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Abstract. In Ramsey theory one wishes to know how large a collection of objects can be
while avoiding a particular substructure. A problem of recent interest has been to study
how large subsets of the natural numbers can be while avoiding 3-term geometric progres-
sions. Building on recent progress on this problem, we consider the analogous problem over
quadratic number fields.

We first construct high-density subsets of the algebraic integers of an imaginary quadratic
number field that avoid 3-term geometric progressions. When unique factorization fails or
over a real quadratic number field, we instead look at subsets of ideals of the ring of integers.
Our approach here is to construct sets “greedily,” a generalization of the greedy set of rational
integers considered by Rankin. We then describe the densities of these sets in terms of values
of the Dedekind zeta function.

Next, we consider geometric-progression-free sets with large upper density. We gener-
alize an argument by Riddell to obtain upper bounds for the upper density of geometric-
progression-free subsets, and construct sets avoiding geometric progressions with high upper
density to obtain lower bounds for the supremum of the upper density of all such subsets.
Both arguments depend critically on the elements with small norm in the ring of integers.
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1. Introduction

In 1961, Rankin [9] introduced the problem of constructing large subsets of the integers
which do not contain geometric progressions. A set is free of geometric progressions if it does
not contain any three terms in a progression of the form {n, nr, nr2} and r ∈ N \ {1}. A
simple example of such a set is the squarefree integers, which have density 6/π2 ≈ 0.60793.
Rankin constructed a larger set, with asymptotic density approximately 0.71974. Modifying
the construction of this set slightly, (see [4]) one can get a small improvement, producing
a set with density about 0.72195. It is not known what the greatest possible asymptotic
density of such a set is, however several authors have considered sets with greater upper
asymptotic density. Riddell [10], Brown and Gordon [2], Beiglböck, Bergelson, Hindman,
and Strauss [1], Nathanson and O’Bryant [6] and most recently the third named author,
[4], have improved the bounds on the greatest possible upper density of such a set. It is
now known that the greatest possible upper density of such a set lies between 0.81841 and
0.81922. Other papers have also considered progressions which are allowed to have rational
ratios, however that will not be pursued further here.

In this paper, we generalize the problem to quadratic number fields. We study the
geometric-progression-free subsets of the algebraic integers (or ideals) and give bounds on
the possible densities of such sets. In an imaginary quadratic field with unique factorization
we are able to consider the possible densities of sets of algebraic integers which avoid 3-term
geometric progressions, and so we have chosen to pay special attention to those fields. Most
of our results also apply to the ideals of any quadratic number field, however, which we also
state when possible. We begin by characterizing the “greedy” geometric-progression-free sets
in each case, and then give bounds for the greatest possible upper density of such a set. We
conclude our paper with some numerical data and several open questions.

2. Rankin’s Greedy Set

Let G∗3 = {1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, . . . } (see OEIS A000452
[8]) be the set of positive integers obtained greedily by including those integers which do
not introduce a 3-term geometric progression with the integers already included in the set.
Rankin [9] characterized G∗3 as the set of those integers with prime exponents coming only
from the set, A∗3 = {0, 1, 3, 4, 9, 10, 12, 13, . . .} (see OEIS A005836 [8]), of nonnegative integers
obtained by greedily including integers which avoid 3-term arithmetic progressions. The set
A∗3 consists of those integers which do not contain a 2 in their base 3 expansion.

This characterization shows that the inclusion of any given integer in the set G∗3 depends
solely on the powers of the primes in its prime factorization. Thus, to find the density of
G∗3, one needs only consider the density of those integers which contain only primes raised
to acceptable powers in their prime factorization. Because the acceptable powers are the
integers in A∗3, we have, for a fixed prime p, that the density of the positive integers whose
factorization contains an acceptable power of p is given by(

p− 1

p

)∑
i∈A∗

3

1

pi
=

(
p− 1

p

)∏
i≥0

(
1 +

1

p3i

)
. (2.1)
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By the Chinese remainder theorem, we can then compute the asymptotic density of G∗3 as
an Euler product over all primes:

d(G∗3) =
∏
p

(
p− 1

p

) ∞∏
i=0

(
1 +

1

p3i

)

=
∏
p

(
1− 1

p2

) ∞∏
i=1

1− 1

p2·3i

1− 1

p3i

=
1

ζ(2)

∞∏
i=1

ζ(3i)

ζ(2 · 3i)
≈ 0.71974. (2.2)

Thus the supremum of the densities of all geometric-progression-free subsets of the natural
numbers is bounded below by 0.71974.

3. Greedy Set over Quadratic Number Fields

We begin by generalizing Rankin’s calculation of the density of the greedy set of integers to
the algebraic integers OK over a quadratic number field, K = Q(

√
d), where d is a squarefree

integer. (For a review of the algebraic number theory used here, the reader is referred to
[3].) If d < 0, K is an imaginary quadratic number field with finitely many units, so there
are finitely many algebraic integers with bounded norm. It is thus possible in this case to
define the density of a subset of the algebraic integers.

Definition 3.1. Let K be an imaginary quadratic number field. The density d(A) of a set
A ⊂ OK is

d(A) = lim
n→∞

|A ∩ In|
|In|

, (3.1)

where In = {m ∈ OK : N(m) ≤ n} and N(m) is the norm of m.

Most of our results require unique factorization and so, when studying subsets of algebraic
integers of an imaginary quadratic number field which avoid geometric progressions, we must
restrict our attention to those imaginary quadratic number fields which have class number 1,
of which there are only nine (d = −1,−2,−3,−7,−11,−19,−43,−67,−163). When either
unique factorization fails or when K is a real quadratic number field we can instead consider
subsets of the ideals of OK which avoid 3-term geometric progressions and obtain similar
results about the densities of the ideals in this case which apply to all quadratic number
fields. The density of a subset of the ideals of OK is defined similarly.

Definition 3.2. Let K be a number field. The density d(A) of a set of ideals A of OK is
defined to be

d(A) = lim
n→∞

|A ∩ In|
|In|

, (3.2)

where In = {I ⊆ OK : N(I) = |OK/I| ≤ n}.

Before stating our results about the possible densities of sets avoiding geometric progres-
sions, we make a note about progressions with unit ratios. Throughout this paper, we restrict
our study of geometric progressions to those progressions, {n, nr, nr2}, where the ratio, r, is

3



not a unit in the number field. Over the integers this distinction is made by insisting that
every term in a 3-term geometric progression be unique. However, that is not necessarily the
case here, since one can find progressions, such as {2, 2i,−2} over the Gaussian integers with
ratio i, which have unit ratio and distinct terms. Nevertheless, our decision is motivated by
the additional structure that progressions with non-unit ratios possess, the fact that each
such progression is naturally ordered by starting with the element with least norm, and,
most importantly, and the consequence that this choice yields results directly comparable to
the ideal case discussed in greater generality below.

Also, note that the norm doesn’t totally order the algebraic integers (or ideals) in a number
field, and hence the notion of a greedy set is not necessarily well defined, as it is over the
integers. However, as we will see, inclusion in the greedy set avoiding geometric progressions
depends only on the norm, so all elements with the same norm are either included or excluded.
Thus the order in which the elements (integers or ideals) of same norm are taken is irrelevant.

Suppose first that K is an imaginary quadratic number field with class number 1. Then
the density of the set, GK,3 ⊂ OK which greedily avoids 3-term geometric progressions with
non-unit ratios r ∈ OK can be found as follows:

Theorem 3.3. Let K be an imaginary quadratic number field with class number 1, and let
f : N→ R be defined by

f(x) =

(
1− 1

x

) ∞∏
i=0

(
1 +

1

x3i

)
. (3.3)

Then the density of the greedy set, GK,3, of algebraic integers which avoid 3-term progressions
with non-unit ratios in OK is given by

d(GK,3) =

( ∏
p inert

f(p2)

)( ∏
p splits

f(p)2

)( ∏
p ramifies

f(p)

)
, (3.4)

where the product is taken over rational primes p depending on whether p splits, ramifies or
remains inert in K.

Proof. The method of proof is similar to that of Rankin’s result. If {n, nr, nr2} ⊂ OK forms
a geometric progression with r ∈ OK non-zero and a non-unit, then any prime, p, of OK
which divides n exactly a times and r exactly b times will appear to the powers a, a+ b and
a+ 2b in the terms of the progression respectively. In particular, these exponents will form
an arithmetic progression. So, greedily avoiding geometric progressions amounts to greedily
avoiding arithmetic progressions among the exponents of the primes. Thus, as in Rankin’s
set over the integers, an algebraic integer is included in the greedy set, GK,3, if and only if
the exponents on the primes in its prime factorization come from A∗3.

Now, for a fixed prime q of OK we determine, analogously to equation (2.1) over the
integers, that the density of the algebraic integers which have an acceptable power of q in
their prime factorization is (

N(q)− 1

N(q)

)∑
i∈A∗

3

1

N(q)i
= f(N(q)). (3.5)

So, by the Chinese remainder theorem, the density is now given by a product of factors of
f(x), as described above. This product can be converted from a product over the primes in
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K to a product over rational primes using the fact that each prime of K lies above a rational
prime. The contribution of each rational prime will depend upon whether it remains inert,
splits, or ramifies in K.

If a rational prime, p, remains inert in K, then the factor representing this prime is the
same as in Rankin’s product, with one modification: Instead of p residues mod p, there are
now N(p) = p2 residues modulo p in OK . Thus this prime contributes a factor of f(p2)
rather than f(p).

If a rational prime, p, splits, it splits into two conjugate primes of norm p, each of which
can be raised to different powers and for each we have a factor of f(p). Multiplying these
together, the contribution from this kind of rational prime is f(p)2.

Finally, if a prime, p, ramifies, it corresponds to exactly one prime of K of norm p. Thus
we account for divisibility by powers of this prime with the factor f(p). �

Then, as in Rankin’s argument, the density of this greedy set serves as a lower bound for the
greatest possible density of a set free of this kind of geometric progression. Approximations
of the resulting lower bounds in each of the 9 class number 1 imaginary quadratic number
fields are given in Table 1.

d Density of the greedy set
-1 0.762340
-2 0.693857
-3 0.825534
-7 0.674713
-11 0.742670
-19 0.823728
-43 0.898250
-67 0.917371
-163 0.933580

Table 1. Density of the greedy set, GK,3 ⊂ OK , of algebraic integers which
avoid 3-term geometric progressions with ratios in OK for each of the class
number 1 imaginary quadratic number fields K = Q

(√
d
)
.

For the general case of quadratic number fields, we use the Dedekind zeta function in place
of the Riemann zeta function. It is defined as follows.

Definition 3.4. Let K be an algebraic number field. Then the Dedekind zeta function for
K is defined as

ζK(s) =
∑
I⊂OK

1

(NK/Q(I))s
, (3.6)

where I ranges through the non-zero ideals of the ring of integers OK of K and NK/Q(I) is
the absolute norm of I.

The ring of integers of a quadratic number field is a Dedekind domain so the ideals factor
uniquely into prime ideals. Using this unique factorization, the Dedekind zeta function can
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be expressed as an Euler product over all the prime ideals P of OK , that is

ζK(s) =
∏

P⊂OK

1

1− (NK/Q(P))−s
(3.7)

for Re(s) > 1.
In order to state the result, we will also need the quadratic character of a number field,

which is defined as follows.

Definition 3.5. Let K be a quadratic field with discriminant DK. The quadratic character
of K is χK : Z+ −→ C, χK(m) = (DK

m
) where (DK

m
) is the Jacobi symbol.

With these definitions in place, the general case of the density of the greedy set of ideals
avoiding geometric progressions where the ratios are ideals can now be stated.

Theorem 3.6. Let K be a quadratic number field and let f : N→ R be defined by

f(x) =

(
1− 1

x

) ∞∏
i=0

(
1 +

1

x3i

)
. (3.8)

Then the density of the greedy set of ideals, G∗K,3, of OK that avoid 3-term geometric pro-
gressions with ratio a (non-trivial) ideal of OK is

d(G∗K,3) =
1

ζK(2)

∞∏
i=1

ζK(3
i)

ζK(2 · 3i)
. (3.9)

Proof. The method of proof is essentially the same as that of Theorem 3.3. As before, an
ideal is in G∗K,3 if and only if the exponents on the primes ideals in its prime factorization
appear only with exponents from A∗3. For a fixed prime ideal P of OK , the density of the
ideals divisible by P is 1/N(P), and likewise, the density of ideals exactly divisible by an
acceptable power of P is given by f(N(P)). Thus, the density is again given by a product
of factors of f(x) as described above. We can likewise write this product as a product over
rational primes depending on whether the rational primes remain inert, split, or ramify in
K, with the norms behaving exactly as they did in the case of class number 1 imaginary
quadratic number fields, so the product has the same structure as that of Theorem 3.3.
We now characterize the behavior of the rational primes using the quadratic character. In
particular, a prime ideal with χK(p) = −1 remains inert, an ideal with χK(p) = 1 splits, and
an ideal with χK(p) = 0 ramifies. So we get that

d(G∗K,3) =

 ∏
χK(p)=−1

f(p2)

 ∏
χK(p)=1

f(p)2

 ∏
χK(p)=0

f(p)

 .

The Euler product (3.7) and the steps used to derive equation (2.2) can be used to transform
this product into the product

d(G∗K,3) =
1

ζK(2)

∞∏
i=1

ζK(3
i)

ζK(2 · 3i)

in terms of values of the Dedekind zeta function. �
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3.1. Two Universal Bounds. We can use Theorem 3.6 to give both upper and lower
bounds for the density of the greedy set of ideals avoiding 3-term geometric progressions in
any quadratic number field. First, an observation:

Remark 3.7. Define f(x) as in Theorem 3.6. Then, for all primes p, we have

0 < f(p)2 < f(p) < f(p2) < 1. (3.10)

With that said, we may proceed.

Corollary 3.8. Let K be a quadratic number field, and G∗K,3 the greedy set of ideals of OK
that avoid 3-term geometric progressions. Then∏

p

f(p)2 < d(G∗K,3) <
∏
p

f(p2) (3.11)

and approximating these products we find that

0.518033 < d(G∗K,3) < 0.939735. (3.12)

Proof. We use the remark above to give upper and lower bounds for the product in equation
(3.9). By Theorem 3.6, we have

d(G∗K,3) =

 ∏
χK(p)=−1

f(p2)

 ∏
χK(p)=1

f(p)2

 ∏
χK(p)=0

f(p)


>
∏
p

f(p)2 > 0.518033,

(3.13)

and likewise
d(G∗K,3) <

∏
p

f(p2) < 0.939735. (3.14)

�

Note that the inequalities of Corollary 3.8 are strict because it is neither possible for
all of the rational primes to split in a quadratic number field nor for all to remain inert.
Interestingly, however, we find that the upper bound of inequality (3.11) is achieved by a
different greedily constructed set: the greedy set of algebraic integers (or ideals) which avoid
progressions where the ratio between consecutive terms is a rational integer, which we will
see in Theorem 3.10.

3.2. Greedy Set Avoiding Geometric Progressions with Ratios in Z. We consider
first the Gaussian integers, Z[i], which are the algebraic integers of the quadratic number
field Q

(√
−1
)
, and look at the subset, H∗Q(i),3, chosen greedily to avoid geometric pro-

gressions with common ratios contained in Z \ {±1}. For example, the Gaussian integers
3+ i, 6 + 2i, 12+4i form a geometric progression in the Gaussian integers with common ratio
2. We will calculate below the density of this greedy set. Consider the Gaussian integers
as lattice points in the complex plane, and note that any geometric progression of Gaussian
integers with ratios in Z \ {±1} will lie on a line through the origin with rational slope.
Scaling a Gaussian integer by a rational integer twice produces three collinear points. We
then characterize the greedy set H∗Q(i),3 as follows:

7



Lemma 3.9. A Gaussian integer a+bi is excluded from H∗Q(i),3 exactly when it can be written
in the form a+ bi = k(c+ di) where k is an element excluded from G∗3 and (c, d) = 1.

Proof. This follows from the definition of G∗3 since it greedily avoids rational integral ratios.
�

Having characterized this greedy set, we can now compute its density.

Theorem 3.10. The density of H∗Q(i),3, the greedy set of Gaussian integers that avoid geomet-
ric progressions with rational integral ratios, is equal to

∏
p f(p

2), approximately 0.939735.

Proof. Consider a circle of radius R and area A centered about the origin. By Gauss’ circle
problem [12], the number of lattice points contained in this circle is

πR2 +O(R1+ε). (3.15)

A generalization of Gauss’ circle problem to count primitive lattice points – that is, solutions
to the equation m2 + n2 ≤ R2 with m and n coprime [11] – shows that the number of such
solutions is

6

π
R2 +O(R1+ε). (3.16)

Therefore, in the limit as R goes to infinity, we find that the proportion of primitive lattice
points tends to 6/π2. By Lemma 3.9 we know that if a+ bi ∈ H∗Q(i),3 then a+ bi = k(c+ di),
where c+ di is a primitive lattice point and k ∈ G∗3.

Suppose a+ bi ∈ H∗Q(i),3 with a2 + b2 < R2 and let k = (a, b) ∈ G∗3. Then a/k+ (b/k)i is a
primitive lattice point in a circle of radius R/k and area A/k2. Since the proportion of such
primitive lattice points tends to 6/π2, each k ∈ G∗3 will contribute a factor of 6/π2k2 to the
density of H∗Q(i),3. Thus

d(H∗Q(i),3) =
6

π2

∑
k∈G∗

3

1

k2
=

1

ζ(2)

∏
p

∑
i∈A∗

3

1

p2i

=
∏
p

(
1− 1

p2

) ∞∏
i=1

(
1 +

1

p2·3i

)
=

∏
p

f(p2) ≈ 0.939735. (3.17)

�

This result is not unique to the Gaussian integers. For any quadratic number field K, let
H∗K,3 denote the greedy set of ideals of OK which avoid progressions whose ratio is an ideal
generated by a rational integer. If we use the method of proof of Theorem 3.6, we find that
because the ideal generated by each rational prime p has norm N(p) = p2, the density of
those ideals of OK divisible exactly by an acceptable power of the ideal (p) is f(p2). Thus
the Euler product for the density of H∗K,3 behaves as it would in Theorem 3.6 if each prime
p remained inert. Thus we have the following generalization of Theorem 3.10:

Theorem 3.11. Let K be a quadratic number field. The density of H∗K,3, the greedy set of
ideals of OK which avoid progressions whose ratio is an ideal generated by a rational integer,

8



is
d(H∗K,3) =

∏
p

f(p2) ≈ 0.939735. (3.18)

4. Bounds on the Upper Density

We now turn our attention back to geometric progressions whose ratios lie in the quadratic
number field, and consider the supremum of the upper densities of geometric-progression-free
sets in this setting.

4.1. Upper Bounds for the Upper Density. In 1969, Riddell [10] gave the first upper
bound for the upper density of a subset of the natural numbers which avoids 3-term geometric
progressions. Here we generalize his arguments to give upper bounds for the upper density of
a set of algebraic integers (or ideals) which avoid 3-term geometric progressions in a quadratic
number field.

Riddell’s argument gives an upper bound by excluding the fewest number of integers
necessary to avoid progressions with ratios that are a power of 2. We utilize the same
argument, replacing the prime 2 with whichever prime in the given number field has the
smallest norm. We also need an estimate for how many ideals in our number field that have
norm at most x. This is a well studied problem, going back to the work of Dedekind and
Weber. It is known (see for example [5, Theorem 5]) that for a quadratic number field, K,
the count, N(x,K), of the number of ideals of OK with norm at most x satisfies

N(x,K) = ρkx+O
(
x1/2

)
, (4.1)

where ρK is a constant that depends on the number field. In the specific case whenK = Q(i),
OK = Z[i] is the Gaussian integers and every ideal is principal. So N(x,Q(i)) counts the
Gaussian integers with norm up to x, which correspond to lattice points with distance less
than

√
x from the origin. Thus, in this special case, (4.1) follows from Gauss’ circle problem,

which tells us the number of integer lattice points contained in a circle centered at the origin
with radius r is πr2+O(r). (Note that the error term here can be improved but this suffices
for our argument.)

In particular, when K is any of the imaginary quadratic number fields with class number
1, equation (4.1) tells us that the count of the algebraic integers with norm up to x will grow
linearly with x.

We can now see how the powers of the smallest prime element of a number field can be
used to give an upper bound for the upper density of the set of algebraic integers (ideals)
avoiding 3-term geometric progressions. We consider first the representative case of the
Gaussian integers.

Theorem 4.1. The upper density of a subset of the Gaussian integers avoiding geometric
progressions with non-unit ratios contained in Z[i] is at most 0.857143.

Proof. We consider a subset of the Gaussian integers with norm at most M and fix an
element r ∈ Z[i] with smallest possible non-unit norm, N (r) = 2. (So r is some associate
of 1 + i.) Then, if b ∈ Z[i] is any Gaussian integer coprime to 1 + i with N (b) ≤ M

4
, we

have that each element in the progression {b, br, br2} has norm at most M and furthermore
that distinct values of b result in disjoint progressions. Thus, we must exclude at least one
Gaussian integer with norm at most M for each such value of b.

9



We can then use Gauss’ circle problem to count the number of such b, and so see that the
proportion of Gaussian integers excluded in this way is

1

2
·
#b with N(b) ≤ M

4

#b with N(b) ≤M
=

1

2
·
Mπ
4

+O
(√

M
)

Mπ +O
(√

M
) =

1

2
· 1
22

+O

(
1√
M

)
, (4.2)

or 1/8 in the limit as M →∞. Thus the upper density cannot be greater than 1/8.
This is a crude bound, but we can improve upon it by considering additional progressions.

Note that so long as N(b) ≤ M
32

each element of a progression of the form {br3, br4, br5} will
also have norm at mostM , and furthermore these progressions will be disjoint not only from
each other but also from the first set of progressions described above. This results in an
additional proportion of (1/2)(1/25) Gaussian integers which must be excluded. Continuing
this process yields an infinite series which gives the following upper bound:

1− 1

23

∞∑
n=0

1

23n
= 1−

1
23

1− 1
23

=
6

7
≈ 0.857143. (4.3)

�

We can extend this argument to give a corresponding upper bound for the upper density
of a subset of algebraic integers in any class number 1 imaginary quadratic number field, or
to the upper density of the ideals of any quadratic number field. Using (4.1), we have that
the number of algebraic integers (or ideals) with norm less than some given N grows linearly
with N . We can therefore apply this same argument, replacing the common ratio, r, with an
algebraic integer (or ideal respectively) with least possible non-unit norm. By considering
the possible behavior of the rational primes 2 and 3 in the quadratic number field we see
that this least non-unit norm must be one of 2, 3, or 4.

In any quadratic number field containing an algebraic integer (ideal) of norm 2, we obtain
the same upper bound as for the Gaussian integers, 6/7 ≈ 0.857143. In the case where the
smallest non-unit element has norm 3, we have that the proportion of excluded elements is
bounded above by

1− 2

33

∞∑
n=0

1

33n
= 1−

2
33

1− 1
33

=
12

13
≈ 0.923077, (4.4)

and in the case where the smallest non-unit element has norm 4, we have that the proportion
of excluded elements is bounded above by

1− 3

43

∞∑
n=0

1

43n
= 1−

3
43

1− 1
43

=
20

21
≈ 0.952381, (4.5)

both by arguments analogous to the case with norm 2.
The results for the class number 1 quadratic fields are summarized in Table 2.

4.2. Improvements on Upper Bounds for the Upper Density. By generalizing Rid-
dell’s argument in our new setting, we were able to derive upper bounds for the upper density
of sets of ideals containing no three terms in geometric progression. Notice, however, that this
argument only takes into account progressions involving a ratio of smallest non-unit norm.
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d Upper Bound Approximation
-1 6/7 0.857143
-2 6/7 0.857143
-3 12/13 0.923077
-7 6/7 0.857143
-11 12/13 0.923077
-19 20/21 0.952381
-43 20/21 0.952381
-67 20/21 0.952381
-163 20/21 0.952381

Table 2. Upper bounds for the upper density of 3-term geometric-
progression-free subsets of the algebraic integers in the class number 1 imagi-
nary quadratic number fields, Q

(√
d
)
.

We can conceivably improve these bounds by taking into account more possible ratios. We
do so, generalizing an argument made over the integers in [4].

For a quadratic number field K = Q
(√

d
)
, and an integer n ∈ Z, we define an element (or

ideal) of the ring of integers OK to be n-smooth if its factorization into irreducible elements
consists entirely of elements with norm at most n.

For the ring of integers in any class number 1 imaginary quadratic number field, we consider
the n-smooth numbers up to a fixed norm and determine the exact number of integers which
must be excluded from this set to ensure that it is progression-free. We derive the following
improvement to Theorem 4.1.

Theorem 4.2. The upper density of a subset of the Gaussian integers avoiding geometric
progressions with non-unit ratios contained in Z[i] is at most 0.85109.

Proof. The 5-smooth elements of Z[i] consist of those elements whose only prime factors are
1 + i, 2 + i, and 2 − i, that is, the three non-unit irreducible elements in this ring with
smallest norm. Define the set SN to be the set of all elements of Z[i] (up to associates)
with norm ≤ N such that their prime factorization consists only of these three smallest
elements. That is, SN is the set of all 5-smooth numbers in Z[i] with norm ≤ N . Considering
S4 = {1, 1 + i, 2} we see that these three elements form a progression, and therefore at
least one element must be excluded from S4 to ensure a set free of geometric progressions.
Considering larger values of N , the next additional exclusion occurs when we hit S20 =
{1, 1 + i, 2, 2 + i, 2 − i, 2 + 2i, 1 + 3i, 3 + i, 4, 4 + 2i, 4 − 2i}, at which point two additional
exclusions must be made in order to obtain a set free of geometric progressions, bringing the
total number of exclusions necessary up to three.

Now, corresponding to the set S4, for any Gaussian integer b such that N(b) ≤ M/4 and
such that (b, 5 + 5i) = 1 (where 5 + 5i = (1 + i)(2 + i)(2 − i)) we see that from the set
b · S4 = {b, (1 + i)b, 2b} we must necessarily exclude one element, which will have norm at
most M . As in Riddell’s argument, we see that for distinct values of b the sets b · S4 are
disjoint, and since the proportion of Gaussian integers, b, coprime to 5 + 5i is

(2− 1)(5− 1)(5− 1)

2 · 5 · 5
=

16

50
, (4.6)

11



we must exclude at least
16

50

(
Mπ

4

)
+O

(√
M
)

(4.7)

of the Mπ +O
(√

M
)
Gaussian integers with norm at most M, a density of 16/200 = 0.08,

which gives us an upper bound of 0.92 for the upper density of a geometric-progression-free
set.

Similarly, corresponding to the set S20, because we must exclude two additional elements
corresponding to those b where N(b) ≤ M/20, we get an improved lower bound on the
number of excluded elements of

16Mπ

50

(
1

4
+

2

20

)
+O

(√
M
)
, (4.8)

which in turn gives us the upper bound

1− 16

50

(
1

4
+

2

20

)
= 0.888. (4.9)

We can continue in this fashion, calculating each value of N for which additional exclusion(s)
are needed. The results for the Gaussian integers are summarized in table 3.

N # of integers excluded from SN
4 1
20 3
32 4
64 5
100 8
128 9
160 11
256 12
320 14
500 18

Table 3. Norms up to 500 at which additional exclusions have to be made
when avoiding 5-smooth geometric progressions in the Gaussian integers.

Using all these necessary exclusions, we must exclude

16Mπ

50

(
1

4
+

2

20
+

1

32
+

1

64
+

3

100
+

1

128
+

2

160
+

1

256
+

2

320
+

4

500

)
+O

(√
M
)

(4.10)

elements. So any geometric-progression-free-subset of the Gaussian integers with norms
≤ M can have size at most 0.85109Mπ + O

(√
M
)
. Therefore we find an upper bound

for the upper density of sets of Gaussian integers containing no three terms in geometric
progression to be 0.85109, which is an improvement over the previously computed upper
bound of 0.857143. �

While this computation was done in Z[i], we can easily repeat this approach to find bounds
for all other class number 1 imaginary quadratic number fields. In each case we have used

12



the 3 elements of smallest non-unit norm and computed the values of N at which additional
exclusions were required. The results of this computation are summarized in Table 4.

d Smallest Non-unit Norms Upper Bound
-1 2, 5, 5 0.851090
-2 2, 3, 3 0.839699
-3 3, 4, 7 0.910089
-7 2, 2, 7 0.858880
-11 3, 3, 4 0.917581
-19 4, 5, 5 0.949862
-43 4, 9, 11 0.945676
-67 4, 9, 17 0.946772
-163 4, 9, 25 0.946682

Table 4. Improved upper bounds for the upper density of a set free of 3-
term geometric progressions in each of the class number 1 imaginary quadratic
number fields Q

(√
d
)
.

4.3. Lower Bounds for the Maximal Upper Density. We next establish lower bounds
on the supremum of the upper densities of subsets of imaginary quadratic number fields
that avoid geometric progressions by generalizing an argument from [4], also discussed more
recently by Nathanson and O’Bryant [7]. For illustration, we first consider the Gaussian
integers and construct a subset S ⊂ Z[i] that has a large upper density and that avoids
geometric progressions.

Fix a boundM > 0 and note that if x1, x2, and x3 are Gaussian integers whose norms sat-
isfy M/4 < N(x1) < N(x2) < N(x3) ≤ M then (x1, x2, x3) cannot form a 3-term geometric
progression with non-unit ratio in Z[i]. This is because any non-unit ratio r will have norm
N(r) ≥ 2, and hence N(x3) = N(x1r

2) = N(x1)N(r)2 > M . Thus, any three elements with
norm in the interval (M/4,M ] do not comprise a geometric progression. So by including all
such elements in S, S can include 3/4 of the Gaussian integers with norm at most M . In
fact we can include more elements in S fairly easily, utilizing the fact that the norm of any
Gaussian integer lies in Z. We can also piece together sets of this sort for widely separated
values of M to produce a set avoiding these progressions with high upper density.

Theorem 4.3. We have that 0.844662 is a lower bound for the supremum of the upper
densities of all subsets of Z[i] which avoid 3-term geometric progressions.

Proof. We construct here a set S which has the claimed upper density while avoiding 3-term
geometric progressions over the Gaussian integers. Let

TM =

(
M

6728
,
M

6656

]⋃( M

3712
,
M

3364

]⋃( M

3328
,
M

928

]⋃(M
841

,
M

832

]⋃(M
32
,
M

8

]⋃(M
4
,M

]
(4.11)

and consider the set
SM = {x ∈ Z[i] : N(x) ∈ TM}. (4.12)

We have already argued that the set {x ∈ Z[i] : N(x) ∈ (M/4,M ]} is free of 3-term geometric
13



progressions, for a given M , using only the fact that the smallest non-unit ratio is 2. One
can similarly check, using the fact that the complete list of the possible norms of Gaussian
integers up to 83 is

2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40,

41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82,

that if any two terms of a geometric progression have norms contained in TM above, then
the third element’s norm must either be greater than M , less than M/6728 or lie in one of
the omitted gaps. We can visualize SM as the lattice points in a set of six annuli centered
about the origin. Applying Gauss’ circle problem, it follows that as M →∞ the proportion
of Gaussian integers (up to norm M) with norm in TM is given by(
Mπ
1
−Mπ

4

)
+
(
Mπ
8
−Mπ

32

)
+
(
Mπ
832
−Mπ

841

)
+
(
Mπ
928
− Mπ

3328

)
+
(
Mπ
3364
− Mπ

3712

)
+
(
Mπ
6656
− Mπ

6728

)
Mπ

≈ 0.844662.

(4.13)
We can now construct concentric, expanding sets of six annuli which still avoid geometric

progressions in their union. Fix M0 = 1 and recursively define Mi = 6728M2
i−1 for i ≥ 1.

Each SMi
forms a set of six annuli, with radii increasing as i increases. Furthermore, these

annuli are sufficiently separated in order to avoid any geometric progressions in their union
S :=

⋃∞
i=1 SMi

. To see this, suppose x1 ∈ SMj
and x2 = x1r ∈ SMk

for some j ≤ k. We’ve
already argued that if j = k then x3 = x1r

2 /∈ SMk
. Suppose then that x3 ∈ SMl

for some
l > k. Then

N(r) =
N(x3)

N(x2)
>

Mk+1

6728

Mk

= Mk (4.14)

and so N(x2) = N(x1r) ≥ N(r) > Mk. But this contradicts x2 ∈ SMk
and so we cannot

have x3 ∈ SMl
for any l.

Therefore, S is free of 3-term geometric progressions by construction and has upper density
0.844662. �

The arguments for the other imaginary quadratic number fields follow similarly. Care must
be taken to ensure that the intervals TM are constructed to avoid introducing progressions
with norms in the given imaginary quadratic number field. The results are summarized in
Table 5.
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d Intervals Used Lower
Bound

-1 (M/6728,M/6656] ∪ (M/3712,M/3364] ∪ (M/3328,M/928] ∪
(M/841,M/832] ∪ (M/32,M/8] ∪ (M/4,M ]

0.844662

-2 (M/19008,M/16896] ∪ (M/8448,M/2212] ∪ (M/48,M/36] ∪
(M/32,M/27] ∪ (M/24,M/12] ∪ (M/9,M/8] ∪ (M/4,M ]

0.818648

-3 (M/252,M/63] ∪ (M/49,M/36] ∪ (M/9,M ] 0.908163

-7 (M/29696,M/7424]∪ (M/3712,M/928]∪ (M/32,M/8]∪ (M/4,M ] 0.844659

-11 (M/405,M/45] ∪ (M/9,M ] 0.908641

-19 (M/2816,M/176] ∪ (M/16,M ] 0.942826

-43 (M/1472,M/1377]∪ (M/576,M/208]∪ (M/81,M/64]∪ (M/16,M ] 0.943897

-67 (M/1024,M/729] ∪ (M/576,M/144] ∪ (M/81,M/64] ∪ (M/16,M ] 0.946382

-163 (M/2304,M/2025] ∪ (M/1600,M/1296] ∪ (M/1024,M/729] ∪
(M/576,M/144] ∪ (M/81,M/64] ∪ (M/16,M ]

0.946589

Table 5. Lower bounds for the supremum of the upper densities of geometric-
progression-free subsets of class number 1 imaginary quadratic number fields
Q
(√

d
)
.

5. Conclusions and Future Work

In Section 3, we characterized the greedy set of ideals of the ring of integers over a quadratic
number field avoiding 3-term geometric progressions, and thus obtained lower bounds for the
supremum of the densities of geometric-progression-free sets. We believe, as in the case of
the rational integers, that it is possible to construct sets with greater density by considering
non-greedy sets.

Question 5.1. Is it possible to construct subsets of the integral ideals of a quadratic number
field with density greater than that of the greedy set? If so, how much greater?

We have also computed the densities of the greedy sets of ideals containing no 3-term geomet-
ric progressions over various quadratic number fields with small discriminant. We include
here a plot of the distribution of densities of the greedy sets of ideals in all imaginary
quadratic number fields, Q

(√
−d
)
, with 1 ≤ d ≤ 10, 000. The histogram suggests some

interesting structure, and we conjecture that it arises partially from the distribution of el-
ements with small norms in a given number field. It would be interesting to examine the
emergent patterns more rigorously.

In Section 4, we generalized arguments by Riddell and by McNew to derive upper and
lower bounds for the supremum of the upper densities of geometric-progression-free subsets
of a quadratic number field which depend on the splitting behavior of small primes.

The questions we have answered in this paper leave us with many more potential avenues
to explore. We end with the following open questions that we find interesting.
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Figure 1. Distribution of densities of greedy sets of ideals of imaginary qua-
dratic number fields with discriminant at most 10,000.

As mentioned, we restricted our study to geometric progressions whose ratios are non-unit
algebraic integers. However, sets free of progressions with different ratios are also of interest
and may require different methodologies to study.

Question 5.2. How would considering progressions with unit ratios change our results about
the possible densities of geometric-progression-free subsets of the algebraic integers in an
imaginary quadratic number field?

Question 5.3. How would these results change if one considered all progressions with non-
unit ratios (not necessarily integral) in an imaginary quadratic number field, or fractional-
ideal-ratios in an arbitrary quadratic number field?

We note that Rankin’s set, G∗3, also avoids all geometric progressions over the integers with
rational ratio, although to this point we have only used the fact that it avoids integral-ratio
geometric progressions. In the same way, over a quadratic number field, K, one finds that
the greedy set, G∗K,3, constructed to avoid progressions with integral-ideal ratio, is also the
greedy set avoiding progressions whose ratio is any fractional ideal of K.

16



Question 5.4. Is it possible to construct subsets of the ideals of the ring of integers, OK,
of a quadratic number field K, avoiding progressions with fractional-ideal-ratio, with density
greater than that of the greedy set G∗K,3?

On the other hand, the arguments we used to give lower bounds for the supremum of
the possible upper densities would no longer apply in the fractional-ideal-ratio case, as they
depend on the existence of a minimum norm for a ratio.

Moving beyond quadratic number fields, one can consider geometric-progression-free sets
over number fields of higher degree or even over other rings, such as polynomials or matri-
ces. Depending on the ring one considers, one may lose certain useful properties, such as
commutativity, associativity, a nice lattice structure, or unique factorization.

Question 5.5. What results can be obtained about geometric-progression-free sets over a
number field of arbitrary degree? Or over the quaternions? Or over the octonions?

Question 5.6. How do these results generalize to sets free of longer geometric progressions?

For other progressions of prime length, the situation should be very similar to the results
presented here. However in the case of progressions of composite length the results may be
more complicated, as the greedy set of integers avoiding arithmetic progressions of composite
length is not so predictable as A∗3 is.

Question 5.7. What can be said about the geometric-progression-free subsets of the algebraic
integers (not the ideals) in an imaginary quadratic number field without unique factorization?
Can the greedy set be characterized? Can its density be determined?

Question 5.8. What issues are introduced when studying geometric-progression-free subsets
of a matrix ring, such as M2(Z), which is no longer commutative?

Question 5.9. In a more general sense, how does the structure of a ring affect the possible
sizes of its geometric-progression-free subsets?
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