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Abstract. We show that the Hankel determinants of a generalized Catalan sequence

satisfy the equations of the elliptic sequence. As a consequence, the coordinates of

the multiples of an arbitrary point on the elliptic curve are expressed by the Hankel

determinants.
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1. Introduction

Our main purpose in this paper is to express the solution of the elliptic sequence by

means of the Hankel determinants. The general solutions of the elliptic sequences

and Somos 4 over C have been analytically studied by the elliptic function via the

corresponding elliptic curves[23, 16, 8, 3]. Meanwhile in the integrable systems, it is

known that the Toda and Painlevé equations have the Hankel determinant formula[10].

Therefore it is natural we presume the elliptic sequence also have the Hankel determinant

formulae. In section 2, we briefly summarize the related preceding studies. The main

results and examples are shown in section 3, and in section 4 the solution of Somos-(4)

is shown by our parametrization as an application, which was obtained in [24]. The

last section 5 is devoted to the summary and the appendix describes the proof of the

theorem.

2. Elliptic sequences and Somos 4

2.1. Elliptic sequence

An elliptic sequence is defined by the equation

Wm+nWm−n = Wm+1Wm−1W
2
n −Wn+1Wn−1W

2
m, m, n ∈ Z. (1)

It is easy to show W−n = −Wn, and there is no loss of generality in taking W1 = +1.

If {Wi} is an integer sequence and Wn divides Wm whenever n divides m, the sequence

{Wi} is called elliptic divisibility sequence (EDS). Morgan Ward[23] showed that {Wi} is

an EDS if and only if W2, W3 and W4 are integers, and W2 divides W4. He also showed

http://arxiv.org/abs/1411.6972v2
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that the elliptic sequence may be parametrized by the Weierstrass sigma function σ(z)

as

Wn = σ(nz)/σ(z)n
2

(2)

for the case W2W3 6= 0, from which the name elliptic comes. The sequence with this

condition W2W3 6= 0 is called proper[23].

In the case n = 2, the equation (1) turns into

Wm+2Wm−2 = W 2
2Wm+1Wm−1 −W1W3W

2
m (m ≥ 3), (3)

and

rn−1r
2
nrn+1 =W 2

2 rn −W1W3, (4)

with the definition

rn :=
Wn−1Wn+1

W 2
n

(n 6= 0). (5)

Note that this type of equation (4) is the special case of QRT mappings[15, 16]. The

elliptic sequence {Wn} has one conserved quantity I ≡ In, which is independent of n:

In :=
Wn−2Wn+1

Wn−1Wn
+

(
W2

W1

)2
W 2

n

Wn−1Wn+1
+
Wn−1Wn+2

WnWn+1
(6)

= rn−1rn + (W2/W1)
2/rn + rnrn+1.

Let E be an elliptic curve over a fieldK that is given by Weierstrass form [17, 21, 18]

y2 + c1xy + c3y = x3 + c2x
2 + c4x+ c6, (7)

and the constants b2 := c21 + 4c2, b4 := c1c3 + 2c4, b6 := c23 + 4c6 and b8 :=

c21c6 − c1c3c4 + 4c2c6 + c2c
2
3 − c24. Let P = (x1, y1) be a point on E. The division

polynomials ψn ≡ ψn(x1, y1) are defined by the following recursion:

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y1 + c1x1 + c3,

ψ3 = 3x41 + b2x
3
1 + 3b4x

2
1 + 3b6x1 + b8,

ψ4 = ψ2(2x
6
1 + b2x

5
1 + 5b4x

4
1 + 10b6x

3
1 + 10b8x

2
1 (8)

+ (b2b8 − b4b6)x1 + b4b8 − b26),

ψ2n+1 = ψ3
nψn+2 − ψn−1ψ

3
n+1 (n ≥ 2),

ψ2n = (ψ2
n−1ψn+2 − ψn−2ψ

2
n+1)ψn/ψ2 (n ≥ 3),

ψ−n = − ψn (n < 0).

These polynomials are essentially the elliptic sequence, namely, Wn ≡ ψn(x1, y1) because

the recursion relations (8) coincide with (1) in the case m = n + 2 or n + 1:

W2nW2 = Wn(W
2
n−1Wn+2 −Wn−2W

2
n+1),

W2n+1 = W 3
nWn+2 −Wn−1W

3
n+1.

(9)
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The coordinate (xn, yn) of the point nP :=

n
︷ ︸︸ ︷

P + P + · · ·+ P on E is expressed by

the division polynomials as

nP = (xn, yn) :=

(
θn(x1, y1)

ψn(x1, y1)2
,
ωn(x1, y1)

ψn(x1, y1)3

)

, (10)

where θn(x1, y1) := x1ψn(x1, y1)
2 − ψn−1(x1, y1)ψn+1(x1, y1), and if char(K) 6= 2 and

n 6= 0, ωn(x1, y1) :=
1

2

(
ψ2n(x1, y1)

ψn(x1, y1)
−
(
c1θn(x1, y1) + c3ψn(x1, y1)

2
)
ψn(x1, y1)

)

[21, 17].

These relations are fundamentally of the elliptic functions

℘(nz) = ℘(z)− φn+1(z)φn−1(z)/φn(z)
2,

where φn(z) = σ(nz)/σ(z)n
2

. Let Q = (qx, qy) and Q+nP = (xn, yn) be also the points

on E. The relations among x-coordinates xn, namely, ℘ functions, are presented in

[8, 14],

en−1e
2
nen+1 = ψ2(x1, y1)

2en − ψ1(x1, y1)ψ3(x1, y1), (11)

where en := x1 − xn. Note that (11) is also the special case of QRT mappings, in

which en is shifted from rn by the translation Q[14, sec. 4]. Let us finally define

the sequence {sn}n≥0 by way of sn−1sn+1 = ens
2
n and initial values s0, s1. This

transformation yields the Somos 4 equation (13) from (11) with α1 = ψ2(x1, y1)
2 and

α2 = −ψ1(x1, y1)ψ3(x1, y1). In the next subsection, we will briefly sketch the Somos

sequences.

2.2. Somos 4

For k ≥ 4, the Somos k sequence {si} is defined by

snsn−k =

[k/2]
∑

i=1

αisn−isn−k+i (n ≥ k). (12)

As the special case of the coefficients αi = 1 for all i and the initial values s0 = s1 =

· · · = sk−1 = 1, (12) gives the original Somos-(k) sequence[20, 7]. The surprising fact

for 4 ≤ k ≤ 7 is that the Somos-(k) generates only integers sn for all n. This integrality

is now understood as the Laurent property[6, 9, 11]. In this paper, we will consider only

k = 4 case;

sn−2sn+2 = α1sn−1sn+1 + α2s
2
n (n ≥ 2), (13)

where α1 and α2 are the constant coefficients, and s0, s1, s2 and s3 initial values. If we

choose the six values α1, α2, s0, s1, s2 and s3, then sn for n ≥ 4 are uniquely determined

unless sn−4 = 0. The equation (3) is apparently a special case of (13) with α1 = W 2
2 ,

α2 = −W1W3, s0 = W0, s1 = W1, s2 = W2, s3 = W3. On the other hand, the result in

section 2.1 says that (13) may be obtained from (3) if α1 is square or quadratic residue;

that is, (13) follows from the elliptic sequence with W2 = ±√
α1, W3 = −α2 and the
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sequence sn−1sn+1 = ens
2
n with en that is specified with E, P and Q. The solutions of

(13) is expressed as

sn =
sn1
sn−1
0

en−1
1 en−2

2 · · · en−1 (14)

by e1, e2, · · · , en−1 and the initial values s0 and s1. In the paper[14], the following

identities

W 2
msn−tsn+t =W 2

t sn−msn+m −Wt−mWt+ms
2
n, (15)

WmWm+1sn−tsn+t+1 =WtWt+1sn−msn+m+1 −Wt−mWt+m+1snsn+1, (16)

were shown, as the title says “Every Somos 4 is a Somos k” for k ≥ 5.

Let us define the Hankel determinant H
(m)
n for m,n ≥ 0 of the given sequence

{a0, a1, a2, . . .} as

H(m)
n := (am+i+j)

n−1
i,j=0 =

am am+1 · · · am+n−1

am+1 am+2 · · · am+n

...
...

. . .
...

am+n−1 am+n · · · am+2n−2

(n ≥ 1), (17)

and the convention H
(m)
0 := 1. The sequence of the Hankel determinants for m = 0,

{

H
(0)
0 , H

(0)
1 , H

(0)
2 , . . .

}

, is usually called the Hankel transform [13] of {an}. In [1], Paul

Barry studied the families of generalized Catalan numbers with three parameters:

bn =







1 (n = 0)

α′ (n = 1)

α′bn−1 + β ′bn−2 + γ′
∑n−2

i=0 bibn−2−i (n ≥ 2)

, (18)

where α′, β ′, γ′ are constants. He conjectured that the Hankel transform of {bn} satisfies

(13) by sn = H
(0)
n , α1 = α′2γ′2, α2 = γ′2(β ′+γ′)2−α′2γ′3. This conjecture was proved by

Xiang-Ke Chang and Xing-Biao Hu[4]. Note that Somos-(4) seems not to be included

in this parametrization. The original Somos-(4)was solved in [24].

3. Solution of elliptic sequence by Hankel determinant

3.1. Main theorem

Let a, b and c be constants over a field K and suppose the following sequence {an}:

a0 = a, a1 = b, a2 = c, an+1 =

n∑

i=0

aian−i (n ≥ 2), (19)

which is similar to {bn} in (18). We refer to (19) as the (a, b, c)-Catalan sequence. The

so-called Catalan numbers may be retrieved from the (1, 1, 2)-Catalan sequence. By

means of the Hankel matrices whose elements are the (a, b, c)-Catalan, we also define

the sequence {Wn}n∈Z,






W2n+1 := (−1)nH
(1)
n (n ≥ 0)

W2n+2 := σnH
(2)
n W2 (n ≥ 0)

W−n := −Wn (n ≥ 0)

, (20)
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and impose one constraint W 4
2 = σ(2ab − c) with an arbitrary constant sign σ = ±1.

For example, first few terms are calculated as






...

W−1 = −W1 = −1

W0 = 0

W1 = H
(1)
0 = 1

W2

W3 = −H(1)
1 = −b

W4 = σH
(2)
1 W2 = σcW2

W5 = H
(1)
2 = b3 + 2abc− c2

W6 = σ2H
(2)
2 W2 = −b(b3 + 2abc− 2c2)W2

...

(21)

from a0 = a, a1 = b, a2 = c, a3 = b2 + 2ac, a4 = 2(2a2c + ab2 + bc), a5 =

4a2b2 +2b3 +8a3c+8abc+ c2, · · ·. Note that W2 is not defined in (20) since σ0 = 1 and

H
(2)
0 = 1. The following is our main theorem and the appendix is devoted to the proof:

Theorem 1

The double-sided infinite sequence {Wn}n∈Z defined above satisfies the elliptic sequence

(3).

This parametrization by (a, b, c) of the elliptic sequence {Wn} is almost general:

Let us consider (20) over a field K such that char(K) 6= 2. We may determine the

(a, b, c)-Catalan sequence (19) from the four initial values W1(= 1),W2,W3,W4 of the

elliptic sequence by

a = − σ

2W3

(
W4

W2

+W 4
2

)

, b = −W3, c = σ
W4

W2

, (22)

as long as the sequence is proper (W2W3 6= 0). Conversely, given (a, b, c)-Catalan

sequence, the corresponding elliptic sequence should satisfy

W 4
2 = σ(2ab− c), W3 = −b, W4 = σcW2.

Provided that σ(2ab − c) have the fourth root, the equation and its solution exist. If

especiallyK = R, choosing σ as the same sign of (2ab−c) always yieldsW2 =
4

√

|2ab− c|.
We note that the parameter a in (22) is essentially ℘′′(z) in the case K = C [23].

For EDS, the parameter a is not necessarily integer. The following is apparent from

the above arguments and [23], since W2, W3 and W4 become integers and W2 divides

W4:

Corollary 2

Let W2, b and c be integers and σ = ±1 an arbitrary sign. Then we always obtain EDS

{Wn} by (a, b, c)-Catalan sequence, where a = (σW 4
2 + c)/(2b) if b 6= 0, otherwise a is

arbitrary (b = 0).
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3.2. Curve and point sequence

As shown in (10), the elliptic sequence leads to the point sequence {nP}n. Hereafter

we limit ourselves to the case of char(K) 6= 2, 3 and W2 6= 0 for simplicity. Suppose the

elliptic sequence {Wn} by (a, b, c)-Catalan sequence. Then comparing (21) with (8), we

may express the point P on the curve E : y2 = x3+ g2x+ g3 associated with the elliptic

sequence as

P := (x1, y1) =

(
a2 − b

3W 2
2

,
1

2
W2

)

,

g2 = − 1

3W 4
2

(a4 + 4a2b+ b2 − 3ac) = −3x21 − σa,

g3 = y21 − x31 − g2x1 = 2x31 + y21 + σax1,

and therefore

nP = (xn, yn) =

(

x1 −
Wn−1Wn+1

W 2
n

,
W2n

2W 4
n

)

(n 6= 0) (23)

from (10). Solving these relations reversely yields the following:

Corollary 3

Suppose the point P = (x1, y1) on the curve E : y2 = x3+g2x+g3. Then the coordinates

of nP are given by (23) through (a, b, c)-Catalan sequence with

a = − σ(3x21 + g2),

b = − 3x41 − 6g2x
2
1 − 12g3x1 + g22,

c = 2σ(x61 + 5g2x
4
1 + 20g3x

3
1 − 5g22x

2
1 − 4g2g3x1 − g32 − 8g23),

W2 = 2y1,

where σ = ±1 that is the common arbitrary sign.

We thus obtain the solution of the coordinates of nP by means of the Hankel

determinants. The conserved quantity in (6) are also obtained as I = −2σa from

the initial conditions of the elliptic sequence {Wn}.

3.3. Examples

In this subsection, we show some examples of parametrization from typical elliptic

sequences.

Example 1

Suppose the solution Wn = n of (1), which seems to be simplest as in [23].

Notwithstanding, our representation becomes more complex than it looks. The

corresponding parameters are given as a = −3σ, b = −3, c = 2σ, σ = ±1 and W2 = 2.

Simple calculations show

{an}∞n=0 = {−3σ,−3, 2σ,−3, 6σ,−14, 36σ,−99, · · ·} , (24)
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and

H
(1)
0 = 1, H

(1)
1 = −3, H

(1)
2 = 5, · · · , H(1)

n = (−1)n(2n+ 1), · · · ,
H

(2)
1 = 2σ,H

(2)
2 = 3, H

(2)
3 = 4σ, · · · , H(2)

n = σn(n+ 1), · · · .
The sequence (24) with σ = +1 for n ≥ 1 is A184881 in [22];

2F1

[

−2n,−2n

1
;−1

]

− 2F1

[

−2n− 2,−2n+ 2

1
;−1

]

,

where pFq is the hypergeometric series. We note that this example is the singular case

y2 = x3.

Example 2 ((1, 1, 2)-Catalan sequence)

The parameters a = 1, b = 1, c = 2 gives W2 = 0 and the Catalan sequence

an = Cn :=
1

n + 1

(

2n

n

)

, which leads to

Wn =







1 (n ≡ 1 mod 4)

−1 (n ≡ 3 mod 4)

0 (otherwise)

for all n.

This example follows from the well-known facts that the Hankel determinants of the

Catalan numbers are H
(1)
n = 1 and H

(2)
n = n+ 1 for n ≥ 0 (cf. (A.3)).

Example 3 (Fibonacci sequence)

The parameters a = −σ/2, b = 2, c = −3σ,W2 = 1, σ = ±1 yield

{an}∞n=0 = {−σ/2, 2,−3σ, 7,−19σ, 56,−174σ, 561, · · ·}
and

Wn = (−1)(n−1)(n−2)/2Fn, Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

which is the Fibonacci sequence with signs. For the case of σ = −1,

{an}∞n=0 = {1/2, 2, 3, 7, 19, 56, 174, 561, · · ·}
is the sum of adjacent Catalan numbers[5] and A005807 in [22]; that is, an = Cn−1+Cn

with the convention C−1 = −1/2 that satisfies the relation of Catalan numbers

(4n+ 2)Cn = (n+ 2)Cn+1 to negative direction.

Example 4 (Integer factorization)

Let us consider Lenstra’s elliptic curve method (ECM) to find a factor of N = 5429 =

61× 89 (example in [12]). Suppose, for example, the elliptic curve E : y2 = x3 + 2x− 2

over ZN , and let P be the point (1, 1) on E that are randomly chosen in ECM algorithm.

We then numerically obtain

2P = (4076, 3384), · · · , 36P = (97, 2928), · · · , 72P = O,
where O is the point at infinity. In this case, ECM finds an non-invertible element in

the y-coordinate of 36P due to the fail in addition-formula for 36P + 36P . Thus we

obtain one of the prime factors gcd(2928, N) = 61.
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The parameters corresponding to the curve E and the point P above are determined

as

a = −5σ, b = 13, c = −146σ, W2 = 2, σ = ±1

from (8). By these parameters, numerical calculation indeed yields gcd(H
(2)
35 , N) = 61

because the denominator of 72P is ψ72(P ) ≡W72 = σW2H
(2)
35 from (10) and (20). Note

that the naive calculation of determinant is typically of cubic-order of the matrix size.

There is no significance for application as is, compared with the addition-and-duplication

method[17, section 3.4] by (9).

3.4. Equivalent sequences

Two sequences {Wn} and
{
W̄n

}
are said to be equivalent if and only if there exists a

constant θ 6= 0 such that W̄n = θn
2−1Wn[23]. Suppose the transformation āi = θi+1ai.

This transformation leads to

ā0 = θa, ā1 = θ2b, ā2 = θ3c, ān+1 =
n∑

i=0

āiān−i (n ≥ 2),

namely, (θa, θ2b, θ3c)-Catalan sequence. Let the corresponding Hankel determinants and

the elliptic sequence by (θa, θ2b, θ3c)-Catalan sequence be H̄
(m)
n and

{
W̄n

}
, respectively.

We then obtain

H̄(m)
n = θn(n+m)H(m)

n .

If n is odd, taking n = 2k + 1 yields W̄n = W̄2k+1 = (−1)kH̄
(1)
k = (−1)kθk(k+1)H

(1)
k =

(θ1/4)n
2−1Wn. Otherwise n is even, n = 2k + 2 yields W̄n = W̄2k+2 = σkW̄2H̄

(2)
k =

σk(θ3/4W2)(θ
k(k+2)H

(2)
k ) = (θ1/4)n

2−1Wn. Thus (θa, θ2b, θ3c)-Catalan sequences for all

θ( 6= 0) are equivalent to (a, b, c)-Catalan sequence if θ1/4 exists over K.

4. Solution for Somos-(4)

The solution of the original Somos-(4), which is the case α1 = α2 = 1 in (13), was

obtained in [24]. The aim of this section is to express the solution via our parametrization

from an elliptic sequence. The first few terms of

sn−2sn+2 = sn−1sn+1 + s2n (n ≥ 2), s0 = s1 = s2 = s3 = 1. (25)

are calculated as

s0 = s1 = s2 = s3 = 1, s4 = 2, s5 = 3, s6 = 7, s7 = 23, s8 = 59, s9 = 314, · · · ,
and the sequence {en} is determined as

e1 = 1, e2 = 1, e3 = 2, e4 = 3/4, e5 = 14/9, e6 = 69/49, e7 = 413/529, · · · ,
from en = sn−1sn+1/s

2
n. Choosing m = 1 and t = 2 in (15) leads to

W 2
1 sn−2sn+2 =W 2

2 sn−1sn+1 −W1W3s
2
n,
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and results in W 2
2 = 1 and b = −W3 = 1. Choosing m = 1, t = 3 and n = 3 in (15) also

leads to

W 2
1 s0s6 = W 2

3 s2s4 −W2W4s
2
3,

and a = −2σ, c = −5σ via W4 = σcW2. Therefore these parametrizations yield

Wn−2Wn+2 =Wn−1Wn+1 +W 2
n ,

W0 = 0,W1 = 1,W 2
2 = 1,W3 = −1,W4 = −5W2,W5 = −4,W6 = 29W2,

W7 = 129,W8 = −65W2,W9 = −3689,W10 = −16264W2, · · · ,
I = −2σa = 4,

where each Wn (n 6= 2) is already determined by not numerical way but the Hankel

determinant through (−2σ, 1,−5σ)-Catalan sequence at this stage. We also obtain

r1 = 0, r2 = −1, r3 = −5, r4 = 4/25, r5 = −145/16, r6 = −516/841, · · · ,
where rn = Wn−1Wn+1/W

2
n , and the elliptic curve E and the point P on E:

E : y2 = x3 + g2x+ g3, g2 = −1, g3 = 1/4,

P = (x1, y1) = (1,W2/2) .

Next we solve the translation Q from Q + P = (x̄1, ȳ1) and Q + 2P = (x̄2, ȳ2).

Because the x-coordinates are calculated as x̄1 = x1− e1 = 0 and x̄2 = x1− e2 = 0 from

x1 = 1 and e1 = e2 = 1, we may obtain

2Q+ 3P = O (26)

and Q = (qx, qy) = (−1,W2/2) due to P 6= O. Note that this relation Q+(Q+3P ) = O
follows from the fact that Somos-(4) sequence is even with respect to n↔ 3−n, namely,

s3−n = sn.

By these parametrizations, Somos-(4) may be solved. The x-coordinate x̄n ofQ+nP

is calculated by addition formula,

x̄n = λ2 − qx − xn, λ =
qy − yn
qx − xn

,

due to qx 6= xn, namely, nP ± Q 6= O. If not, nP ± Q = O gives (2n ± 3)P = O, and

this contradicts that the point P is of infinite order, which follows from the Nagell-Lutz

theorem[19] with the fact that the coordinates (4xn, 8yn) contain non-integers. From

lengthy calculations, we may obtain

en = x1 − x̄n

=
(
(rn+1 + 2)r2n − 8rn + 4

)
/(2− rn)

2,

and furthermore,

enen+3 = fn−1fn+1/f
2
n,

where we define fn := 2W 2
n −Wn−1Wn+1. These relations with (14) yield

snsn+3 =

(
sn1
sn−1
0

en−1
1 en−2

2 · · · en−1

)(
sn+3
1

sn+2
0

en+2
1 en+1

2 · · · en+2

)
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=
s2n+3
1

s2n+1
0

en+2
1 en+1

2 en3 (e1e4)
n−1(e2e5)

n−2 · · · (en−2en+1)
2(en−1en+2)

1

=
s2n+3
1

s2n+1
0

en+2
1 en+1

2 en3

(
f0f2
f 2
1

)n−1(
f1f3
f 2
2

)n−2(
f2f4
f 2
3

)n−3

· · ·
(
fn−2fn
f 2
n−1

)1

=
s2n+3
1

s2n+1
0

en+2
1 en+1

2 en3 ×
fn−1
0

fn
1

fn

= fn, (27)

where the last equality follows from the constants s0 = s1 = 1, e1 = 1, e2 = 1, e3 = 2,

f0 = 2W 2
0 −W−1W1 = 1, f1 = 2W 2

1 −W0W2 = 2. Solving (27), we obtain the following

formula:

s6m+k =
f6m+k−3f6m+k−9 · · · fk+3

f6m+k−6f6m+k−12 · · ·fk
sk, (28)

where m ≥ 1 and 0 ≤ k ≤ 5, and each fn is given by (20) as

f2n = 2W 2
2n −W2n−1W2n+1

= 2
(

H
(2)
n−1

)2

+H
(1)
n−1H

(1)
n ,

f2n+1 = 2W 2
2n+1 −W2nW2n+2

= 2
(

H
(1)
n

)2

− σH
(2)
n−1H

(2)
n .

(29)

Note that not only Somos-(4) but Somos 4 have solutions of this type.

The above relation (27) recursively defines sk. In Somos-(4) case, we may obtain

simpler form by means of (26). Let R be the point (0,W2/2), then (26) yields P = 2R,

Q = −3R and Q+ nP = (2n− 3)R. Note that Q + nP are generated by only R. This

special property of Somos-(4) leads to the following: Suppose

E : y2 = x3 + g2x+ g3, g2 = −1, g3 = 1/4,

R = (0,W2/2) ,

then the corresponding {nR}n is given by the elliptic sequence Ŵn through

a = σ, b = 1, c = σ, Ŵ 2
2 = 1, σ = ±1

Ŵn−2Ŵn+2 = Ŵn−1Ŵn−1 + Ŵ 2
n , Ŵ1 = 1, Ŵ3 = −1, Ŵ4 = Ŵ2.

We obtain the x-coordinate x̄n of Q + nP as x̄n = −Ŵ2n−4Ŵ2n−2/Ŵ
2
2n−3. This yields

another formula for en as

en = x1 − x̄n

= 1 + Ŵ2n−4Ŵ2n−2/Ŵ
2
2n−3

= Ŵ2n−5Ŵ2n−1/Ŵ
2
2n−3,

and the dependent variables sn as

sn =
sn1
sn−1
0

en−1
1 en−2

2 · · · en−1

=
sn1
sn−1
0

en−1
1 en−2

2

(

Ŵ1Ŵ5

Ŵ 2
3

)n−1(

Ŵ3Ŵ7

Ŵ 2
5

)n−2

· · ·
(

Ŵ2n−7Ŵ2n−3

Ŵ 2
2n−5

)1
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=
sn1
sn−1
0

en−1
1 en−2

2

(

Ŵ n−3
1

Ŵ n−2
3

)

Ŵ2n−3

= Ĥ
(1)
n−2, (30)

where the last equality follows from the constants s0 = s1 = 1, e1 = 1, e2 = 1,

W1 = 1, W3 = −1 and W2n−3 = (−1)n−2Ĥ
(1)
n−2. Here the matrix elements in the Hankel

determinant Ĥ
(1)
n−2 are (σ, 1, σ)-Catalan numbers. As a result, the solution of Somos-(4)

is expressed by the single Hankel determinant, which coincides with [24, 2].

Example 5 (n = 6)

Let us verify the above argument in the case n = 6 as an example. We first calculate

the (a, b, c)-Catalan sequence by (19); a0 = a = −2σ, a1 = b = 1, a2 = c = −5σ,

a3 = 2a0a2 + a21 = 21, a4 = 2(a0a3 + a1a2) = −94σ, a5 = 443, · · ·. Note that this

sequence corresponds to {nP}. The equation (27) indeed yields

f6 = 2
(

H
(2)
2

)2

+H
(1)
2 H

(1)
3

= 2

∣
∣
∣
∣
∣

a2 a3
a3 a4

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

a1 a2
a2 a3

∣
∣
∣
∣
∣
·

∣
∣
∣
∣
∣
∣
∣

a1 a2 a3
a2 a3 a4
a3 a4 a5

∣
∣
∣
∣
∣
∣
∣

= 2

∣
∣
∣
∣
∣

−5σ 21

21 −94σ

∣
∣
∣
∣
∣

2

+

∣
∣
∣
∣
∣

1 −5σ

−5σ 21

∣
∣
∣
∣
∣
·

∣
∣
∣
∣
∣
∣
∣

1 −5σ 21

−5σ 21 −94σ

21 −94σ 443

∣
∣
∣
∣
∣
∣
∣

= 2 · 292 + (−4)(−129)

= 2198

= 7 · 314
= s6s9.

Next we verify (30). Since the parameters that correspond to {nR} are a = σ,

b = 1, c = σ, and we obtain the sequence as a0 = a = σ, a1 = b = 1, a2 = c = σ,

a3 = 2a0a2 + a21 = 3, a4 = 2(a0a3 + a1a2) = 8σ, a5 = 23, · · ·, which is A025262 in [22]

in the case σ = 1. The equation (30) yields

s6 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 a2 a3 a4
a2 a3 a4 a5
a3 a4 a5 a6
a4 a5 a6 a7

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 σ 3 8σ

σ 3 8σ 23

3 8σ 23 68σ

8σ 23 68σ 207

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 7.

5. Concluding remarks

In this paper, we give the explicit formulae for the elliptic sequence by means

of the Hankel determinants. The formulae are being expected to contribute to

enumeration in combinatorics or algorithmic number theory through elliptic curves

because determinants have linear algebraic structure behind them. As an application,



Hankel Determinant Solution for Elliptic Sequence 12

the solution of Somos-(4) by Hankel determinants is shown through the elliptic sequence.

The prime appearing and co-primeness of the general Somos 4 will be future problems.

Integrable aspects of combinatorics or number theory seem to be interesting future

problems, for example, application of Toda and Painlevé equations in a similar manner

will also be interesting[10].
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Appendix A. Proof of theorem 1

In this section, we prove theorem 1. In the case 0 ≤ n ≤ 2, (3) may be easily checked.

For n ≥ 3, let us substitute n = 2k + 1 or n = 2(k + 1) (k ≥ 1) into (3), depending on

the parity of n:

H
(1)
k−1H

(1)
k+1 + (c− 2ab)H

(2)
k−1H

(2)
k − b

(

H
(1)
k

)2

= 0, (A.1)

W 2
2

[

H
(2)
k−1H

(2)
k+1 +H

(1)
k H

(1)
k+1 − b

(

H
(2)
k

)2
]

= 0. (A.2)

If W2 = 0, (A.2) trivially holds and (A.1) reduces “Somos 2”:

H
(1)
k−1H

(1)
k+1 = b

(

H
(1)
k

)2

, (A.3)

due to c = 2ab. This “Somos 2” may be solved as H
(1)
n = bn(n+1)/2 (cf. Example 2). This

solution therefore reproduces W2n+1 = (−1)nbn(n+1)/2 and W2n = 0 for n ≥ 0, which

was shown in [23, Thm. 23.1].

Hereafter we assume W2 6= 0. Then (3) is equivalent to the following two equations

with the definition (20);

H
(1)
k−1H

(1)
k+1 + (c− 2ab)H

(2)
k−1H

(2)
k − b

(

H
(1)
k

)2

= 0, (A.4)

H
(2)
k−1H

(2)
k+1 +H

(1)
k H

(1)
k+1 − b

(

H
(2)
k

)2

= 0. (A.5)

The proof of these equations is similar to [4]. We first prepare the several notations;

B2 := a2, Bk := ak −
k−1∑

i=2

aiBk−i+1/a1 (k ≥ 3), (A.6)

L
(m)
0 := 0, L

(m)
1 := B2 = a2, (A.7)

L(m)
n :=

B2 am am+1 · · · am+n−2

B3 am+1 am+2 · · · am+n−1

...
...

...
...

Bn+1 am+n−1 am+n · · · am+2n−3

(n ≥ 2), (A.8)
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M
(m)
1 := B3, (A.9)

M (m)
n :=

B3 am am+1 · · · am+n−2

B4 am+1 am+2 · · · am+n−1

...
...

...
...

Bn+2 am+n−1 am+n · · · am+2n−3

(n ≥ 2). (A.10)

Note also that Bk is the invert transform of ak[13].

Proposition 4

For n ≥ 2,

H(1)
n =

{

bn−2
[

b2H
(1)
n−1 + (2ab− c)L

(2)
n−1

]

(b 6= 0)

−cnH(2)
n−2 (b = 0)

. (A.11)

Proof

In the case n = 2, (A.11) follows from direct calculations under the convention (A.7).

For n ≥ 3, subtracting
∑n−2

i=1 (ith column) × an−1−i and ((n− 1)st column) × 2a0 from

nth column of H
(1)
n , we obtain

H(1)
n =

a1 · · · an−1 an
a2 · · · an an+1

...
...

...
...

an · · · a2n−2 a2n−1

=

a1 · · · an−1 0

a2 · · · an a1an−1

...
...

...
...

an · · · a2n−2

∑n−1
i=1 aia2n−2−i

.

By similar elementary column additions from (n− 1)st to second column, we obtain

H(1)
n =

a1 a2 − 2a0a1 0 · · · 0

a2 a1a1 a1a2 · · · a1an−1

a3 a1a2 + a2a1 a1a3 + a2a2 · · · a1an + a2an−1

...
...

...
...

an
∑n−1

i=1 aian−i

∑n−1
i=1 aian+1−i · · ·

∑n−1
i=1 aia2n−2−i

. (A.12)

Next, let us consider the cofactor expansion along the first row. The (1, 1) minor of

(A.12) leads to an−1
1 H

(1)
n−1 due to the row additions from above to bottom. The (1, 2)

minor of (A.12) equals

a2 a1a2 · · · a1an−1

a3 a1a3 + a2a2 · · · a1an + a2an−1

...
...

...

an
∑n−1

i=1 aian+1−i · · ·
∑n−1

i=1 aia2n−2−i

. (A.13)

In the case a1 = 0, (A.13) yields an−1
2 H

(2)
n−2 by the row additions. Otherwise a1 6= 0,

(A.13) is as follows: By subtracting the first row multiplied by (a2/a1) from the second
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row, (A.13) turns into

a2 a1a2 · · · a1an−1

a3 − a22/a1 a1a3 · · · a1an
...

...
...

an
∑n−1

i=1 aian+1−i · · ·
∑n−1

i=1 aia2n−2−i

, (A.14)

and by repeating the similar row additions from second to nth row, we obtain

an−2
1

B2 a2 a2 · · · an−1

B3 a3 a4 · · · an
...

...
...

...

Bn an an+1 · · · a2n−3

= an−2
1 L

(2)
n−1. (A.15)

Combining these results and replacing a0 = a, a1 = b, a2 = c, we obtain (A.11). �

Proposition 5

For n ≥ 2,

H(1)
n =

{

bn−1M
(2)
n−1 (b 6= 0)

−cnH(2)
n−2 (b = 0)

. (A.16)

Proof

In the case n = 2, (A.16) follows from direct calculations under the convention (A.9).

For n ≥ 3, subtracting
∑n−2

i=2 (ith column) × an−1−i and ((n− 1)st column) × 2a0 from

nth column of H
(1)
n , we obtain

H(1)
n =

a1 · · · an−1 an
a2 · · · an an+1

...
...

...

an · · · a2n−2 a2n−1

=

a1 · · · an−1 a1an−2

a2 · · · an a1an−1 + a2an−2

...
...

...

an · · · a2n−2

∑n
i=1 aia2n−2−i

.

By similar method in the previous proof, we obtain

H(1)
n =

a1 a2 a1a1 a1a2 · · · a1an−2

a2 a3 a1a2 + a2a1 a1a3 + a2a2 · · · a1an−1 + a2an−2

...
...

...
...

an an+1

∑n
i=1 aian+1−i

∑n
i=1 aian+2−i · · · ∑n

i=1 aia2n−2−i

. (A.17)

In the case a1 = 0, the cofactor expansion along the first row gives H
(1)
n = −an2H

(2)
n−2.

Otherwise a1 6= 0, (A.17) is as follows: By subtracting the first row multiplied by
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(a2/a1) from the second row and repeating the similar row additions from above to

bottom, (A.17) turns into

H(1)
n =

a1 a2 a1a1 a1a2 · · · a1an−2

0 a3 − a22/a1 a1a2 a1a3 · · · a1an−1

...
...

...
...

an an+1

∑n
i=1 aian+1−i

∑n
i=1 aian+2−i · · ·

∑n
i=1 aia2n−2−i

...

=

a1 a2 a1a1 a1a2 · · · a1an−2

0 B3 a1a2 a1a3 · · · a1an−1

...
...

...
...

0 Bn+1 a1an a1an+1 · · · a1a2n−3

= an−1
1 M

(2)
n−1.

This ends the proof of (A.16). �

Proposition 6

For n ≥ 1,

H(2)
n =

{

bn−1L
(1)
n (b 6= 0)

cnH
(1)
n−1 (b = 0)

. (A.18)

Proof

In the case n = 1, (A.18) follows from direct calculations under the convention (A.7) as

H
(2)
1 =

{

b0L
(1)
1 = B2 = c (b 6= 0)

c1H
(1)
0 = c (b = 0)

.

For n ≥ 2, subtracting
∑n−2

i=1 (ith column) × an−1−i and ((n− 1)st column) × 2a0 from

nth column of H
(2)
n , we obtain

H(2)
n =

a2 · · · an an+1

a3 · · · an+1 an+2

...
...

...
...

an+1 · · · a2n−1 a2n

=

a2 · · · an a1an−1

a3 · · · an+1 a1an + a2an−1

...
...

...
...

an+1 · · · a2n−1

∑n
i=1 aia2n−1−i

.

By similar elementary column additions from (n− 1)st to second column, we obtain

H(2)
n =

a2 a1a1 a1a2 · · · a1an−1

a3 a1a2 + a2a1 a1a3 + a2a2 · · · a1an + a2an−1

...
...

...
...

an+1

∑n
i=1 aian+1−i

∑n
i=1 aian+2−i · · ·

∑n
i=1 aia2n−1−i

.
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In the case a1 = 0, the cofactor expansion along the first row yields an2H
(1)
n−1. Oth-

erwise a1 6= 0, by row additions similar to (A.14), we obtain an−1
1 L

(1)
n . Thus, by

a0 = a, a1 = b, a2 = c, we obtain (A.18). �

Proof (Equation (A.4) and (A.5))

We first prove the case b = 0. In this case, (A.11) and (A.18) reduce to

H(1)
n = −cnH(2)

n−2 (n ≥ 2), H
(1)
1 = b = 0, H

(1)
0 = 1,

H(2)
n = cnH

(1)
n−1 (n ≥ 1), H

(2)
0 = 1.

Then (A.4) and (A.5) hold as follows:

H
(1)
k−1H

(1)
k+1 + (c− 2ab)H

(2)
k−1H

(2)
k − b

(

H
(1)
k

)2

= H
(1)
k−1H

(1)
k+1 + cH

(2)
k−1H

(2)
k

= 0,

H
(2)
k−1H

(2)
k+1 +H

(1)
k H

(1)
k+1 − b

(

H
(2)
k

)2

= H
(2)
k−1H

(2)
k+1 +H

(1)
k H

(1)
k+1

= 0.

Next, we consider the case b 6= 0. SinceW2 6= 0 is assumed, we obtain 2ab−c = σW 4
2 6= 0

and

L(1)
n =

1

bn−1
H(2)

n , (A.19)

L
(2)
n−1 =

1

2ab− c

(
1

bn−2
H(1)

n − b2H
(1)
n−1

)

, (A.20)

M
(2)
n−1 =

1

bn−1
H(1)

n , (A.21)

from (A.18), (A.11) and (A.16), respectively. The Jacobi identity for determinant

A

[

i j

k l

]

A = A

[

i

k

]

A

[

j

l

]

−A

[

i

l

]

A

[

j

k

]

, (A.22)

where A

[

i1 · · · in
j1 · · · jn

]

denotes the minor of A without i1, · · · , in-th rows and j1, · · · , jn-

th column, is well-known. Applying the following n× n matrix

A =

0 1 0 · · · 0

B2 am am+1 · · · am+n−2

B3 am+1 am+2 · · · am+n−1

...
...

...
...

Bn am+n−2 am+n−1 · · · am+2n−4

to (A.22) with i = k = 1, j = l = n yields

L(m+1)
n H

(m)
n−1 = L

(m+1)
n−1 H(m)

n + L(m)
n H

(m+1)
n−1 . (A.23)
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Substituting (A.19) and (A.20) into (A.23) with m = 1, we obtain (A.4). Applying

A = L(m)
n =

B2 am am+1 · · · am+n−2

B3 am+1 am+2 · · · am+n−1

...
...

...
...

Bn+1 am+n−1 am+n · · · am+2n−3

to (A.22) with i = k = 1, j = l = n yields

L(m)
n H

(m+1)
n−2 = H

(m+1)
n−1 L

(m)
n−1 −M

(m+1)
n−1 H

(m)
n−1. (A.24)

Substituting (A.19) and (A.21) into (A.24) with m = 1, we obtain (A.5). These com-

plete the proof of the thorem. �
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