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Abstract

We present a variety of results analyzing the behavior of a class of stochastic processes — referred to
as Stochastic Hybrid Systems (SHSs) — in or near equilibrium, and determine general conditions on when
the moments of the process will, or will not, be well-behaved. We also study the potential for finite-time
blowups for these processes, and exhibit a set of random recurrence relations that govern the behavior for
long times. In addition, we present a connection between these recurrence relations and some classical
expressions in number theory.

1 Introduction

1.1 Background and motivation

In this paper, we consider a class of stochastic processes referred to as Stochastic Hybrid Systems (SHSs),
and present results about their behavior in or near equilibrium.

One motivation for considering SHSs is if we want to model a system represented by a state that con-
tinuously evolves in time (e.g. according to an ODE or an SDE), with the additional complication that the
variable, or even the state space itself, can undergo rapid changes. To consider one specific example, con-
sider an engineered system where the state of the system is given by a vector x(t) ∈ Rd when the system
is in “normal” operation, but when the system is in an “impaired” state, only the first d′ < d variables of
the state are able to evolve, and the remainder stay fixed. Moreover, assume that the switching between
normal and impaired operation happens randomly, but in a manner that depends on the state x.

The study of SHSs has a long history, going back at least to [1]; the main theoretical foundations of the
field were laid out in the book [2]. There is a large literature devoted to the understanding the stability
analysis of such systems [3–5] (this stability is typically understood in a moment or almost-sure sense)
and more recent work aimed at developing methods to explicitly compute or estimate observables of such
systems [6–8]. Additionally, metastability and large deviations in SHSs were studied in [9] using path-
integral methods. SHSs represent a powerful formalism that has been applied to many fields, including:
networked control systems [10], power systems [11], system reliability theory [12], and chemical reaction
dynamics [13]. A recent review of the state of the art of such systems, that also contains an extensive history,
bibliography, and list of applications of SHSs, is the comprehensive review [14].

The state space of an SHS is comprised of a discrete state and a continuous state; the pair formed by these is
what we refer to as the combined state of the SHS. One can think of a SHS as a family of stochastic differential
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equations (SDEs) for the continuous state that are indexed by the discrete state. The discrete state changes
stochastically, and we think of this as switching between SDEs. Additionally, each discrete-state transition
is associated with a reset map that defines how the pre-transition discrete and continuous states map into
the post-transition discrete and continuous states, so that the continuous variable can be “reset” when the
discrete state changes. We denote the discrete state space byQ, and assume that the continuous state space
is Rd. Then choose |Q| different SDEs, indexed by q ∈ Q, so that when the discrete state is q, Xt evolves
according to

dXt = bq(Xt) dt+ σq(Xt) dWt.

Then, we assume that there are a family of rate functions λq,q′(x) and reset functions ψq,q′(x) such that if
the discrete state is q, the probability of a jump to state q′ in the next ∆t is λq,q′(Xt) ∆t + o(∆t), and, if
such a jump occurs, the map ψq,q′ is applied to the continuous state at the time of jump. [This process can
be described more precisely in a “non-asymptotic” formalism, and we do this in Section 2.1.] From this, it
follows that there is a continuous-time process, Qt, that evolves according to some law, and the full system
we are studying is

dXt = bQt(Xt) dt+ σQt(Xt) dWt.

It is not hard to show that the process defined in this way is strong Markov [2, §25]. To fully charac-
terize the SHS, we need to compute the expectation of some large class of functions evaluated on its state
space. For the purposes of this paper, we want to understand the process in equilibrium, or on the way
to equilibrium, i.e., the statistics of the process after it has evolved for a long time. The existence [2, 15]
and smoothness [16] of the invariant measure of these processes has been established, and in one sense,
the goal of this paper is to explicitly compute as much about this measure as we can, and we approach
this by studying the moments of the process, i.e. the expectation of polynomial functions of the process in
equilibrium.

Using the infinitesimal generator of the process, following [8,12], we can write down a set of differential
equations for the moments of this process — we refer to this set of equations as the moment flow equations.
These equations are a priori infinite-dimensional, and as we show below, in a wide variety of circumstances
they are “inherently infinite-dimensional,” by which we mean that: (i) there is no projection of the dynamics
onto a finite-dimensional subspace, and (ii) any approximate projection into a finite-dimensional subspace
behaves poorly in a sense to be made precise below. This inherent infinite-dimensionality is typically called
a moment closure problem in a variety of physical and mathematical contexts, in the sense that one cannot
“close” the moment flow equations in a finite way. Examples of moment closure problems and various
approaches to handle them span a wide range, including applications in: chemical kinetics [17], dynamic
graphs [18–20], physics [21], population dynamics/epidemiology [22–25], and nonlinear PDE [26, 27]. Our
approach is related to and inspired by the Lyapunov moment stability theory that has been well-developed
for diffusions, especially those with small noise, over the past few decades [28–31].

We mention that a moment closure problem for SHSs was solved nicely in [7, 8] and related works, but
in contrast the problem there was to find a moment closure approximation that was valid for a finite time
interval. Since we are interested in equilibrium or near-equilibrium statistics of the problem, we want to
study the problem on the infinite time interval.

1.2 Overview of the results of this paper

In this paper, we assume that the dynamics on the continuous state are deterministic, i.e., all of the SDEs
are assumed to be ODEs, but there is still randomness in how the discrete states switch amongst each
other. [These types of systems are also called “randomly switched systems” in the literature [3], but are a
subclass of the SHS formalism so it makes sense to have a unifying name.] The fact that the continuous
evolution does not have a diffusion term makes the analysis both easier and harder a priori in the sense that
the determinism allows for some simplification in certain recurrence relations, but without diffusions, the
generator is only hypoelliptic, and thus the existence of, and convergence to, invariant measures for the
process is more difficult to establish. We discuss all of these issues below.
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In this work, we want to understand the scenario where the two parts of the system (the ODE and the
reset) have competing effects. For example, if the ODE and the reset both send all orbits to zero, then their
mixture does as well, and, conversely, if they send all orbits to infinity, then the mixture does as well. What
is more interesting is the case in which the ODE and the resets have opposite effects, and we consider one
such case here: the ODE sends orbits to infinity, but the resets send orbits toward zero.

We give a few prototypical examples of such systems, and discuss the results of this paper that apply to
each. In each of these cases, we present a model the continuous variable of which is defined on the positive
real line; this can be thought of as the fundamental model of interest, or the radial component of a system
in higher dimension (see Section 2.4 for a discussion about dynamics of higher-dimensional systems).

Example 1. Let α, β > 0 and γ ∈ [0, 1] and define the ODE, jump rate, and reset as

ẋ = f(x) = αx, λ(x) = βx, x 7→ γx. (1)

The theory presented in Section 3 implies that the SHS in (1) converges to an invariant distribution with
all finite moments of all orders, and this fact is independent of the values of α, β, γ (although of course the
moments themselves depend on these parameters).

Example 2. Next, consider the system

ẋ = f(x) = αx2, λ(x) = βx, x 7→ γx. (2)

The theory of Section 5 tells us that, depending on the value of γ, this process can have multiple behaviors:
if γ > e−α/β , then all solutions of (2) blow up in finite time, if 1 − α/β < γ < e−α/β , then solutions go
to zero with high probability, but enough of them escape to infinite fast enough that the moments of the
solution blow up in finite time, but if γ < 1− α/β, then the solution converges to zero in every sense. (See
Theorem 5.4 for the specific statements.)

Example 3. Finally, consider the system

ẋ = f(x) = αx3, λ(x) = βx, x 7→ γx. (3)

Theorem 5.3 tells us that all solutions of this system blowup with probability one, and this fact is indepen-
dent of the parameters α, β, γ.

Remark 1.1. The theory in Sections 3 and 5 generalizes the statements in Examples 1 – 3 to arbitrary polynomials.
The critical difference between the three cases are the relative degrees, and in some cases the leading-order coefficients,
of f and λ. Additionally, although the two latter cases both exhibit finite-time blowup, they are of a much different
character. In the quadratic case, the system blows up in finite time even though there are infinitely many jumps, and
as such, exhibit a quality very much like that of an explosive Markov chain. In the cubic case, the blowup is more like
that seen in nonlinear ODEs: the system goes off to infinity in finite time and there are only a finite number of jumps.

In Examples 1 – 3, there was a single discrete state and all jumps mapped the state back to itself. We also
analyze the moments of the SHS with multiple discrete states in Section 4. We show that the behavior can
be characterized similarly to that of one state in many situations, but we also exhibit new types of behavior
here. For example, we show that in many cases, the system can exhibit marginal moment stability, by which
we mean that in equilibrium, the system can have some moments finite, and others that are infinite; thus the
equilibrium distribution has fat tails. In this case, we show numerically that the equilibrium distributions
have power law behavior.

We also show that the moment flow equations have a very strange property. These equations are an
infinite-dimensional linear system that supports a fixed point that corresponds to the moments of the in-
variant measure. We show that any finite-dimensional truncation of this system has only unstable fixed
points, and, moreover, as the size of truncation grows, the system has larger positive eigenvalues. This mo-
tivates the result that the infinite-dimensional system is ill-posed in “the PDE sense” in a manner analogous
to a time-reversed heat equation. However, we then show that the minimal amount of convexity given by
Jensen’s Inequality is enough to make this system well-posed and well-behaved, and in particular it then
becomes faithful to the stochastic process. This seems to be a strange example of a system that is ill-behaved
on a linear space becoming well-behaved when restricted to a nonlinear submanifold of that same space.
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1.3 Organization of manuscript

The main results and structure of this paper are as follows. In Section 2, we give a formal definition of the
SHS that we study, and define the moment flow. Next, we identify a broad class of assumptions for SHSs
under which the moment equations are well-defined and accurate on the infinite-time interval, but we also
show that there is a surprising subtlety that arises in the consideration of same; these results are contained
in Sections 3 and 4. Next, in Section 5, we study the SHS where moment closure fails, and in fact the SHS
undergoes finite-time blowups, i.e., the process becomes infinite in expectation, or almost surely, at a finite
time. Finally, in Section 6, we write down a few exact recurrence relations for SHSs and show that we can
use these, at least in some cases, to compute arbitrarily good approximations.

2 Problem formulation

In this section, we provide the formal definition of the SHS, and define its generator. Then, we use the gen-
erator together with Dynkin’s formula to develop a set of differential equations that describe the dynamics
of the moments of the SHS. Finally, we provide a description of the SHS using radial components, which
allows us to introduce a simplified model of the SHS; analyzing this model is essentially the focus of the
remainder of the paper.

2.1 Definition of SHS

Consider a countable set Q of discrete states and a family of phase spaces Pq , one for each discrete state.
We assume that we have defined a family of (random) dynamical systems D = (Dq), with Dq defined on
phase space Pq . The main notion driving SHS is that we want to consider a stochastic process that: (i) in
each small timestep dt, the system can jump from state q to state q′ with probability λq′(q, x) dt; and (ii) if it
does not jump, it stays in state q and evolves under the dynamics given by Dq .

As such, we are combining the standard models of a dynamical system on a state space with the notion
of a discrete-state Markov process; the system jumps amongst a countable family of states as it would be
a Markov chain, and whenever it is in a particular state, it evolves according to the dynamics attached to
that state space. Solving the model is complicated by the fact that we allow the jump rates to depend on the
state, so that we cannot (for example) determine the jump times and then solve for the continuous flows;
they are intimately connected.

For the purposes of this paper, we will assume that the dynamical systems on each phase space are
ordinary differential equations (ODEs), but there is no significant obstruction to generalizing the individual
flows to SDEs or even general random dynamical systems [5]. We now give the precise definition of a SHS.

Definition 2.1. A stochastic hybrid system (SHS) is a quintuple (Q,P,Λ,Ψ, F ) where

• Q is a countable set of discrete states;

• P = (Pq)q∈Q are a collection of manifolds, where Pq is called the qth continuous state space;

• Λ(q, x) = (λq′(q, x))q′∈Q is a collection of rate functions; the domain of Λ is {(q, x) : x ∈ Pq, q ∈ Q} with
the property that Λ(q, x) ≥ 0 on its domain. We interpret λq′(q, x) as the rate of jumping to discrete state q′

when the state is currently (q, x).

• Ψ(q, x) = (ψq′(q, x))q′∈Q is a collection of reset maps; the domain of Ψ is the same as Λ, and we assume that
ψq′(q, x) ∈ Pq′ . We interpret ψq′(q, x) as the new value of the continuous state immediately after making a
q 7→ q′ transition.

• f(q, x) is a collection of vector fields, each defined on Pq , i.e., f(q, ·) : Pq → T Pq , where T Pq denotes the
tangent space to Pq .
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We will denote the flow map generated by f(q, ·) by ϕt(q, ·), i.e.,

ϕ0(q, x) = x, ϕs(q, ϕt(q, x)) = ϕs+t(q, x), and
d

dt
ϕt(q, x) = f(q, ϕt(q, x)).

The continuous state space is the disjoint union
∐
q∈Q Pq and we call x ∈

∐
q∈Q Pq a continuous state. When

all of the Pq are the same, we abuse notation and consider one copy of Pq to be the entire continuous state space.
We define the state of the process as the pair (Qt, Xt), and describe its evolution as follows. Let us first assume

that (Qt, Xt) is known a.s. for some t > 0. Let S(q), q ∈ Q be iid exponential random variables with parameter 1, i.e.,
P(S(q) > z) = e−z for all z ≥ 0, that are also independent of {(Qs, Xs) : s ≤ t}. Define stopping times T (q), q ∈ Q
and T as follows: ∫ T (q)

t

λq(Qt, ϕ
s−t(Qt, Xt)) ds = S(q), T = inf

q∈Q
T (q). (4)

Specifically, the T (q) are the times at which each of the transitions to state q would fire, and we take the first one to do
so and ignore the others. The time T will be the time of the next jump. We prescribe that the discrete state remains
unchanged until the next jump, and the continuous state flows according to the appropriate ODE, i.e.

Qs = Qt, Xs = ϕs−t(Qt, Xt), for all s ∈ [t, T ). (5)

Finally, we apply the appropriate reset map:

QT = arg inf
q∈Q

Tq, XT = ψQT (Qt, XT−), (6)

where here and below we define
XT− = lim

t↗T
Xt.

Now that we know (QT , XT ), we can define the process recursively. More specifically, let us define T0 = 0 and
assume (Q0, X0) is known. Then, denote by T1 the time returned by the algorithm above, and we have defined Xt for
t ∈ [0, T1]. For any n ∈ N, if we know Tn and (QTn , XTn), then choose S(q)

n+1 iid exponential, and define Tn+1 by∫ T
(q)
n+1

t

λq(Qt, ϕ
s−t(Qt, Xt)) ds = S

(q)
n+1, Tn+1 = inf

q∈Q
T

(q)
n+1. (7)

Then define Qt, Xt for t ∈ [Tn, Tn+1] as in (5, 6).
We also use the convention throughout of minimality: if T∞ := limn→∞ Tn < ∞, then we say the process

explodes or blows up at time T∞, and setXt =∞ for all t > T∞. Similarly, or if there is a T ∗ with limt↗T∗ Xt =
∞, then we say the process explodes or blows up at time T∗, and set Xt =∞ for all t > T∗.

We will also write (Xt, Qt) = SHS(Q,P,Λ,Ψ, ϕ) to mean that (Xt, Qt) is a realization of the stochastic process
constructed using the procedure above.

This definition is complicated and we want to connect the formal definition of the process to an intuitive
notion of what it should do.

First, note that it is clear from (5) that between jumps, the continuous state evolves according to the
appropriate ODE, and the discrete state remains unchanged. Moreover, from (6) we see that if the system
jumps, and it jumps from state q to state q′, then QT is updated to the value q′, and the continuous state is
updated by applying the map ψq′(q,XT−).

It is also clear from the definition that the process is cadlag (i.e., is right-continuous and has left-limits
at every jump, and continuous otherwise). Moreover, the process is stationary, since the ODEs and the rate
functions do not depend explicitly on time.

Finally, we intuitively want that, given the current state (Qt, Xt), the probability of a jump occurring
in [t, t + ∆t) should be the sum of all of the current jump rates, i.e.,

∑
q λq(Qt, Xt)∆t, and the probability

of jumping to state q′ is equal to the relative proportion of λq′(Qt, Xt) to this total rate(qv. Proposition 2.3
below).
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Example 2.2. Before we state and prove Proposition 2.3, let us first consider the special case that many readers will
be familiar with, namely, the case where λq′(q, x) does not depend on x at all and can be written λq′(q). Then the
jumps are given by a continuous-time Markov chain (CTMC), and the |Q|2 numbers λq′(q) are then the transition
rates q 7→ q′. Start at t = 0, and we obtain∫ T (q)

0

λq(Q0) ds = S(q), or, T (q) = S(q)/λq(Q0).

It is straightforward to see that the distribution of T (q) is then an exponential random variable of rate λq(Q0), i.e.

P(T (q) > t) = e−λq(Q0)t.

Moreover, if each T (q) is exponential with rate λq(Q0), and T = infq T
(q), then T is exponential of rate

∑
q λq(Q0)

(see, e.g. [32, Theorem 2.3.3]). Finally, P(arg infq Tq = k) = λk(Q0)/
∑
q λq(Q0), and this is independent of T . In

words, the rate of jumping to state q is the constant rate λq(Q0), the total rate of any jump occurring is the sum of the
individual rates of each jump occurring, and the probability of any given jump occurring is equal to its proportion to
the sum of all the rates.

The only way in which the current framework is more complicated than a standard CTMC is that the transition
rates change in time, and they change in such a way as to make them a function of the continuous state.

Proposition 2.3. We consider the SHS in Definition 2.1 Start the SHS in state (Q0, X0), and define T as the time
of the first jump. Then for t < T , the discrete state Q0 does not change, and Xt evolves according to the ODE, so
Xt = ϕt(Q0, X0). Then

P(T ≤ t+ ∆t|T > t) = ∆t ·
∑
q

λq(Q0, Xt) = ∆t ·
∑
q

λq(Q0, ϕ
t(Q0, X0)),

P(Qt+∆t = q) =
λq(Q0, Xt)∑
q′ λq′(Q0, Xt)

.

Proof. First note that T > t iff T (q) > t for all q, and T ≤ t + ∆t iff T (q) ≤ t + ∆t for some q. Next, we see
that

T (q) > t⇔
∫ t

0

λq(Q0, Xs) ds < S(q),

T (q) ≤ t+ ∆t⇔
∫ t+∆t

0

λq(Q0, Xs) ds ≥ S(q),

and so

P(T (q) ≤ t+ ∆t|T (q) > t) = P

(
S(q) ≤

∫ t+∆t

0

λq(Q0, Xs) ds

∣∣∣∣∣S(q) >

∫ t

0

λq(Q0, Xs) ds

)

= P

(
S(q) ≤

∫ t+∆t

0

λq(Q0, Xs) ds−
∫ t

0

λq(Q0, Xs) ds

)
,

by the memorylessness property of exponential random variables. But note that for ∆t� 1,∫ t+∆t

0

λq(Q0, Xs) ds−
∫ t

0

λq(Q0, Xs) ds = ∆t · λq(Q0, Xt) + o(∆t),

and

P(S(q) ≤ ∆t · λq(Q0, Xt) + o(∆t)) = 1− exp(−∆t · λq(Q0, Xt) + o(∆t)) = ∆t · λq(Q0, Xt) + o(∆t).

In short, the probability that a jump to q occurs in the next ∆t is ∆t · λq(Q0, Xt) when ∆t is sufficiently
small, so the probability that some jump occurs is clearly the sum of these (up to o(∆t)), and the relative
probability of it being Tq is the relative proportion of the qth rate with respect to the others.
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Remark 2.4. Although the definition is given recursively for simplicity, it is not hard to see that we can choose all
of the randomness of this process “up front”, i.e., we can choose streams of iid exponentials S(q)

n for n ∈ N, q ∈ Q at
the beginning, then use these streams to determine the nth jump time Tn (note that we are discarding all of the S(q′)

n

that are not used in this step). This allows us to define a map from any probability space Ω rich enough to contain
the streams S(q′)

n to D([0,∞),Q × P), the set of cadlag paths defined on Q × P . This induces a measure on the set
of all paths, and, in particular, allows us to measure the probability of any event that can be determined by observing
the paths. When we talk about probabilities of events below, we are implicitly assuming that this correspondence has
been made. Moreover, this will even allow us to compare paths of two (or more) different SHS that are generated by
different functions; as long as we have a correspondence from ω ∈ Ω to the exponential streams S(q)

n (ω), the paths
are completely determined by (4). We will use this formalism throughout the remainder of the paper without further
comment, and in general drop the dependence on ω.

2.2 Infinitesimal generator

We follow the standard definition of the infinitesimal generator and derive the generator of the process
here. Let h : Q×P → R be bounded and differentiable, and define the following linear operator L:

Lh(q, x) := lim
ε↘0

E[h(Qt+ε, Xt+ε)|Qt = q,Xt = x]− h(q, x)

ε
. (8)

From this, we can directly obtain Dynkin’s formula:

d

dt
E[h(Qt, Xt)] = E[Lh(Qt, Xt)], (9)

or, said another way, the operator

Mh(Qt, Xt) = h(Q0, X0) +

∫ t

0

Lh(Qs, Xs) ds (10)

is a martingale. This allows us to extend the definition of the domain of L through the martingale equation,
and it is not hard to show that under weak assumptions on Λ, Ψ, and f , the domain of L contains all
polynomials [2]. In particular, we can compute directly that

Lh(q, x) = f(q, x) · ∇xh(q, x) +
∑
q′∈Q

λq′(q, x) (h(q′, ψq′(q, x))− h(q, x)) . (11)

To give a formal derivation of (11), we compute

E[h(Qt+ε, Xt+ε)− h(Qt, Xt)|Qt = q,Xt = x]

= E[h(Qt+ε, Xt+ε)− h(Qt, Xt)|Qt = q,Xt = x, no jump]P(no jump)

+
∑
q′∈Q

E[h(Qt+ε, Xt+ε)− h(Qt, Xt)|Qt = q,Xt = x, jump to q′]P( jump to q′)

= (h(q, x+ εf(q, x))− h(q, x)) (1−O(ε)) +
∑
q′∈Q

(h(q′, ψq′(q, x))− h(q, x))(ελq′(q, x)) +O(ε2)

= ε(f(q, x) · ∇xh(q, x) +
∑
q′∈Q

λq′(q, x) (h(q′, ψq′(q, x))− h(q, x))) +O(ε2),

and from this and the definition of Lwe have established (11) formally. We have not been careful to specify
the domain of L, but it is clear from this argument that this derivation is valid for all h ∈ C1 ∩ L∞. As is
shown in [2], we can then extend the domain of the generator using (10) to encompass all polynomials and
indicator functions. Strictly speaking, this means that the new generator is an extension of the previous
one, and we will use this without further comment in the sequel.

7



2.3 Moment equations

A quick perusal of (11) makes it clear that if we assume that f(q, ·), λq′(q, ·), ψq′(q, ·) are polynomials in x,
then the right-hand side sends polynomials to polynomials. More precisely, if h(q, x) is any function that
is polynomial in x, then Lh(q, x) is also polynomial in x. In particular, we denote h(m)

q′ (q, x) = xmδq,q′ , and

we see that Lh(m)
q is a polynomial in x, so that Dynkin’s formula becomes an (infinite-dimensional) linear

ODE on the set {h(m)
q }m∈Nd,q∈Q. However, the first challenge that we obtain is clear: if the degree of any

f(q, ·) is greater than one, or the degree of any of the λq′(q, ·) or ψq′(q, ·) are positive, then we see that the
degrees of the terms on the right-hand side of the equation are higher than those on the left, and we are
thus led to the problem of moment closure. On the other hand, we still have a linear system, even if it is
infinite-dimensional. Thus, we might hope to make sense of this flow by writing down a semigroup on a
reasonable function space. In fact, we show in Section 3.2 that this is in general not possible.

2.4 Radial components

Consider the case where Pq = Rd for all q, and we can abuse notation slightly and identify Rd as the
continuous state space. Consider the ODE

d

dt
Xt = f(Qt, Xt)

for Xt ∈ Rd. Write Xt = RtUt, for Rt ∈ [0,∞) and Ut ∈ Sd−1. Since R2
t =

∑d
k=1X

2
t,k, we see that

2Rt
d

dt
Rt =

d∑
k=1

2Xt,k
d

dt
Xt,k =

d∑
k=1

2Xt,kfk(Qt, Xt),

or
d

dt
Rt =

∑d
k=1 2Xt,kfk(Qt, Xt)∑d

k=1X
2
t,k

=: ρ(Qt, Xt).

In general, this depends on both Rt and Ut through Xt, and we cannot project the dynamics onto Rt.
However, if we assume that ρ(q, x), λq′(q, x), and ψq′(q, x) are independent of the angular component of x,
then we can consider a purely radial model for the dynamics and consider an SHS whose continuous state
space is the positive real axis.

More generally, consider the following: consider the system SHS(Q,Rd,Λ,Ψ, f), where we assume
ψq′(q, x) = γq,q′x, and define

ρ(q, r) = sup
|x|=r

ρ(q, x), ρ(q, r) = inf
|x|=r

ρ(q, x),

λq′(q, r) = sup
|x|=r

λq′(q, x), λq′(q, r) = inf
|x|=r

λq′(q, x),

and further assume that the system SHS(Q,Rd,Λ,Ψ, f) is ergodic on sets of constant radius, then we
can use the monotonicity results of Lemma 5.8 to show, for example, that if the one-dimensional sys-
tem SHS(Q,R+,Λ,Ψ, ρ) has finite-time blowups w.p. 1, then so does the system SHS(Q,Rd,Λ,Ψ, f), and
similarly for the converse statement: any moments of SHS(Q,R+,Λ,Ψ, ρ) that are finite are also finite for
SHS(Q,Rd,Λ,Ψ, f). The remainder of this paper can be thought of as concentrating on the case of radial
flows described above, and we will assume throughout the remainder that our state space is R+.

3 Moment Closure and Convexity — One state

One of the main results of this paper is that under certain conditions on the growth of the functions f, λ as
x → ∞, the moment equations are well-behaved and useful. We will first present the simpler case where
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there is one state, i.e., |Q| = 1; there is one reset map ψ; and the state space P is one-dimensional, and is, in
fact, the positive reals. Due to this simplification, we now say that Xt = SHS(λ, ψ, f), where again we have
the flow map ϕ:

d

dt
ϕt(x) = f(ϕt(x)), ϕ0(x) = x.

We want to consider the case where the ODE is unstable at the origin, so f(0) = 0, f ′(0) > 0, and to balance
this we want the reset map to move towards the origin, so that ψ(x) ≤ x. Since ψ will be a polynomial,
we need to choose ψ(x) = γx with γ ∈ [0, 1]. We also assume that f(x), λ(x) are polynomials of degrees
deg(f), deg(λ) respectively.

In words, we are assuming that the rate is positive for positive x, and that the ODE given by f has
a repelling fixed point at the origin. We allow for f to be superlinear, so that it could lead to finite-time
blowup on its own. One natural objective is to determine what properties of λ will ensure no finite-time
blowups.

3.1 Moment flow equations

The generator for Xt = SHS(λ, γx, f) is

Lh(x) = f(x)
dh

dx
(x) + λ(x)(h(γx)− h(x)).

The test functions that we are interested in are h(m)(x) := xm, and we want to study the motion of the
moments µm := E[Xm

t ] = E[h(m)(Xt)]. Plugging this in, we obtain

Lh(m)(x) = f(x)
m

x
h(m)(x) + λ(x)(γm − 1)h(m)(x).

Since f(0) = 0, f(x)/x is a linear combination of terms of nonnegative degree, so the first term is a polyno-
mial with all powers at least m. If we write

f(x) =

deg(f)∑
`=1

α`x
`, λ(x) =

deg(λ)∑
`=1

β`x
`,

then, by taking expectations, we have the moment flow equations:

d

dt
µm =

m+deg(λ)∑
`=m

Cm,`µ`, (12)

where

Cm,m = mα1, Cm,m+deg(λ) = βdeg(λ)(γ
m − 1),

Cm,` = mα`+1 + β`(γ
m − 1).

(13)

It is not hard to see that Cm,m+deg(λ) < 0 for all m > 0, and Cm,` > 0 for m ≤ ` < m + deg(λ) − 1 and
m sufficiently large (in fact, Cm,` →∞ linearly in m for any fixed `). Recall that since we assume f ′(0) > 0,
this means that α1 > 0. Under these assumptions, we can state the theorem:

Theorem 3.1. If deg(f) ≤ deg(λ), then the moment flow equations have a globally attracting fixed point. The
set of fixed points for (12) form a deg(λ)-dimensional linear manifold parameterized by an infinite family of linear
equations, and thus we cannot find this fixed point simply by using the algebraic relations of (12).

We delay the proof of the theorem until later, but first we present a paradox that makes the result a bit
surprising.
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3.2 A Paradox of Posedness

Using the results of [15], it follows that there exists a unique invariant measure to which the system con-
verges at an exponential rate. Choose h(x) = x, then Lh(x) is a polynomial whose leading coefficient is
negative. Thus, there is a b with Lh ≤ −h+ b1S , where S is a compact subset of the positive reals, and thus
we have a unique invariant measure to which we converge exponentially quickly [15, Theorem 14.0.1].

This suggests that the moment flow equations (12) should be well-behaved and tend to an equilibrium
solution in some limit. However the moment flow equations sui generis are ill-posed in a very precise sense:

Definition 3.2 (Ill-posed). Given a state space X and a flow map ϕ : X × R→ X , we say that the flow is ill-posed
if, for any x0 ∈ X , any t > 0, and any ε > 0, there is a y ∈ X with |x0 − y| < ε and |ϕ(t, x0)− ϕ(t, y)| > 1. We
will slightly abuse notation and say an ODE is ill-posed if its flow map is ill-posed.

Then we have the following:

Proposition 3.3 (Ill-posedness). The linear system (12) does not generate a strongly continuous semigroup on any
`p space (or, in fact, on any subspace of R∞ that contains vectors of finite support). Specifically, the ODE is ill-posed
in the sense of Definition 3.2 on any of these spaces.

Proof. Noting that the system is upper-triangular, and that the diagonal elements increase without bound,
it is not hard to see that the spectrum of this matrix should be unbounded. To be more specific: if we
consider any M × M truncation of this matrix, it has eigenvalues Cm,m with m = 1, . . .M . It also has
a basis of eigenvectors, which we will call v1, . . . , vM . These eigenvectors embed into R∞ in the obvious
way and are thus eigenvalues of the matrix A. Let V be any linear space containing all of the vk (NB:
any `p space, with 1 ≤ p ≤ ∞ would be appropriate). Then with A considered as a linear operator from
V to itself, Cm,m ∈ Spec(A). Recall from above that Cm,m → ∞ linearly fast in m. By the Hille–Yosida
Theorem [33, §142,143], this flow posed on V does not generate a strongly continuous semigroup.

Remark 3.4. In particular, we have shown that every finite-dimensional truncation of the moment flow equations is
linearly unstable, and in fact the instability worsens with the order of the truncation.

3.3 Convexity to the rescue

The above certainly seems paradoxical. One method from stochastic processes tells us that the behavior of
a system is well-behaved as t → ∞ (in fact, has a globally attracting fixed point), yet, on the other hand, a
method from linear analysis tells us the system is quite ill-behaved (being ill-posed on finite time domains).

However, the linear system (12) does not contain all of the information given by the problem. This flow
is given by the flow of moments of a stochastic process. In this light, the vectors vk from the proof above are
“illegal” perturbations, because there can be no random variable, supported on the positive reals, whose
moments are given any vk as defined in the proof of Proposition 3.3. In fact, there can be no random variable
whose moments are given by a vector with entries that go to zero, or even has bounded entries. This is due
to Jensen’s Inequality [34]:

Theorem 3.5 (Jensen’s Inequality). If g(·) is any convex function and X a real-valued random variable, then

g (E[X]) ≤ E[g(X)], (14)

with equality only if X is “deterministic”, i.e., the distribution for X is an atom. In particular, since g(x) = xp is
convex on [0,∞) for any p > 0, if X ≥ 0, then

µp/qq = (E[Xq])
p/q ≤ E[Xp] = µp,

or, equivalently,
µp ≥ µp/qq for all p ≥ q. (15)
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In particular, this means that the moments are not actually independent coordinates in some vector
space, and we are not allowed arbitrary perturbations of a fixed point. For example, reconsidering (12, 13),
we see that the largest moment has a negative coefficient, and from Jensen this grows superlinearly with
respect to µm. This will be enough to prove stability:

Lemma 3.6. If we assume the equations (12), and, further, that µm are the moments of a random variable, then as
long as

µm >

(
deg(λ)Cm,`
|Cm,m+deg(λ)|

)m/(m−`+deg(λ))

(16)

for each Cm,` that is positive, then the right-hand side of (12) is negative, and thus µm is decreasing. Since
Cm,m+deg(λ) < 0, we have that ` ∈ {m, . . . ,m + deg(λ) − 1}, so the denominator in the exponent in (16) is
always positive. Since this puts a finite number of constraints on µm, this means that µm is inflowing on a compact
subset of R+ and thus has bounded trajectories.

Proof. First recall that Cm,m+deg(λ) < 0. Choose an ` such that Cm,` > 0 (if none such exist, then we are
done.) If

µm >

(
deg(λ)Cm,`
|Cm,m+deg(λ)|

)m/(m−`+deg(λ))

,

then

µ
m−`+deg(λ)

m
m >

deg(λ)Cm,`
|Cm,m+deg(λ)|

.

Since
µ` ≥ µ`/mm ,

this means

Cm,` −
|Cm,m+deg(λ)|

deg(λ)
µ

(m+deg(λ)−`)/`
` < 0

Cm,`µ` −
|Cm,m+deg(λ)|

deg(λ)
µ

(m+deg(λ))/`
` < 0.

By Jensen again, this implies that

Cm,`µ` −
|Cm,m+deg(λ)|

deg(λ)
µm+deg(λ) < 0.

(If Cm,` < 0, then the previous inequality is satisfied trivially.) From this we have

m+deg(λ)−1∑
`=m

Cm,`µ` <

m+deg(λ)−1∑
`=m

|Cm,m+deg(λ)|
deg(λ)

µm+deg(λ) = |Cm,m+deg(λ)|µm+deg(λ),

and so
m+deg(λ)−1∑

`=m

Cm,`µ` + Cm,m+deg(λ)µm+deg(λ) < 0.

Now, we are ready to provide a formal proof to the result in Theorem 3.1.
Proof of Theorem 3.1.
By Lemma 3.6, the solution of (12) has bounded trajectories. In particular, choosing

Mm = max
m≤`≤m+deg(λ)−1

(
deg(λ)Cm,`
|Cm,m+deg(λ)|

)m/(m−`+deg(λ))

,
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we have µm(t) ≤Mm for t sufficiently large.
We also note that the steady-state solution of this system satisfies the (infinite) family of linear equations

m+deg(λ)∑
`=m

Cm,`µ` = 0,

or

µm+deg(λ) = − 1

Cm,m+deg(λ)

m+deg(λ)−1∑
`=m

Cm,`µ`.

For m sufficiently large, all of the coefficients on the right-hand side of the equation are positive.
Then. this linear system has exactly deg(λ) degrees of freedom. Choose m? so that Cm,` > 0 for ` =

m, . . . ,m+ deg(λ)− 1. Then, if µm? , . . . , µm?+deg(λ) are given, then the 1st equation gives a unique solution
for µm?+deg(λ)+1, and then the second equation would give a unique solution for µm?+deg(λ)+2, and so
on.

So, to summarize: we write down the moment flow equations from Dynkin’s formula, giving us an
infinite-dimensional linear system. We then note that if this system is considered as a linear system with
no further structural information, then the linear system is ill-posed in any reasonable function space, even
though the stochastic process converges to a unique invariant measure. However, if we add on the minimal
constraint that these variables are the moments of a stochastic process, then this is exactly what we need to
make the equations well-posed and to converge to a reasonable limit. Yet again, on the other hand, these
equations are always degenerate in the sense that there is a deg(λ)-dimensional linear manifold of fixed
points.

3.4 Case study I: one state + linear

In this section, we go through all of the above computations for the simplest possible case: the ODE, the
reset map, and the jump rate are all linear. More specifically, we consider the system where the flow is
dx/dt = αx, the jump rate is βx, and the reset map is x 7→ γx. Here we assume that α, β > 0 and γ ∈ [0, 1]
(the two extreme cases of γ ∈ {0, 1} are easy to solve explicitly).

The generator for this process is given by

Lh(x) = αx
dh

dx
+ βx

(
h(γx)− h(x)

)
. (17)

Again defining the kth moment of Xt by µk(t) := E[Xk
t ] = E[h(m)(Xt)], we obtain

µ̇m(t) = αmµm + β(γm − 1)µm+1. (18)

If we consider this system simply as a linear system, then we run into the same problems of ill-posedness
as before; the diagonal elements of the matrix are α, 2α, . . . , Nα, . . . which go to infinity along the positive
real axis.

As before, we have Jensen coming to the rescue, and we can deduce that if, for any k,

µk >

(
αk

β(1− γk)

)k
, (19)

then dµk/dt < 0. Considering the fixed point of (18) gives us that, if we define

µ̃k = E[Xk
∞],

then µ̃k are constant in time, and are solutions to (18), so that we have

µ̃k+1 =
αk

β(1− γk)
µ̃k, (20)
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and from (19) we have the bound that

µ̃k ≤
(

αk

β(1− γk)

)k
. (21)

From this, we obtain a recursive relationship for all of the moments; as long as we know µ̃1, then we know
µ̃k for all k. As it stands, µ̃1 is free, subject to the bound (21) of being less than α/(β(1− γ)).

We might seek to get more bounds, since (21) comes from considering only the relation between µ̃m and
µ̃m+1. Let us define

ck =
αk

β(1− γk)
, ca,b =

b−1∏
`=a

c`.

Iterating (20) gives µ̃k+j = ck,k+j µ̃k, and using Jensen’s inequality again, this gives

µ̃
(k+j)/k
k ≤ ck,k+j µ̃k, or, µ̃j/kk ≤ ck,k+j .

Since µ̃1 ≤ µ̃1/k
k , this gives

µ̃1 ≤ c1/jk,k+j .

However, it is not hard to see that this last quantity is just the geometric mean of ck, ck+1, . . . , ck+j−1. Thus
we see that all of this work has given us no useful information: since the ck are increasing in k:

d

dk
ck(γ) =

1 + γk(k ln γ − 1)

(1− γk)2
,

this means that all of these geometric means are worse upper bounds than c1.
It turns out that we can get one more bit of information from the generator, namely: choose h(x) = ln(x):

Lh(x) = αx
1

x
+ βx(ln(γx)− ln(x)) = α+ (β ln γ)x.

If our system is in equilibrium, then E[h(Xt)] is constant in time, so we have

0 = α+ β ln γE[X∞], E[X∞] =
−α
β ln γ

=
α

β ln(1/γ)
.

3.5 Maximum entropy formulation

We know that the invariant distribution needs to satisfy the infinitely many conditions on its moments that

m+deg(λ)∑
`=m

Cm,`µ̃` = 0,

but that, generically, this gives rise to a deg(λ)-dimensional linear manifold of fixed points for the moment
flow.

Another way of writing this is that if we define the polynomials

fm(x) =

m+deg(λ)∑
`=m

Cm,`x
`,

then we have
E[fk(X∞)] = 0, ∀k. (22)
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This leads to a natural conjecture: if we define Z as the random variable that has the maximum entropy
subject to satisfying E[fm(Z)] = 0 for all m, then the law of Z should be the same as that of X∞. More
precisely, if we define the entropy of a probability distribution by

H(π) = −
∫ ∞

0

π(x) lnπ(x) dx,

define P∗ as the set of all probability distributions that satisfy (22), and define

π∗ = sup
π∈P∗

H(π),

then the probability distribution ofX∞ should be π∗. In [35], we present a method for efficient computation
of the maximum entropy distribution, and show that the maximum entropy distribution is the invariant
distribution for a wide variety of test cases.

3.6 Numerical results

In Figure 1, we plot the results of a Monte Carlo simulation of a one-state system as described above, where
we choose

f(x) = x2, λ(x) = 2x2, γ = 1/2.

We simulated 103 realizations of the process, and ran each one until 104 numerical steps occurred. The
method we used was a hybrid Gillespie–1st order Euler method: we choose and fix a ∆tmax � 1. Given Xt,
we have λ(Xt), and we determine the time of the next jump as dt = − log(U)/λ(Xt), where U is a uniform
[0, 1] random variable. If dt < ∆tmax, then we integrate the ODE using the 1st-order Euler method for time
dt (i.e., we set Xt+dt = Xt + dt · f(Xt)), then multiply by γ. If dt ≥ ∆tmax, then we integrate the ODE for
time ∆tmax and do not jump. It is clear that in the limit as ∆tmax → 0, this converges in every sense to the
stochastic process, and it is also not hard to see that this is equivalent to computing the trajectory and next
jump using formulas (4) and (5) by discretizing the integral in (4) using timesteps of ∆tmax.

In Figures 1a and 1b we plot one realization of the process, in linear and in log coordinates. To the
eye, log(Xt) looks almost like an Ornstein–Uhlenbeck process, and this is borne out by the distribution in
Figure 1, where we see that the invariant distribution of Xt is very close to log-normal, at least to the eye.
To check this, we plot a QQ-plot of log(Xt) versus a normal distribution with the same mean and variance,
and we see that the distribution is not quite log-normal — the fact that this plot is concave down means
that this distribution is a little “tighter” than a normal distribution. Thus the distribution of log(Xt) looks
like a Gaussian up to two or three standard deviations, but has smaller tails. In any case, to verify that this
is not just due to sampling error, one can plug the general log-normal into the formal adjoint L∗ derived
from (8), and see by hand that log-normals are not in the nullspace.

4 Moment closure and convexity — Multiple states

We now extend the results of the previous section to the case where there are multiple states, i.e., |Q| > 1.
The argument behind the method used here is the same as before: when we write down the moment
equations, if we can show that if the right-hand side of the evolution equation for each moment has a term
of higher degree, and this term has a negative coefficient, then the previous approach works as well. As
before, we will assume that our state space is the positive reals, and that our reset maps are linear, i.e.
ψkl(x) = γklx.

The main results of this section are Theorems 4.3 and 4.4; the former gives sufficient conditions for the
moment flow system to have bounded orbits, and the latter gives sufficient conditions for the moment flow
system to have unbounded orbits. The technique used in the proofs of these theorems is, in principle, the
same as in the previous section: there we had a case where, in each equation, there was a term involving
the higher-order moment with a negative coefficient. In this case, we will show that there is a term on the
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Figure 1: Plots of realizations and histograms of one-state system, see description in text for more detail.

right-hand side that plays the same role as this negative coefficient, but in this case, since the mth moment
is effectively a vector of length |Q|, this will be a |Q| × |Q| matrix whose sign-definiteness will establish
stability (or the lack thereof).

4.1 Moment flow equations

We recall
Lh(q, x) = f(q, x) · ∇xh(q, x) +

∑
q′∈Q

λq′(q, x) (h(q′, ψq′(q, x))− h(q, x)) . (11)

Let us define, for θ ∈ Q and m ∈ N,

h
(m)
θ (q, x) := 1θ(q)x

m = δq,θx
m, µ

(m)
θ := E[h

(m)
θ (Qt, Xt)].

Note that ∑
θ∈Q

h
(m)
θ = xm, and thus µ(m) :=

∑
θ∈Q

µ
(m)
θ = E[Xm

t ]

is the total mth moment of Xt. One can think of µ(m)
θ as the conditional mth moment of Xt, conditional on

Qt = θ, times the probability that Qt = θ. We plug h(m)
θ into (11), to obtain

Lh(m)
θ (q, x) = f(q, x) · ∇xh(m)

θ (q, x) +
∑
`∈Q

λ`(q, x)h
(m)
θ (`, ψ`(q, x))−

∑
`∈Q

λ`(q, x)h
(m)
θ (q, x)

= f(q, x)1θ(q) ·m · xm−1 +
∑
`∈Q

λ`(q, x)1θ(`)(γq,`x)m)−
∑
`∈Q

λ`(q, x)1θ(q)x
m.

We plug in (Qt, Xt) for (q, x) and take expectations for each of the three pieces separately.

E[Lh(m)
θ (Qt, Xt)]

= mE[1θ(Qt)f(Qt, Xt)X
m−1
t ] + E[

∑
`∈Q

λ`(Qt, Xt)γ
m
Qt,`1θ(`)X

m
t ]− E[

∑
`∈Q

λ`(Qt, Xt)1θ(Qt)X
m
t ]. (23)
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The first and third terms in the right-hand side of (23) are more or less straightforward, but the second term
can be simplified in the following manner:

E

[∑
`∈Q

λ`(Qt, Xt)γ
m
Qt,`1θ(`)X

m
t

]
= E[λθ(Qt, Xt)γ

m
Qt,θX

m
t ]

=
∑
`∈Q

E[1`(Qt)λθ(Qt, Xt)γ
m
`,θX

m
t ],

and thus we have

E[Lh(m)
θ (Qt, Xt)]

= mE[1θ(Qt)f(Qt, Xt)X
m−1
t ] +

∑
`∈Q

E[1`(Qt)λθ(Qt, Xt)γ
m
Qt,θX

m
t ]−

∑
`∈Q

E [λ`(Qt, Xt)1θ(Qt)X
m
t ] . (24)

Example 4.1. The general formula (24) is a bit complicated to parse, therefore we first work out a particular test case.
Assume that all of the functions involved are linear, i.e.

f(q, x) = αqx, λ`(q, x) = βq,`x, ψ`(q, x) = γq,`x,

then we obtain

E[Lh(m)
θ (Qt, Xt)] = mαθE[1θ(Qt)X

m
t ] +

∑
`∈Q

β`,θγ
m
`,θE

[
1`(Qt)X

m+1
t

]
−
∑
`∈Q

βθ,`E
[
1θ(Qt)X

m+1
t

]
,

or
d

dt
µ

(m)
θ (t) = mαθµ

(m)
θ (t) +

∑
`∈Q

β`,θγ
m
`,θµ

(m+1)
` (t)−

∑
`∈Q

βθ,`µ
(m+1)
θ (t). (25)

Compare (25) to (18) and notice that it has much the same form: the function we differentiate appears
first with a positive coefficient, also we have two terms of one higher degree with alternating signs, and the
positive term has a γ in it. What is different, and what makes this more complicated, is that the positive
term of higher degree depends on the moments in different discrete states. So, while we will be able to use
a Jensen-like argument to get boundedness, we have to be more careful, since we do not know that there is
any relationship between µ(m)

q and µ
(m+1)
q′ from just convexity — and thus we need to consider the entire

vector {µ(m)
q }q∈Q.

Definition 4.2. Let Xt = SHS(Q,P,Λ,Ψ, F ). Let deg(Λ) = maxkl deg(λkl), and define βkl as the coefficient of
the term of degree deg(Λ) in λkl(x), with the convention that βkl = 0 if deg(λkl) < deg(Λ). Then the top matrix
of degree m of the system is the matrix M (m) with coefficients

M
(m)
kl =

{
γmlkβlk, k 6= l,

−
∑
l∈Q βkl, k = l.

4.2 Theorems for stability

Theorem 4.3 (Bounded moments). Assume thatP = R+, and letXt = SHS(Q,P,Λ,Ψ, F ). If deg(F ) ≤ deg(Λ)
and all of the eigenvalues of M (m) are negative, then the orbit of the total mth moment µ(m) is bounded under the
moment flow equations; in particular, if M (m) has negative spectrum for all m ≥ 1, then all of the moments have
bounded orbits.

16



Proof. Let us first consider the case where all of the functions are linear, as in Example 4.1. Writing the
vector µ(m) = {µ(m)

q }q , we can write (25) as

d

dt
µ(m) = mAµ(m) +M (m)µ(m+1), (26)

where A is the diagonal matrix with Aqq = αq . Note that every entry in A is positive, so the flow is linearly
unstable at the origin.

However, also note that if µ(m) � 1, then µ(m+1) � µ(m) by Jensen, which means that (26) is dominated
by the second term. More precisely, if we assume that µ(m)

q > 1/ε for all q, then µ(m+1)
q > 1/ε1/mµ

(m)
q , and

thus we can write
ε1/m

d

dt
µ(m) ≤ ε1/mAµ(m) +M (m)µ(m). (27)

For ε sufficiently small, the first term is dominated. Since M (m) has negative spectrum, the flow ż =
M (m)z is such that all z(t)’s in the positive octant will asymptotically approach the origin, and, moreover,
this is structurally stable to a sufficiently small perturbation by the Hartman–Grobman Theorem. Thus,
for ε small enough, all orbits are attracted to the origin, which means that (26) is inflowing on any ball of
sufficiently large radius. Thus (26) has bounded orbits.

Now we consider the general f, λ (recall that we assume throughout that ψk(q, x) = γqkx. Let us write

f(q, x) =

Aq∑
a=1

αa,qx
a,

λk(q, x) =

Bq,k∑
b=1

βb,qkx
b.

Then, plugging into (24), we have

E[1θ(Qt)f(Qt, Xt)X
m−1
t ] = E[1θ(Qt)

AQt∑
a=1

αa,QtX
a
t X

m−1
t ]

=

Aθ∑
a=1

αa,θE[1θ(Qt)X
a+m−1
t ] =

Aθ∑
a=1

αa,θµ
(a+m−1)
θ ,

E
[
1θ(`)γ

m
`,θλθ(`,Xt)X

m
t

]
= E

1θ(`)γ
m
`,θ

B`,θ∑
b=1

βb,`θX
b
tX

m
t

 =

B`θ∑
b=1

γm`,θβb,`θµ
(b+m)
` ,

E [λ`(Qt, Xt)1θ(Qt)X
m
t ] = E

BQt,`∑
b=1

βb,Qt`X
b
tX

m
t

 =

Bθ,`∑
b=1

βb,θ`µ
(b+m)
θ ,

or
d

dt
µ

(m)
θ = m

Aθ∑
a=1

αa,θµ
(a+m−1)
θ +

B`,θ∑
b=1

γm`,θβb,`θµ
(b+m)
` −

Bθ,`∑
b=1

βb,θ`µ
(b+m)
θ . (28)

Recalling the definition ofM (m), this means that the last two terms in (28) can be written asM (m)µ(m+deg(Λ))

— note that the definition of M (m) includes, by design, only those coefficients that are the same degree as
the highest possible degree of all λkl. Thus (28) can be written as

d

dt
µ

(m)
θ =

m+deg(Λ)−1∑
`=m−1

A`µ
(`) +M (m)µ(m+deg(Λ)), (29)

and clearly the same sort of asymptotic analysis done for the linear case works here as well, since the first
term is strictly dominated in powers by the last.
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Theorem 4.4 (Unbounded moments). Let P = R+ and Xt = SHS(Q,P,Λ,Ψ, F ).

1. If deg(F ) ≤ deg(Λ), and

(a)
〈
M (m)x, y

〉
> 0 for all x, y in the positive octant, or

(b) there exist k, l such that min(M
(m)
kl ,M

(m)
lk ) > max(|M (m)

kk |, |M
(m)
ll |);

then the orbit of the total mth moment µ(m) is unbounded under the moment flow equations;

2. If deg(F ) > deg(Λ), then for m sufficiently large, all mth moments have unbounded orbits under the moment
flow equations.

3. If deg(F ) > deg(Λ) + 1, then all mth moments have unbounded orbits under the moment flow equations.

Proof. Again consider (29). First assume that
〈
M (m)x, y

〉
> 0 for all x, y in the positive octant. Since all of

theA` in that formula are diagonal with positive entries, it follows directly that the vector field is outflowing
on every circle.

On the other hand, assume that there exists a k, l such that min(M
(m)
kl ,M

(m)
lk ) > max(M

(m)
kk ,M

(m)
ll ).

Without loss of generality by renumbering, assume that we have min(M
(m)
12 ,M

(m)
21 ) > max(|M (m)

11 |, |M
(m)
22 |).

Let us again consider the linear case, as the nonlinear case is the same. We have

d

dt
µ

(m)
1 = mα1µ

(m)
1 +M

(m)
12 µ

(m+1)
2 − |M (m)

11 |µ
(m+1)
1 ,

d

dt
µ

(m)
2 = mα2µ

(m)
2 +M

(m)
21 µ

(m+1)
1 − |M (m)

22 |µ
(m+1)
2 .

Writing ν(m) = e−mAtµ(m), where A = diag(α1, α2), we have

d

dt
ν

(m)
1 = M

(m)
12 µ

(m+1)
2 − |M (m)

11 |µ
(m+1)
1 ,

d

dt
ν

(m)
2 = M

(m)
21 µ

(m+1)
1 − |M (m)

22 |µ
(m+1)
2 .

and thus
d

dt
(ν

(m)
1 + ν

(m)
2 ) = (M

(m)
21 − |M (m)

11 |)µ
(m+1)
1 + (M

(m)
12 − |M (m)

22 |)µ
(m+1)
2 > 0,

so that this sum is always growing, and thus the corresponding sum for µ(m) grows at least exponentially.
Now consider the case where deg(F ) = deg(Λ)+1 — this implies that the first term in (28) is of the same

degree, than all of the other terms. Thus (28) looks like

d

dt
µ(m)
m = Aµ(m+deg(Λ)) +M (m)µ(m+deg(Λ)) +O(µ(m+deg(Λ)−1),

and since the diagonals of A grow linearly in m, for sufficiently large M , all of the coefficients of A+M (m)

are positive, and thus the flow has unbounded orbits.
Finally, if deg(F ) > deg(Λ) + 1, then (28) becomes

d

dt
µ(m)
m = Aµ(m+deg(F )−1) +M (m)µ(m+deg(Λ)) +O(µ(m+deg(F )−2),

where the dominant term is the A term, which is diagonal with positive diagonals for all m.
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4.3 Examples and corollaries

We have shown above that as long as M (m) has all negative eigenvalues, the mth moment is stable. First
we show:

Corollary 4.5. If 0 < γkl < 1 for all k, l, then E[Xm
t ] is bounded above for all t and for all m.

Proof. From Theorem 4.3, all we need to show is that M (m) has all negative eigenvalues. Recall that

M
(m)
kl =

{
γmlkβlk, k 6= l,

−
∑
l∈Q βkl, k = l.

By the Gershgorin Circle Theorem, the eigenvalues of M (m) are contained in the union of the |Q| balls

Bk := B

M (m)
kk ,

|Q|∑
l=1

∣∣∣M (m)
kl

∣∣∣
 ,

i.e., the kth ball is centered at the kth diagonal coefficient, and whose radius is given by the sum of the
absolute values of the off-diagonal terms. Since γkl < 1, and thus γmkl < 1, we have

|Q|∑
l=1

∣∣∣γmklM (m)
kl

∣∣∣ < |Q|∑
l=1

∣∣∣M (m)
kl

∣∣∣ =
∣∣∣M (m)

kk

∣∣∣ .

Example 4.6. Let us assume that |Q| = 2, so that

M (1) =

(
−β12 β21γ21

β12γ12 −β21

)
.

We have TrM (1) = −β12 − β21 < 0, and detM (1) = β12β21(1 − γ12γ21). It is not hard to see that the resulting
linear system is a saddle if γ12γ21 > 1, and a sink if γ12γ21 < 1. By Theorem 4.3, if γ12γ21 < 1 this means that E[Xt]
is bounded above. Of course, note that the stability condition for M (m) is γm12γ

m
21 < 1, and thus stability of the first

moment implies stability of all higher moments. As we see below, this is a special case only if |Q| = 2.
In fact, one can get at this result from other means: notice that in the 2× 2 case, all jumps 1→ 2 are immediately

followed by a jump 2 → 1, and the aggregate effect of these jumps is to multiply by γ1γ2. Thus it is clear that the
necessary and sufficient condition for stability is that this product be less than one.

One of the interesting observations made in the previous example is that we do not require that all γkl
be less than one. But for general |Q| > 2, if we choose one or more of the γkl > 1, then we will see some
unbounded moments, as in the following example.

Example 4.7. Consider the symmetric case where we choose βkl = 1 for all k, l, and choose γ12 > 1, but γ13, γ23 < 1,
so that we have

M (m) =

 −2 γm12 γm13

γm12 −2 γm23

γm13 γm23 −2

 .

If we further choose γ12 + γ13 < 2 and γ12 + γ23 < 2, then again by Gershgorin theorem, it follows that M (1) has all
negative eigenvalues, and by Theorem 4.3, the moment flow is stable at first order.

Since γ12 > 1, then for some m > 1, γm12 > 2, and by Theorem 4.4, the moment flow is unstable at mth order.
Thus we have a scenario where E[Xt] is bounded above for all time, but E[Xm

t ] grows without bound.
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We saw in Example 4.7 that we can construct a process where the mean is bounded above, but some
higher moments grow without bound. In fact, it should be clear that if there is a pair (k, l) with γkl > 1 and
γlk > 1, then this will generically occur: for sufficiently large m, the mth moment is unstable. This can lead
to some counter-intuitive effects, as seen by the following example.

Example 4.8. Consider the case where |Q| = N , γ12 = γ21 > N − 1, and all of other the γkl are arbitrarily small
(for the purposes of this argument, set them to zero), so that if the system ever enters a state other than 1 or 2, then Xt

is set to zero. Let all βkl = 1, so that the jump rates are all the same. Specifically, this means that whenever there is a
jump, the next discrete state is chosen uniformly in the others. Start with Q0 = 1, X0 = 1. The probability of never
leaving Qt ∈ {1, 2} after the first k jumps is then (N − 1)−k, but the multiplier from these transitions is γk12, so that
E[XTk ] grows exponentially, even if P(XTk > 0) is shrinking exponentially.

Similarly, we could see that if we choose γ12 < N − 1 < γ2
12, then E[Xt] would decay exponentially, but E[X2

t ]
would grow exponentially, and similarly for higher moments.

In short, this says that to obtain a moment instability, all one needs is two states exchanging back and forth, as
long as their multipliers are large enough, even if the probability of this sequence of switching is small — which is the
content of Part 1 of Theorem 4.4.

When we have a probability distribution with some moments finite and others infinite, this is called1

a heavy-tailed distribution (see [36, 37] for examples in dynamical systems). The canonical example of a
heavy-tailed distribution is one whose tail decays asymptotically as a power law, and as such, are typically
associated with critical phenomena in statistical physics [38–44]. In fact, if we assume that p(x) is the
distribution of the process in equilibrium, that p(x) ∼ x−α as x → ∞, and X∞ is a realization of this
distribution, then

E[Xm
∞] =

∫ ∞
0

xmp(x) dx ≈
∫ ∞
x∗

xm−α dx

will converge iffm−α < 1. From this we deduce that if α ∈ (m,m−1), then E[Xm
∞] <∞ butE[Xm+1

∞ ] =∞.
We will in fact show numerical evidence of power law tails in SHS dynamics in the next section, which leads
us to conjecture that the extreme case of Example 4.8 above is atypical.

4.4 Numerical results

In Figure 2, we plot the results of a Monte Carlo simulation for a two-state SHS. We simulate 103 realizations
of this system, and each realization was integrated until 104 jumps had occurred.

Here, we have chosen
f(q, x) = αqx

2, λq′(q, x) = βq,q′x
2,

where q, q′ ∈ {1, 2}, and as always the resets are γq,q′x. We chose the α, β, γ as follows:

α =

(
2
1

)
, β =

(
0 1
1 0

)
, γ =

(
0 2

1/3 0

)
.

Since γ12γ21 < 1, by the results above all moments are stable, and this is what we observe numerically.
In Figures 2a and 2b, we plot a single trajectory of the system (in (a) we have plotted this in a linear-

linear scale, and in (b) we plot the same data in a linear-log scale). We have only plotted a subset of the
entire realization here; the full realization of 104 jumps goes until approximately t = 254, and here we are
only plotting 812 jumps and cutting off at t = 20 in order to see more structure.

In Figure 2c,d, we plot aggregate histograms of Xt, each plot uses 0.5× 106 datapoints. Recall that each
realization of the process was run for 104 jumps; we discarded the first half of these for each realization,
giving 0.5× 103 points, then aggregated across realizations. The first observation is that the distribution is

1There is some disagreement in the literature of the use of the term “heavy-tailed” — some authors use the term to mean a random
variable that has some polynomial moments infinite, some use it to mean a random variable with infinite variance, and yet others use
it to mean a distribution whose mgf does not converge in the right-half plane. We use the first convention, and note by this convention,
the log-normal distributions seen above would not be considered heavy-tailed by this convention.
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Figure 2: Two-state case that is moment stable, with exponential tails. See text for description and explana-
tion.

bimodal, and this is due to the up-and-down jumps: since γ12 > 1 and γ21 < 1, we expect the typical value
of Xt to be much higher when Qt = 2 than when it equals one. We separate out the data by the value of Qt.
In Figure 2c, we plot on a log-linear scale, and it is pretty apparent to the eye that the distributions for Xt,
conditioned on Qt, are close to log-normal, as was the distribution in the one-state case (q.v. Figure 1). We
checked this observations with QQ-plots (not presented here) and saw the same phenomenon observed in
Figure 1. In (d), we plot a histogram on a linear-log scale, and the data shows an exponential tail, consistent
with the prediction that all of the moments are uniformly bounded above.

In Figure 3, we plot the results of a Monte Carlo simulation for a three-state SHS. Again, we simulate
103 realizations of this system, and each realization was integrated until 104 jumps had occurred.

Here we have chosen
f(q, x) = αqx

2, λq′(q, x) = βq,q′x
2,

where q, q′ ∈ {1, 2, 3}, and as always the resets are γq,q′x. We chose the α, β, γ as follows:

α =

 2
1
3

 , β =

 0 1 1
1 0 1
1 1 0

 , γ =

 0 1.3 0.3
1.3 0 0.2
0.3 0.2 0

 .

This means that

M (m) =

 −2 (1.3)m (0.3)m

(1.3)m −2 (0.2)m

(0.3)m (0.2)m −2

 ,

and one can see that
(1.3)2 + (0.3)2 < 2, (1.3)3 > 2,

so by the theorems above, we have that the first two moments are stable and the third is not — thus as
t→∞, E[Xt] <∞ and E[X2

t ] <∞, but E[X3
t ] grows without bound. Thus, if we see a power-law tail in the

distribution, we expect it to decay somewhere as x−p with p between 3 and 4.
In Figure 3(a,b), we again plot a single trajectory of the system (in (a) we have plotted this in a linear-

linear scale, and in (b) we plot the same data in a linear-log scale). We see the wide variety of spatial scales
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Figure 3: Three-state case that is marginally moment stable. See text for description and explanation.

in the linear plot, and the “intermittent” structure of the process in the log case — sometimes the system
can be kicked quite low, and takes a while to climb out of it. Recall that the ODE is quadratically nonlinear,
so if Xt ever happens to become small, it will take a long time to leave a neighborhood of zero.

In Figure 3c, we plot an aggregate histogram of 0.5× 106 datapoints on a log-log scale. Recall that each
realization of the process was run for 104 jumps; we discarded the first half of these for each realization,
giving 0.5 × 103 points, then aggregated across realizations. We see from eye that it looks to have a power
law structure for large x, and we also plot the least squares linear fit to the higher half of the data. This
slope is given as p = −2.4797± 0.0112, which seems to contradict our assessment from above. However, it
should be pointed out that trying to match a power law fit by least squares on a log-log plot gives in general
a bad estimator [45, 46], so we reevaluate our analysis of the decay.

We use the procedure laid out in [46] as follows: given a data set {xi}, first decide a cutoff xmin, let
n = #{xi > xmin}, and this gives the estimator

p̂ = 1 +
n∑n

i=1 log(xi/xmin)1(xi > xmin)
.

In Figure 3d, we plot p̂ for all cutoffs in the range [1, 100], and we see that as long as we use a cutoff of
about 10 or more, this is consistent with the theoretical prediction. [The horizontal lines in Figure 3(d) are
the bounds given by the analysis.] We plot by a red star the value that is given by the “best” estimator,
determined in the following manner: for each choice of xmin, we compare the empirical data with the
theoretical distribution assuming that our estimate of p̂, then measure the closeness of these distributions
using the Kolmogorov-Smirnoff (KS) distance. The best fit was given by a cutoff of 42, with a estimator of
p̂ = 3.523, and a KS distance between the theoretical and empirical distributions of 7.78× 10−3.

5 Finite-time blowups

In this section, we will again return to the one-state case considered in Section 3. It was shown there that
as long as deg(λ) ≥ deg(f), the stochastic process is “well-behaved”, i.e. as t → ∞, all of the moments are
finite. In particular, it is not possible for the process to escape to infinity in finite time.
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However, in general, if the driving ODE is nonlinear, then it is certainly possible that the process escapes
to infinity in finite time (these events are usually called finite-time blowups in the dynamical systems
literature, or explosions in the stochastic process literature). We examine these behaviors in this section.

Definition 5.1. Let us denote by Tn the times where the SHS has jumps. We say that a realization of an SHS has a
finite-time blowup if either of two conditions hold:

I. T∞ := limn→∞ Tn <∞,

II. the solution of the continuous part becomes infinite between any two jump times.

We will refer to the two types of blowup as Type I and Type II.

Remark 5.2. What we are calling a “Type I” blowup is the type of behavior that is typically called an explosion for
stochastic processes. These are common for countable Markov chains where the jump rates can grow sufficiently fast.
What we call a “Type II” blowup is very much like what is called a finite-time blowup in the differential equations
literature — in this context, since the jump never occurs, it is the same as an ODE going to infinity.

The results of this section can be summarized as follows: let Xt = SHS(f, λ, γ) with deg(f) > 1; then,
we have the following two cases:

C1. If deg(λ) < deg(f)− 1, then Xt will have a Type II blowup with probability one for any initial condi-
tion;

C2. if deg(λ) = deg(f) − 1, then, depending on the leading coefficients of f and λ, the system exhibits
various behaviors, summarized in Theorem 5.4 below. In particular, in some parameter regimes it
exhibits Type I blowups almost surely, and the remaining regimes it does not exhibit Type I blowups
almost surely. If deg(f) = 1, then the system cannot blowup, since linear flows are well-defined for
all time. However, as we show below, in the parameter range where the nonlinear systems exhibit
finite-time blowups, the linear system still go to infinity but take an infinite amount of time to do so,
exhibiting in some sense an “infinite-time blowup”.

We consider these two cases in the subsections below.

5.1 Case C1: deg(λ) < deg(f)− 1

We first consider the case where deg(λ) < deg(f) − 1. We show here that any such system has a Type II
blowup — basically, the ODE goes to infinity too fast for the jump rates to catch up.

Theorem 5.3. Let Xt = SHS(f, λ, ψ), and assume that deg(λ) < deg(f) − 1. Then Xt has a Type II blowup with
probability one for any initial condition.

Proof. Using standard ODE arguments, if

d

dt
ϕt(x) = f(ϕt(x)),

where f(x) is a positive polynomial of degree deg(f) > 1, then ϕt(x) has a finite-time singularity at some
t∗ <∞, and, moreover, in a (left) neighborhood of this point, we have

ϕt(x) ∼ C(t− t∗)1/(1−deg(f)).

If deg(λ) < deg(f)− 1, then 0 > deg(λ)/(1− deg(f)) > −1. Writing λ(x) = βxdeg(λ) +O(xdeg(λ)−1), we have
that λ(ϕs(x)) is integrable near this singular point, i.e.∫ t∗

t0

λ(ϕs(x)) ds <∞.
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Since any exponential has support on the whole real axis, this and (4) means that starting at any initial
condition, the probability of the ODE having a singularity before jumps is positive, i.e.

P

(
Sn >

∫ t∗

t0

β(ϕs(x)) ds

)
> 0,

and the system has a Type II blowup with positive probability. Since the process is Markov, irreducible on
R+, and aperiodic, it follows that the system has a Type II blowup with probability one.

5.2 Case C2: deg(λ) = deg(f)− 1

This case is much more complicated than the previous one for various reasons, not the least of which being
that the behavior depends on the coefficients of the functions f and λ. The behavior is summarized in the
following theorem:

Theorem 5.4. Let Xt = SHS(f, λ, γ), where

f(x) = αxk+1 +O(xk), λ(x) = βxk +O(xk−1), (30)

k ≥ 1 (so that the ODE is superlinear), and all of the coefficients of both polynomials are positive. Then:

1. if γ > e−α/β , then Xt has Type I blowups almost surely;

2. if 1− α/β < γ < e−α/β , then Xt → 0 in probability, even though E[Xt]→∞ as t→∞;

3. if γ < 1− α/β, then Xt → 0, both in L1 and almost surely.

In particular, Xt will not have Type II blowups.
Finally, if we assume a linear ODE, i.e. Xt = SHS(αx, β, γ), then the conclusions above are all true except for

#1, in which case we have that Xt →∞ a.s., but Xt <∞ w.p. 1 for any finite t.

The way we proceed to prove this is as follows. We first compute a recurrence relation when f, λ are
assumed to be pure monomials, and then show that this recurrence relation has growth properties that cor-
respond to the three types of convergence above, in the appropriate parameter regimes. Finally, we prove
a monotonicity theorem that allows us to extend the calculation for monomials to general polynomials.

Proposition 5.5. If Xt = SHS(f, λ, γ) with deg(λ) = deg(f) − 1, then the probability of a Type II blowup is zero
for any initial condition.

Proof. Since deg(λ) = deg(f)−1, then λ(ϕt(x)) ∼ 1/t in a neighborhood of the singularity (see the beginning
of the proof of Proposition 5.3 for more detail), so that∫ t∗

t0

λ(ϕs(x)) ds =∞,

and a Type II blowup is not possible.

Lemma 5.6. Let Xt = SHS(f, λ, γ) with f(x) = αxk+1 and λ(x) = βxk. Then

XTn = γe(α/β)SnXTn−1
,

where Sn are iid unit-rate exponential random variables.
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Proof. It is not hard to check that
ϕt(x) =

x

(1− αktxk)1/k
,

and thus

λ(ϕt(x)) =
βxk

1− αktxk
.

Therefore, we have

Sn =

∫ Tn+1−Tn

0

λ(ϕs(XTn)) ds =

∫ Tn+1−Tn

0

β(XTn)k

1− αks(XTn)k
ds

=
−β
αk

ln
∣∣1− αks(XTn)k

∣∣ ∣∣∣∣∣
s=Tn+1−Tn

s=0

=
−β
αk

ln
∣∣1− αk(Tn+1 − Tn)(XTn)k

∣∣ .
From this, one can see that

1− αk(Tn+1 − Tn)(XTn)k = e−α/(βk)Sn . (31)

We then compute

XTn+1
= γϕTn+1−Tn(XTn)

= γ
XTn

(1− αk(Tn+1 − Tn)(XTn)k)1/k
= γe

α
β SnXTn .

(32)

Lemma 5.7. Let Sk be iid unit rate exponentials and define

Zn =

n∏
k=1

γe(α/β)Sk .

Then:

1. if γ > e−α/β , then there exists a δ′ > 0 such that lim infn e
−δ′nZn =∞ with probability one;

2. if 1− α/β < γ < e−α/β , then Zn → 0 in probability, even though E[Zn]→∞ as t→∞;

3. if γ < 1− α/β, then Zn → 0, both in L1 and almost surely.

Proof. Let us write Wk = γe(α/β)Sk . Let us write µ = E[Wk] and δ = E[log(Wk)]. We compute:

µ = γE[e(α/β)Sk ] = γ

∫ t

0

e(α/β)te−t dt =
γ

1− α/β
.

We also have

δ = E
[
α

β
Sk + log γ

]
=
α

β
+ log γ.

Note then that the three conditions in this lemma correspond to δ > 0; δ < 0 and µ > 1; and µ < 1,
respectively. (By Jensen’s inequality, we have

µ = E[Wk] = E[elog(Wk)] > eE[log(Wk)] = eδ,

so clearly δ > 0 implies µ > 1, and these are the only three possibilities.)
First, we compute

E[Zn] = E

[
n∏
k=1

Wk

]
=

n∏
k=1

E[Wk] = µn,
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so clearly the expectation goes to zero (resp. ∞) if µ < 1 (resp. µ > 1). Since Zn ≥ 0 by definition, this
implies that Zn → 0 both in L1 and almost surely. This establishes claim #3 of the lemma.

Next, note that

Zn = exp(log(Zn)) = exp

(
n∑
k=1

logWk

)
= exp

(
α

β

n∑
k=1

Sk + n log γ

)
.

From the Law of Large Numbers,

n∑
k=1

logWk = nE[logWk]±O(
√
n) = n

(
α

β
+ log γ

)
±O(

√
n),

and if δ 6= 0, this sum goes to ±∞ depending on the sign of δ. More specifically, we can use Chernoff-type
bounds [47, 48]: let δ > 0. Since

E

[
n∑
k=1

logWk

]
= nδ,

the Chernoff bounds give

P

(
n∑
k=1

logWk < nδ/2

)
< e−nδ/8,

or
P
(
Zn < enδ/2

)
< e−nδ/8. (33)

In particular, this means that Zn grows faster than an exponential with probability exponentially close to
one. For example, choose 0 < δ′ < δ/2. Now, if it is not true that lim inf e−δ

′nZn =∞, this means that there
exists M > 0 and an infinite sequence n1, n2, . . . , nk, . . . such that e−δ

′nkZnk ≤M . From (33), this event has
probability zero. This proves claim #1 of the lemma.

Conversely, if δ < 0, then
P
(
Zn > enδ/2

)
< e−nδ/12,

or the infinite product goes to zero exponentially fast with probability exponentially close to one, which
implies that Zn → 0 in probability. Thus, if δ < 0 and µ > 1, then we have that Zn → 0 in probability but
E[Zn]→∞, proving claim #2 of the theorem.

Lemma 5.8. Let Xt = SHS(f, λ, γ) and Yt = SHS(g, µ, γ), and assume that

X0 ≤ Y0, g(x) ≥ f(x), µ(x) ≤ λ(x). (34)

If Xt(ω) has a finite-time blowup, then so does Yt(ω). Thus, the probability of Yt having a finite-time blowup is at
least as large as Xt having one, and so, for example, if Xt has an a.s. finite-time blowup, then so does Yt.

Conversely, if there exists an M > 0 such that for all x ≤ M , (34) holds, and X0 ≤ Y0 ≤ M , if Yt(ω) → 0 as
t→∞, then so does Xt(ω), and thus the probability of Xt decaying to zero is at least as large as the probability that
Yt does.

Proof. We denote T (X)
n as the nth reset time for process Xt, and similarly for T (Y )

n . Since µ ≤ λ, T (Y )
1 ≥

T1(X). Together with the fact that g ≥ f , this implies that Y
T

(Y )
1
≥ X

T
(X)
1

. Using induction, the random
sequence Y

T
(Y )
n

dominates the sequence X
T

(X)
n

for any ω, and the conclusions follow.

Remark 5.9. Said in words: if we make the vector field larger, or the rate smaller, then the system is more likely to
blow up. Conversely, if we make the vector field smaller, or the rate larger, the system is more likely to go to zero.
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Proof of Theorem 5.4. Let us first consider the case where f and λ are pure monomials, i.e., f(x) =
αxk+1, λ(x) = βxk. Let us first consider the case where γ > e−α/β . Using Lemmas 5.6 and 5.7, we know
that there exists δ′ > 0 such that lim infn e

−δ′nXTn = ∞ with probability one. This means that XTn is
blowing up at least exponentially fast as a function of n. Moreover, using (31), we can solve

Tn+1 − Tn =
1− e−(α/βk)Sn

αk(XTn)k
≤ Ce−δ

′kn,

and if k > 1, the telescoping sum is summable and T∞ < ∞. For the other two parameter regimes, the
statement follows directly.

If k = 1, then the recurrence in (31) still holds, but now we have Tn+1 − Tn = Sn/β, and it is straightfor-
ward to see that the telescoping sum is not summable w.p. 1, so that T∞ =∞.

Now, for the general polynomial, we use Lemma 5.8. Consider a general f and λ, and assume that
γ > e−α/β . If we choose β′ > β so that γ > e−α/β

′
, then the argument above shows that SHS(αxk+1, β′xk, γ)

has Type I blowups a.s., and Lemma 5.8 implies that SHS(f, λ, γ) does as well. Similarly, if γ < e−α/β ,
choose α′ > α with γ < e−α

′/β . Then the above argument implies that SHS(α′xk+1, βxk, γ) → 0 a.s., so
Lemma 5.8 implies that SHS(f, λ, γ)→ 0 a.s. as well.

5.3 Numerical results

In Figure 4 we plot the results of several Monte Carlo simulations for blowups. These simulations required
a technique more sophisticated than the Gillespie–Euler method used earlier. We are attempting to simulate
a system where nonlinear ODE are blowing up, meaning that the vector fields get large and will be very
sensitive to discretization errors. We implemented a two-phase method as follows: if Xt < 10, then we im-
plemented a Euler–Gillespie method as described before, with ∆tmax = 10−2. When Xt ≥ 10, we switched
to a shooting method to obtain the next stopping time. At any Xt, we compute the time of singularity that
would occur if there were no jumps, call this tright, and define tleft = 0. Choose Sn+1 as an exponential,
and from this we can either determine if we will have a Type II blowup before the next jump or not. If
not, we then use a bisection method to find Tn+1: at any stage in the process, we choose the midpoint of
[tleft, tright] and determine whether the integral in (4) is larger or smaller than Sn+1; if smaller, we set tleft to
be this midpoint, and if larger, we set tright to be this midpoint. This guarantees an exponential convergence
to Tn+1, and from this we can compute all of the other quantities of interest. Finally, we always truncated
whenever the system passed 109 ≈ exp(20.7) — any time Xt > 109, we halted the computation.

In Figure 4a, we plot log(Xt) for a single realization of the SHS where we have chosen f(x) = x3,
λ(x) = 2x2, and γ = 0.75. One can see that there is a finite-time blowup, and in fact we see that there are
many jumps happening in a very short time, as the trajectory goes off to infinity. This comports with the
prediction of a Type I blowup. In Figure 4b, we plot log(Xt) for a single realization of the SHS where we
have chosen f(x) = x4, λ(x) = 2x2, and γ = 0.5. One can see that there is a finite-time blowup here as well,
but there are only a few jumps on the way to infinity; this comports with the prediction of a Type II blowup.

In Figures 4c and 4d, we present the results of a family of simulations for Type I blowups. Here we
run each simulation for 104 steps, or it has a finite-time blowup, and for each value of γ we computed 102

realizations. We chose f(x) = x3, λ(x) = 2x2 throughout, but vary γ in the range 0.1, . . . , 0.9. According to
Theorem 5.4, the critical values of γ are 1/2 and e−1/2 ≈ 0.6061 — in both figures we have put vertical red
lines at these values.

In both Figure 4c and 4d we use the plotting convention of plotting each simulation with a light blue
small circle, then plot the mean and standard deviation for all 102 realizations for each gamma value in
dark blue with a circle at the mean and an error bar for the standard deviation. In (c), we plot the logarithm
of the empirical mean of Xt over the entire simulation, recalling that we are truncating any trajectory that
passes 109 ≈ exp(20.7). Thus observations near or exceeding 20 are all blowups. We see that for γ < 1/2,
all realizations stay small throughout the simulation. In the range [1/2, e−1/2], there is a spread of values
depending on realization, and past e−1/2 the blowups dominate. One can see this more starkly in Figure 4d:
here we have plotted the final time of the simulation — note that we run all simulations for 104 steps, and
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the maximum threshold for the naı̈ve method is ∆tmax = 10−2 — so if the trajectory always stays small, we
would expect a total simulation time very close to 104 ·10−2 = 100. Thus we can interpret a final simulation
time near 100 as a proxy for a blowup not occurring; conversely, if the simulation truncates significantly
earlier than t = 100, this is a sign that the system has had a finite-time blowup, and we see this clearly for
large γ.

Figure 4: Results of simulations for SHS undergoing blowups; see text for more detailed description

6 Exact computations

We found the recurrence relations (31, 32) useful above in proving whether or not an SHS with certain
parameters had blowups or not. In this section, we use recurrence relations to compute exact invariant
distributions for SHS, for certain choices of f and λ.

6.1 General relation

If we write g(x) = λ(x)/f(x), and write G′(x) = g(x), then we compute:

Sn =

∫ Tn+1−Tn

0

λ(ϕt(XTn)) dt

=

∫ Tn+1−Tn

0

g(ϕt(XTn))f(ϕt(XTn)) dt

=

∫ Tn+1−Tn

0

g(ϕt(XTn))
d

dt
ϕt(XTn) dt

= G(ϕTn+1−Tn(XTn))−G(XTn).

Since g(x) > 0 for all x, G(x) is increasing, so we can write

XTn+1
= γϕTn+1−Tn(XTn) = γG−1(Sn +G(XTn)).
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This identity holds true for any f , λ, but at the cost that g(x) might be a rational function and thus G(x)
could be quite complicated. We get a nice solution if g(x) is a monomial: if we assume that g(x) = δxp,

(ϕTn+1−Tn(XTn))p+1 − (XTn)p+1 = (p+ 1)δ−1Sn,

γp+1(ϕTn+1−Tn(XTn))p+1 = γp+1((XTn)p+1 + (p+ 1)δ−1Sn),

Xp+1
Tn+1

= γp+1((XTn)p+1 + (p+ 1)δ−1Sn).

Writing Yn = (XTn)p+1, ζ = γp, and θ = (p+ 1)/δ, gives the recursion

Yn+1 = (ζYn + θSn). (35)

Note that ζ ∈ (0, 1), since it is a positive power of γ, and θ ∈ R. We compute

Yn = ζnY0 + θ

n∑
k=1

ζkSk.

Writing the final sum as

Vn = θ

n∑
k=1

ζkSk,

and assuming X0 has finite moments of all orders, then for all m > 0,

lim
n→∞

E[(Yn)m] = E[(Vn)m],

and we can study the latter. Similarly, as n→∞, the pdf for ζnY0 converges to δ(0), so

pYn(z) = pζnY0+Vn(z) = pζnY0(z) ∗ pVn(z)→ pVn(z),

and thus it is sufficient to study Vn whether we are interested in particular moments, or a formula for its
distribution. We now write down formulas for the moments and distribution of Vn.

6.2 Moments of Vn
Theorem 6.1. The mth moment of Vn is given by

E[(Vn)m] = θm ·m!

nm∑
k=m

π(k,m)
n ζk, (36)

where π(k,m)
n is the number of partitions of k into m positive parts, each of size less than or equal to n.

Proof. Wlog assume θ = 1 by rescaling. We use the standard “generatingfunctionology” approach here: we
write

E[etVn ] = E[et
∑n
k=1 ζ

kSk ] = E[

n∏
k=1

etζ
kSk ] =

n∏
k=1

E[etζ
kSk ] =

n∏
k=1

1

1− tζk
,

where we have used independence of the Sk, and this formula is valid if |t| < ζ−k. We also have

E[etVn ] = E

[ ∞∑
m=0

(tVn)m

m!

]
=

∞∑
m=0

tm

m!
E[(Vn)m].

Thus the moment of interest is m! times the coefficient of tm in the power series of E[etVn ].
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We have
n∏
k=1

1

1− tζk
=

n∏
k=1

∞∑
`=0

(tζk)` =

∞∑
`1,`2,...,`n=0

n∏
k=1

(tζk)`k

=

∞∑
`1,`2,...,`n=0

t
∑n
k=1 `kζ

∑n
k=1 k`k

=

∞∑
m=0

tm
∑

`1,`2,...,`n=0
`1+···+`n=m

ζ
∑n
k=1 k`k .

Therefore
E[(Vn)m] = m!

∑
`1,`2,...,`n=0
`1+···+`n=m

ζ
∑n
k=1 k`k

The coefficient of ζk in this sum is given by the number of integer solutions to the Diophantine system

`1 + `2 + · · ·+ `n = m,

`1 + 2`2 + · · ·+ n`n = k.
(37)

This number is equal to the number of partitions of k into m positive parts, each less than n. To see this,
consider such a partition, ordered increasingly, so that it contains `1 1’s, then `2 2’s, all up to `n n’s. Then
by definition, the `j must satisfy (37). Conversely, any choice of `j satisfying (37) gives a partition in the
obvious manner. This completes the proof.

Corollary 6.2.

E[(V∞)m] = θm ·m!

∞∑
k=m

πm(k)ζk,

where πm(k) is the standard partition function of k into m positive parts [49].

Remark 6.3. It is not entirely surprising that partition numbers appear in this computation. Again, let θ = 1 for
simplicity. From Corollary 6.2 that the generating function of V∞ is the infinite product

E[etV∞ ] =

∞∏
`=1

1

1− tζ`
.

But we have

E[etV∞ ] =

∞∑
m=0

tm

m!
E[(V∞)m] =

∞∑
m=0

∞∑
k=m

πm(k)tmζk =

∞∑
k=0

ζk
k−1∑
m=0

tmπm(k).

Clearly
∑k−1
m=0 πm(k) is the standard partition function π(k), and setting t = 1 we obtain

∞∏
`=1

1

1− ζ`
=

∞∑
k=0

ζkπ(k),

recovering the well-known formula for the partition function.
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6.3 Distribution of Vn
Theorem 6.4. The probability distribution function of Vn is given by

pn(z) =

n∑
k=1

Ak,n(ζ)e−z/ζ
k

1(z > 0),

with

Ak,n(ζ) =
(−1)k−1ζk(k−3)/2

n∏
j=1
j 6=k

(1− ζ |j−k|)
.

Proof. We prove this by induction. Starting with n = 1, we see that A11(ζ) = 1/ζ. Since V1 = ζS1, and
therefore

P(V1 > z) = P(ζS1 > z) = P(S1 > z/ζ) = e−z/ζ1(z > 0), p1(z) = − d

dz
P(V1 > z) =

1

ζ
e−z/ζ1(z > 0).

This proves the formula for p1(z). Since Vn+1 = Vn + ζn+1Sn+1, we have

pn+1(z) =

∫ ∞
−∞

pn(z − x)ζ−(n+1)e−x/ζ
n+1

1(x > 0) dx

=

∫ ∞
−∞

n∑
k=1

Ak,n(ζ)e−(z−x)/ζk1(z − x > 0)ζ−(n+1)e−x/ζ
n+1

1(x > 0) dx

=

n∑
k=1

Ak,n(ζ)e−z/ζ
k

∫ z

0

ζ−(n+1) exp

(
ζn−k+1 − 1

ζn+1
x

)
dx

=

n∑
k=1

Ak,n(ζ)e−z/ζ
k 1

ζn−k+1 − 1

(
exp

(
ζn−k+1 − 1

ζn+1
z

)
− 1

)

=

n∑
k=1

Ak,n(ζ)
e−z/ζ

n+1 − e−z/ζk

ζn−k+1 − 1

=

n∑
k=1

Ak,n(ζ)

1− ζn−k+1
e−z/ζ

k

+ ez/ζ
n+1

n∑
k=1

Ak,n(ζ)

ζn−k+1 − 1
.

This gives us the recursion

Ak,n+1 =
Ak,n

1− ζn−k+1
, k < n+ 1; An+1,n+1 =

n∑
k=1

Ak,n
ζn−k+1 − 1

.

By plugging in, we see that the formula for Ak,n satisfies the recursion relation, and we are done.

Corollary 6.5. The limit
Ak(ζ) := lim

n→∞
Ak,n(ζ)

exists for all ζ ∈ (0, 1) (and in fact convergences uniformly), so that the distribution for V∞ is

pV∞(z) =

∞∑
k=1

Ak(ζ)e−z/ζ
k

.
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Remark 6.6. We have the following formulas for Ak(ζ):

A1(ζ) =
1

ζ

1∏∞
k=1(1− ζk)

=
1

ζ

∞∑
k=1

∞∑
j=1

ζjk =
1

ζ

∞∑
n=1

ϕ(n)ζn,

where ϕ(n) is the number of distinct factors of the integer n. For k > 1, we have that

Ak(ζ)

A1(ζ)
=

(−1)k−1ζ
(k−2)(k−1)

2∏k−1
j=1 (1− ζj)

.

Moreover, for any fixed ζ ∈ (0, 1),
lim
k→∞

Ak(ζ) = 0,

and in fact, for fixed ζ and k sufficiently large,

Ak(ζ)

Ak−1(ζ)
≈ ζk−2,

so that Ak(ζ) goes to zero superexponentially fast as k →∞.

7 Conclusions

We have presented many results for a class of SHS and examined the tension between instability arising
from the flows and stability arising from the resets. The types of dynamical phenomena that we have
observed share many features with both deterministic dynamical systems and stochastic processes.

One common feature of all of the systems studied here was that the state space was one-dimensional. Ex-
tending the types of results in this paper to higher dimensions could be challenging due to non-commutativity
of flows.
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