
ar
X

iv
:1

41
1.

66
44

v3
 [

m
at

h.
D

S]
 8

 J
an

 2
01

5

Decidability and Universality of Quasiminimal

Subshifts

Ville Salo

vosalo@utu.fi

January 9, 2015

Abstract

We introduce the quasiminimal subshifts, subshifts having only finitely
many subsystems. With N-actions, their theory essentially reduces to the
theory of minimal systems, but with Z-actions, the class is much larger.
We show many examples of such subshifts, and in particular construct a
universal system with only a single proper subsystem, refuting a conjec-
ture of [Delvenne, Kůrka, Blondel, ’05].

1 Introduction

One of the most studied classes of subshifts1 in the literature is that of mini-
mal subshifts. These are precisely the nonempty subshifts containing no proper
nonempty (sub-)subshifts. Some reasons that these subshifts are of great in-
terest are that every subshift contains a minimal subshift, and many natural
examples of subshifts, such as those generated by primitive substitutions and
those generated by Toeplitz sequences, are minimal. We direct the reader to
[2, 16] for a discussion of such systems. More generally, dynamical systems on
compact metric spaces always contain minimal subsystems.

In [7], zero-dimensional dynamical systems with an N-action and an effec-
tive presentation, called symbolic systems, are studied from the point of view of
computational universality. These systems generalize one-sided subshifts whose
language is recursive, and also contain many other symbolic systems such as
Turing machines, counter machines and tag systems. Given any finite clopen
partition of a space and a Muller language of infinite words (one of the no-
tions of regularity for infinite words) with partition elements as letters, the
model-checking problem is defined as the problem of checking whether one of
the sequences in the language corresponds to a sequence of observations along
an orbit. The model-checking problem for regular languages is the question of
whether a finite sequence of observations in the language can be made in the
system. A system is called decidable if the model-checking problem for Muller
languages is decidable, and universal if its model-checking problem for regu-
lar languages is Σ0

1-complete (that is, the halting problem many-one reduces

1Here, subshifts are sets X ⊂ SM which are topologically closed, and also closed under the
shift action of M in the sense X · M ⊂ X, where M is a monoid and S a finite set. In this
paper, we consider the cases M ∈ {N,Z}.

1

http://arxiv.org/abs/1411.6644v3

to it). In particular, a universal system cannot be decidable, but a gap is left
between the two definitions, so that both decidability and undecidability results
are maximally strong.

In the case of subshifts, the model-checking problem for regular languages
amounts to asking whether the intersection of the language of the subshift with
a given regular language is empty, and we use this as the definition, omitting
the details of computable presentations.

One of the main results of [7] is that if a minimal system is computable2,
then it is decidable in the above sense. This shows in particular that many
non-trivial things can be computed about minimal subshifts, as long as the
forbidden patterns of the subshift can be enumerated. For example, given3 a
Turing machine enumerating the forbidden patterns of a (nonempty) minimal
subshift X over the alphabet {0, 1, 2}, an algorithm can check whether there
exists a subword w of a point of X where the number of 1s differs from the
number of 0s by more than 7 while simultaneously the number of 2s in w is not
divisible by 5.

It is not particularly hard to show that if the forbidden words of X can be
enumerated and X is minimal, then also the words that do occur in X can be
enumerated (see Theorem 7), so that if such w exists, a rather simple algorithm
can find it. The algorithm of [7] must be even smarter: if no w with this list
of properties exists, then after enumerating some finite number of forbidden
patterns, the algorithm will state this fact.

The algorithm of [7] applies more generally to systems where every proper
subsystem has nonempty interior, and to systems whose limit set is a finite
union of minimal systems.4 It is interesting to ask where the precise border of
decidability lies, by extending the family of subshifts further, and to this end
the authors also make the following conjecture.

Conjecture 1 ([7]). A universal symbolic system has infinitely many minimal
subsystems.

Conversely, this conjecture would imply that a system with finitely many
minimal subsystems has to be non-universal (even if not necessarily decidable).
Note that this conjecture talks about infinitely many minimal subsystems, but
allows us to have any number of subsystems in general. It turns out that this
is not a very strong condition, and as such, the conjecture is false.

Proposition 1. There exists a recursive universal subshift with finitely many
minimal subsystems.

The proof of this is given in Section 3, Proposition 3. Our example is a
Z-subshift, and we interpret subsystems in the sense of being closed under the
Z-action, while subsystems in the sense of [7] need to be closed under the induced
N-action only. It is easy to see that this does not change the number of minimal
subsystems, although it may change the number of subsystems in general (see
Proposition 4 for details), so that our example also provides an N-system with

2In their paper, computable means recursive, or having ∆0

1
= Σ0

1
∩ Π0

1
language, but see

Theorem 7.
3It is not explicitly stated in [7] that the algorithm is uniform in the description of the

subshift, but this is clear from their proof.
4See Section 4.2 for an application of this result.

2

the desired properties. Alternatively, one can directly modify our example to
be one-sided.

The subshift is very simple, and we offer multiple variations of it. At its
simplest, the number of minimal subsystems is one, and this subsystem is just
a single point.5 The subshift is countable, and in fact contained in a countable
sofic shift. Alternatively, the subshift can be contained in a countable SFT,
although with slightly more minimal subsystems. The Cantor-Bendixson rank
of the enveloping countable sofic shift is 4. CB-rank 4, for a countable sofic
shift, means that each point contains at most 3 disturbances to periodicity. In
addition to the subshift being very simple, also the universality is very strong:
not only are intersections with regular languages Σ0

1-complete, but even the
undirected halting problem, the question of whether two given words u and v
occur in the same point, is Σ0

1-complete.
While X has only finitely many minimal subsystems, it has infinitely many

subsystems altogether. In fact, the set of subshifts ofX has the cardinality of the
continuum (which is the maximal possible). In the abstract and introduction of
[7], the authors state the conjecture in a weaker form, asking if a universal system
should have infinitely many subsystems, without any mention of minimality.
While this was presumably just meant as a shortened form of the statement of
Conjecture 1, it is a natural next question whether at least this is true.

Question 1. Must a universal symbolic system have infinitely many subsys-
tems?

We name this class for easier reference.

Definition 1. A subshift is quasiminimal if it has finitely many proper subshifts.

The question for us is then whether a recursive quasiminimal subshift can
be universal. One might guess that if X has only finitely many subshifts, then
it must be a quite simple extension6 of the one or more minimal subshifts it
necessarily contains, or perhaps even essentially just a union. It turns out that,
unlike in Proposition 1, whether this is true depends on whether the acting
monoid is N or Z, that is, on whether our subshifts are one- or two-sided.7

In the case of N-actions, we show that the extensions of minimal subshifts
to quasiminimal ones are rather trivial, and the answer to Question 1 is “yes”.

Theorem 1. A recursive quasiminimal N-subshift is decidable.

This is shown in Corollary 3. The proof is quite short: we characterize this
class, and show that it fits one of the decidability result proved in [7]. Our
main interest is in the case of Z-actions, where the extensions can be quite
complicated. For example, while primitive substitutions give rise to minimal
subshifts, all aperiodic substitutions satisfying a technical property give rise
to quasiminimal ones, see Proposition 2. These examples already show that

5The one-point subshift is the simplest minimal subshift, but any minimal subshift can be
used here, though naturally at the expense of countability.

6Here, we use the term extension in the sense of containment (monomorphisms), and not
in the sense of factoring (epimorphisms). This usage is somewhat nonstandard in the theory
of dynamical systems, but it is fitting for quasiminimal systems, since they are inductively
built, in finitely many steps, from smaller quasiminimal systems by adding new points.

7Strictly speaking, we could also consider SZ with an N-action (obtaining a rather unnatural
definition of a subshift), but the convention is that SM uses the natural shift action of M .

3

quasiminimality is indeed quite different from minimality. In fact, in this setting,
the answer to Question 1 is “no”.

Theorem 2. There exists a recursive universal quasiminimal Z-subshift.

While this answers Question 1 completely in the case of Z-actions, it turns
out to be a bit more intricate than Conjecture 1 – for example, we will see
that the halting problem (whether a clopen set is reachable from another one)
is decidable for a recursive quasiminimal subshift. In fact, given any finite
tuple of words, an algorithm can check whether there exists a point in the
subshift containing those words, in order (see Theorem 9). In particular (though
not quite equivalently) we can solve the model-checking problem for regular
languages of the form w1S

∗w2S
∗ · · ·S∗wk where S is the alphabet of the subshift

and the wi are arbitrary words. This class of regular languages is related to the
piecewise testable regular languages.

On the other hand, in Theorem 3 we show that the halting problem along a
clopen set is Σ0

1-complete, that is, the halting problem where we restrict the path
between the given clopen sets to stay in a third clopen set. This corresponds
to the fact that the model-checking problem is undecidable for locally testable
languages, a well-known subclass of regular languages.

We also study countable quasiminimal subshifts. For these, we believe the
model-checking problem for locally testable languages is in fact decidable (Con-
jecture 2), which would show a great difference between the countable and
uncountable cases. We prove the undecidability of the model-checking problem
for piecewise testable languages and what we call renewal languages (languages
obtained as concatenations of a set of words, starting and ending in a given
word), in Theorem 5 and Theorem 4. The model-checking problem for piece-
wise testable languages is dealt with by showing that the “halting problem along
a clopen set except on exactly k steps” (which we call the counting problem) is
Σ0

1-complete, and the model-checking problem for renewal languages by showing
that the “halting problem in time m mod k” is Σ0

1-complete.
An obvious question is how many subshifts exactly do we need to have

to achieve universality, since the result of [7] shows we need at least one. In
the uncountable case, our example has only one minimal subshift (which can
be chosen to be any infinite minimal subshift). This is clearly optimal. For
countable quasiminimal subshifts, the number of nontrivial (nonempty and non-
full) subshifts is two in our example for renewal systems, and we show this to
be optimal in Proposition 8, since countable systems with only one subsystem
are in fact decidable in general. For the particular case of piecewise testable
languages, the optimal number of subshifts is shown to be 4.

In addition to proving a small gap between decidability and undecidability,
these constructions are interesting as first explicit examples of quasiminimal
Z-subshifts. In particular, they show that a quasiminimal Z-subshift can be
quite far from a union of minimal Z-subshifts, and even countable quasiminimal
Z-subshifts can be rather complicated objects. In fact, these constructions are
in some sense representative of the general case, in that a full characterization
of quasiminimal subshifts can be obtained by generalizing and iterating the
constructions of this article. We defer the full characterization to a later work
[22], and prove here only enough structural results to solve our decidability
problems of interest in Section 4.

4

We also show in Theorem 6 that the model-checking problem of context-free
languages can be undecidable even for minimal subshifts.

2 Definitions and basic observations

2.1 More or less standard definitions

Remark 1. In this article, N = {0, 1, 2, 3, . . .}, and words are 0-indexed. We
give the definitions of subshifts and related concepts for Z-actions in this section.
It is easy to modify them in the case of N-actions for the few places where we
need them, the crucial difference being that we do not require surjectivity for
N-actions. A subset of SZ, when considered a dynamical system, will always be
considered a system with a Z-action given by the shift, and a subset of SN is an
N-system.

Definition 2. A subshift is a compact subset X of NZ, where N has the discrete
topology and NZ the product topology, and which is shift-invariant, in the sense
that σ(X) = X, where σ : NZ → NZ is the shift map σ(x)i = xi+1.

For standard references see [17, 16, 14].
Note that this indeed corresponds (up to symbol renaming) to the usual

definition where a finite set is used in place of N, and closed shift-invariant
subsets are called subshifts. Namely, for any finite S ⊂ N, X ⊂ SZ is a subshift
if and only if X is closed and shift-invariant, since SZ is compact and Hausdorff,
so that its closed subsets are precisely its compact subsets. On the other hand,
no shift-invariant set X ⊂ NZ containing infinitely many letters is compact,
since the open cover {[a]0 | a ∈ N} has no finite subcover. Accordingly, when
we write that X ⊂ SZ is a subshift, we imply that S is chosen to be some finite
alphabet. The induced topology of SZ for finite S is generated by the cylinders
[w]i = {x ∈ SZ | x[i,i+|w|−1] = w} for w ∈ S∗ and i ∈ Z, which are clopen

in SZ. The clopen sets are precisely the finite unions of cylinders, and can all
be represented as [C]i = [w1]i ∪ [w2]i · · · ∪ [wk]i for some i ∈ Z, n ∈ N and
C = {w1, . . . , wk} ⊂ Sn. We write [C] = [C]0.

For words u, v ∈ N∗ (that is, two finite words over N), we write uv for their
concatenation. For words u, v, v′, w ∈ N∗, we write ∞uv.v′w∞ for the point
x ∈ NZ with x[0,|v′|−1] = v′, x[−|v|,−1] = v, and for all i ∈ N,

x[−|v|−(i+1)|u|,−|v|−1−i|u|] = u

and
x[|v|+i|w|,|v|+(i+1)|w|−1] = w.

Note that coordinate 0 is to the right of the decimal point. Often, however, this
position is not relevant, and the decimal point is omitted. We sometimes write
· · ·u.v · · · when the continuations from u to the left and from v to the right are
easy to guess. For example, x = · · · 0000.0123 · · · is the point x ∈ NZ where for
all i ∈ N we have x−i = 0 and xi = i. Similar notations are used for points
x ∈ NN.

A central pattern of x ∈ NZ is a word x[−n,n] ∈ N∗ for some n ∈ N. For

x ∈ NZ, we write u ⊏ x if x[i,i+|u|−1] = u for some i ∈ Z. We also write u ⊏ v

5

for two words u, v ∈ N∗ if u is a subword of v. This extends to sets A ⊂ NZ by
u ⊏ A if u ⊏ x for some x ∈ A.

A subshift can also be defined by a set F ⊂ S∗ of forbidden words, in the
sense that if X ⊂ SZ is a subshift, then there exists F ⊂ S∗ such that

X = {x ∈ SZ | ∀u ∈ F : u 6⊏ x}.

If F can be taken to be finite, then X is called an SFT, and if it can be taken
to be a regular language (a language accepted by a finite-state automaton [13]),
then X is called a sofic shift. Every SFT is sofic, but the converse is not true.
The SFT approximation of order k of a subshift X ⊂ SZ is the SFT Yk whose
forbidden patterns are precisely the words Sk \ Lk(X). Thus, for all k and
m ≥ k, we have Lk(Ym) = Lk(X).

If X and Y are subshifts, a continuous function f : X → Y between them is
called a morphism if f ◦ σ = σ ◦ f . A surjective morphism is called factor map,
and a bijective one is called a conjucagy, or a recoding.

For a point x ∈ NZ, we write Ln(x) for length-n subwords of x, that is,
Ln(x) = {u ∈ Nn | u ⊏ x}, and L(x) =

⋃

n Ln(x). This is called the language
of x. For any set A ⊂ NZ, we write Ln(A) =

⋃

x∈A L(x), and define L(A)
as before. A subshift X ⊂ SZ is uniquely determined by its language L(x),
which is always factor-closed (vwv′ ∈ L(X) =⇒ w ∈ L(X)) and extendable
(u ∈ L(X) =⇒ ∃a, b ∈ S : aub ∈ L(X)).

Accordingly, for a factor-closed and extendable language L, we write L−1(L)
for the unique subshift X with L(X) = L. We extend this notation to all
extendable languages L by L−1(L) = L−1(Fact(L)), where Fact(L) = {w | ∃u ∈
L : w ⊏ u} is the factor closure of L. For example, we can write the (sofic) even
shift [17] with forbidden patterns 1(00)∗01 as L−1((1(00)∗)∗), and the (SFT)
golden mean shift with the single forbidden pattern 11 as L−1((100∗)∗). The
orbit of a point x ∈ NZ is O(x) = {σi(x) | i ∈ Z}. The orbit closure O(x) of
x ∈ SZ is the (topological) closure of the orbit of x in SZ.8 It is easy to see that
O(x) is the smallest subshift containing x ∈ SZ.

A substitution is a function τ : A → B∗, where A,B ⊂ N. In our applica-
tions, usually A = N, and B = S where S is the alphabet of a subshift being
discussed. For φ ∈ NZ and τ : N → S∗, we write

τ(φ) = · · · τ(φ−2)τ(φ−1).τ(φ0)τ(φ1)τ(φ2) · · · .

A weakly transitive point (for X) is a point x ∈ X such that w ⊏ x holds for
all w ⊏ X . If X contains a weakly transitive point, we sayX is weakly transitive.
A doubly transitive point (for X) is a point x ∈ X such that every word w ⊏ X
occurs infinitely many times in both tails of x. If X contains a doubly transitive
point, then we say X is transitive. A weakly transitive subshift need not be
transitive. For example, a transitive subshift is either finite or uncountable
(since a countable subshift contains an isolated point, that is, a singleton open
set [4]), but the infinite countable subshift L−1(0∗10∗) = O(∞010∞), called the
sunny-side-up subshift is weakly transitive since it is the orbit closure of the
point ∞010∞.

A subshift X ⊂ SZ is minimal if we have Y ∈ {∅, X} for all subshifts Y ⊂ X .
This is equivalent to the fact that X is uniformly recurrent, that is,

w ⊏ X =⇒ ∃n : ∀u ∈ Ln(X) : w ⊏ u.

8See Section 2.2 for the case where x has infinite language.

6

We write aZ for the point x with ∀i ∈ Z : xi = a. We have O(aZ) = {aZ} =
L−1(a∗). This is an example of a (finite) minimal subshift. Typically, minimal
subshifts are uncountable. Such examples can be found in [16].

There is a canonical way to remove the isolated points of a space (in our case,
a subshift): The Cantor-Bendixson derivative of a subshiftX is the subshiftX(1)

obtained by forbidding all words w from X such that [w]0 is a singleton. That
is, X ′ = X(1) is X without its isolated points. This process can be repeated
up to any ordinal in an obvious way by transfinite induction, and the Cantor-
Bendixson rank of a subshift X is the least ordinal λ such that X(λ) = X(λ+1),
where X(β) denotes the βth Cantor-Bendixson derivative of X . The Cantor-
Bendixson rank of X is denoted by CB(X), and we call the set X(CB(X)) the
Cantor-Bendixson center of X . The Cantor-Bendixson center is the unique
maximal perfect subspace of X , which is automatically a subshift. A subshift
X is countable if and only if its Cantor-Bendixson center is empty. We refer to
[4] for details.

We need the first few levels of the arithmetical hierarchy [20]. Namely, Σ0
1 is

the set of recursively enumerable languages, that is, languages such that there
is an algorithm that halts on words in the language, but not on the ones outside
it. The set of complements of Σ0

1 languages is Π0
1. A language in ∆0

1 = Σ0
1 ∩Π0

1

is called recursive. Properties that are recursive when encoded into languages
(in some natural way, usually safe to leave implicit) are called decidable.

We say that a subshift is Π0
1 or Σ0

1 if its language is. There are other possible
definitions for Π0

1 subshifts, and we give a few below.

Lemma 1. For a subshift X ⊂ SZ, the following are equivalent:

• X is Π0
1.

• The set S∗ \ L(X) is Σ0
1.

• There exists a Turing machine M which enumerates an infinite list of
words w1, w2, . . . such that if x ∈ SZ, then x ∈ X if and only if wi 6⊏ x for
any i ∈ N.

• There exists a Turing machine M such that the machine Mx (M with
oracle x ∈ SZ) halts if and only if x /∈ X.

We call a point x ∈ SZ computable if there is an algorithm that, given i ∈ Z,
computes xi. It is well-known that not all Π0

1 subshifts contain computable
points, see for example [6].

2.2 The ruler sequence

The set M = N ∪ {∞} is the one-point compactification of N, where U ⊂ M is
open if either U ⊂ N, or M \ U is finite.

We give the space MZ the product topology, so that it becomes compact
as well. A sequence φ ∈ NZ is called recurrent if every word that appears in φ
appears infinitely many times in both directions. As usual, if every word appears
with bounded gaps, we say φ is uniformly recurrent. We say φ is Toeplitz if for
all i ∈ Z there exists a period p such that φi = φi+kp for all k. It is easy

7

to see that a Toeplitz sequence is uniformly recurrent. We say φ has unique
singularities if for each m ∈ N there exists k ∈ N such that

φi ≥ k =⇒ ∀j ∈ [i−m, i+m] \ {i} : φj ≤ k.

We give MZ the shift action, and for each φ ∈ MZ obtain a compact space O(φ)
analogously to the case of finite alphabets.9

It is easy to verify that φ is recurrent if and only if φ is doubly transitive
in O(φ), and, more importantly, by Theorem 7 in [2] it is uniformly recurrent
if and only if O(φ) is minimal. The unique singularities property for φ means
precisely that each point of O(φ) contains at most one occurrence of ∞, as
one can verify by a compactness argument. Of course, φ contains only finitely
many distinct symbols if and only if ∞ 6⊏ O(φ) if and only if O(φ) is a subshift.
In particular, if there are finitely many symbols, having unique singularities is
trivial, and recurrence and uniform recurrence correspond to the usual notions.
The same observations hold for the space MN.

We note that neither of uniform recurrence and unique singularities implies
the other, as one can easily verify by examples.

We will essentially just need one recurrent sequence with unique singularities
in our constructions. The proofs are particularly easy for the ruler sequence
φ ∈ NN,

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 . . . ,

that is, φ = n0n1n2 . . . where ni is the largest integer k with 2k|i + 1. This is
sequence A007814 in the OEIS database [1].

Note that for all j such that j ⊏ φ we have that {i ∈ N | φi = j} is a
semilinear set, that is, a finite union of translates of submonoids of N. More
precisely, for the ruler sequence φ, we have

{i ∈ N | φi = j} = {n2j+1 + 2j − 1 | n ∈ N}.

It follows that the ruler sequence is Toeplitz (thus uniformly recurrent) and has
unique singularities.

We note some basic combinatorial properties of the subwords of the ruler
sequence φ, whose proofs we omit. If φi = ℓ = φj where i < j, then there exists

k ∈ [i, j] such that φk = ℓ + 1. It follows that if w ⊏ X = O(φ), then there
exists a unique maximal symbol wi = k in w. For each k ∈ N, there is a unique
maximally long word u ∈ L(X) with u2k−1 = k and ∀i : ui ≤ k, and this u
satisfies |u| = 2k+1 − 1.

Given a word w ∈ L(X) with ∞ 6⊏ w, all possible extensions to longer words
of X are obtained by the following process: First, take the maximally long word
u ∈ L(X) with maxi ui = k = maxi wi. We have u = vwv′ for a unique choice
of v, v′, and v (v′, resp.) is the unique extension of w in L(X) of length |v| to
the left (of length |v′| to the right, resp.). If w = u, then the extensions of w
to words in L(X) of the form awb with a, b ∈ N are precisely those of the forms
(k + 1)wℓ and ℓw(k + 1), where ℓ > k + 1.

For example, consider the word w = 3. To obtain its extensions, we first
deterministically extend it to u = 010201030102010. Here, we have v = v′ =
0102010. We now choose a side on which to write 4. Choosing the left side, we

9We note that this is not the usual way to compactify subshifts with infinite alphabets.

8

obtain 4010201030102010. On the other side, we can choose any number greater
than or equal to 5. Choosing 5 and performing the deterministic extensions, we
obtain the word

010201030102010 4 0102010 3 0102010 5 0102010301020104010201030102010

(where some spaces have been added for clarity). This is the unique maximally
long word with maximal symbol 5.

Although φ ∈ MN, we can take its limit points also in MZ in the obvious
way, and in the orbit closure of φ in MZ, there is a computable point ψ where
∞ does not occur. That is, ψ ∈ NZ. One such example is

ψ = . . . 01020103010201040102.010301020105010201030102010 . . . ,

which is constructed by starting with 0 and repeating the following steps, keep-
ing the original 0 at coordinate 0:

• Extend the word on the right by the smallest symbol not yet found in it.

• Extend the word deterministically, as much as possible.

• Extend the word on the left by the smallest symbol not yet found in it.

• Extend the word deterministically, as much as possible.

2.3 Model-checking and halting problems

The following definitions are those from [7], adapted to the case of subshifts.10

Definition 3. Let X ⊂ SZ be a subshift. The model-checking problem of
X ⊂ SZ for Muller automata is to decide, given a language Y ⊂ SZ of infinite
words described by a Muller automaton, whether X ∩ Y 6= ∅. The model-
checking problem of X for finite-state automata is to decide, given a regular
language L ⊂ S∗ described by a finite-state automaton, whether L(X) ∩ L 6= ∅.

These are chosen as the natural problems for defining decidability and uni-
versality in [7], and we take the same view.

Definition 4. A subshift X ⊂ SZ is decidable if its model-checking problem for
Muller automata is decidable. It is universal if its model-checking problem for
finite-state automata is Σ0

1-complete.

It is worth noting that the complexity of a subshift is often defined to be the
complexity of its language, or coincides with it. For example, a Π0

1 subshift is a
subshift whose language is Π0

1. For decision problems, “decidable” is a synonym
for “recursive”, but “decidable subshifts” in the sense of the previous definition
form a much smaller class than “recursive subshifts” (decidability implies that
the language is recursive, but not vice versa). We will refer to subshifts whose
language is recursive exclusively as recursive subshifts.

10In [7], these definitions are given not just for subshifts, but for the more general class of
”effective symbolic systems”, which in the case of subshifts correspond to ones with a recur-
sive language. Although we do not require recursivity a priori, our examples have recursive
languages.

9

Another difference in the definition of [7] is that the regular languages are
over clopen sets instead of letters of the alphabet. One way to formulate this is
that, instead of asking whether L(X) ∩ L 6= ∅ for a given regular language L,
we ask whether L(φ(X)) ∩ L 6= ∅ for a factor map φ : X → Y where Y ⊂ T Z is
a subshift and L ⊂ T ∗ is a regular language. If X is recursive, it is easy to see
that this does not change the definitions of universality and decidability, since
a finite-state machine is smart enough to look at the subshift through a factor
map (we skip the easy proof).

In practise, to show undecidability, one (many-one) reduces the halting prob-
lem of Turing machines to the model-checking problem for regular languages,
and usually the reduction will be far from surjective, in the sense that the reg-
ular languages produced by the reduction are of a specific form. By considering
these different forms, one can get more fine-grained information on the degree
to which the subshift is decidable. For this general definition, it is useful to
include clopen sets, since, when restricting to small classes of regular languages,
we may not be able to simulate factor maps (or even conjugacies), leading to
dynamically unnatural decision problems.

Definition 5. Let C =
⋃

i Ci be a class of regular languages, where each Cm
is over the alphabet [1,m] ⊂ N. The model-checking problem for C and a
subshift X is, given a language L in Cm for some m and a clopen partition
X = [C1]∪̇ · · · ∪̇[Cm], to decide whether there exists a word w ∈ L and point
x ∈ X such that σi(x) ∈ [Cwi

] for all i ∈ [0, |w| − 1].

As noted above, this definition is equivalent to checking L(φ(X)) ∩ L 6= ∅
for factor maps φ, and universality of a subshift means that its model-checking
problem for the whole class of regular languages is Σ0

1-complete.

Definition 6. The starfree languages over [1,m] are the closure of finite lan-
guages over [1,m] under concatenation, complementation (with respect to [1,m]∗)
and union.11 By an elementary piecewise testable language over [1,m], we mean
a language of the form a1S

∗a2S
∗a3S

∗ · · ·S∗ak where S = [1,m], ai ∈ S for all
i ∈ [1, k], and a piecewise testable language over [1,m] is any Boolean combi-
nation of elementary piecewise testable languages. A local language over [1,m]
is a language of the form (AS∗ ∩ S∗B) \ S∗FS∗, where A,B ⊂ S and F ⊂ S2.
By a renewal language we mean one of the form u(w1 + ... + wk)

∗v where
u, v, w1, . . . , wk ∈ S∗.

In the case of starfree languages and piecewise testable languages, it is impor-
tant to parametrize the class of languages with the alphabet [1,m], and consider
languages over [1,m] when the space is partitioned into m clopen sets, because
the alphabet S plays a special role in the definitions – for local languages and
renewal languages, this is not necessary. Because S∗ = ∅C , piecewise testable
languages and locally testable languages are both starfree.

The starfree languages are a well-studied class of regular languages, and
were also essentially studied in the context of dynamical systems in [8] (an ear-
lier version of [7]), as definability in temporal logic corresponds to starfreeness
[23] (although this connection was not made explicit). “Elementary piecewise
testable” is not a standard term, but piecewise testable languages are again

11In other words, they are defined by regular expressions without Kleene star.

10

well-studied (although there are many variations of the basic idea in the litera-
ture). Local languages are important in the theory of regular languages, as they
are to regular languages what vertex shifts are to sofic shifts. We could have
equally well used locally testable languages, which correspond more directly to
SFTs, but this is mostly irrelevant for dynamical considerations. We do not
know of an occurrence of renewal languages in the literature, but they are an
obvious “language version” of the well-studied class of sofic shifts called renewal
systems.12

Another approach to decidability is to consider problems of reachability be-
tween clopen sets. We talk about the following problems:

Definition 7. In the following problems, defined for a subshift X, we are given
clopen sets [C], [D], [E], [F] and numbers k,m, or a subset of these inputs, and
need to decide whether there exists a point x ∈ X, j ∈ Z and A ⊂ [1, j − 1] with
|A| = k, or a subset of these, with particular properties.

• In the undirected halting problem, the properties x ∈ [C] and σj(x) ∈ [D].

• In the halting problem, the properties j ∈ N, x ∈ [C] and σj(x) ∈ [D].

• In the halting problem along a clopen set, the properties j ∈ N, x ∈ [C],
σj(x) ∈ [D] and ∀i ∈ [1, j − 1] : σi(x) ∈ E.

• In the counting problem, the properties j ∈ N, x ∈ [C], σj(x) ∈ [D],
∀i ∈ [1, j − 1] \A : σi(x) ∈ [E] and ∀i ∈ A : σi(x) ∈ [F].

• In the modular halting problem, the properties j ∈ N, j ≡ k mod m with
x ∈ [C] and σj(x) ∈ [D].

• In the modular halting problem along a clopen set, the properties j ∈ N,
j ≡ k mod m with x ∈ [C], σj(x) ∈ [D] and ∀i ∈ [1, j − 1] : σi(x) ∈ E.

The halting problem was also defined in [7], and for Turing machines, con-
sidered as a dynamical system (with moving tape or moving head, see [15]), it
essentially corresponds to the usual halting problem. It is easy to see that the
halting problem is a special case of the model-checking problem for elementary
piecewise testable languages.

The halting problem along a clopen set is easily seen to be a special case of
the model-checking problem for local languages (and thus starfree languages)
and renewal languages. It is also a special case of that of piecewise testable
languages: For any a1, a2, a3 ∈ S, the language L = {a1, a2, a3}∗ is piecewise
testable, and the language

L′ = a1S
∗ ∩ S∗a2 ∩ (S+{a1, a2}S

+)C

of words beginning with a1, ending in a2 and not containing other occurrences
of these symbols is piecewise testable, because it is the intersection of

a1S
∗ ∩ (S+a1S

∗)C =
⋂

a 6=a1

(S∗aS∗a1S
∗)C ∩ S∗a1S

∗

12One can imagine many other such language versions as well, and we do not claim this to
be the “correct” one – for the purpose of this article, it is mainly a mnemonic.

11

and S∗a2∩(S∗a2S
+)C . The halting problem along a clopen set is, up to choosing

a suitable clopen partition, the model-checking problem for the single piecewise
testable language L ∩ L′.

The counting problem is a special case of the model-checking problem for
piecewise-testable languages as well: For a1, a2, a3, a4 ∈ S, the language L ∩
L′ ∩Lk ∩LC

k+1 is piecewise-testable, where L = {a1, a2, a3, a4}∗, L′ is as above,
and Li = (S∗a4)

iS∗ is the language of words containing at least i occurrences
of the symbol a4, which is piecewise testable by form.

Finally, the modular halting problem (along a clopen set or not) is a special
case of the model-checking problem for renewal languages: For a1, a2, a3 ∈ S, set
u = a1a

k
3 , v = a2 and w1 = am3 . Then uw∗

1v is a renewal language. We note that
this is not a special case of the model-checking problem for starfree languages,
and indeed should not be: a well-known characterization of starfreeness of a
language is that it is recognized by a finite state machine that does no modular
counting [18].

2.4 The generating order

The following object is very useful in studying subshifts, and was introduced in
[4] in the context of countable multidimensional SFTs.

Definition 8. The pattern preorder of a subshift X ⊂ SZ is the order x ≤
y ⇐⇒ L(x) ⊂ L(y).

We will, instead, talk about the subpattern poset, meaning the preordered
set with elements X and the pattern preorder as the preorder. If x ≤ y ≤ x, we
write x ∼ y.

We wish to extend this relation to finite words as well. An obvious way to
do this would be to define u ≤ v ⇐⇒ L(u) ⊂ L(v), so that u ≤ v ⇐⇒ u ⊏ v.
However, the following definition is more useful:

Definition 9. The generating (pre-)order of a subshift X has elements L(X)
and preorder u ≤X v ⇐⇒ (∀x ∈ X : v ⊏ x =⇒ u ⊏ x).

By compactness, u ≤X v means that there exists k ∈ N such that

∀x ∈ X : x[0,|v|−1] = v =⇒ u ⊏ x[−k,|v|+k−1].

We again talk about the generating poset to mean the preordered set L(X) with
the generating preorder.

Abusing notation, for a word u and a point x, we write x ≤X u if v ≤X u
for all v ⊏ x. When X is clear from context, in particular when u and v are
explicitly chosen from X , we write u ≤ v for u ≤X v.

Lemma 2. Let X be a Π0
1 subshift. Then, given u, v it is semidecidable whether

u ≤X v. In fact, there is an algorithm that, given u, v with u ≤X v, computes
hu,v such that

|w| ≥ |v|+ 2hu,v ∧ w[hu,v ,hu,v+|v|−1] = v =⇒ u ⊏ w.

Proof. If u ≤ v, then all long enough legal patterns of X containing v in the
center contain u as well. By compactness, the same is true for some SFT ap-
proximation of X , which we eventually find by enumerating forbidden patterns
of X . This yields hu,v as a side-product.

12

The poset induced by the ≤X -order on words is not a conjugacy invariant.
However, ≤X extends naturally to clopen sets by [C] ≤X [D] ⇐⇒ x ∈ [D] =⇒
O(x) ∩ [C] 6= ∅, and the poset of clopen sets is obviously conjugacy invariant.
It is a direct corollary of the previous lemma that [C] ≤X [D] is semidecidable
for given cylinders [C] and [D].

3 Quasiminimality and undecidability

In this section, we present our constructions of universal subshifts mentioned
in Section 1 and prove their correctness. The decidability results complement-
ing them are given in Section 4. To get up to speed, we begin with some
simpler examples. First, we give a few examples of quasiminimal but non-
minimal subshifts which are in a sense already well-known: subshifts gener-
ated by letter-to-word substitutions. Then, we give a universal subshift with
finitely many minimal subshifts, but infinitely many subshifts in total, already
proving Proposition 1 and refuting Conjecture 1. Then, we present our main
constructions: universal quasiminimal subshifts. We conclude this section with
a minimal subshift whose model-checking problem for context-free languages is
Σ0

1-complete.

3.1 Non-universal quasiminimal examples

In this section, we consider classical symbol-to-word substitutions on a finite
alphabet S. It is well-known that a primitive substitution, that is, a substitution
τ : S → S∗ such that

∃n : ∀a, b ∈ S : b ⊏ τn(a),

generates a minimal subshift (in the sense defined below). A non-primitive
substitution does not necessarily generate a minimal subshift, but it usually13

generates a quasiminimal subshift. We show some examples, and sketch the
proofs of their quasiminimality. These examples are very similar to the universal
examples we construct later.

Definition 10. Let τ : S → S∗ be a substitution, define a subshift Xτ ⊂ SZ

that is generates by

x ∈ Xτ ⇐⇒ ∀j, k ∈ N : ∃a ∈ S, ℓ ∈ N : x[j,k] ⊏ τ ℓ(a).

First, we give an example of a countable quasiminimal system which is not
a union of minimal systems.

Example 1: Let τ be the substitution (0 7→ 0; 1 7→ 010). Then we have τn(0) = 0
and τn(1) = 0n10n for all n ∈ N. Clearly, the substitution then generates the
sunny side up subshift O(∞010∞). Since this subshift is the union of the orbits
of ∞010∞ and ∞0∞, it is countable, and its only proper nontrivial subsystem
is L−1(0∗). △

The points need not be eventually periodic:

Example 2: Let τ be the substitution (0 7→ 00; 1 7→ 11; 2 7→ 20; 3 7→ 2301).
Clearly, the only points where infinitely many central patterns are subwords of

13Below, we give a proof under some assumptions on the substitution.

13

τn(0), τn(1) or τn(2) are 0Z and 1Z. Thus, we only need to find out the limit
points of τn(3). We have

τn(3) = 20n−120n−22 · · · 202 3 01001102
2

12
2

02
3

12
3

· · · 02
n−1

12
n−1

.

Since there is only one occurrence of the symbol 3 in this word, there is a unique
point in Xτ where 3 occurs. In a proper subsystem, then, a finite subset of the
symbols {0, 1, 2} occurs. The proper subshifts of Xτ can be seen to be the
countable sofic shifts

L−1(0∗),L−1(1∗),L−1(0∗20∗),L−1(0∗1∗),L−1(1∗0∗)

and their finite unions. In particular, Xτ itself is countable. △

The following uncountable example is the basis of the more general construc-
tion in Lemma 4.

Example 3: Let τ be the substitution (0 7→ 00; 1 7→ 101). Then one can show
by induction that τn(0) = 02

n

and

τn(1) = τn−1(1)02
n

τn−1(1) = 102
φ0
102

φ1
102

φ2
1 · · · 102

φk
1

where φ is the ruler sequence and k = 2n − 2. Clearly, L−1(0∗) is a subsystem.
We claim that it is in fact the only subsystem.

Namely, we show that if x ∈ Xτ contains the symbol 1, then it is weakly
transitive. Suppose x0 = 1 (by shifting x if necessary). For any k, by definition
of Xτ we must have that x[−k,k] ⊏ τn(1) for some n. We note that the ruler
sequence has unique singularities, and thus does not contain subwords of the
form ab where a, b ∈ N and both are arbitrarily large – in fact, every second
symbol in it is 0, and thus every second gap between two symbols 1 is of length
1. Taking a suitable k and considering the word τn(1) such that x[−k,k] ⊏ τn(1),
we see that either x−2 = 1 or x2 = 1. For concreteness, suppose we are in the
second case. Again, due to unique singularities, the ruler sequence does not
contain words of the form a0b where both a and b are arbitrarily large, and in
fact one of them is always 1. This means, again taking suitable k and looking
at the corresponding τn(1), that either x−4 = 1 or x2+4 = 1. For concreteness,
suppose we are in the second case. The only extension of 01 to the right by one
symbol in the ruler sequence is 010, so again looking at τn(1) for large n, we
see that x8 = 1, and x[0,8] = 101000101.

We repeat this deduction infinitely many times: We look at the finite part of
x already considered by the process, and observe, using the unique singularities
of the ruler sequence, that it cannot be the case that all the 1s in x are in this

part, and in fact the already filled part must be continued by 02
ℓ

1 to the right

or 102
ℓ

to the left, for suitable ℓ. We then extend this word deterministically
using the properties of the ruler sequence given in Section 2.2.

If we eventually fill the whole point x with this deducion process (so that we
find the new 1 from both the left and the right side infinitely many times), then
x corresponds in a one-to-one fashion to a point ψ ∈ NZ in the orbit closure of
the ruler sequence. If only one side is filled, then one can check that x is in the
orbit closure of either

∞0.102
φ0
102

φ1
102

φ2
10φ31 . . .

14

or
. . . 102

φ3
102

φ2
102

φ1
102

φ0
1.0∞,

and in either case it generates the whole subshift Xτ . △

We believe that all substitutions generate quasiminimal systems. In the
following, we show this under an additional condition: Let τ : S → S+ be a
substitution and let Sℓ = {a ∈ S | |τn(a)| → ∞}, the set of long symbols. If for
some m,

w ⊏ Xτ ∧ |w| ≥ m =⇒ Sℓ ∩ L1(w) 6= ∅,

then we say long symbols are syndetic in Xτ .
Proposition 5.5 of [5] shows that the above condition holds automatically if

Xτ contains no periodic points, and in Proposition 5.6 they show that if this
condition holds, then the number of minimal subshifts contained in Xτ is at
most |S|. We show a similar result for the set of all subshifts.

Proposition 2. If τ : S → S+ is a substitution and long symbols are syndetic
in Xτ , then Xτ is quasiminimal.

Proof. For each n ≥ 1 and x ∈ Xτ there exists y ∈ Xτ such that x = τn(y)
(up to shifting x). Namely, each subword of x occurs in τk(a) = τn(τk−n(a))
for arbitrarily large k and a long symbol a, and we obtain y as a limit point
of τk−n(a). Let m be such that every word of length m in Xτ contains a long
symbol. Let Z ⊂ Xτ be a subshift, and for each n ∈ N, associate to Z the
following set:

Wn(Z) = {w ∈ Sm+1 | ∃x, y ∈ Xτ : x ∈ Z ∧ x = τn(y) ∧ w ⊏ y}.

Note that for each n, Wn can have at most 2|S|m+1

distinct values. Thus,
if Z1, Z2, . . . , Z2|S|m+1+1 are subsystems of Xτ , we must have two indices i 6= j
such that Wn(Zi) = Wn(Zj) for infinitely many n. It is enough to show that
this implies L(Zi) = L(Zj), since subshifts with the same language are equal.

Thus, suppose that Z, Y are subshifts of Xτ with Wn(Z) = Wn(Y) for
arbitrarily large n. Let u ⊏ Z be arbitrary. Let k be such that |τk(a)| ≥ |u|
whenever a is a long symbol, and choose n ≥ k such that Wn(Z) = Wn(Y).
Since τ(S) ⊂ S+, τ can only increase the length of words, and thus we have
|τn(a)| ≥ |u| for all long symbols a.

Choose a point z ∈ Z such that u ⊏ z, and let z = τn(y) where y ∈ Xτ .
Since long symbols are syndetic in Xτ and |τn(a)| ≥ |u| for long symbols a, it
is easy to see that there is a subword w of y of length m + 1 with u ⊏ τn(w).
By the assumption Wn(Z) =Wn(Y), w is also a subword of some y′ ∈ Xτ such
that τn(y) ∈ Y , so u ⊏ Y .

This shows u ⊏ Y , and since u ⊏ Z was arbitrary, we have L(Z) ⊂ L(Y).
Symmetrically, we obtain L(Y) ⊂ L(Z), which concludes the proof.

The upper bound we obtain for the number of subsystems 2S
m+1

, where m
is the bound for the length of the gap between two long symbols. In the case
that all symbols are long, we have m = 1, and obtain the upper bound 2|S|2

for the number of subsystems. The next example shows that this is in the right
ballpark.14

14We only look at the case m = 1 for simplicity, but one can add short symbols between

long symbols in the word τ(a) = w in the example, to get roughly 2|Sℓ|
2|S\Sℓ|

m−1
subshifts,

for a partition S = Sℓ ∪ (S \ Sℓ).

15

Example 4: Let k ∈ N, let S = {a, b1, . . . , bk}, and define the substitution τ
with τ(bi) = b2i for all i ∈ [1, k] and τ(a) = w, where w ∈ {b1, . . . , bk} is such
that bibj ⊏ w for all i, j ∈ [1, k]. It is easy to see that Xτ = L−1(

⋃

i,j b
∗
i b

∗
j).

Choose a subset K ⊂ [1, k], and a subset

J ⊂ {(i, j) ∈ [1, k]2 | i 6= j}

such that (i, j) ∈ J =⇒ {i, j} ⊂ K. For such (K, J), let

YK,J = L−1(
⋃

i∈K

b∗i ∪
⋃

(i,j)∈J

b∗i b
∗
j).

We note that we can determine the sets K and J from YK,J , and if Y is a
subshift of Xτ , then Y = YK,J for some (K, J) with the above properties. Thus,
to compute the number B(k) of subsystems of Xτ , we only need to compute
the number of pairs (K, J) with these properties. The number of such pairs is
just the number of directed graphs whose vertices form a subset of [1, k].

Letting A(j) = 2j(j−1) be the number of directed graphs with vertices [1, j],
we have

B(k) =

(

k

0

)

A(0) +

(

k

1

)

A(1) +

(

k

2

)

A(2) + · · ·+

(

k

k

)

A(k).

Of course, B(k) ≥ A(k) = 2j(j−1), so there exists a substitution on an alphabet
of k symbols with B(k − 1) ≥ 2(k−1)(k−2) subsystems. △

In the OEIS database, B(i) is the sequence A135756, and the first few values
are

B(0) = 1, B(1) = 2, B(2) = 7, B(3) = 80, B(4) = 4381, B(5) = 1069742.

We note that the upper bound for the number of subshifts of Xτ which are
unions of minimal subshifts is 2|S| by the result of [5]. For |S| = 6, the number
of such subsystems of Xτ is at most 26 = 64, but one can have B(5) = 1069742
subsystems in total by the previous example.

Example 2 and Example 3 both have the property of syndetic long symbols,
as all symbols are long. Example 1 does not have this property, as 0 is not a long
symbol, but clearly the subshift does not change if the image of 0 is changed
to 00. However, we believe there is no substitution with syndetic long symbols
generating a subshift conjugate to Xτ where

τ = (0 7→ 0; 1 7→ 10; 2 7→ 021),

where the point generated by the symbol 2 is

...0000002110100100010000100000...

Of course, even though long symbols are not syndetic, it is not very hard to
show that this subshift is quasiminimal. In general, one might be able to obtain
a proof for general substitutions by analysing the proof of Proposition 5.5 in [5]
in more detail.

We show that the model-checking problem for regular languages is decidable
for these systems.

16

Lemma 3. Given a substitution τ : S → S∗, a symbol a ∈ S and a regular
language L, it is decidable whether τn(a) ∈ L for some n ∈ N. In particular, it
is decidable whether L(Xτ) ∩ L = ∅ for a given regular L.

Proof. We may assume L ⊂ S∗. Let A be a nondeterministic finite state au-
tomaton for L with state set Q, initial state qs, final state qt and transition
function δ ⊂ Q× S ×Q, and extend δ to a relation δ ⊂ Q× Sn ×Q for all n in
the usual way:

(q, w, q′) ∈ δ ⇐⇒ (q, w0, q0), (q0, w1, q1), · · · , (qn−2, wn−1, q
′) ∈ δ

For all s ∈ S, let R ∈ ((2Q×Q)S)N be defined by

(q, q′) ∈ (Ri)s ⇐⇒ δ(q, τ i(s), q′).

We can compute Ri for each i easily from the definition of δ, and Ri takes
its value in the finite set (2Q×Q)S . The set (2Q×Q)S is finite, so let t, p be such
that Rt = Rt+p. Then, R′

t = Rt′+p for all t′ > t as well: writing w = τ t
′−t(s),

we have

(q, q′) ∈ (Rt′)s ⇐⇒ δ(q, τ t
′

(s), q′)

⇐⇒ δ(q, τ t(w), q′)

⇐⇒ δ(q, τ t+p(w), q′)

⇐⇒ δ(q, τ t
′+p(s), q′)

⇐⇒ (q, q′) ∈ (Rt′+p)s,

where the second ⇐⇒ follows because Rt = Rt+p, so that

δ(q, τ t(a), q′) ⇐⇒ δ(q, τ t+p(a), q′)

for all a ∈ S, and the third ⇐⇒ because this extends to all words w ∈ S∗ by
the inductive definition of δ ⊂ Q× Sn ×Q.

Now, to check whether τn(a) ∈ L for some n, it is enough to check whether
(qs, qt) ∈ (Ri)a for some i ∈ [0, p+t−1]. The second claim is proved by checking
whether we have τn(a) ∈ S∗LS∗ for some n and a ∈ S.

3.2 Universal non-quasiminimal examples

We present our (non-quasiminimal) example of a universal recursive subshift
with finitely many minimal subsystems.

Proposition 3. There exists a recursive subshift X ⊂ {0, 1, 2, 3}Z which is
contained in a countable SFT, has finitely many minimal subsystems, and has
a Σ0

1-complete halting problem. Every minimal subsystem of X consists of a
single unary point.

Proof. Enumerate the deterministic Turing machines as T1, T2, T3, We de-
fine a subshift by X = O({xi | i ≥ 1}), where

xi =
∞0.1i2i+h(i)3∞,

if the machine Ti halts exactly after h(i) ∈ N steps, and xi = ∞0.1i2∞ if it
never halts.

17

This is a recursive subshift: First, all words a∗b∗ for a ≤ b ∈ {0, 1, 2, 3} are
in L(X). Let i, j, k, ℓ ≥ 1 be arbitrary. The word 0i1j2k is in L(X) if and only
if Tj does not halt in the first k steps, which is decidable. The word 0i1j2k3ℓ

is in L(X) if and only if Tj halts exactly after k − j steps, which is decidable.

The word 1j2k3ℓ is in L(X) if and only if some word of the form 01j
′

2k3ℓ is in
L(X), where j ≤ j′ ≤ k, which we can check by running all the machines Tj′

for at most k steps.
The subshift X is contained in the countable SFT L−1(0∗1∗2∗3∗), because

each of the points xi is in this subshift. The only periodic points in X are
the points ∞a∞ for a ∈ {0, 1, 2, 3}. Since a minimal subshift is either finite or
uncountable, the only minimal subsystems of X are these singleton subshifts.

The undirected halting problem of X is Σ0
1-complete because solving the

halting problem for the clopen sets [01i2]0 and [3]0 is equivalent to solving the
halting problem of Ti.

We make a few remarks about this subshift, omitting the easy proofs.

1. This subshift has Cantor-Bendixson rank 3. Countable subshifts of Cantor-
Bendixson rank 1 are finite, and those of rank 2 are sofic [21], so that this
is the minimal possible rank for a countable universal subshift.

2. By forbidding the single letter 3 from the subshift X , we obtain a system
Y whose language is not decidable, since 01k2 ⊏ Y if and only if Tk never
halts. Thus, while X is recursive, one could say it is not hereditarily
recursive, as it contains a Π0

1 subshift which is not recursive. (Compare
this with Corollary 1.)

3. The subshift X has only finitely many minimal subshifts, but more than
one. By using the points

xi =
∞0.10i20i+h(i)30∞

in the proof, the enveloping countable SFT of Cantor-Bendixson rank 4
changes into a countable sofic shift with the same CB-rank, and there will
be only one minimal subsystem.

4. One could say that we are cheating, and that a finite subsystem is not a
sufficiently interesting example of a minimal subshift; indeed, in many con-
texts it makes sense to not even call such systems minimal, to avoid having
to discuss these trivial cases. If, in the points xi = ∞0.10i20i+h(i)30∞,
we replace the maximal subwords of the form 0k by (any!) subwords of
length k of a minimal subshift Y over an alphabet disjoint with {1, 2, 3}, it
is easy to check that the only minimal subsystem of O({xi | i ≥ 1}) is Y .
Choosing the minimal subshift and the words suitably, the subshift can
be made recursive as well.

5. A classical tool for studying minimal systems are the Bratteli-Vershik
systems. It was proved in [11] that every minimal system is conjugate to
such a system. In fact, the result of [11] applies more generally to systems
containing exactly one minimal subshift, and thus to our example. Such
systems are called essentially minimal systems. The classes of essentially
minimal systems and quasiminimal systems are incomparable.

18

6. In Proposition 9 of [7], it is shown that if the limit set of a symbolic
dynamical system is a finite union of minimal systems, then it is decidable.
As we are concerned with two-way subshifts, the limit set of a subshift is
equal to the subshift itself. We note, however, that the asymptotic set (the
union of limit points of individual configurations) and its nonwandering
set (the points whose neighborhoods all return to themselves) of X are
both finite unions of minimal systems: in fact, these sets are finite, and
can again be taken to be singletons.

As discussed in the introduction, our system is a Z-system, and one could
also ask whether Conjecture 1 is true for N-systems, where a priori there are
more subsystems. Since minimal systems are clearly surjective, the following
proposition shows that Proposition 3 resolves the case of N-actions too. If
X ⊂ SN is a one-sided subshift, we say it is surjective if the left shift σ : X → X
is surjective.

Proposition 4. For any subshift X ⊂ NZ let

c(X) = {y ∈ NN | ∃x ∈ N−N : x.y ∈ X}.

For any surjective subshift X ⊂ NN, let

e(X) = {x ∈ NZ | ∀i ∈ Z : x[i,∞) ∈ X}.

These operations preserve the language of the subshift, and thus c(e(X)) = X
for any surjective N-subshift, and e(c(X)) = X for any Z-subshift.

The operations c and e and their correspondence are well-known, although
we do not know an explicit reference for the precise statement above.

3.3 Uncountable universal quasiminimal examples

We now move on to our quasiminimal examples in the case of Z-actions, from
which one can obtain results in the case of N-actions from the previous propo-
sition, when only surjective subsystems are considered. The case of N-actions
and non-surjective subsystems is dealt with in Section 4.2. First, we give our
example of a universal (uncountable) quasiminimal subshifts, giving our first
proof of Theorem 2. In this case, we can construct a subshift whose halting
problem along a clopen set is undecidable, and thus so is the model-checking
problem for local languages, piecewise testable languages, starfree languages
and renewal languages. Our example has only one proper subshift, which can
be chosen rather freely.

Theorem 3. For any recursive infinite minimal subshift Y , there exists a tran-
sitive uncountable quasiminimal subshift X for which the halting problem along
a clopen set is Σ0

1-complete, such that the only nontrivial subsystem of X is Y .

To prove Theorem 3, we need a few lemmas. The first is a method of
constructing quasiminimal subshifts.

Lemma 4. Let Y ⊂ SZ be a quasiminimal subshift. Let φ ∈ NZ be uniformly
recurrent with unique singularities, and let τ : N → aL(Y) be a substitution

where |τ(n)|
n→∞
−→ ∞, where a is a symbol not in S. Then X = O(τ(φ)) ⊂

(S ∪ {a})Z is transitive and quasiminimal, and in fact every proper subsystem
of X is a subsystem of Y .

19

Proof. If Z is a subshift of X where a does not occur, then clearly it is also
a subshift of Y . Thus, we only need to show that there are finitely many
subshifts of X where a does occur. In fact, we show the stronger fact that
a ∈ x =⇒ O(x) = X . For this, suppose that a ∈ x.

If a occurs infinitely many times in both tails of x (that is, {i ∈ Z | xi =

a} is unbounded from both above and below), then by |τ(n)|
n→∞
−→ ∞ and a

compactness argument, we have x ∈ O(τ(φ′)) for some φ′ ∈ O(φ)∩NZ. Namely,
since x ∈ O(τ(φ)), for any j, j′ such that xj = xj′ = a, we find i, i′ such that
x[j,j′] = τ(φ[i,i′])a. There are finitely many choices for the word φ[i,i′] for each
pair j, j′, so letting j → −∞ and j′ → ∞ and passing to a suitable subsequence,
we obtain x ∈ O(τ(φ′)) for some φ′ ∈ O(φ).

Because φ is uniformly recurrent, φ′ contains all its finite patterns, and thus
O(x) contains all finite patterns of X , which implies O(x) = X .

Next, suppose a occurs infinitely many times in one tail of x, but not the
other. These cases are (more or less) symmetric, so we suppose x0 = a, xi 6= a
for all i < 0, and {i ∈ N | xi = a} is unbounded from above. Now, a compactness
argument like the one above shows that there exists a point φ′ ∈ O(φ) such that
φ′−1 = ∞, xN = τ(φ′

N
), and x(−∞,−1] is some limit point of the suffices of words

τ(n). Because φ uniformly recurrent, all its finite words appear in the one-way
point φ′

N
, and thus also in x. Again, O(x) = X .

Finally, we show that a cannot occur finitely many times. Namely, suppose
xj = a, xℓ = a, and xi 6= a for all i /∈ [j, ℓ]. Then a compactness argument shows

that there is a point φ′ ∈ O(φ) with |φ′|∞ ≥ 2. This is a contradiction, since φ
was assumed to have unique singularities.

The transitivity of X is clear from the definition.

Definition 11. We say a subshift X ⊂ SZ is right-perfect if the subshift c(X) =
{y | ∃x : x.y ∈ X} is perfect.

In other words, X is right-perfect if every word of X has at least two incom-
parable extensions to the right.

Lemma 5. Let Y ∈ [0, k − 1]Z be a nonempty right-perfect subshift with a
recursive language. Then, there exists a recursively enumerable infinite prefix
code u1, u2, . . . of words in Y such that (uj)[0,|uj |−2] = (uj+k)[0,|uj|−2] for all
j, k ≥ 1.

Of course, symmetrically, there exists such a suffix code if Y is left-perfect.

Proof. Note that a right-perfect nonempty subshift is infinite (even uncount-
able). Enumerate the words of Y as V1 = v1, v2, . . ., first ordered by length, and
then lexicographically among words of each length. Let u1 = ua be the first one-
symbol extension of a word of Y on this list which has at least two one-symbol
extensions, ua and ub. Let V2 be the subsequence of V1 of words beginning with
ub. Having chosen u1, . . . , uj and restricted our list to Vj+1, choose again the
lexicographically smallest one-symbol extension of a word of Y which has at
least two one-symbol extensions in Vj+1, and restrict to Vj+2 accordingly. Since
Y is right-perfect, this process continues forever, and the resulting set of words
is clearly a prefix code. The condition on compatible prefixes is automatic in
the construction.

20

Proof of Theorem 3. Suppose Y ⊂ [1, k]Z. The subshift X will be over the
alphabet [0, k].

Enumerate the deterministic Turing machines as T0, T1, T2, Let φ ∈ NZ

be a computable point in the orbit closure of the ruler sequence.
Using Lemma 5 and the fact that an infinite minimal subshift is left- and

right-perfect, take recursively enumerable prefix and suffix codes of words ui and
vi of Y , respectively. Let h : N → N be a computable infinite-to-one dovetailing
of the natural numbers (for example, the ruler sequence). Now, let x = τ(φ),
where τ is the substitution

i 7→
0uh(i)wivh(i), if Th(i) does not halt before step i.
0uh(i)wivh(i)+1, if Th(i) halts before step i.

where each wi is a word of length at least i such that uh(i)wivh(i) ⊏ Y , chosen in
such a way that i 7→ wi is computable, and as i runs over the natural numbers,
all words of Y beginning with uh(i) appear as prefixes of words uh(i)wi infinitely

many times (and similarly for wivh(i)). Let X = O(x) ⊂ [0, k]Z.
Clearly, X is transitive, and Y is its subsystem. By Lemma 4 it is quasimin-

imal and all nontrivial proper subsystems are subsystems of Y – thus equal to Y
by minimality. The halting problem along a clopen set is undecidable for X be-
cause Tj eventually halts if and only if L(X)∩L 6= ∅, where L = 0uj[1, k]

∗vj+10.
To show that the subshift is recursive, note that given any word 0u0 where

u ∈ [1, k]∗, we can easily check whether there exists n ∈ N such that τ(n) = 0u.
Suppose then that we are given a word t00t10t20 · · · 0tk, where ti ∈ [1, k]∗. Using
the properties of the sequence φ, we can compute two extensions of this word,
one beginning with 0 and one ending in 0, such that every extension agrees with
one of them. Thus, we may assume the given word is w = 0t00t10t20 · · · 0tk.

Such a word is in the language ofX if and only if u = τ−1(0t00t10t20 · · · 0tk−1)
is well-defined and u ⊏ φ holds, and either tk begins with one of the words uh(i)
or it is a prefix of the unique one-way limit x ∈ [1, k]N of the words ui. These
conditions are easily seen to be decidable.

3.4 Countable universal quasiminimal examples

The case of countable quasiminimal subshifts is also interesting. For such sub-
shifts, we show that both the modular halting problem and the counting problem
are undecidable, so that the model-checking problems for piecewise testable lan-
guages, starfree languages and renewal languages are undecidable as well. In
Section 4, we complement these results by showing that in each, the number
of subsystems is optimal, and the model-checking problem for local languages
(and thus the halting problem along a clopen set) is decidable.

First, we show that if nonzero symbols are asymptotically spaced far apart
in x, then x generates a quasiminimal countable subshift.

Lemma 6. Let x ∈ ({0} ∪ S)Z be such that

∀n : ∃m : (xj = xj′ 6= 0 ∧ j 6= j′ ∧ |j| ≥ m =⇒ |j − j′| > n).

Then X = O(x) is a countable weakly transitive quasiminimal subshift whose
proper subshifts are among the subshifts of L−1(0∗S0∗). If x is computable and
m = m(n) is computable in n, then X is recursive.

21

Proof. Every limit point of x is easily seen to be in L−1(0∗S0∗), so X is con-
tained in O(x) ∪ L−1(0∗S0∗). Thus, X is countable and quasiminimal, and its
proper subshifts are among the subshifts of L−1(0∗S0∗).

Suppose then that x and m are computable. For each ∞0s0∞ /∈ X , let ks
be the maximal |i| such that xi = s (given to the algorithm by a look-up table).
Given w, if w is not a word in L−1(0∗S0∗), then w contains two nonzero symbols
spaced n apart, so w ⊏ X if and only if w occurs in x[−m(n)−|w|,m(n)+|w|]. If
w ∈ 0∗, or w ∈ 0∗s0∗ and ∞0s0∞ ∈ X , then w ⊏ X . If w ∈ 0∗s0∗ and
∞0s0∞ /∈ X , then w ⊏ X if and only if w ⊏ x[−ks−|w|,ks+|w|].

We begin with the case of modular halting problem. We first show the result
for the modular halting problem along a clopen set, as the proof illustrates the
main idea, but is easier.

Proposition 5. There exists a recursive countable weakly transitive quasi-
minimal subshift X ⊂ {0, 1}Z for which the modular halting problem along a
clopen set is Σ0

1-complete, and which has exactly two subsystems L−1(0∗10∗)
and L−1(0∗).

Proof. Enumerate the deterministic Turing machines as T0, T1, T2, Let h :
N → N be the ruler sequence and let pi denote the ith odd prime number (so
p1 = 3). Let τ be the substitution

i 7→
102

i

, if Th(i) does not halt before step i.

10ph(i)2
i

, if Th(i) halts before step i.

We let x = ∞0.τ(0123...) and X = O(x).
The modular halting problem of this subshift is clearly undecidable, as the

distance of two symbols 1 along symbols 0 can be divisible by pj if and only if
Tj eventually halts. The required properties of X follow from Lemma 6.

Theorem 4. There exists a recursive countable weakly transitive quasiminimal
subshift X ⊂ {0, 1}Z for which the modular halting problem is Σ0

1-complete, and
which has exactly two subsystems L−1(0∗10∗) and L−1(0∗).

Proof. Enumerate the deterministic Turing machines as T0, T1, T2, Let h :
N → N be the ruler sequence. Let p(i) denote the ith odd prime number, and
define the primorial of n ≥ 2 to be n# = 2p(1)p(2) · · · p(ℓ) where ℓ is maximal
such that p(ℓ) ≤ n. Thus, n# is the product of primes up to n. Let f : N → N

be an increasing recursive function satisfying p(f(i − 1))p(f(i−1)) ≤ p(f(i)) for
all i. Let τ be the substitution

i 7→
10p(f(i))#−1, if Th(i) does not halt before step i.

10p(f(i))#+p(f(i))#/p(f(h(i)))·ki−1, if Th(i) halts before step i,

where 0 < ki < p(f(h(i))) is minimal such that

p(f(i))#/p(f(h(i))) · ki ≡ 1 mod p(f(h(i))).

Note that such ki exists because p(f(i))#/p(f(h(i))) is not divisible by p(f(h(i))).
We let x = ∞0.τ(0123...) and X = O(x). To show that the modular halting

problem is Σ0
1-complete, we show that there exist two symbols 1 with distance

22

ℓ ≡ 1 mod p(f(j)) if and only if Tj eventually halts. First, if Tj does halt, then
j = h(i) for some i such that Tj halts before step i. Then,

10p(f(i))#+p(f(i))#/p(f(j))·ki−11 ⊏ x,

where ℓ = p(f(i))# + p(f(i))#/p(f(j)) · ki ≡ 1 mod p(f(j)) by the choice of ki
and because j ≤ i.

Let us show that if Tj never halts, then no such distance ℓ occurs. First,
note that if Tj does not halt, then the distance between the ith and (i + 1)th
symbol 1 produced by the construction is divisible by p(f(j)) by construction
whenever i ≥ j. Thus, if there is a distance ℓ ≡ 1 mod p(f(j)) between two
symbols 1 in x, then it is among the first j symbols, that is, the distance must
occur between two symbols 1 in the word τ(12 · · · (j − 1)) · 1. The distance is
never 1, so it must be at least p(f(j)) + 1. However, we have

|τ(1 · · · (j−1))·1| ≤ 2j|τ(j−1)| = 2jp(f(j−1))# ≤ p(f(j−1))p(f(j−1)) ≤ p(f(j)),

by the assumption on f .
This shows that the modular halting problem is undecidable. The other

properties again follow from Lemma 6.

Of course, the growth rate for the distances between consecutive symbols
1 is not optimal, but we are not aware of essentially simpler substitutions for
which the proof is equally short.

We note that just like we could take an arbitrary infinite recursive mini-
mal subshift as the unique minimal subshift in the proof of Theorem 3, one
could of course use any infinite subshift of the form L−1(u∗vu∗) in the place of
L−1(0∗10∗), although small additional complications arise if |u| 6 | |v|.

Next, let us consider the counting problem. For this, we need four subsys-
tems.

Theorem 5. There exists a recursive countable weakly transitive quasiminimal
subshift X for which the counting problem is Σ0

1-complete, and which has exactly
four subsystems, L−1(0∗(1 + 2)0∗), L−1(0∗20∗), L−1(0∗10∗) and L−1(0∗).

Proof. Let Ti be an enumeration of Turing machines and h and infinite-to-one
computable mapping. Let τ be the substitution

i 7→
20i, if Th(i) does not halt before step i.

2(0i1)h(i)0i, if Th(i) halts before step i,

We let x = ∞0.τ(0123...) and X = O(x). The counting problem is clearly Σ0
1-

complete, because there exists a point that travels from the cylinder [2] back to
itself along [0] visiting [1] exactly j times if and only if Tj eventually halts. The
other properties again follow from Lemma 6.

3.5 Model-checking for context-free languages

In [7], it is shown that the model-checking problem of regular languages is
decidable for minimal systems, and in this section, we have shown that this
problem is undecidable for more complex subshifts. In another direction, we

23

could ask how far we must step from the class of regular languages to find
undecidable model-checking problems.

We show that the model-checking problem is hard at least for context-free
languages. Our example is a subshift of the Dyck shift (with labels {1, 2, 3}),
the subshift of S = {[1, [2, [3,]3,]2,]1}Z where the parentheses are balanced, in
the sense that the process of recursively erasing subwords of the forms [s]s for
s ∈ {1, 2, 3} never introduces a subword of the form [s]s′ with s 6= s′.

The language of the Dyck shift is the set of factors of the Dyck language L
generated by the context-free grammar A 7→ AA|[aA]a|[bA]b|[cA]c|λ. A deter-
ministic push-down automaton M for it is obtained by pushing s on input [s,
and popping the corresponding symbols on closing brackets (rejecting the word
if these do not match). For two words u, v over S which occur as subwords of
words in L, write u ∼ v if the two words correspond to the same element of the
syntactic monoid of L. (In other words, they close the same parentheses, and
leave the same parentheses open).

Theorem 6. There exists a minimal Π0
1 subshift X whose model-checking prob-

lem for context-free languages is Σ0
1-complete.

Proof. For s ∈ {1, 2, 3} let [0i = [i, and]0i =]i. Let W0 = {[01, [
0
2, [

0
3,]

0
3,]

0
2,]

0
1}.

Inductively, suppose Wi = {[i1, [
i
2, [

i
3,]

i
3,]

i
2,]

i
1} is defined, and each word in Wi is

a concatenation of words of Wi−1, and contains all concatenations uv of words
u, v ∈ Wi−1 such that uv is a subword of a word of L. We also inductively
suppose that each w ∈ Wi corresponds to one of the symbols a ∈ S of the
original alphabet in the sense that the push/pop action corresponding to a is
performed on w when reading the very last symbol, and during the reading of
proper prefixes, no existing data on the stack is popped, and all words put on the
stack begin with 3. More precisely, we suppose the words in Wi are of the same
length ni, and for all s ∈ {1, 2, 3}, ([is)[0,ni−2] ∼ (]is)[0,ni−2] ∼ λ, ([is)ni−1 = [s
and (]is)ni−1 =]s, and if the stack of M initially contains v, then after reading
any proper prefix of a word u ∈W i, the stack contains either v or v3w for some
word w.

We define Wi+1 as a concatenation of words of Wi, respecting the inductive
assumptions. Let T1, T2, T3, . . . be an enumeration of Turing machines, and let
h : N → N be a computable infinite-to-one mapping. Let ui be any word with
ui ∼ λ containing all legal concatenations of pairs of words in Wi. For example,

ui =
∏

s,s′∈{1,2,3}

[is[
i
s′]

i
s′]

i
s[

i
s′]

i
s′

is such a word, no matter what order the pairs s, s′ are listed in.
Now, if Th(i) does not halt in i steps or less, we define

[i+1
s = [i3ui]

i
3[

i
s, and]i+1

s = [i3ui]
i
3]

i
s.

If Th(i) does halt in i steps or less, we define

[i+1
s = [i3([

i
1)

h(i)[i2]
i
2(]

i
1)

h(i)ui]
i
3[

i
s, and]i+1

s = [i3([
i
1)

h(i)[i2]
i
2(]

i
1)

h(i)ui]
i
3]

i
s.

We let
Wi+1 = {[i+1

1 , [i+1
2 , [i+1

3 ,]i+1
3 ,]i+1

2 ,]i+1
1 }.

24

The subshift X is defined as the set of limit points of (say) the words [j1 as
j → ∞.

Now, define Lk ⊂ L as the language defined by the automaton Ak, which
simulates the deterministic push-down automaton A for the Dyck language, but
additionally inspects the k+ 2 top symbols of the stack after every step for the
word 31k2. The automaton accepts the word w if and only if w ∈ L, and 31k2
was seen on the top of the stack during the execution.

We claim that X is minimal, Π0
1 and for j sufficiently large, its language

intersects Lj if and only if Tj eventually halts. For minimality, simply note that
if u ⊏ X , then u ⊏ [i1 for some i (by definition). This word appears in every
word ofWi+1 and every point of X is a concatenation of these words.15 To show
X is Π0

1, we note that given any word w we can check whether w ∈ L(X) by
computing the sets Wi until their lengths exceed that of w. Then by the choice
of ui, every word of length |w| that appears in X appears in Wi+1.

16

Now, note that if Tj eventually halts, then certainly Lj intersects the lan-
guage of X because for any large enough i with h(i) = j, [i3([

i
1)

h(i)[i2⊏ [i+1
a and

[i3([
i
1)

h(i)[i2 ∼ [3([1)
h(i)[2, which pushes the word 31j2 on top of the stack of M .

Conversely, suppose j is large. If there exists a subword of X where 31j2
appears on top of the stack during the run of A on the word, then in particular
there exists such a word which is a subword of some [i+1

s or]i+1
s . Choose the

minimal such i, and suppose that it occurs in v = [i+1
s (the case of a closing

bracket being similar). Let k be minimal such that 31j2 is on the top of the
stack after reading v[0,k]. If v[0,k] is not a concatenation of words of Wi, then
the automaton has read a proper prefix of a word of Wi up to coordinate k. By
the inductive assumption, it has then written a word beginning with 3 on the
stack, or nothing. In the first case, the word 31j2 was written on top of the
stack while reading that word of Wi, so i is not minimal. In the second case,
reading the prefix did not modify the stack, so k is not minimal.

In the remaining case, we have read some concatenation of words of Wi. It
is clear by the construction that 31j2 is written on top of the stack after reading
some such prefix if and only if Tj halts or this happened because for some prefix
[i3u of [i3ui]

i
3[

i
s wrote this on top of the stack. Since u is a concatenation of at

most 54 words of Wi, j > 54 is enough to prevent this.

4 Quasiminimality and decidability

In this section, we give various decidability results, which complement the results
of the previous section. We take a rather high-level approach to decidability,
and usually only describe the logical deductions the algorithm must make to
determine the right answer.

4.1 Decidability in the general case

One could say that it is a folklore result that a minimal Π0
1 subshift has a

recursive language; we are not aware of a reference that states and proves this
explicitly, although the proof is given in multiple places. The result is shown in

15We note that for this argument, there is no need to have all legal pairs of symbols in ui,
only all symbols, although the definition of X is more robust if all pairs occur.

16For this, on the other hand, having all pairs in ui is essential.

25

[12] in the case of multidimensional SFTs, and the proof works in general. It is
also essentially shown in [3], but the connection is not made very explicit. We
give a proof below.

Theorem 7. A minimal Π0
1 subshift is recursive.

Proof. Given an alphabet S, a word w ∈ S∗ and a Turing machine enumerating
the forbidden patterns of a nonempty minimal subshift X over S, we show that
it is decidable whether w ⊏ X .

If w 6⊏ X , then an algorithm can eventually detect this by the assumption
that X is Π0

1. If w ⊏ X , then by uniform recurrence, there exists n such that
w ⊏ u for all u ∈ Ln(X). By compactness, there exists k such that the SFT
Y defined by the first k forbidden patterns v1, v2, . . . , vk enumerated by the
given Turing machine defining X satisfies Ln(Y) = Ln(X). It follows that after
enumerating the first k forbidden patterns, the algorithm has found an SFT Y
such that X ⊂ Y and w ⊏ u for all u ∈ Ln(Y), and can deduce that w ⊏ X (on
the assumption that X is nonempty).

The algorithm is uniform in the given Turing machine and given word,
though only when restricted to inputs that define nonempty subshifts. It is
in fact easily seen to be undecidable whether a given Turing machine defines an
empty subshift or a nonempty minimal subshift: the given Turing machine may
output the forbidden patterns of any Π0

1 minimal subshift as long as another
simulated Turing machine does not halt, and forbid every symbol if it does halt.

We show that the non-uniform decidability result generalizes to the class of
quasiminimal subshifts as well, in Theorem 8 below. As a quasiminimal subshift
contains only finitely many subshifts, it is natural to approach such subshifts
by induction on the number of proper subshifts they have, and we give the
following notation for this.

Definition 12. For X quasiminimal, define

Q(X) = |{Y | Y ⊂ X,Y is a subshift}|.

The empty subshift and the subshift itself are also counted: if X is nonempty
and minimal, then Q(X) = 2, and Q(∅) = 1.

We need the following basic structural results.

Definition 13. If w ⊏ X and u ≤X w for all u ⊏ X, then w is called a
generator (for X).

Lemma 7. Let X be quasiminimal. Then X has a generator if and only if it
is not the union of its proper subshifts.

Proof. First, we suppose that X is the union of its proper subshifts. Then,
whenever w ⊏ X , there must exist a proper subshift Y (X with w ⊏ X . If
Y (X , then u 6⊏ Y for some u ⊏ X , which implies u 6≤X w. Thus, no w ⊏ X
is a generator for X .

Now, suppose X is not the union of its proper subshifts. Let Y (X be the
union of its proper subshifts. Note that since X has only finitely many proper
subshifts, Y = Y1 ∪ · · · ∪ Yk for some k and subshifts Yi (X , and thus Y is
itself a proper subshift of X . Let w be any word that occurs in X but not Y .
Then there exists no proper subshift Z of X containing w. It follows that, for
any u ⊏ X , the subshift of X where u is forbidden does not contain w, which
means u occurs in every point of X containing w. It follows that u ≤X w.

26

Note that if w is a generator for X , then since u ≤X w for any u ⊏ X ,
any point x containing w must contain every word u ⊏ X , that is, every point
x ∈ X containing w is weakly transitive (in particular, X is weakly transitive).

Lemma 8. If X is quasiminimal and Y is a subshift of X, then there exists a
finite list of words v1, v2, . . . , vk such that Y is obtained from X by forbidding
the words vi. In particular, every subshift of a Π0

1 quasiminimal subshift is Π0
1.

Proof. Let Yi be the ith SFT approximation of Y , and consider the subshifts
Zi = Yi ∩ X . We have

⋂

Yi = Y , and thus also
⋂

i Zi = Y . The Zi are a
decreasing sequence of subshifts of X , and thus for some j we have Zj = Zj+k

for all k ≥ 0. It follows that Y = Zj . Since Yi is an SFT, Yi ∩ X is obtained
from X by forbidding a finite set of words. The latter claim is then trivial:
the Turing machine outputting the forbidden words of a subshift Y ⊂ X first
outputs the finitely many words vi, and then the forbidden words of X .

Theorem 8. A quasiminimal Π0
1 subshift X ⊂ SZ is recursive.

Proof. We proceed by induction on Q(X). First, if Q(X) = 1, then X = ∅ and
there is nothing to prove. Suppose then that Q(X) > 1, and let u ∈ S∗. We
have to decide whether u ⊏ X . By the induction hypothesis and the previous
lemma, for any proper subshift Y (X it is decidable whether u ⊏ Y . If u ⊏ Y
for some proper subshift, then the algorithm may conclude u ⊏ X . Also, if
u 6⊏ X , we can semidecide this by enumerating the forbidden words of X by the
assumption that X is Π0

1. The case that is left is that u ⊏ X and u 6⊏ Y for
any proper subshift Y ⊂ X .

In such a case, the union Y of all proper subshifts of X does not equal X .
By Lemma 7, there exists a generator w ⊏ X such that w ⊏ x ∈ X implies that
x is weakly transitive in X . We may assume this w is known to the algorithm,
by way of a look-up table. Since forbidding w results in a proper subshift of X ,
it must result in a subshift of Y . Thus, by compactness, there exists n ∈ N such
that x[0,|u|−1] = u implies x[i,i+|w|−1] = w for some i ∈ [−n, n], for all x ∈ X .
This must also hold in a suitable SFT approximation of X , obtained by running
the Turing machine defining X for sufficiently many steps. Once such n and an
SFT approximation Z is found, the algorithm can conclude u ⊏ X .

Remark 2. An important point is that the generator w was needed in the al-
gorithm, and one cannot compute it directly from a Turing machine defining X
(as one can verify by an easy counterexample). Indeed, one can hardly compute
anything from such a representation, because it cannot even be decided if the
Turing machine defines an empty subshift. Thus, the result is not uniform in
X. However, like in the case of Theorem 7 (where we supplied the information
of whether the subshift is empty), the algorithm is at least somewhat uniform, as
we only need the lists of forbidden words (the lists (v1, . . . , vk) given by Lemma 8)
defining the proper subshifts of X and the lists of generators for all subshifts of
X. An easy example shows that in the case of general quasiminimal subshifts,
knowing whether the subshift is empty is not enough to determine whether a
given word u is in the subshift. However, it is an interesting question exactly
what “shape information” is needed.

A trivial corollary of the previous result and Lemma 8 is that recursive
quasiminimal subshifts are hereditarily recursive, that is, all their subshifts are
recursive.

27

Corollary 1. All subshifts of a recursive quasiminimal subshift X are recursive.

Note that in the previous section, we essentially defined our Π0
1 subshifts

by giving a computational process that outputs a point, and we then showed
that one has an algorithm for recognizing whether a given word occurs in the
point. Just the fact that the point was given by a computational process does not
automatically imply that there is a such an algorithm, but it does automatically
follow that the subshift has at least a recursively enumerable language. Thus, we
could not have hoped to find a Π0

1 quasiminimal subshift which is not recursive
with this technique, and indeed, by Theorem 8, there is no such subshift. We
can strengthen this observation slightly, and prove Proposition 6, which states
that all quasiminimal Π0

1 subshifts are obtained as orbit closures of computable
points. We first need a few lemmas.

Lemma 9. Let X be a subshift whose language is recursively enumerable. Then
the computable points are dense in X.

Proof. Given any word u ⊏ X , one can construct a Turing machine that re-
peatedly extends u by every possible letter in both directions and chooses the
lexicographically minimal extension that still leads to a word that occurs in X .
This gives the point and algorithm required in the definition of computabil-
ity.

Lemma 10. If X is a Π0
1 quasiminimal subshift, then it is a finite union of

orbit closures of computable points.

Proof. Suppose that the claim fails for some Π0
1 quasiminimal subshift X . Enu-

merate the words of X as u1, u2, Let x1 be a arbitrary computable point
in X . Inductively, let uk(j) be the first word on the list u1, u2, . . . such that

uk(j) 6⊏ Yj−1 = O(x1)∪O(x2)∪ · · · ∪O(xj−1). Such uk(j) can always be found,
since otherwise X = Yj−1, a contradiction. Let then xj be a computable point
containing uk(j). It follows that Y1 (Y2 (· · · is an infinite increasing sequence
of subshifts of X , which contradicts quasiminimality.

The following proposition is subtly stronger.

Proposition 6. If X is a Π0
1 quasiminimal subshift, then there exists a finite

set {x1, x2, . . . , xk} of computable points with distinct languages such that for
every x ∈ X we have L(xi) = L(x) for some i ∈ [1, k].

Proof. A Π0
1 quasiminimal subshift has finitely many subshifts, which are all Π0

1

and quasiminimal. We apply the previous lemma to each of them, and take the
union of the finitely many sets of points obtained. To obtain distinct languages,
repeatedly remove xj from the set if L(xi) 6= L(xj) for some i 6= j. Now,
suppose that there is a point x ∈ X such that L(xi) 6= L(x) for all i ∈ [1, k].
Then, for each i, either x contains a word ui such that ui 6⊏ xi, or xi contains
a word vi such that vi 6⊏ x. Define a subshift Y of X by forbidding the vi,
and choose a subword w of x containing all the ui. Then, x is a point of Y
containing a word w which is not in any of the xi. This is a contradiction, since
we applied the previous lemma also to Y .

This proposition suggests a small tangent to the discussion. The follow-
ing proposition shows that the previous result is not a characterization of Π0

1

28

quasiminimal subshifts, and also shows that there is no symmetric version of
Theorem 7 for “Σ0

1 subshifts”. The result is presumably well-known, but we are
not aware of a reference for it.

Proposition 7. There exists a computable point x ∈ {0, 1}Z such that O(x) is
minimal and not Π0

1.

Proof. We only need to describe a minimal subshift whose subwords are recur-
sively enumerable, as such a subshift contains a computable point, and every
point in a minimal subshift generates it.

Let W0 = {0, 1}. For each i, we will define Wi to be a set of two words of
the same length such that every (bi-)infinite concatenation of words of Wi has a
unique partition into words of Wi, and both words of Wi are contained in both
words of Wi+1. For any list of sets with these properties, we obtain a minimal
subshift by taking the limit points of the words Wi in the obvious way. We
denote by ℓi be maximal number such that for some w ∈Wi, the word w

ℓi ∈ X
occurs in some concatenation of words of Wi+1. We make sure ℓi is always
finite, and strictly smaller than the length of the words w ∈Wi+1. We will not
define these words by a direct induction, but by a computational process, and
the process may change the definition of Wi arbitrarily late in the process of
constructing these sets – the reader should think of the Wi as variables in the
programming sense of the word in the following.

The property of unique partitions is clearly true for W0 = {0, 1}. If Wi =
{w1, w2} (where w1 < w2 in lexicographical order) satisfies this property, and
u, referred to as the cover-up, is any concatenation of words in Wi, then we
set Wi+1 = {wi

1w
q−i
2 w1u | i ∈ {1, 2}} where q = 2|u| + 3. These words will

have the property of unique partitions, contain both words of Wi, and certainly
ℓi < |w1w

q−1
2 w1u|, as required. Note also that ℓi > |u|, and if u is the empty

word λ, then ℓi = 3.
Now, we describe the algorithm that constructs the sets Wi+1. One i at a

time, the algorithm sets Wi+1 = {u1, u2}, where u1 and u2 are any two words
constructed as above from the words of Wi and the cover-up u = λ. Every time
it computes a new setWi, it outputs the words ofWi, and all their subwords, in
lexicographical order. While constructing these words, the algorithm dovetails
the computation of all Turing machines T1, T2, If the kth machine halts
and the machine has computed the sets Wi for i ≤ K (where we may assume
K > k), then the algorithm changes the definition of Wk: If Wk−1 = {w1, w2}
and WK = {u1, u2} (and w1 < w2 and u1 < u2 in lexicographical order), let
the cover-up be u = u1u2, and define Wk as in the previous paragraph, so that
every word of the new set Wk contains the word u. Furthermore, since we
previously had ℓk−1 ≤ |w| for w ∈ Wk, the new value of ℓk−1 is strictly larger,
as ℓk−1 > |u|, u = u1u2 and ui ∈WK .

The crucial point is that since the algorithm changed its mind about the
contents of Wk, all the subwords of words in Wi for i ≥ k it has output sofar
have been wrong, in the sense that the values of the sets Wi were not correct
– however, the new value of Wk conveniently covers up these lies17 due to the
choice of u: every word it has output sofar is in fact a subword of every word

17Of course, the words that have been output are not really lies, in the sense that they are
indeed words of the subshift X we eventually obtain. However, the reader can probably agree
that the algorithm has at least not been outputting subwords in a very honest order.

29

in the updated set Wk. Thus, the algorithm can forget the sets Wi for i > k it
had computed previously, and continue its computation from the new set Wk.

It is clear that the sets Wj all converge, as once those Turing machines Ti
with i ≤ j have halted which will eventually halt, the contents of Wj will never
change. The sets obtained in the limit still satisfy the properties we asked for,
and thus the limit of these sets of words is a minimal subshift by a standard
argument. The subshift has a recursively enumerable language by construction.

Finally, let us show the language of the subshift is not Π0
1. For this, simply

observe that if we had a decision algorithm for the language of X , we could
decide, for each Wi one by one, whether the machine i ever halts. Namely,
assuming we know whether the machine Ti halts for all i < j, we can determine
whether Tj eventually halts as follows: we run the algorithm described above
until it has computed the sets Wi for all i < j (and recomputed them as many
times as necessary, whenever the machines Ti with i < j halt). Let Wj−1 =
{w1, w2}, in lexicographical order. Now, the machine Tj eventually halts if and
only if w4

2 occurs in the language of X .

We note that it does not follow from the previous proof that the language of
the subshift constructed is Σ0

1-complete for many-one reductions, only Turing
reductions.

We can strengthen Theorem 8 further, and show that even the halting prob-
lem of a quasiminimal subshift is decidable (compare this with Proposition 3).
More precisely, we show that the model-checking problem for elementary piece-
wise testable languages is decidable, and the halting problem follows as a special
case. First, we state the obvious.

Lemma 11. The generating poset and subpattern poset of a quasiminimal sub-
shift are finite.

Proof. Let X be quasiminimal. If x ∈ X , then Y = O(x) is a subshift of X
with L(Y) = L(x), and X has finitely many subshifts, so the subpattern poset
is finite. Let {x1, x2, . . . , xk} ⊂ X be a finite set of representatives such that
∀x ∈ X : ∃i : L(x) = L(xi).

The inequality u ≤X v means that whenever v ⊏ x for x ∈ X , then also
u ⊏ x. Associate to each u ∈ L(X) the tuple B(u) = (b1, b2, . . . , bk) ∈ {0, 1}k

where bi = 1 ⇐⇒ u ⊏ xi. If B(u) = B(v), then u ≤X v ≤X u holds, so the
generating poset of X is finite.

Theorem 9. If X ⊂ SZ is a quasiminimal Π0
1 subshift, then the model-checking

problem of X for elementary piecewise testable languages is decidable.

Proof. Restated in terms of clopen sets, we are given [C1], [C2], . . . , [Cℓ], and we
need to decide whether all of these are visited in order by a single point. We
can deal with each of the finitely many tuples T = (t1, . . . , tℓ) ⊂ (S∗)ℓ with
ti ∈ Ci separately, and check for such a tuple whether there exist x ∈ X and
i1 < . . . < iℓ ∈ Z such that x[ij ,ij+|tj|−1] = tj for all 1 ≤ j ≤ ℓ. We denote this
condition by T ⊏ X .

Let w1, w2, . . . , wk be a finite set of representatives for the elements of the
generating poset. To each word u, we associate hu ∈ N such that in every
extension of u of length hu, the unique wi with wi ∼ u occurs, given by Lemma 2.

We may suppose these words, and their mutual ordering, are known to the
algorithm. Now, let T = (t1, . . . , tℓ) be given. We may again assume Q(X) > 1,

30

and prove the decidability of T ⊏ X by induction on Q(X). We do a similar
case analysis as in Theorem 8. By the induction hypothesis, for any proper
subshift Y (X it is decidable whether T ⊏ Y , so we suppose T 6⊏ Y for all
proper subshifts Y of X . If X is the union of its proper subshifts, the algorithm
can decide T ⊏ X by checking whether T ⊏ Y for all Y (X , so we assume this
is not the case. As above, denote by Y (X the union of all proper subshifts of
X and let w ∈ S∗ be a generator for X (known to the algorithm). Now, choose
a point x ∈ X which contains w, so that x is weakly transitive in X . We may
assume all of the words ti appear in x, since if ti 6⊏ x, then ti 6⊏ X , which the
algorithm can prove by enumerating forbidden patterns of X .

If w appears infinitely many times in x (which we may assume is known to
the algorithm), the algorithm only needs to prove ti ≤X w for all i (which is
possible, since ≤X is semidecidable, and w is a generator): then the words ti in
fact appear in x in every possible order, and thus T ⊏ X . Suppose then that
w only appears once. Then x is an isolated point, so that the only points with
the same subwords as x are in the orbit of x. Furthermore, w is an isolating
pattern. Let YL and YR be the subshifts generated by the left and right tail of
x.

Now, let u = ti for some i, let u ∼ wj , and let h = hu. Now, if the unique
wj with wj ∼ u occurs in YL, then u appears infinitely many times in the left
tail of x. Otherwise, we can compute a bound on how far to the left of w the
word u can appear: wj occurs at most m steps to the left of w for some m
(which we may assume is known to the algorithm by way of a look-up table),
and then u cannot appear m + hu steps to the left of the origin. Similarly,
we can semidecide that u appears infinitely many times to the right, or find a
bound on how far to the right of w it can appear. Since the language of X is
recursive, we can now easily decide whether T ⊏ X .

The halting problem is the subcase where there are only two clopen sets.

Corollary 2. The halting problem of a quasiminimal Π0
1 subshift is decidable.

We give a simpler direct proof of this as well, using more external informa-
tion. The simpler proof works for any fixed tuple length (with larger and larger
look-up tables), but not in general.

Direct proof of Corollary 2. Let w1, . . . , wk be representatives of the generating
poset, and let H(i, j) be the answer of the halting problem for the cylinders
[wi], [wj]. Given any two words u, v, we find wi and wj such that u ∼ wi and
v ∼ wj . Using the fact that X is recursive, we can check whether some x ∈ X
moves from [u] to [v] in at most

|wi|+ hu,wi
+ hwi,u + |wj |+ hv,wi

+ hwi,v

steps (and if yes, answer ”yes”). If not, the answer to the halting problem is
H(i, j).

Remark 3. By Theorem 9, we can decide T ⊏ X for any tuple T , and thus
we can certainly decide P (P1(X), P2(X), . . . , Pk(X)) where P is an arbitrary
Boolean formula and the Pi(X) are statements of the form Ti ⊏ X for tu-
ples of words Ti. In contrast, we saw in Theorem 5 that for piecewise testable
languages, the Boolean closure of elementary piecewise testable languages, the

31

model-checking problem is undecidable. This may seem contradictory, but it only
means that

P ((∃w ⊏ X : P1(w)), (∃w ⊏ X : P2(w)), . . . , (∃w ⊏ X : Pk(w)))

is decidable for Π0
1 quasiminimal subshifts, while

∃w ⊏ X : P (P1(w), P2(w), . . . , Pk(w))

is undecidable, where we write Pi(w) ⇐⇒ Ti ⊏ w.

4.2 Quasiminimal subshifts with N-actions

Most of our study has been about quasiminimal subshifts X ⊂ SZ with the
Z-action given by the shift map. We now show that quasiminimal N-subshifts
are in fact decidable (when subsystems are not required to be surjective). See
Figure 1 for an illustration.

Theorem 10. Let X ⊂ SN be a subshift. Then X is quasiminimal if and only
if there exist finitely many minimal subshifts Y1, Y2, . . . , Yk, finitely many points
x1, . . . , xℓ and m such that X =

⋃

i Yi ∪ {x1, . . . , xℓ} such that for all i ∈ [1, ℓ],
either σ(xi) ∈

⋃

i Yi or σ(xi) ∈ {xi+1, . . . , xℓ}.

Proof. The ”if” direction is easy to verify. Suppose then that X is quasiminimal.
We show that X is the of required form.

Since each σi(X) is a subsystem, we must have σm+1(X) = σm(X) for some
m, and we write Y = σm(X). We claim that there are only finitely many points
outside Y . Namely, if x ∈ X , then σm(x) ∈ Y . If ℓ is the least number such
that σℓ(x) ∈ Y , then

O(x) = {x, σ(x), . . . , σℓ−1(x)} ∪ Y ′

is a subshift of X for some subshift Y ′ ⊂ Y (it is closed as a union of ℓ+1 closed
sets, and shift-invariant by definition). Thus, each point x ∈ X \Y is contained
in a subshift of X which contains only finitely many points of X \ Y . If X \ Y
were infinite, this would imply that X is not quasiminimal.

For x, y ∈ X \ Y , write x ≺ y if σi(x) = y for some i ∈ N. Since σm(x) ∈ Y ,
we cannot have x ≺ y ≺ x unless x = y, so ≺ is a partial order on X \ Y . We
obtain the points x1, . . . , xℓ by extending it to a total order.

Let Y1, Y2, . . . , Yk be the minimal subsystems of X . The list is finite by
quasiminimality. We now show that every point x ∈ Y is uniformly recurrent,
thus in

⋃

i Yi. Suppose this is not the case. Then there exists a word w ⊏ x
which either occurs finitely many times in x, or occurs infinitely many times but
with arbitrarily long gaps. In the first case, y = σi(x) contains only one copy
of w at y[0,|w|−1] = w, and in the second, we find a limit point y ∈ O(x) with
this property. Since y ∈ Y , then by a compactness argument it has an infinite
chain of preimages

· · ·
σ
7→ y4

σ
7→ y3

σ
7→ y2

σ
7→ y1 = y

with yi ∈ Y for all i. Then Xi = O(yi) is a subshift of Y containing exactly i
points where w occurs, and thus the Xi are an infinite family of subshifts of X ,
contradicting quasiminimality.

32

Y1 Y2 Y3

Figure 1: A typical quasiminimal N-subshift. The Yi are the minimal subshifts
and the small circles are the points xi and their images in

⋃

i Yi.

We see that the case of N-actions looks very different than that of Z-actions.

Corollary 3. Let X ⊂ SN be recursive and quasiminimal. Then X is decidable.

Proof. Lemma 8 of [7] states that a system whose limit set is a union of finitely
many minimal systems is decidable. By the above theorem, it is clear that
quasiminimal N-subshifts have this property.

4.3 Decidability in the countable case

We first show that, for pretty much trivial reasons, having only a single minimal
subshift implies decidability in the countable case (even without assuming, a
priori, that the subshift is Π0

1). In particular, the subshift in Theorem 4 has the
optimal number of subsystems.

Proposition 8. Let X ⊂ SZ be a countable subshift with Q(X) ≤ 3. Then
X = O(∞uvu∞) for some words u, v, and thus decidable.

Proof. The case Q(X) < 3 is trivial, so suppose Q(X) = 3. The CB-derivative
X ′ of X is a proper subshift of X . We must have Q(X ′) < Q(X), and thus X ′ is
a countable minimal subshift. This implies X(2) = ∅, so the CB-rank of X is 2.
Every countable subshift with CB-rank 2 is generated by a single point which is
eventually periodic in both directions [6, 21], and since X has only one minimal
subshift X ′, the repeating patterns in both tails must be equal. Decidability of
such a subshift is easy to show.

By Theorem 5, there exists a recursive countable quasiminimal subshift X
for which the counting problem is Σ0

1-complete. We needed 4 proper nontrivial
subsystems for this, that is, Q(X) = 6. We show this is optimal. We begin with
the following recoding argument.

Definition 14. Suppose X is countable and quasiminimal. We say X is in
normal form if the following holds. There exists a finite set of words w1, . . . , wn,
wn+1, . . . , wn+m such that

• the words wi are over disjoint alphabets and L1(wi) = |wi| for all wi,

33

• every point x ∈ X has a representation as a bi-infinite concatenation of
the words wi (which is automatically unique),

• for j ∈ [1, n], the point xj = wZ

j is in X,

• for each j ∈ [n+1, n+m], there is (up to shifting) a unique point xj ∈ X
with wj ⊏ xj but wk 6⊏ xj for k > j, and wj occurs only once in xj, and

• every point of X is in the orbit of one of the points xj .

Furthermore, each of the points xj with j ∈ [n + 1, n + m] is of the following
form: xj = xLj .wjx

R
j , where either xRj = uNi for some i ∈ [1, k], or we have

xRj = (wh1)
ℓ1 wk1 (wh2)

ℓ2 wk2 (wh3)
ℓ3 wk3 (wh4)

ℓ4 . . . ,

where for all i, hi ∈ [1, n], ki ∈ [n + 1, n + j − 1] and ℓi > 1 and symmetric
conditions hold for xLj .

It is easy to see that a subshift X in normal form with fixed n,m contains
precisely n minimal subsystems.

Lemma 12. Let Y be countable and quasiminimal. Then Y is conjugate to a
subshift in normal form.

Proof. We construct the conjugacy inductively on Q(Y), so that if Z ⊂ Y and
Z ⊂ Y ′, then the conjugacies from Y and Y ′ to their recoded versions X and X ′

have the same restriction to Z. This is guaranteed if we always directly modify
the conjugacy obtained for subsystems when building the conjugacy for the full
system in the induction step.

If Y is countable and minimal, then it is clearly already of the form ∞w∞ as
required (w1 = w, n = 1 and m = 0). If Y is the union of its proper subsystems,
then we apply the inductive assumption to the subsystems, and observe that
the conjugacy extends to the full system because the conjugacies agree in the
intersections.18

Suppose then that Y is not minimal, and not a union of proper subsystems.
Then it contains a generator w, which we may assume is an isolating pattern,
because isolated points are dense in a countable subshift. Let y be the unique
point containing w. Then w occurs only finitely many times in y, since Y is not
minimal. Let φ be the conjugacy obtained for the union Z of proper subsystems
of Y . Suppose φ has radius r, and suppose t is the maximum length of the words
wi obtained for Z. There exists c > 2r + t such that y(−∞,−c] and y[c,∞) both
extend to points of the (2r + t)th order SFT approximation of Z.

This lets us apply φ in the tails of y: we define ψ by ψ(x)i = φ(x)i if w 6⊏
x[i−c−|w|,i+c+|w|], and ψ(x)i = aj if x[i+j,i+j+|w|−1] = w for j ∈ [−c− |w|, c+1],
where the aj are new symbols not used by φ. Then ψ is of the desired form,
up to possibly extending the words surrounding the new word over the aj to
full ones (there are unique such extensions since the words wj are over disjoint
alphabets and |L1(wj)| = |wj |). We increase m by 1, let wn+m be the new word
over the symbols ai, and xn+m = ψ(y).

18More precisely, this follows from the Pasting Lemma.

34

The conditions on the forms of points in Lemma 12 of course do not au-
tomatically guarantee that the subshift is quasiminimal – for this, one needs
strong additional properties for the sequences hi, ℓi, ki in the left and right tails
of the points xj . The precise conditions for this are somewhat complicated. We
note that in particular typically the gap sequence ℓi does not tend to infinity.
This is because the tail of a point xj may occasionally get close to another point

xk with n < k < j (which happens if O(xk) ⊂ O(xj)). In such a case, one will
see some short gaps ℓi, since there are typically short gaps in the representation
of xk. Conversely, when we see short gaps ℓi (far enough away from the central
pattern uj), this must mean some word uk must be nearby, where n < k < j.

Theorem 11. Suppose X is countable and Q(X) ≤ 5. Then the model-checking
problem of starfree languages is decidable for X.

Proof. We perform a small case analysis to reduce to the interesting case that the
lattice of subshifts of X is isomorphic to ({0, 1, 2, 3, 4}, <). As usual, in a model-
checking problem we may assume X is not the union of its proper subshifts.
Thus, there exists a generator w ⊏ x, which we may take to be isolating. By
forbidding w from X , we obtain a proper subshift Y with Q(Y) ≤ 4.

First, suppose Y is the union of proper subshifts, then we must have Y =
L−1(a∗+b∗) for some (possibly equal) words a, b. Namely, if Y contains at least
two minimal subsystems L−1(a∗) and L−1(b∗), it contains their union (because
Y ⊂ O(x)), which already gives 4 subsystems. It is impossible for Y to contain
only one minimal subsystem {∞a∞}, as then Y would contain at least two
distinct points left- and right-asymptotic to ∞a∞, and thus their union, which
gives 5 subsystems. If Y = L−1(a∗+b∗), it is easy to see that x is left asymptotic
to ∞a∞ and right asymptotic to ∞b∞ or vice versa, and it follows that X is
decidable.

Suppose then that Y is not a union of proper subshifts, and thus Y =
O(y). Since the maximal proper subshift Z of Y satisfies Q(Z) ≤ 3, we have
Z = L−1(u∗vu∗) for some words u, v. Thus, the subpattern poset of Z is
isomorphic to ({0, 1, 2}, <), that of Y is isomorphic to ({0, 1, 2, 3}, <), and that
of X is isomorphic to ({0, 1, 2, 3, 4}, <). In particular, X has only one minimal
subsystem, so we may assume X is in normal form with n = 1,m = 3, since the
hardness of model-checking problems is preserved under conjugacy.

Let L be a given starfree language. We may suppose L = S∗LS∗, as this does
not change the answer to the model-checking problem, and S∗LS∗ is starfree
whenever L is. Using the algebraic characterization of starfree languages, let p
be such that for all words u, up ∼ up+1 in the syntactic monoid of L. We show
that we can compute the central pattern and repeating patters for an eventually
periodic point x′ such that some u ∈ L occurs in x′ if and only if some v ∈ L
occurs in xn, which gives the answer since model-checking problems are easy to
solve for eventually periodic points, and xn is a weakly transitive point for X .

The important general observations here are the following: First, if x =
yLu

p+1yR for any word u and any tails yL and yR, then due to the assumption
L = S∗LS∗ and the choice of p, the point x′ = yLu

pyR satisfies the model-
checking problem for L if and only if x does. Furthermore, if x = limi yi, then
x satisfies the model-checking problem for L if and only if one of the yi does by
the definition of a limit, since the model-checking problem is about belonging
to a particular type of open set. Thus, we may repeatedly contract powers of

35

words in any point of x and pass to a limit, and (a shift of) the resulting limit
point will satisfy the model-checking problem for L if and only if x does.

We explain how to perform the contraction process to the right tail of x4 (in
the notation of Definition 14), so that we obtain an eventually periodic point
in the limit. The left tail is handled symmetrically, to obtain the eventually
periodic point for which we then solve the model-checking problem of L. Let
j be maximal such that wj occurs in x4 infinitely many times to the right.
Our contraction process contracts the right tail of x4 to w4(uwjv)

∞ for suitable
words u, v.

If j = 1, then x4 is already eventually periodic to the right, and we are done.
Suppose then that j > 1. Since w4 is an isolating pattern, we have j < 4. We
may assume no wr with r > j appears to the right of the central pattern w4

of x4 by modifying a finite part of the conjugacy (or otherwise restricting our
attention to a suitable tail).

Consider the case j = 2. Then, letting hi, ℓi, ki be as in Definition 14 for
the point x4 (whence hi = 1 for all i), in fact ki = 2 for all i and ℓi → ∞ as

i → ∞. In this case, we can compute s such that w2w
p−i′

1 w2 for i′ > 0 cannot
occur in the right tail of x4 beyond the coordinate s. Such s exists, because
otherwise there is a right limit point of x4 where w2 occurs twice, but w3 and w4

do not occur, and X , being in normal form, does not contain such a point. We
can compute s as in the proof of Theorem 9 using Lemma 2. Now, we simply
contract, one by one, each ℓi with large enough i (say, i > s) to p. The new
right tail (to the right of w4) is then of the form

xR4 = wℓ1
1 w2w

ℓ2
1 w2w

ℓ3
1 w2 · · ·w

ℓs
1 w2w

p
1w2w

p
1w2w

p
1 . . . ,

and we can compute such a new tail from the description of the language L.
The case that is left is j = 3. We apply the reasoning of the previous

paragraph to x3. We observe that in x3, either the right tail is periodic with
repeating pattern w1, or we have ℓ′i → ∞ where ℓ′i is the sequence of gaps in
the representation of x3, and the corresponding claim is true also on the left.
In particular, for some h and h′, further than h away from w3 in x3, no pattern

w2w
p−i′

1 w2 for i′ > 0 occurs, and in either (x3)[−h′,−h] or (x3)[h,h′], the word w2

occurs at least p times. The existence of h follows as in the previous paragraph,
and h′ exists because O(x2) ⊂ O(x3).

We can now compute s such that for each i ≥ s, either ℓi, ℓi+1 > p and
ki = 2, or ki′ = 3 for some i′ with |i′ − i| < h. Take s further large enough
that the distance between two occurrences of w3 is at least 2h′ + 2h. Now, by
the assumption on h and h′, between any two occurrences of w3, there are at

least p occurrences of w2 separated by wp+i′

1 for some i′ ≥ 0. We contract each

wp+i′

1 to wp
1 , and then the maximal pattern (w2w

p
1)

t between the w3 to (w2w
p
1)

p.
Clearly, we obtain the same distance and intermediate word between any two
occurrences of w3, and we can compute this repeating pattern.

4.4 Some open problems

We showed in Section 3.1 that every substitution generates a subshift which
has a decidable model-checking problem for regular languages. It seems likely
that one can prove the decidability of model-checking for Muller automata sim-
ilarly. While this would be an interesting result, one could also aim higher, at

36

the model-checking problem for context-free languages. Is the model-checking
problem for context-free languages decidable for subshifts generated by substi-
tutions?

One can naturally extend context-free languages to infinite words, just like
regular languages. As with regular languages, there are multiple ways to do
this, and it is an interesting question whether their model-checking problems
are always decidable for substitutive subshifts. We give a rough description of
the approach of [10], where the Muller context-free languages or MCFL, are
defined. We take the family of countable finitely branching trees where each
node carries a label from a finite set, the possible sets of children of each node
are determined by a local rule, and for each infinite childward path, the set
of labels occurring infinitely many times is an element of a prescribed set (the
Muller condition). The language associated to it is the subset of countable
totally ordered sets labeled by S (written S#), defined by taking the induced
ordering and labeling of the frontier, and restricting to words over terminal
symbols.

For the model-checking problem, one should further intersect with SZ. Thus,
we are interested in the model-checking problem for the MCFL languages con-
tained in SZ. These languages are essentially bi-infinite concatenations of
context-free languages governed by a Muller regular language.

It is known to be decidable whether a subshift generated by a substitution
is finite. Recently, this was shown for the more general class of substitutive
images of subshifts generated by substitutions [19, 9], called HD0L. The image
of a quasiminimal subshift in a non-erasing substitution is quasiminimal, and
thus these subshifts fit into our framework (at least in the case of syndetic long
symbols). Which model-checking problems are decidable for this class?

In the topic of countable quasiminimal subshifts, it seems that the proof of
Theorem 11 extends to show that in general, when the lattice of subshifts of
X is totally ordered and X is countable and recursive, then its model-checking
problem for starfree languages is decidable. However, the contraction process
becomes harder to describe.

The condition Q(X) = 3 automatically means X is at least weakly transitive
and its maximal proper subshift is minimal. Further, subshifts with Q(X) = 3
can be seen to split into the following 4 types:

1. X is countable,

2. X is uncountable but contains an isolated point,

3. X contains no isolated point but its maximal proper subshift is finite, or

4. X contains no isolated point and its maximal proper subshift is infinite.

As Proposition 8 shows, decidability questions are trivial for subshifts of type 1,
and the proof of Theorem 3 shows that almost nothing is decidable for subshifts
of type 4.

Problem 1. Which model-checking problems are decidable for subshifts of type
2 or 3?

We conjecture that in the countable case, the model-checking problem is
decidable for locally testable languages in general.

37

Conjecture 2. Let X be a countable quasiminimal recursive subshift. Then the
model-checking problem of X for locally testable languages is decidable.

Another interesting direction in the study of decidability when restricting
to minimal systems, but considering the model-checking problem of harder lan-
guages. We gave an example of a minimal subshift whose model-checking prob-
lem is Σ0

1-complete for context-free languages accepted by a deterministic push-
down automaton. For this, we used a subshift of the well-known Dyck shift. The
high-level idea giving nonregularity in this example is the balancing of brackets,
which inherently requires the use of a full stack. We do not know whether there
are examples where the stack contains only unary symbols. A slightly more
formal way to ask this question is the following.

Question 2. Is the model-checking problem of languages accepted by one-counter
machines decidable for every minimal Π0

1 subshift?

The precise definition of one-counter machines used in the question is left
implicit – it is part of the question, as we do not know what implications such
choices have. The question is also interesting for strictly ergodic subshifts –
minimal subshifts where words occur with well-defined frequencies. Here, one
might (perhaps mistakenly) expect that on long enough words, the counter is
decremented or incremented at a roughly constant rate. All we know about one-
counter machines is that a variant of the language anbn is unlikely to yield a
hard model-checking instance, since for any word w, wn can occur in an infinite
minimal subshift for only finitely many n.

Of course, there are many natural classes in both formal language theory
and complexity theory which fall between regular and context-free languages.
Further decidability and undecidability results for the model-checking problem
for minimal systems for any such class might be an interesting research direction.

Acknowledgements

The author would like to thank Ilkka Törmä for detailed discussions on the topic.
The author was partially supported by the Academy of Finland Grant 131558,
CONICYT Proyecto Anillo ACT 1103, by Basal project CMM, Universidad de
Chile and the FONDECYT project 3150552.

References

[1] The On-Line Encyclopedia of Integer Sequences, published electronically
at http://oeis.org, 2014, Sequence A007814.

[2] J. Auslander. Minimal Flows and Their Extensions. North-Holland Math-
ematics Studies. Elsevier Science, 1988.

[3] A. Ballier and E. Jeandel. Computing (or not) Quasi-Periodicity Functions
of Tilings. ArXiv e-prints, December 2010.

[4] Alexis Ballier, Bruno Durand, and Emmanuel Jeandel. Structural aspects
of tilings. In Pascal Weil Susanne Albers, editor, Proceedings of the 25th
Annual Symposium on the Theoretical Aspects of Computer Science, pages
61–72, Bordeaux, France, February 2008. IBFI Schloss Dagstuhl. 11 pages.

38

[5] S. Bezuglyi, J. Kwiatkowski, and K. Medynets. Aperiodic substitution
systems and their bratteli diagrams. Ergod. Th. & Dynam. Sys, page 2009.

[6] Douglas Cenzer, Ali Dashti, Ferit Toska, and Sebastian Wyman. Com-
putability of countable subshifts in one dimension. Theory of Computing
Systems, 51(3):352–371, 2012.

[7] Jean-Charles Delvenne, Petr Kůrka, and Vincent Blondel. Decidability and
universality in symbolic dynamical systems. Fund. Inform., 74(4):463–490,
2006.

[8] Jean-Charles Delvenne, Petr Kůrka, and Vincent D. Blondel. Computa-
tional universality in symbolic dynamical systems. In Machines, compu-
tations, and universality, volume 3354 of Lecture Notes in Comput. Sci.,
pages 104–115. Springer, Berlin, 2005.

[9] Fabien Durand. Decidability of the hd0l ultimate periodicity problem.
RAIRO - Theor. Inf. and Applic., 47(2):201–214, 2013.

[10] Zoltán Ésik and Szabolcs Iván. On müller context-free grammars. In Yuan
Gao, Hanlin Lu, Shinnosuke Seki, and Sheng Yu, editors, Developments
in Language Theory, volume 6224 of Lecture Notes in Computer Science,
pages 173–184. Springer Berlin Heidelberg, 2010.

[11] Richard H. Herman, Ian F. Putnam, and Christian F. Skau. Ordered brat-
teli diagrams, dimension groups and topological dynamics. International
Journal of Mathematics, 03(06):827–864, 1992.

[12] Michael Hochman. On the dynamics and recursive properties of multidi-
mensional symbolic systems. Invent. Math., 176(1):131–167, 2009.

[13] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[14] Bruce P. Kitchens. Expansive dynamics on zero-dimensional groups. Er-
godic Theory Dyn. Syst., 7:249–261, 1987.

[15] Petr Kůrka. On topological dynamics of Turing machines. Theoret. Com-
put. Sci., 174(1-2):203–216, 1997.

[16] Petr Kůrka. Topological and symbolic dynamics, volume 11 of Cours
Spécialisés [Specialized Courses]. Société Mathématique de France, Paris,
2003.

[17] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics
and coding. Cambridge University Press, Cambridge, 1995.

[18] Robert McNaughton and Seymour Papert. Counter-free automata. With an
appendix by William Henneman. Research Monograph No.65. Cambridge,
Massachusetts, and London, England: The M. I. T. Press. XIX, 163 p. $
12.50 (1971)., 1971.

[19] I. Mitrofanov. A proof for the decidability of HD0L ultimate periodicity.
ArXiv e-prints, October 2011.

39

[20] G.E. Sacks. Higher recursion theory. Perspectives in mathematical logic.
Springer-Verlag, 1990.

[21] V. Salo and I. Törmä. Complexity of Conjugacy, Factoring and Embedding
for Countable Sofic Shifts of Rank 2. ArXiv e-prints, August 2014.

[22] Ville Salo. Quasiminimality, compactness and derivatives of subshifts. Work
in progress.

[23] Wolfgang Thomas. Automata on infinite objects. In Handbook of theoretical
computer science, Vol. B, pages 133–191. Elsevier, Amsterdam, 1990.

40

	1 Introduction
	2 Definitions and basic observations
	2.1 More or less standard definitions
	2.2 The ruler sequence
	2.3 Model-checking and halting problems
	2.4 The generating order

	3 Quasiminimality and undecidability
	3.1 Non-universal quasiminimal examples
	3.2 Universal non-quasiminimal examples
	3.3 Uncountable universal quasiminimal examples
	3.4 Countable universal quasiminimal examples
	3.5 Model-checking for context-free languages

	4 Quasiminimality and decidability
	4.1 Decidability in the general case
	4.2 Quasiminimal subshifts with N-actions
	4.3 Decidability in the countable case
	4.4 Some open problems

