j) will allow us to answer
RTopK(A[i..j]) for any i ∈ [1, j]. Our encoding will store the differences be-
tween Sk(j) and Sk(j + 1) for all j ∈ [1, n− 1]. Let us begin by defining a single
instance for an arbitrary j.

We first define the directed graph Gj = (V,E) with vertices labelled {1, ..., j},
and where an edge (i′, j′) ∈ E iff both i′ < j′ and A[i′] < A[j′] for all 1 ≤ i′ <
j′ ≤ j. We call Gj the dominance graph of A[1..j], and say j′ dominates i′, or
i′ is dominated by j′, if (i′, j′) ∈ E. Next consider the out-degree dj(`) of the
vertex labelled ` ∈ [1, j] in Gj . We define an array S[1..j], where S[`] = dj(`)
for 1 ≤ ` ≤ j. The structure Sk(j) is defined as follows: take the array S[1..j],
and for each entry ` ∈ [1, j] such that S[`] > k, replace S[`] with k. We use the
notation Sk(j, `) to refer to the `-th array entry in the structure Sk(j). We refer
to an index ` to be active iff Sk(j, `) < k, and as inactive otherwise. We note
that Sk(n) is reminiscent of the one-sided top-k structure of Grossi et al. [10].

Lemma 4. The total ordering of elements A[i1], ..., A[ij′], where {i1, ..., ij′} are
the active indices in Sk(j), can be recovered by examining only Sk(j).

Proof. We scan the structure Sk(j) from index j down to 1, maintaining a total
ordering on the active elements seen so far. Initially, we have an empty total
ordering. At each active location ` the value Sk(j, `) indicates how many active

10

Fig. 2. Geometric interpretation of how the structure Sk(j) is updated to Sk(j+1). In
the example k = 2, and the value of each active element in the array is represented by
its height. Black circles denote 0 values in the array S2(j), whereas crosses represent 1
values, and 2 values (inactive elements) are not depicted. When the new point (empty
circle) is inserted to the structure on the left, it increments the counters of the smallest
10 active elements, resulting in the picture on the right representing S2(j + 1).

elements in locations [`+ 1, j] are larger than A[`]. This follows since an inactive
element cannot dominate an active element in the graph Gj . Thus, we can insert
A[`] into the current total ordering of active elements. ut

We define the size of Sk(j) as follows: |Sk(j)| =
∑j
`=1(k−Sk(j, `)). The key

observation is that the structure Sk(j + 1) can be constructed from Sk(j) using
the following procedure:

1. Compute the value δj = |Sk(j)|−|Sk(j+1)|+k. This quantity is always non-
negative, as we add one new element to the large staircase, which increases
the size by at most k.

2. Find the δj indices among the active elements in Sk(j) such that their values
in A are the smallest via Lemma 4. Denote this set of indices as I.

3. For each ` ∈ [1, j], set Sk(j + 1, `) = Sk(j, `) + 1 iff ` ∈ I, and Sk(j + 1, `) =
Sk(j, `) otherwise.

4. Add the new element at the end of the array, setting Sk(j + 1, j + 1) = 0.

Thus, to construct Sk(j + 1) all that is needed is Sk(j) and the value δj : see
Figure 2. This implies that by storing δj for j ∈ [1, n−1] we can build any Sk(j).

Theorem 3. Solutions to all queries RTopK(A[i..j]) can be encoded in at most
(k + 1)nH(1

k+1) bits of space.

Proof. Suppose we store the bitvector 0δ110δ21 . . . 0δn−11. This bitvector contains
no more than kn zero bits. This follows since each active counter can be incre-
mented k times before it becomes inactive. Thus, storing the bitvector requires
no more than lg

(
(k+1)n
n

)
≤ (k + 1)nH(1

k+1) bits.
Next we prove that this is all we need to answer a query RTopK(A[i..j]). We

use the encoding to construct Sk(j). We know that for every element at inactive
index ` in Sk(j) there are at least k elements with larger value in A[` + 1..j].

11

Consequently, these elements need not be returned in the solution, and it is
enough to recover the indices of the top-k values among the elements at active
indices at least i. We apply Lemma 4 on Sk(j) to recover these indices and return
them as the solution. ut

3.2 Lower Bound for Encoding Top-k Queries

The goal of this section is to show that the encoding from Section 3.1 is, in fact,
optimal. The first observation is that all structures Sk(j) for j ∈ [1, n] can be
reconstructed with RTopK queries.

Lemma 5. Any Sk(j) can be reconstructed with RTopK queries.

Proof. To reconstruct Sk(j), we execute the query RTopK(A[`..j]) for each ` ∈
[1, j]. If index ` is returned as the k′-th largest element in [`, j], then by definition
there are exactly k′ − 1 elements in locations A[`+ 1..j] with value larger than
A[`]. Thus, ` is an active location and Sk(j, `) = k′ − 1. If ` is not returned by
the query, then it is inactive and we set Sk(j, `) = k. ut

Recall that we encode all structures by specifying δ1, δ2, . . . , δn−1. We call an
(n − 1)-tuple of nonnegative integers (δ1, δ2, . . . , δn−1) valid if it encodes some
Sk(1), Sk(2), . . . , Sk(n), i.e., if there exists at least one array A[1..n] consisting
of distinct integers such that the structure constructed for A[1..j] is exactly the
encoded Sk(j), for every j = 1, 2, . . . , n. Then the number of bits required by
the encoding is at least the logarithm of the number of valid (n − 1)-tuples
(δ1, δ2, . . . , δn−1). Our encoding from Section 3.1 shows this number is at most(
(k+1)n
n

)
, but we need to argue in the other direction, which is far more involved.

Recall that the size of a particular Sk(j) is |Sk(j)| =
∑j
i=1(k− Sk(j, i)). We

would like to argue that there are many valid (n − 1)-tuples (δ1, δ2, . . . , δn−1).
This will be proven in a series of transformations.

Lemma 6. If (δ1, δ2, . . . , δn−1) is valid, then for any δn ∈ {0, 1, . . . ,
⌈
M
k

⌉
} where

M =
∑n−1
i=1 (k − δi), the tuple (δ1, δ2, . . . , δn−1, δn) is also valid.

Proof. Let A[1..n] be an array such that the structure constructed for A[1..j]
is exactly Sk(j), for every j = 1, 2, . . . , n. By definition of δj , we have that

M =
∑n−1
i=1 (k − δi) < |Sk(n)|. Denote the number of active elements in Sk(j)

with the corresponding entry set to α as mα for α ∈ [0, k − 1]. For any s ∈
{0, 1, . . . ,

∑k−1
α=0mα}, we can adjust A[n+1] so that it is larger than exactly the s

smallest active elements in Sk(n). Thus, choosing any δn ∈ {0, 1, . . . ,
∑k
α=1mα}

results in a valid (δ1, δ2, . . . , δn). Since |Sk(n)| =
∑k−1
α=0(k−α)mα ≤ k

∑k−1
α=0mα,

we have
∑k−1
α=0mα ≥

⌈
|Sk(n)|
k

⌉
, proving the claim. ut

Every valid (n − 1)-tuple (a1, a2, . . . , an−1) corresponds in a natural way to
a walk of length n− 1 in a plane, where we start at (0, 0) and perform steps of
the form (1, ai), for i = 1, 2, . . . , n − 1. We consider a subset of all such walks.

12

Denoting the current position by (xi, yi), we require that ai is an integer from
[k −

⌈
yi
k

⌉
, k]. Under such conditions, any walk corresponds to a valid (n − 1)-

tuple (δ1, δ2, . . . , δn−1), because we can choose δi = k − ai and apply Lemma 6.
Therefore, we can focus on counting such walks.

The condition [k −
⌈
yi
k

⌉
, k] is not easy to work with, though. We will count

more restricted walks instead. A Y -restricted nonnegative walk of length n
starts at (0, 0) and consists of n steps of the form (1, ai), where ai ∈ Y for
i = 1, 2, . . . , n, such that the current y-coordinate is always nonnegative. Y is an
arbitrary set of integers.

Lemma 7. The number of valid (n−1)-tuples is at least as large as the number
of [k −∆, k]-restricted nonnegative walks of length n− 1−∆.

Proof. We have already observed that the number of valid (n − 1)-tuples is at
least as large as the number of walks consisting of n−1 steps of the form (1, ai),
where ai ∈ [k −

⌈
yi
k

⌉
, k] for i = 1, 2, . . . , n − 1. We distinguish a subset of such

walks, where the first ∆ steps are of the form (1, k), and then we always stay
above (or on) the line y = k∆. Under such restrictions, ai ∈ [k −∆, k] implies
ai ∈ [k −

⌈
yi
k

⌉
, k], so counting [k −∆, k]-restricted nonnegative walks gives us a

lower bound on the number of valid (n− 1)-tuples. ut

We move to counting Y -restricted nonnegative walks of length n. Again,
counting them directly is non-trivial, so we introduce a notion of Y -restricted
returning walk of length n, where we ignore the condition that the current y-
coordinate should be always nonnegative, but require the walk ends at (n, 0).

(0, 0) (0, 0)

rotate here

Fig. 3. Left: a Y -restricted walk ending at (n, 0). Right: a cyclic rotation of the walk
on the left such that the walk is always nonnegative.

Lemma 8. The number of Y -restricted nonnegative walks of length n is at least
as large as the number of Y -restricted returning walks of length n divided by n.

Proof. This follows from the so-called cycle lemma [6], but we prefer to provide
a simple direct proof. We consider only Y -restricted nonnegative walks of length
n ending at (n, 0), and denote their set by W1. The set of Y -restricted returning
walks of length n is denoted by W2. The crucial observation is that a cyclic
rotation of any walk in W2 is also a walk in W2. Moreover, there is always at

13

least one such cyclic rotation which results in the walk becoming nonnegative
(see Figure 3). Therefore, we can define a total function f : W2 → W1, that
takes a walk w and rotates it cyclically as to make it nonnegative. Because there
are just n cyclic rotations of a walk of length n, any element of W1 is the image

of at most n elements of W2 through f . Therefore, |W1| ≥ |W2|
n as claimed. ut

The only remaining step is to count [k −∆, k]-restricted returning walks of
length n−1−∆. This is equivalent to counting ordered partitions of k(n−1−∆)
into parts a1, a2, . . . , an−1−∆, where ai ∈ [0, ∆] for every i = 1, 2, . . . , n− 1−∆.
This follows since a partition of size ` corresponds to a step of size k − `.

Lemma 9. The number of ordered partitions of N into g parts, where every

part is from [0, B], is at least
(
N−2g′+g−1
g−g′−1

)
, where g′ =

⌊
N
B

⌋
.

Proof. The number of ordered partitions of N into g parts, where there are no
restrictions on the sizes of the parts, is simply

(
N+g−1
g−1

)
. To take the restrictions

into the account, we first split N into blocks of length B (except for the last
block, which might be shorter). This creates g′+1 blocks. Then, we additionally
split the blocks into smaller parts, which ensures that all parts are from [0, B].
We restrict the smaller parts, so that the first and the last smaller part in every
block is strictly positive. This ensures that given the resulting partition into
parts, we can uniquely reconstruct the blocks. Therefore, we only need to count
the number of ways we can split the blocks into such smaller parts, and by

standard reasoning this is at least
(
N−2g′+g−1
g−g′−1

)
. This follows by conceptually

merging the last element in block i with the first element in block i+ 1, so that
no further partitioning can happen between them, and then partitioning the
remaining set into g − g′ pieces. Every such partition corresponds to a distinct
restricted partition obtained by splitting between the merged elements, which
creates g′ additional blocks. ut

We are ready to combine all the ingredients. Setting N = k(n − 1 − ∆),

g = n − 1 −∆, g′ =
⌊
k(n−1−∆)

∆

⌋
=
⌊
k(n−1)
∆

⌋
− k and substituting, the number

of bits required by the encoding is:

lg

(
N − 2g′ + g − 1

g − g′ − 1

)
> lg

(
(k + 1)(n− 2−∆− g′)

n− 2−∆− g′

)
.

Using the entropy function as a lower bound, this is at least (k+ 1)n′H(1
k+1)−

Θ(log n′), where n′ = n− 2−∆− g′ ≥ n(1− k
∆) + k

∆ + k− 2−∆. Thus, we have
the following theorem:

Theorem 4. For sufficiently large values of n, any data structure that encodes
range top-k queries must occupy (k+1)n′H(1

k+1)−Θ(log n′) bits of space, where

n′ ≥ n(1 − k
∆) + k

∆ + k − 2 − ∆, and ∆ ≥ 1 can be selected to be any positive
integer. If k = o(n), then ∆ can be chosen such that ∆ = ω(k) and ∆ = o(n),
yielding that the lower bound is (k + 1)nH(1

k+1)(1− o(1)) bits.

14

4 Data Structure for Top-k Queries

In this section we show how to use the encoding of Section 3.1 to construct a
data structure that supports top-k queries efficiently.

The high-level idea is to decompose the array into blocks, and construct a
new array by storing the k largest elements in each block. Then, we build a naive
structure over the new (short) array, called the macro structure, and additionally
store a small separate structure for every block, called the micro structure. This
is a standard approach in succinct data structures, but as soon as we try to apply
it in the top-k setting, quite a few difficulties appear. The micro structures should
be based on the encoding from Section 3.1, which in turn is based on encoding
how the Sk(j)’s change. But these changes can be, in some cases, very non-local,
and hence it is not obvious how the blocks should be defined. This problem
also occurs in, for example, encodings for balanced parenthesis, where the so-
called pioneers approach is used [9]. Here the situation is even more complex,
and we start with developing an appropriate decomposition through a series
of technical lemmas. Then, using the decomposition, we construct the macro
structure, which allows us to answer any query spanning more than one block,
and the micro structure, which allows us to answer any query fully inside a single
block.

4.1 Good Decompositions

Consider the array A, and the structure Sk(j) at each array index j ∈ [1, n].
Recall that the structure Sk(j) is an array, where each entry is an integer drawn
from the range [1, k]. For technical reasons we define Sk(0) to be an empty array.
See Table 2 for an example of these definitions for k = 2.

Table 2. Suppose A = {46, 31, 93, 16, 45, 77, 25, 57, 26}. We give the structures Sk(j)
for A in the following table. The encoding for A is: 1100110010001100101.

i 1 2 3 4 5 6 7 8 9

A[i] 46 31 93 16 45 77 25 57 26

S2(0, i)

S2(1, i) 0

S2(2, i) 0 0

S2(3, i) 1 1 0

S2(4, i) 1 1 0 0

S2(5, i) 1 2 0 1 0

S2(6, i) 2 2 0 2 1 0

S2(7, i) 2 2 0 2 1 0 0

S2(8, i) 2 2 0 2 2 0 1 0

S2(9, i) 2 2 0 2 2 0 2 0 0

Let C(i) = {a1, ..., az} be the set of all indices such that Sk(i − 1, a`) 6=
Sk(i, a`) for 1 ≤ ` ≤ z; this set will include the index i. Furthermore, define

15

C(i1, i2) = ∪i2i=i1C(i). In the example, C(5) = {2, 4, 5}, and C(5, 6) = {1, 2, 4, 5, 6}.
Note that the encoding described in Section 3.1 is such that δi = |C(i) \ {i}| for
i ∈ [1, n].

Conceptually, we divide the range [1, n] into disjoint even-blocks of length
B: [1, B], [B + 1, 2B], ..., for some parameter B ≥ 1 that we will fix later, and
without loss of generality, assume that B divides n. We use the notation Bi to
denote the range [Bi+ 1, B(i+ 1)] for i ∈ [1, nB].

Our goal is to decompose the array into a collection of disjoint blocks. Each
block will have the property that it consists of a range of at most B contiguous
array elements, and will be also contained within at most one even-block. We
refer to blocks that span a single array element as singletons.

Suppose our decomposition D consists of h blocks, G1, ...Gh, and that block
Gi consists of the contiguous range [g(i), g(i + 1) − 1] in A, where 1 ≤ i ≤ h,
g(1) = 1, and g(h+ 1) = n+ 1. We call D good if:

D1 Size Constraint: the total number of blocks is h = O(k
2n
B).

D2 Weight Constraint: Consider the changes in the structures Sk(g(i)), Sk(g(i)+
1), . . . that occur as we scan the indices of an arbitrary block Gi, from left to
right. A good decomposition has that the number of changes (i.e., increment
operations) occurring in the structures as a result of the elements in a block
is relatively small, if the block is not a singleton. Formally, we have that∑g(i+1)−1
j=g(i) |C(j)| ≤ B for 1 ≤ i ≤ h if Gi is not a singleton. Note that this

implies that the bit string 0δg(i)10δg(i)+11 . . . 0δg(i+1)−11 has length at most B.
D3 Window Constraint: Consider the changes in the structures that occur as we

process each individual block. The indices of the structures that change are
located in a relatively small range, if the block is not a singleton. Formally,
suppose that Gi ⊆ Bt for some t ∈ [1, nB]. Then we have that (C(g(i), g(i +
1)− 1) \ Bt) ⊆ Bw for some w ∈ [1, t− 1], if the block Gi is not a singleton.
We call Bw the window of block Gi.

The remainder of this section proves that we can construct a good decompo-
sition.

Lemma 10. There is a good decomposition D of the array A.

Proof. We describe a procedure for computing a decomposition satisfying these
conditions. For each position i ∈ [1, n], we define the weight wi = |C(i)|. The
weight of a range in A is equal to the sum of the weights of the positions it
spans. Positions with weight larger than B are called fat, and will be singletons
in our decomposition. Since each wi corresponds to wi zero bits in the encoding
plus one, and there are at most kn zero bits, the number of fat elements is at
most O(knB).

Consider the remaining non-fat elements. We combine these non-fat elements
into O(knB) blocks such that the weights of the ranges is at most B. This can be
done by iteratively merging pairs of blocks (initially blocks are just individual
non-fat elements), until the sum of the weight of any two adjacent blocks exceeds

16

B. When this happens, every other block will have weight at least B
2 , and by

the argument above there can be at most O(knB) such blocks. Furthermore, we
subdivide these blocks along the boundaries of even-blocks, introducing at most
O(nB) additional blocks.

We refer to the above decomposition as the initial decomposition. The initial
decomposition satisfies conditions D1 (in fact it has O(knB) blocks rather than

O(k
2n
B)), and D2, but not necessarily D3. Thus, we must further refine the blocks

in order to ensure to create a good decomposition. We do this by splitting them
using an iterative procedure that we now describe.

For each block Gi ⊆ Bt in the initial decomposition, we scan it from left to
right, calling the current position x0. We will split it into a (potentially large)
number of new blocks. At each step, there are two cases depending on whether
the set C(g(i), x0) \ Bt is contained within a single even-block.

1. If it is, then we extend the current block which begins at position g(i) by
adding position x0 to it.

2. If not, then we split the current block between positions x0 − 1 and x0, i.e.,
set g(i+ 1) = x0. Furthermore, when this occurs we make position x0 a sin-
gleton block. We then recursively apply the same procedure to the remaining
unscanned part of the block adjusting the parameters appropriately. Thus,
we have introduced two additional blocks.

Such a refinement clearly has the desired window property. However, the
difficulty is arguing that the second case only occurs O(k2 nB) times. To show
this, we use a charging argument in which each split is charged to the rightmost
even-block Bw containing a position in C(x0) \ Bt. We will bound the number of
times Bw can be charged for a split by O(k2).

We say a position is y-active if it is active in structure Sk(y). Consider the
(x0−1)-active elements immediately before a split occurs. Consider the position
a ∈ Bw such that a ∈ C(x0) and A[a] is maximum. We have that Sk(x0−1, a) < k
since a is, by definition, (x0 − 1)-active. Moreover, since a split occurred, there
must be some block Bw′ where w′ < w containing a position a′ ∈ Bw′ such
that a′ ∈ C(x0). Since a′ is also (x0 − 1)-active this implies that there are
at most k − 1 (x0 − 1)-active positions contained in Bw, whose corresponding
elements have values larger than A[a]. Thus, when a split occurs, all but at most
k−1 of the (x0−1)-active locations contained in Bw are incremented in Sk(x0).
Furthermore, any location not incremented must be among the k − 1 largest
values in A[Bw + 1, B(w + 1)]. Thus, after k split operations, all but the k − 1
largest active locations become inactive. Since each split increments at least one
location in Bw at most k(k− 1) additional splits occur before all elements in Bw
become inactive. Overall, at most k + k(k − 1) = O(k2) splits can occur before
all elements in Bw become inactive.

Since there are n
B even-blocks, we have that the total number of blocks cre-

ated by splits (or otherwise) is O(k
2n
B), completing the proof. ut

17

4.2 Navigating the Encoding

Before discussing the data structures we store, we require an additional result,
called an indexable dictionary, by Raman, Raman, and Rao [16]:

Lemma 11 ([16]). Let V be a bit vector of length n bits, containing m one bits.
In the word-RAM model with word size Θ(lg n) bits, there is a data structure of
size lg

(
n
m

)
+O(m) +O(lg lg n) ≤ nH(mn) +O(m) +O(lg lg n)) bits that supports

the following operations in O(1) time, for any i ∈ [1, n]:

1. access(V, i): return the bit at index i in V.
2. rank1(V, i): return the number of bits with value 1 in V[1..i], iff access(V, i) =

1. If access(V, i) = 0, then a flag is returned indicating that the operation
cannot be supported.

3. select1(V, i): return the index of the i-th bit with value 1.

We apply Theorem 10 to partition A into O(nk
2

B) blocks G1,G2, . . ., where B
is some parameter that will be fixed later on. We then construct the following
indexes:

1. Block index: This is the rank/select data structure of Lemma 2 constructed
on a bit vector of length n marking the block boundaries. This allows us to
find the start of an arbitrary block in constant time. This bit vector occupies:

lg

(
n
nk2

B

)
+O

(
n lg lg n

lg n

)
≤ nH

(
k2

B

)
+O

(
n lg lg n

lg n

)
bits of space, by Lemma 2.

2. Encoding index: Consider the bit vector storing the encoding E (described
in Section 3.1) on A. For each zero bit in the encoding E, we say that bit is
associated with the one bit immediately to its right. That is, the zero bit at
position i is associated with the one bit in position select1(E, rank1(E, i)+1).
Since the j-th one bit in the encoding is representing element A[j], each zero
bit associated with this one bit can also be said to be associated with A[j].
Suppose A[j] is part of a block Gi which is contained in even-block Bt and has
a window contained in even-block Bw. The 0 bits associated with position
A[j] come in exactly two flavors:

(a) Internal increment: if the 0 bit corresponds an increment operation in
Sk(j) that occurs inside even-block Bt

(b) Window increment: if the 0 bit corresponds an increment operation in
Sk(j) that occurs inside the window Bw

Suppose that for each j ∈ [1, n] we create two bit vectors EINT(j) and
EWIN(j). These two bit vectors will be of the form 0α1 and 0β1, respectively,
where αj is the number of internal increments associated with position j and
βj is the number of window increments associated with position j. Note that
δj = αj + βj . Let EINT and EWIN be the concatenation of the EINT(j) and
EWIN(j) bit vectors, respectively. Both of these bit vectors together have

18

2n one bits, and kn zero bits. Thus, storing EINT and EWIN in the smaller
of the two representations discussed (either Lemma 2 or 11) will occupy

(k + 2)nH(2
k+2) +O(min{nk lg lg(nk)

lg(nk) , n}) bits in total. Note that we cannot

perform rank operations on arbitrary positions in these bit vectors using the
bound just stated, though we can perform arbitrary select operations.

Lemma 12. Using the above data structures we can recover the length j′ suffix
of the structure Sk(Bi + j) for any i ∈ [1, nB], j ∈ [1, B − 1] and j′ ∈ [1, j] in
O(B2) time.

Proof. Let mα = select1(EINT, α), and consider the range of EINT between
[mBi−1 + 1,mBi+j]. This range contains all the one bits in EINT associated
with elements A[Bi], A[Bi+ 1], . . . , A[Bi+ j], and also the zero bits associated
with these one bits that are internal increments. Furthermore the length of this
range in EINT is at most O(B2), since even in the case where every position
in the even-block is a singleton, the number of internal increments for each of
these is upper bounded by the length of the even-block, B. Thus, to recover the
fragment of the structure Sk(Bi + j), we construct an array of length j + 1 in
which each index stores a dlg(k + 1)e bit number. We process the internal in-
crements associated with the elements A[Bi], A[Bi+ 1], ..., etc. in order, calling
the current position `, where Bi ≤ ` ≤ Bi + j. We maintain the total ordering
over all currently active elements in length `−Bi+ 1 suffix of Sk(`) as follows.
Suppose position ` is associated with x internal increments (we can determine
this by comparing m` and m`−1 in O(1) time using the encoding index). We
insert position ` into the total order as the (x + 1)-th smallest element, set its
counter value to 0, and increment the counters associated with the x smallest
elements. If an incremented counter exceeds k − 1, then we remove it from the
total order. Maintaining the total ordering as a linked list is sufficient to process
the fragment in O(x) = O(B) time per position `. Since there are at most O(B)
positions, the total time is O(B2). ut

Lemma 13. Given a subarray A[x1..x2] that is contained within a block, we can
return a list L such that L[p] stores the position of the p-th largest element in
A[x1..x2] in O(B2) time.

Proof. Using Lemma 12 we can build the length ` = x2 − x1 + 1 suffix of the
structure Sk[x2], which stores ` dlg(k+1)e-bit numbers. Once we have this length
` array, we scan it from right to left, constructing the total order of elements in
A[x1..x2] by Lemma 4. As before, using a linked list to store the total order is
sufficient to achieve the claimed time bound. ut

4.3 Version Control

One issue that arises is that to answer queries we will need to construct fragments
of the structure Sk(j) for various values of j, which are not necessarily short suf-
fixes. In particular, given a block Gi, we wish to be able to reconstruct its window
fragment, which is the fragment of the structure Sk(g(i) − 1) corresponding to

19

the window of block Gi. Suppose the window is even-block Bw. Lemma 12 only
allows us to construct the length B suffix of structure Sk(B(w+1)), rather than
the window fragment of Gi. Thus, we are interested in how much space is required
to recover a window fragment given what we can recover using Lemma 12.

Lemma 14. Suppose block Gi has window Bw. The difference diff(i) between
the window fragment of Gi and the length B suffix of Sk(B(w+ 1)) can be stored
using Θ(k lg(B+1)) bits. Using diff(i), in addition to the other data structures
described thus far, we can construct the window fragment of Gi in time O(B2).

Proof. Lemmas 12 and 4 allow us to recover the total order L of the (B(w+1))-
active elements in the window fragment in O(B2) time. Consider the sequence
of positions in the array A, {x1, ..., xz} that have window increments associated
with them occurring within the window fragment, where x1 > B(w + 1) and
xz < g(i). Each element A[x`] can be mapped to a position y` in the total order
L. It is sufficient to record the k largest values in this mapping, as all B(w+ 1)-
active positions represented in L which are smaller than the k-th largest such
value will become (g(i)− 1)-inactive. Storing how these k values interleave with
the ordering L requires at most kdlg(B + 1)e bits of space. Note that we do
not need to know the positions where these elements occur in A in order to
reconstruct the window fragment, just their positions in the total ordering L,
which contains at most B elements. ut

We store diff(i) for each i ∈ [1, h] (recall h is the number of blocks). This

requires O(hk lgB) = O(nk
3 lg(B+1)
B) bits of space in total.

4.4 Decomposing Queries

Any range top-k query is either fully within a single block, or consists of three
parts: a suffix of a block Gi that we call the left part, then a number of full blocks
Gi+1, . . . ,Gj−1 that we call the middle part, and finally a prefix of a block Gj
that we call the right part. Note that any of these three parts may be an empty
range. Using the block index we can determine these parts in O(1) time.

We construct a new array A′ by keeping the k largest elements from every
block (if a block is a singleton, this is just one element) and normalizing all the
elements by sorting. A′ is stored explicitly and augmented with a range maximum
query structure, which allows us to locate the k largest element in any query
range via a three-sided range reporting query: this can be done in O(k) time and

O(nk
3 lgn
B) bits of space, using successive queries to a range maximum structure

built over A′ since we have access to these elements.

Additionally, for every j such that A[j] appears in A′, i.e., is one of the k
largest elements in its block, we store the positions of the first k larger elements

on its left in A. This requires space O(nk
3 lgn
B) bits.

20

4.5 Wrap Up

Now that we have described all of the data structures, we can explain how to
extract the positions of the top-k elements, given a query range A[i..j]. The
algorithm will consist of first finding the positions of the top-k elements in the
middle part, and the total ordering of elements in the left and right parts. Ex-
tracting the solution from the middle part is trivial, since we have a top-k data
structure explicitly stored on the top-k elements in each block. Extracting the
total ordering of elements from the left (or right) part can be done by applying
Lemma 13 to the even-block containing the left or right part.

At this point, we have at most three lists L1,L2, and L3, storing positions
of the top elements from the left, middle, and right parts respectively, i.e., Lp[q]
is the position of the q-th largest element in list p. We now argue that we can
merge these lists.

Lemma 15. Suppose we are given a query A[i..j]. A list L can be constructed
such that L[q] is the position of the q-th largest element, for 1 ≤ q ≤ k, in A[i..j]
in time O(k +B2).

Proof. First, we construct the three lists L1, L2 and L3 as described above in
time O(B2). Then we merge the lists L1 (the left part) with the list L2 (the
middle part). This is done by examining the left pointers of each position in L2.
Consider the subset {Υ1, ..., Υk′} of positions in the left part such that L2[p] has
a left pointer to Υr, for 1 ≤ r ≤ k′. If p + k′ ≤ k, then implies that L2[p] is
the (p+ k′)-th largest element in the combination of the left and middle parts.
Otherwise, it implies that L2[p] is not in the top-k in the combination of the two
parts. Using this procedure we merge the lists L1 and L2, calling the result L′.

Next we describe how to merge L′ and L3 (the right part). Recall that the
right part is a prefix of some block Gr. We reconstruct the window fragment of Gr
using diff(r). We then scan through Gr up to position j, performing window in-
crements on the window fragment by reading EWIN. Let mα = select1(EWIN, α).
We read the window increments of EWIN from the range [mg(r)−1 +1,mj]. Since
Gr is not a singleton block (otherwise it would be fully contained in the mid-
dle part), we have that the length of this range in EWIN is bounded by B. We
process the window increments in order to reconstruct the range Bw spanned
by the window of Gr in the structure Sk(j). During this process, considering a
position j′ ∈ [g(r), j], we observe that if L′[p] 6∈ C(j′), then A[L′[p]] > A[j′],
unless position L′[p] had been made inactive by a previous window increment
earlier in the process. If L′[p] is not in Bw, then we can infer that A[L′[p]] > A[j′]
immediately. Thus, it is possible to insert the positions g(r), . . . , j into the list
L′ to construct the final list L containing the top-k positions in A[i..j]. ut

From the above lemmas, we immediately get the following theorem:

Theorem 5. There is a data structure occupying

(k + 2)nH

(
2

k + 2

)
+ nH

(
k2

B

)
+O

(
k3n lg n

B
+ min

{
nk lg lg(nk)

lg(nk)
, n

})

21

bits of space, and supports range top-k queries in O(k +B2) time.

By setting B = k3 lg n
√
f(n), for a strictly increasing function f , we get the

following result:

Corollary 1. For any strictly increasing function f , there is a data structure
occupying (k + 2)nH(2

k+2) + o(n lg k) bits of space, and supports range top-k

queries in O(k6 lg2 nf(n)) time.

4.6 Improvement to Space Bound

Our final theorem argues that we can slightly improve the space bound:

Theorem 6. For any strictly increasing function f , there is a data structure

occupying (k+1.5)nH
(

1.5
k+1.5

)
+o(n lg k) bits of space, and supports range top-k

queries in O(k6 lg2 nf(n)) time.

Proof. We observe that we need not store a 1 in the bit vector EWIN for elements
that are not in the top-k of their prefix of their even block, as such elements
perform no window increments. Initially, this does not seem to buy us anything,
since every position can be in the top-k of the prefix of its even block, but in
this case we can take the reversal of the array. We call an element bad if it is in
the top-k of the prefix or suffix of its even block, and good otherwise.

To bound the number of bad positions, consider the top-2k elements in each
even-block. No other elements can be bad, since there is a subset of size at
least k of these top-2k elements on either its right or left. Next consider a good
element. It can only contribute a one bit to EWIN in A or to the reverse of A,
but not both. Thus, we have n− 2kn

B elements contributing n− 2kn
B one bits to

the window encodings for either A or its reverse. We therefore need only record
n
2 −

2kn
2B + 2kn

B = n
2 −o(n) one bits for the window encoding bit vector of A or its

reverse. This reduces the leading term of the space cost to (k + 1.5)nH(1.5
k+1.5).

To correct for the fact that we have removed one bits from EWIN, we must adjust
select operations on this bit vector by explicitly storing, for each block, how many
elements in the block are good. Then, when we process the window increments in
a block, we can determine whether an element is good by examining its internal

increments. This adds an overhead of O(nk
2 lgn
B) = o(n) bits of space and adds

an O(B2) time cost for determining which elements are good in a block. ut

References

1. OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences,
Number of Baxter permutations of length n. http://oeis.org/A001181, accessed:
2014-09-24

2. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and directed acyclic graphs. Journal of Algorithms
57(2), 75–94 (2005)

22

 http://oeis.org/A001181

3. Brodal, G.S., Gfeller, B., Jørgensen, A.G., Sanders, P.: Towards optimal range
medians. Theoretical Computer Science 412(24), 2588–2601 (2011)

4. Chan, T.M., Wilkinson, B.T.: Adaptive and Approximate Orthogonal Range
Counting. In: Proc. of the 24th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA). pp. 241–251. SIAM (2013)

5. Davoodi, P., Navarro, G., Raman, R., Rao, S.: Encoding Range Minima and Range
Top-2 Queries. Phil. Trans. R. Soc. A 372(2016), 1471–2962 (2014)

6. Dvoretzky, A., Motzkin, T.: A problem of arrangements. Duke Mathematical Jour-
nal 14(2), 305–313 (1947)

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

8. Gagie, T., Puglisi, S., Turpin, A.: Range quantile queries: Another virtue of wavelet
trees. In: Proc. 16th International Symposium on String Processing and Informa-
tion Retrieval (SPIRE). LNCS, vol. 5721, pp. 1–6. Springer (2009)

9. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation
for balanced parentheses. Theor. Comput. Sci. 368(3), 231–246 (2006)

10. Grossi, R., Iacono, J., Navarro, G., Raman, R., Satti, S.R.: Encodings for Range
Selection and Top-k Queries. In: Proc. 21st Annual European Symposium on Al-
gorithms (ESA). LNCS, vol. 8125, pp. 553–564. Springer (2013)

11. Jacobson, G.: Space-efficient static trees and graphs. pp. 549–554. IEEE (1989)
12. Jørgensen, A.G., Larsen, K.G.: Range selection and median: Tight cell probe lower

bounds and adaptive data structures. In: Proc. of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms. pp. 805–813. SIAM (2011)

13. Matoušek, J.: Reporting points in halfspaces. Computational Geometry 2(3), 169–
186 (1992)

14. Navarro, G.: Spaces, trees, and colors: The algorithmic landscape of document
retrieval on sequences. ACM Comput. Surv. 46(4), 52 (2013)

15. Navarro, G., Raman, R., Satti, S.R.: Asymptotically Optimal Encodings for Range
Selection. In: Proc. 34th International Conference on Foundation of Software Tech-
nology and Theoretical Computer Science, (FSTTCS). LIPIcs, vol. 29, pp. 291–301.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

16. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007)

17. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms 5(1), 12 – 22 (2007)

18. Skala, M.: Array range queries. In: Space-Efficient Data Structures, Streams, and
Algorithms - Papers in Honor of J. Ian Munro on the Occasion of His 66th Birthday.
LNCS, vol. 8066, pp. 333–350. Springer (2013)

19. Vuillemin, J.: A unifying look at data structures. Communications of the ACM
23(4), 229–239 (1980)

23

A Lower bound for Unsorted Range Top-k

Let a sorted range top-k query denote the problem of returning the indices
i1, . . . , ik of the k largest values in a query range [i, j], in ascending order: i.e.,
A[ij] is the j-th largest value. Let an unsorted range top-k query denote the
weaker query in which the indices i1, . . . , ik are returned in an arbitrary order.

Lemma 16. If S(n, k) is the number of bits required to store an encoding of
sorted range top-k queries on an array A[1..n], then at least S(n− k, k) bits are
required to store an encoding of unsorted range top-k queries.

Proof. Suppose there exists an encoding for unsorted range top-k queries that
requires strictly less than S(n− k, k) bits. We will show that such an encoding
can be used to construct an encoding for sorted range top-k queries that occupies
strictly less than S(n, k) bits. We pad the input array A[1..n] with k additional
values A[n + 1], . . . , A[n + k] such that A[n + i] > A[j] for all i ∈ [1, k] and
j ∈ [1, n]. We now claim that the unsorted encoding for the padded array can
be used to recover solutions to all sorted range top-k queries on ranges in [1, n].
Given a query range [i, j], we examine the solutions to unsorted range top-k
queries [i, j], [i, j + 1], . . . , [i, n + k]. Let κ(j′) denote the set of indices in [i, j′],
κ0 = κ(j), κ` = κ(`′) where `′ is the minimum index such that κ(`′−1) 6= κ`0 , for
` ∈ [1, k]. By the method we use to pad A, it implies that κk ∩ κ0 = ∅, since the
solution to query [i, n+k] is the set of indices in [n+1, n+k]. Thus, the index of
the k−i-th largest element in the sorted solution can be extracted by computing
κi\κi+1 for i ∈ [0, k−1]. This follows since the smallest element in κi is removed,
and a new elemented added to create κi+1. Therefore, we have a contradiction,
since any encoding for the sorted variant must occupy S(n, k) bits, and we have
given an encoding that occupies strictly less than S(n+ k− k, k) = S(n, k) bits.

ut

Thus, for k = o(n) the previous lemma, combined with Theorem 4 (which
provides the function S(n, k)), implies that the space required for the unsorted
encoding on an array of n elements is within additive lower order terms of the
space required for the sorted encoding on n elements.

24

	Optimal Encodings for Range Top-k, Selection, and Min-Max

