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Dyson-Schwinger equations determine the Green functions Gr(α, L) in quantum field theory.
Their solutions are triangular series in a coupling constant α and an external scale parameter L for
a chosen amplitude r, with the order in L bounded by the order in the coupling.

Perturbation theory calculates the first few orders in α. On the other hand, Dyson–Schwinger
equations determine next-to{j}-leading log expansions, Gr(α,L) = 1+

∑∞
j=0

∑

M pMj αjM(u).
∑

M

sums for any finite j a finite number of functions M in u. Here, u is the one-loop approximation to
Gr, for example, for the (inverse) propagator in massless Yukawa theory, u = αL/2.

The leading logs come then from the trivial representation M(u) = [ • ](u) at j = 0 with p
[• ]
0 = 1.

All non-leading logs are organized by corresponding suppressions in powers αj .
We describe an algebraic method to derive all next-to{j}-leading log terms from the knowledge of

the first (j + 1) terms in perturbation theory and their filtrations. This implies the calculation of
the functions M(u) and periods pMj .

In the first part of our paper, we investigate the structure of Dyson-Schwinger equations and
develop a method to filter their solutions. Applying renormalized Feynman rules maps each filtered
term to a certain power of α and L in the log-expansion.

Based on this, the second part derives the next-to{j}-leading log expansions. Our method is
general. Here, we exemplify it using the examples of the propagator in Yukawa theory and the
photon self-energy in quantum electrodynamics. In particular, we give explicit formulas for the
leading log, next-to-leading log and next-to-next-to-leading log orders in terms of at most three-loop
Feynman integrals. The reader may apply our method to any (set of) Dyson-Schwinger equation(s)
appearing in renormalizable quantum field theories.
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I. INTRODUCTION AND RESULTS

In this section, we give a short introduction as well as a presentation and discussion on the type of results we obtain
in this paper.

A. Introduction

The usual way to compute a physical probability amplitude is to replace each term of the perturbative series in
the coupling α by a sum of Feynman graphs. Applying renormalized Feynman rules ΦR to all such graphs translates
this sum of graphs to the physically observable renormalized Feynman amplitude, say a Green function GR(α,L, θ),
at least as a formal series.
ΦR evaluated on a graph is a polynomial in a suitably chosen external scale parameter L = logS/S0, ΦR = ΦR(L).

L includes for example the center of mass energy S given by the underlying process, with S0 fixing a reference scale
for renormalization.
Further dependences are scattering angles, collected in ΦR(L, θ) by a set of variables θ. These are dimensionless

parameters incorporating dependences on scalar products pi · pj/S or masses m2
i /S. Throughout, we assume we leave

those scattering angles unchanged for the renormalization point. A discussion of this point can be found in [1, 2].

http://arxiv.org/abs/1412.1657v2
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Therefore, any renormalized Green function GR can be written as a triangular expansion

GR(α,L, θ) = 1 +

∞∑

j=0

∞∑

i=1

γi+j,i(θ)α
i+jLi = 1 +

∞∑

j=0

∑

M

pMj (θ)αjM(u), (1)

called ‘log-expansion’. Here, α denotes the perturbative parameter, a coupling constant say, and γi+j,i are some

functions in θ. We have p
[ • ]
0 = 1. For j ≥ 1, the pMj (θ) may depend on θ and are obtained from the first (j + 1)

terms of a perturbative expansion in the coupling. M(u) =
∑∞

i=1 q
M
i;j u

i is a series in u = αL/2 [101] with qMi;j ∈ Q.
These series are determined from their counterparts in the universal enveloping algebra of Feynman graphs that we
detail below, see also [1].
Such a form of the Green functions in a renormalizable field theory is a consequence of the Hopf algebra structure of

Feynman graphs [3]. One starts from the fact that all superficially divergent one-particle irreducible (1PI) Feynman
graphs of any physical quantum field theory generate a Hopf algebra H.
This allows to introduce Dyson-Schwinger equations (DSEs) as fix-point equations for Feynman graphs upon using

Hochschild cohomology [4]. See [5] for an effective application of these mathematical structures to the automatization
of perturbative renormalization, graph generation and graph counting.
Given a quantum field theory, one always finds DSEs whose solution is simply related to the log-expansion (Eq. (1))

by applying renormalized Feynman rules ΦR. Löıc Foissy classified exhaustively the structure of possible DSEs [6].
We apply our approach to two exemplary cases: first, to the fermion propagator

S(q) =
1

q/(1− Σ(α,L))
=

1

q/ΦR(XYuk)
. (2)

occurring in Yukawa theory. XYuk represents an infinite sum of graphs that satisfies the DSE

XYuk = I−
∑

j≥1

αjB
Γj

+

(

X
(1−2j)
Yuk

)

. (3)

Secondly, to the photon self-energy

Πµν(q) =
gµν − q̂µq̂ν

q2(1−Π(α,L))
=

gµν − q̂µq̂ν
q2ΦR(XQED)

(4)

occurring in quantum electrodynamics (QED). The infinite sum of graphs XQED satisfies the DSE

XQED = I−
∑

j≥1

αjB
Γj

+

(

X
(1−j)
QED

)

. (5)

Note that acting with renormalized Feynman rules ΦR on XYuk and XQED yields the log expansions (Eq. (1)).
In Yukawa theory, one should consider systems of DSEs because there are no Ward identities. Here, we restrict to

a truncation eliminating vertex divergences for purposes of presentation.
Our paper consists of two parts. First, in Section II, we give a brief overview on Hopf algebras and DSEs. In

particular, we relate the Hopf algebra of Feynman graphs to the Hopf algebra of words by a morphism of Hopf
algebras. Once the solution of a DSE is given in the Hopf algebra of words, we describe the filtration method in
Section IIIA. There, we rely on properties of renormalized Feynman rules that we derive in Section III B. Finally, we
present the filtration algorithm in Section III C.
In the second part of our paper, we describe a general method to derive the next-to{j}-leading log expansion in

Section IV. In particular, we exemplify up to j ≤ 2 for the Yukawa fermion propagator. In Appendix A, we collect
the respective results for the QED photon self-energy. In the filtrations of the Yukawa fermion propagator XYuk

and the QED photon self-energy XQED, each term comes with a multiplicity. We list some resulting series in these
multiplicities in Appendix B.
In the remainder of this section, we summarize and discuss our results.

[101] Note that in general, u ∝ αL. Since we mainly consider the Green function for the Yukawa fermion propagator, the proportionality
factor is 1/2. For the QED photon self-energy Green function that is also considered in this paper, one finds u = 4/3αL.
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Periods pMj Yukawa generating functions M(u) QED generating functions M(u)

(i) p
[ • ]
0 = 1

[

•
]

(u) = 1− 1
x

[

•
]

(u) = u

(ii) p
[ • 1 ]
1 = αΦR(Γ2)

[

• 1
]

(u) = x log x
[

• 1
]

(u) = log y

(iii) p
[ •2 ]
1 = αΦR(Γ1)

2 − 2αΦR

(

BΓ1
+ (Γ1)

)

[

•
2

]

(u) = −x

2
log x

[

•
2

]

(u) = 0

(iv) p
[ • 0 1 ]
2 = αΦR(Γ3)

[

• 0 1
]

(u) = −x

2
+ x3

2

[

• 0 1
]

(u) = y − 1

(v) p
[ • 2 ]
2 = α2ΦR(Γ2)

2
[

• 2
]

(u) = x

2
− x3

2
+ x3 log x+ x3

2
log2 x

[

• 2
]

(u) = 1− y + y log y

(vi) p
[ •3 ]
2 = α

(

3ΦR

(

BΓ1
+

(

BΓ1
+ (Γ1)

))

−

3ΦR(Γ1)ΦR

(

BΓ1
+ (Γ1)

)

+ ΦR(Γ1)
3

)

[

•
3

]

(u) = x3

2
− x

2u
log x

[

•
3

]

(u) = 0

(vii) p
[ • 0
1 1 ]

2 = α

(

−ΦR

(

BΓ1
+ (Γ2)

)

− ΦR

(

BΓ2
+ (Γ1)

)

+

ΦR(Γ1)ΦR(Γ2)

)

[

• 0
1 1

]

(u) = x

2
− 3x3

2
+ x

u
log x

[

• 0
1 1

]

(u) = −y + 1
u
log y

(viii) p

[ •
2
2

]

2 = α2
(

ΦR(Γ1)
2 − 2ΦR

(

BΓ1
+ (Γ1)

))2





•
2
2



 (u) = −x

8
− 3x3

8
+ x3

4
log x+ x

2u
log x+ x3

8
log2 x





•
2
2



 (u) = 0

(ix) p
[ • 1
2 0 ]

2 = α2ΦR(Γ2)
(

ΦR(Γ1)
2 − 2ΦR

(

BΓ1
+ (Γ1)

))

[

• 1
2 0

]

(u) = x3 − x3 log x− x

u
log x− x3

2
log2 x

[

• 1
2 0

]

(u) = 1
2
+ y

2
− 1

u
log y

(x) p

[

•
]

[a1,a2]

2 = α
(

ΦR

(

BΓ1
+ (Γ2)

)

− ΦR

(

BΓ2
+ (Γ1)

))

[

•
]

[a1,a2]
(u) = x3

4
− x5

4
+ x3

4
log x− 3x5

4
log x

[

•
]

[a1,a2]
(u) = y

2
− y2

2

(xi) p

[

•
]

[a1,Θ(a1,a1)]

2 = α

(

2ΦR

(

BΓ1
+ (Γ1 ∪ Γ1)

)

−

ΦR

(

BΓ1
+

(

BΓ1
+ (Γ1)

))

− ΦR(Γ1)ΦR

(

BΓ1
+ (Γ1)

)

)

[

•
]

[a1,Θ(a1,a1)]
(u) = −x3

8
+ x5

8
− x3

8
log x+ 3x5

8
log x

[

•
]

[a1,Θ(a1,a1)]
(u) = 0

TABLE I: The results obtained in this paper: a renormalized Green function GR is given by the log-expansion in Eq. (1). We calculate GR up to next-to-next-to-leading
log order (j ≤ 2). This table gives the periods pMj (θ) in the first column. These are general for any Green function in any quantum field theory. The second column

shows the generating functions M(u) for the Yukawa fermion propagator. Here, u = αL/2 and we abbreviate x = 1/
√
1− 2u. The third column collects the generating

functions for the QED photon self-energy, where u = 4/3αL and y = 1/(1−u). The periods are calculated implicitly in Eqs. (216,222,239). They can also be obtained
independently in three ways: first, from the Feynman rules acting on primitive elements Γj ∈ H, which define an accompanying period. Secondly, they are obtained
from primitives generated by the Dynkin operator S ⋆Y applied to shuffles of primitives. Finally, they are obtained from concatenation multi-commutators of primitives
of either sort. The generating functions in Yukawa theory are obtained from Eqs. (139,147,155,149,151,160,164,171,178,203,212), The generating functions for the QED
photon self-energy Green function are given in Eqs. (A4,A7,A8,A9,A10,A12,A14,A15,A17).
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B. Results and Discussion

Let us first concentrate on Yukawa theory, Eq. (3). To find the leading log expansion we can simplify to

XYuk = I− αBΓ1
+

(
X−1

Yuk

)
. (6)

Feynman rules ΦR with massless internal propagators and a momentum scheme for subtraction turn Eq. (3) into a
differential equation for the corresponding anomalous dimension, which can be solved implicitly [7]. If we are only
interested in the leading log expansion the situation is even simpler. We only have to solve

M(u) = 1−
∫ u dx

1−M(x)
, M(0) = 1 ⇒ M(u) = 1−

√
1− 2u. (7)

Indeed, only inserting the one-loop correction for the Yukawa fermion propagator,

ΦR(Γ1) =
1

2
L (8)

into itself in all possible ways give graphs that contain leading log contributions.
In our paper, we introduce a convenient matrix notation. []-bracketed matrices with a dot in the upper left entry

denote the functions M in one variable, say z ∈ R. These functions occur in the log-expansions (Eq. (1)) setting

z → αΦR(Γ1) =
αL

2
= u. (9)

In Section IV, we explain the notation and derive ordinary first order differential equations for these objects. The
respective differential equations depend on the corresponding DSEs (in our case, Eq. (3)) and are solved for Yukawa
theory in Section IV. For the leading log order, we define

[
•
]
(u) = 1−

√
1− 2u (10)

with corresponding period p
[ • ]
0 = 1. The leading log expansion (j = 0 in Eq. (1)) finally yields

GR(XYuk)
∣
∣
l.l.

= p
[ • ]
0

[
•
]
(u). (11)

p
[ • ]
0 and [ • ](u) are also given in the first line of Table I.

Eq. (7) is obvious as Feynman rules in a momentum scheme map the Hochschild one-co-cycle BΓ1
+ to the Hochschild

one-co-cycle
∫ u

dx on polynomials in the variable u = αL/2 [8].
To get the next-to-leading log expansion, we consider two contributions: the insertion of the one-loop propagator

graph into itself gives a contribution u2/2+p
[•2 ]
1 u. The first term correspond to the leading log and the second term to

the next-to-leading log expansion. There is also a contribution p
[ • 1 ]
1 u from the next Hochschild one-co-cycle provided

by Γ2. The latter contribution occurs in Eq. (3) that have a single appearance of Γ2 (beside several Γ1). We can
therefore simplify to

XYuk = I− αBΓ1
+

(
X−1

Yuk

)
− α2BΓ2

+

(
X−3

Yuk

)
. (12)

This gives the next-to-leading log expansion (j = 1 in Eq. (1)),

GR(XYuk)
∣
∣
n.l.l.

= αp
[ • 1 ]
1

[
• 1

]
(u) + αp

[ •2 ]
1

[
•
2

]

(u). (13)

The functions [ • 1 ](u) and [ •2 ](u) as well as the corresponding periods are listed in lines (ii) and (iii) of Table I.
For the next-to-next-to-leading log expansion, there are several contributions, which we do not summarize here. In

Section IVF3, we derive

GR(XYuk)
∣
∣
n.n.l.l.

=α2p
[ • 0 1 ]
2

[
• 0 1

]
(u) + α2p

[ • 2 ]
2

[
• 2

]
(u) + α2p

[ •3 ]
2

[
•
3

]

(u) + α2p
[ • 0
1 1 ]

2

[
• 0
1 1

]

(u) + α2p

[

•
2
2

]

2





•
2
2



 (u)

+ α2p
[ • 1
2 0 ]

2

[
• 1
2 0

]

(u) + α2p
[ • ][a1,a2]

2

[
•
]

[a1,a2]
(u) + α2p

[ • ][a1,Θ(a1,a1)]

2

[
•
]

[a1,Θ(a1,a1)]
(u) (14)
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with generating functions and periods given in lines (iv)− (xi) of Table I.
Eqs. (11,13,14) and the respective periods (see the first column of Table I) are in general, valid for any DSE.

However, the generating functions (2nd and 3rd column of Table I) depend on the DSE.
For the QED photon self-energy, the corresponding DSE is given in Eq. (5). The respective generating functions

are listed in the third column of Table I and are much simpler. This is because there is no insertion point in the
Hochschild one-co-cycle BΓ1

+ in QED. It follows that the mentioned differential equations for generating functions
turn out to be ordinary equations. Note that in QED, we have u = 4/3αL instead of αL/2.
The usual perturbative approach to quantum field theory does not suffice in high-energy regimes, where αL ∼ 1.

There, it becomes significant to consider the log-expansion instead of perturbation theory.
Our results simplify the calculation of the log-expansion in Eq. (1) drastically. One usually needs to compute an

infinite number of Feynman integrals of any loop-number. Using our results, the complete next-to{j}-leading log
expansion only depends on at most (j + 1)-loop graphs. For example, the leading log order (Eq. (11)) only depends
on the Feynman graph Γ1. The next-to-leading log Green function in Eq. (13) only depends on the graphs Γ1, Γ2 and

BΓ1
+ (Γ1). The next-to-next-to-leading log expansion only depends on the Feynman graphs

Γ1, Γ2, BΓ1
+ (Γ1) , Γ3, BΓ1

+ (Γ2) , BΓ2
+ (Γ1) , BΓ1

+

(

BΓ1
+ (Γ1)

)

, BΓ1
+ (Γ1 ∪ Γ1) , (15)

see Eq. (14) and the periods in the first column of Table I.
In summary, we filter the images of Feynman graphs (as in Eq. (15)) in a suitable universal enveloping algebra that

we construct below. This decomposition then yields ordinary first order differential equations for generating functions
M. We solve for the functions M, which are the coefficients for the periods pMj obtained in these filtrations.
The methods presented here are valid in general. One can apply the described techniques to any DSE in any

quantum field theory. One could also compute the log-expansion for systems of DSEs. We expect that the generating
functions then become solutions in systems of ordinary first order differential equations. Here, we are content in
exhibiting our approach. A structural analysis of its mathematical underpinnings is left to future work.
We start with the introduction of necessary preliminaries.

II. PRELIMINARIES

A. Hopf algebra of Feynman graphs

Let H be the vector space of 1PI Feynman graphs and their disjoint unions in a given quantum field theory.
(H,m, I) forms an associative and unital algebra, where I denotes the empty graph and m is the disjoint union of
graphs, serving as a product.
This algebra is graded by the loop number (the first Betti number) as an infinite sum of finite dimensional vector

spaces

H = ⊕∞
j=0H(j), (16)

with H(0) = QI and augmentation ideal

AH = ⊕∞
j=1H(j). (17)

Note that Cartesian products Aj
H := A×j

H ⊂ H deliver a decreasing filtration Aj+1
H ( Aj

H .

The associated graded spaces grj(AH) = Aj
H/Aj+1

H contain < Γ >:= AH/A×2
H ≡ gr1(AH) as the linear span of

graphs in first degree. We set gr•(AH) = ⊕jgrj(AH).
H acquires a co-algebraic structure by introducing a co-product ∆ : H → H⊗H that acts on 1PI graphs Γ as

∆(Γ) = I⊗ Γ + Γ⊗ I+
∑

γ∈P(Γ)

γ ⊗ Γ/γ. (18)

P(Γ) is the set of all proper sub-graphs γ ( Γ such that γ is the disjoint union of divergent 1PI sub-graphs in Γ. The
action of ∆ on I and products of graphs is given by

∆I = I⊗ I, ∆ ◦m = (m⊗m) ◦ τ(2,3) ◦ (∆⊗∆), (19)

where τ(2,3) flips the second and third element of the fourfold tensor product. The co-product is co-associative

[3]. Together with a co-unit Î : H → K that assigns a non-zero value only for I and Î(I) = 1,
(

H,∆, Î
)

forms a

co-associative and co-unital co-algebra.
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γ1 = γ2 = γ1,a = γ1,b = γ1,c = γ1,D =

FIG. 1: Some QED Feynman graphs that are used within this paper

The given construction implies that (H,m,∆, I, Î) forms a bi-algebra as well.

Finally, (H,m,∆, I, Î, S) forms a Hopf algebra, abbreviated by H. S : H → H is the antipode that fulfills

m ◦ (S ⊗ id) ◦∆ = m ◦ (id⊗ S) ◦∆ = I ◦ Î. (20)

H is called the Hopf algebra of Feynman graphs. There have been various introductions to Hopf algebras and in
particular, to the Hopf algebra of Feynman graphs [5].
Graphs without sub-divergences form primitive elements. By Eq. (18), their reduced co-product,

∆̃(Γ) := ∆(Γ)− I⊗ Γ− Γ⊗ I (21)

vanishes.
For each such primitive element Γ ∈ H, ∆̃(Γ) = 0, we define a grafting operator BΓ

+ : H → H that linearly inserts
its argument graph(s) into Γ. For example,

Bγ1+ (γ1 ∪ γ1 ∪ γ1) = γ1,D, (22)

see Figure 1 for the QED Feynman graphs γ1 and γ1,D.
Furthermore, we have BΓ

+(I) := Γ. If the insertion is not unique, the result is a sum over all possibilities, for
example

Bγ1+ (γ1) =
1

3
(γ1,a + γ1,b + γ1,c) . (23)

The graphs γ1, γ1,a, γ1,b and γ1,c are defined in Figure 1.
The BΓ

+ are Hochschild one-co-cycles by definition [10, 11]

∆ ◦BΓ
+ (·) = BΓ

+ (·)⊗ I+
(
id⊗BΓ

+

)
◦∆(·) . (24)

They generate the co-radical filtration and the associated grading by sub-divergences. To define the co-radical
filtration, set GH−1 = ∅ and for j ≥ 0 set

GHj = ∆−1
(

H⊗H(0) +GHj−1 ⊗H
)

. (25)

This is an increasing filtration, GHj ( GHj+1, and we set gr•(H) = ⊕∞
j=0G

H
j /G

H
j−1, so the first degree elements are

given as

gr1(H) = GH1 /G
H
0 = {Γ ∈ AH |∆̃(Γ) = 0}. (26)

In this filtration,

2BΓ
+ ◦BΓ

+(I) ∼ m
(
BΓ

+(I) ⊗BΓ
+(I)

)
, (27)

so they are the same element in gr2(H) = GH2 /G
H
1 , an algebraic fact that by ΦR is the starting point for the existence

of the renormalization group [2, 8].
Hochschild closedness (Eq.(24)) will also be essential when we relate a general DSE and its solution to the Hopf

algebra of words in Section II C. This relation is reminiscent of the flag-decomposition [8] which appears when
analyzing renormalized amplitudes as a limiting mixed Hodge structure.
We now turn to the Hopf algebra of words, for which the decreasing and increasing filtrations gr• and gr• above

exist analogously.
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B. Hopf algebra of words

LetHW be the vector space of words andHL ⊂ HW be the sub-space of letters. We need to collect some properties of
HW . In the remainder of our paper, we abbreviate letters by a, b, c, a1, a2, . . . and words by u, v, w, w0, w1, w2, . . . [102].
Concatenation of letters creates words, e.g., ab and au form new words.
Let furthermore Θ : HL ×HL → HL be a commutative and associative map that assigns a new letter to any two

given letters. It is always assumed that HL is completed if necessary so that it contains all images of Θ.
Using this map, we can recursively define the shuffle product mW : HW ⊗HW → HW (also denoted by �Θ) as

mW (au⊗ bv) := au�Θ bv = a(u�Θ bv) + b(au�Θ v) + Θ(a, b)(u�Θ v), (28)

mW (u⊗ IW ) := u =: mW (IW ⊗ u), (29)

where on the rhs of Eq. (28) any word in brackets is concatenated from right to the respective letter. The so defined
shuffle product is commutative and associative [103] [12]. Thus, (HW ,mW = �Θ, IW ) forms an associative and unital
algebra.
HW acquires a co-algebraic structure by introducing the co-product ∆W : HW → HW ⊗ HW and the co-unit

ÎW : HW → K acting on words as

∆W (w) =
∑

vu=w

u⊗ v, ÎW (w) =

{

1, w = IW

0, else
. (30)

For example, the co-product of the word abc is

∆W (abc) = IW ⊗ abc+ c⊗ ab+ bc⊗ a+ abc⊗ IW . (31)

(
HW ,mW , IW ,∆W , ÎW

)
forms a bi-algebra as well.

Finally, (HW ,mW ,∆W , IW , ÎW , SW ) forms a Hopf algebra, called the Hopf algebra of words. The antipode SW :
HW → HW fulfills

mW ◦ (SW ⊗ id) ◦∆W = mW ◦ (id⊗ SW ) ◦∆W = IW ◦ ÎW . (32)

For more details on the Hopf algebra of words, the reader may consult the textbook of Reutenauer [12].
We finally introduce the grafting operators. The primitive elements of HW are all letters, since ∆W (a) = IW ⊗ a+

a⊗ I. We then define

Ba+(u) := au, (33)

which means that Ba+ concatenates the letter a from left to its argument word (or sum of words since Ba+ acts linearly).
The reader may check using Eqs. (30,33), that the Ba+ are indeed, Hochschild one-co-cycles,

∆W ◦Ba+ (u) = Ba+ (u)⊗ IW +
(
id⊗Ba+

)
◦∆W (u) . (34)

Note that gr1(AHW ) is the linear span of words that can not be written as a shuffle product, in analogy to the
definitions for H. Similarly, gr1(HW ) can be identified with the completed set of letters.

[102] Note that the symbol u is used twice in this paper: It denotes the word u ∈ HW and it abbreviates u = αL/2. In the following sections,
we only use u ∈ HW .

[103] In some references, this product is called quasi-shuffle product.
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C. Isomorphism between H and HW

We can now relate the Hopf algebra of Feynman graphs to the Hopf algebra of words. Indeed, there exists a unique
Hopf algebra morphism Υ : H → HW that fulfills

Υ (I) = IW , (35)

mW ◦ (Υ ⊗Υ) =Υ ◦m, (36)

ÎW ◦Υ =Υ ◦ Î, (37)

∆W ◦Υ =(Υ⊗Υ) ◦∆, (38)

SW ◦Υ =Υ ◦ S, (39)

Ban+ ◦Υ =Υ ◦BΓn
+ . (40)

It respects the Hopf algebraic structures. The existence of such a morphism is guaranteed by the fact that the grafting
operators are Hochschild one-co-cycles [13]. For example, Eqs. (35, 40) give

Υ (Γn) = Υ ◦BΓn
+ (I) = Ban+ ◦Υ(I) = Ban+ (IW ) = an (41)

(Υ assigns the letter an to the primitive Feynman graph Γn).
We give another example. Consider the last graph in Figure 1. With Θ (a1, a1, a1) := Θ (a1,Θ(a1, a1)), we find

Υ(γ1,D) =Υ ◦BΓ1
+ (Γ1 ∪ Γ1 ∪ Γ1)

=Ba1+ ◦Υ ◦m(Γ1 ⊗m (Γ1 ⊗ Γ1) )

=Ba1+ ◦mW ◦ (Υ(Γ1)⊗Υ ◦m (Γ1 ⊗ Γ1) )

=Ba1+ ◦mW ◦ (a1 ⊗mW (a1 ⊗ a1) )

=Ba1+ (a1 �Θ (a1 �Θ a1) )

=Ba1+ (a1 �Θ (2a1a1 +Θ(a1, a1)) )

=Ba1+ (6a1a1a1 + 3a1Θ(a1, a1) + 3Θ (a1, a1) a1 +Θ(a1, a1, a1) )

=6a1a1a1a1 + 3a1a1Θ(a1, a1) + 3a1Θ(a1, a1) a1 + a1Θ(a1, a1, a1) . (42)

The Hopf algebra morphism Υ allows us to translate any DSE to the Hopf algebra of words. In particular, applying
Υ to Eqs. (3,5) and using Eqs. (35-40) yields

WYuk :=Υ (XYuk) = IW −
∑

j≥1

αjB
aj
+

(

W
�Θ(1−2j)
Yuk

)

, (43)

WQED :=Υ(XQED) = IW −
∑

j≥1

αjB
aj
+

(

W
�Θ(1−j)
QED

)

. (44)

Here, we drop any further subscript on letters, hence aQED
j = aj and a

Yuk
j = aj .

We finally solve Eqs. (43, 44) via the Ansätze

WYuk = wYuk
0 −

∑

n≥1

αnwYuk
n , WQED = wQED

0 −
∑

n≥1

αnwQED
n (45)

and obtain

wYuk
0 =IW , wYuk

n = an +
n−1∑

j=1

n−j
∑

k=1

(
2j − 2 + k

k

)

B
aj
+





ti≥1
∑

t1+...+tk=n−j

wYuk
t1 �Θ . . .�Θ w

Yuk
tk



 , (46)

wQED
0 =IW , wQED

n = an +
n−1∑

j=2

n−j
∑

k=1

(
j − 2 + k

k

)

B
aj
+





ti≥1
∑

t1+...+tk=n−j

wQED
t1 �Θ . . .�Θ w

QED
tk



 . (47)

The first orders are wQED
1 = a1, w

QED
2 = a2 and wYuk

1 = a1, all others are recursively given. This Ansatz can also be
used for any other DSE [4].
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Renormalized Feynman rules linearly act on words as

ΨR = ΦR ◦Υ−1 (48)

and ΨR (αnwn) = αnΨR(wn) ∝ αn in the log-expansion (Eq. (1)). The remaining question is now: which part of W
maps to which power of the external scale parameter L in the log-expansion (Eq. (1))? We will answer this question in
the next section, in full accordance with the blow-ups needed for Feynman integrands from the viewpoint of algebraic
geometry [2, 8].

III. FILTRATIONS IN DYSON-SCHWINGER EQUATIONS

In the following, we filter the coefficients wn in the solution of any DSE (as occurring in Eq. (45)). Each filtered
term then maps to a certain power of L in the log-expansion (Eq. (1)).
We derive filtration rules for words (in general, wn is a sum of words) by considering their dual elements in the

universal enveloping algebra UL. We introduce UL as the dual Hopf algebra to HW in the next section. Section III B
states and proves the two most important properties of renormalized Feynman rules. This also explains how the
filtration of words works. In Section III C, we finally present a canonical filtration algorithm for arbitrary words and
prove that it is free of redundancies.

A. The dual Hopf algebra to HW

Let L be a vector space over a field K. Let furthermore [·, ·] : L ⊗ L → L be a bi-linear map that fulfills [x, x] = 0
as well as the Jacobi-identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (49)

∀x, y, z ∈ L. (L, [·, ·]) (or shortly L) is called a Lie algebra and the bi-linear map [·, ·] (called Lie bracket) is antisym-
metric.
L acquires a descending series of sub-algebras L = L1 D L2 D L3 D . . ., where Ln+1 is generated by all [x, y] with

x ∈ L and y ∈ Ln. In the following, we denote all basis elements of some Lie algebra L that are not in L2 by
x1, x2, x3, . . . and ask for a complete basis in terms of these xi. For example, is [x1, x2] or [x2, x1] = −[x1, x2] a basis
element of L? Both are linearly dependent.
We therefore consider the Hall basis [14], which exists for any Lie algebra. It requires a lexicographical ordering of

all elements in L, for example, let x1 < x2 < . . . < [x1, x2] < . . . (it does not matter which ordering we take as long
as we choose one). We then define [x, x′] to be a (Hall) basis element of L iff both,

1. x, x′ ∈ L are (Hall) basis elements with x < x′,

2. if x′ = [x′′, x′′′], then x ≥ x′′

are fulfilled. For example, [x1, x2], [x2, [x1, x3]] and [x3, [x1, x2]] are (Hall) basis elements while [x2, x1], [x1, [x2, x3]]
and [[x1, x2], x3] etc. are not.
The bracket in (L, [·, ·]) does not comprise an associative product. However, one can construct enveloping algebras,

i.e. an algebra (AL,mA, IA) such that there exists a homomorphism ρA : L → AL fulfilling

mA(ρA(x) ⊗ ρA(y))−mA(ρA(y)⊗ ρA(x)) = ρA( [x, y] ) (50)

∀x, y ∈ L.
There may be several enveloping algebras but we can always find a unique universal enveloping algebra

(U(L),mU , IU) up to isomorphism: for each enveloping algebra (AL,mA, IA) there exists a unique algebra homo-
morphism ρU→A such that the following diagram

L ρU //

ρA
!!❈

❈

❈

❈

❈

❈

❈

❈

U(L)
ρU→A

��

AL

(51)

commutes. U(L) is unique (assume that there are two universal enveloping algebras U1(L) and U2(L), then the
homomorphism ρU1→U2 turns out to be an isomorphism).
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Let us now construct the universal enveloping algebra for any Lie algebra L, which will prove its existence as well.
Consider the tensor algebra (T (L),⊗, 1), where

T (L) =
⊕

n≥0

L⊗n = K⊕ L⊕ (L ⊗ L)⊕ . . . (52)

We define the sub-space I ⊂ T (L) as

I := {s⊗ (x⊗ y − y ⊗ x− [x, y])⊗ t|x, y ∈ L; s, t ∈ T (L)} (53)

(I is a 2-sided ideal) and introduce equivalent classes of T (L),

[t] = {s ∈ T (L)|s− t ∈ I} . (54)

For example, [[x1, x2]] = {[x1, x2], x1⊗x2−x2⊗x1, . . .} and [x1⊗x2⊗x3] = {x1⊗x2⊗x3, [x1, x2]⊗x3+x2⊗x1⊗x3, . . .}
etc.
All such equivalent classes together form a vector space, denoted by T (L)/I. The sum of two elements [s], [t] ∈

T (L)/I is well defined as [s+ t]. We carefully abbreviate T (L)/I by U(L) and define an associative product

mU : U(L)⊗ U(L) → U(L) (55)

acting on equivalent classes as

mU([s]⊗ [t]) := [s⊗ t]. (56)

Thus, (U(L),mU , [1]) forms an algebra and together with the homomorphism ρU : L → U(L) defined as ρU (x) = [x]
∀x ∈ L, it is an enveloping algebra (Eq. (50) holds). Finally, U(L) is even the universal enveloping algebra of L, since
T (L) fulfills the universality property in Eq. (51) as well [15].
It turns out that the universal enveloping algebra of a Lie algebra acquires a Hopf algebra structure. Upon setting

∆U ([x]) = [x]⊗ I+ I⊗ [x] ∀x ∈ L, (57)

it is determined from compatibility with the product mU .
For the Hopf algebra of words HW , there exists a Lie algebra L such that U(L) is dual to HW (Milnor-Moore

theorem [15]).
The indicated Lie algebra is easily constructed. For each letter a1, a2, . . . ,Θ(a1.a2), . . . ∈ HL ⊂ HW , we name

one respective element x1, x2, . . . ,Θ(x1, x2), . . . ∈ L/L2. Note that L contains more elements than HL (For example,
there is no element [l1, l2] in HL, but [x1, x2] ∈ L). This will be crucial in the following.
Duality between HW and U(L) allows us to uniquely define a linear and invertable map η : HW → U(L) (see

Section III C 2), such that

η(ai) = [xi], η(Θ(ai, aj)) = [Θ(xi, xj)], η(aiaj) = [xi ⊗ xj ], . . . (58)

∀i, j ∈ N. In general, concatenation of words is the dual operation of multiplication in U(L).

B. Renormalized Feynman rules: how the filtration of words works

We now give two crucial properties of renormalized Feynman rules, which we need for our filtration method. The
proofs are collected below.

1. Let u ∈ HW and [x] ∈ U(L) be its dual element (η(u) = [x]). If x ∈ T (L) is also an element of L ⊂ T (L), then
renormalized Feynman rules map u to the L-linear part of the log-expansion in Eq. (1),

ΨR(u) ∝ L. (59)

2. Renormalized Feynman rules are character-like,

ΨR(u�Θ v) = ΨR(u) ·ΨR(v) (60)

∀u, v ∈ HW , where the dot on the rhs of Eq. (60) represents usual multiplication. Furthermore, ΨR(a)/L is a
period ∀a ∈ HL.
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Let us consider some examples before we turn to the proofs (in the following, i, j ∈ N). Each letter a ∈ HL has
a dual element η(a) = [x] ∈ U(L) such that x ∈ L (by construction of the dual elements, see Eq. (58)). Thus,
ΨR(ai) ∝ L and ΨR(Θ(·, ·)) ∝ L. More interesting is the dual element of aiaj − ajai ∈ HW . It is

η(aiaj − ajai) = η(aiaj)− η(ajai) = [xi ⊗ xj ]− [xj ⊗ xi] = [[xi, xj ]] (61)

and [xi, xj ] ∈ L. Thus, ΨR(aiaj − ajai)) ∝ L1 although ΨR(aiaj) also contains terms ∝ L2 [1].
Finally, we filter the word aiaj to

aiaj =
1

2
ai �Θ aj +

1

2
[ai, aj]−

1

2
Θ(ai, aj). (62)

Here, we abbreviated aiaj − ajai by the concatenation commutator [ai, aj ] discussed in Section (III C 2). We treat
concatenation (multi-)commutators of letters as a letter itself, since the respective dual Hopf algebra element is
primitive.
Note the information content of our filtration. The first term of Eq. (62) maps to L2 under renormalized Feynman

rules and Eq. (60) tells us how to determine this L2-term simply by calculating ΨR(ai) and ΨR(aj). The other two
terms of Eq. (62) map to L.
The possibility to calculate the L2-term in Eq. (62) out of the renormalized Feynman amplitudes for ai and aj

(Eq.(60)) finally leads to the desired relations between next-to{j}-leading log orders and terms up to O(αj+1) in the
log-expansion (Eq. (1)). We explore this in great detail in Section IV.
However, we first give the proofs for the necessary properties of Feynman rules stated above in light in particular

of the duality of HW and U(L). Terms linear in L can be interpreted in ρU (L) ⊂ U(L), and higher powers in L reflect
terms in the quotient algebra U(L).

1. Proof of Claim 1

As we stated before, renormalized Feynman rules map an element u that is dual to a Lie algebra element as above
to the L-linear part of the log-expansion in Eq. (1),

ΨR(u) ∝ L, (63)

see Eq. (59).
This is a direct consequence of the renormalization group action on a single graph. In fact, let Γ be a Hopf algebra

element of fixed co-radical degree rΓ, Γ ∈ grrΓ(G). Then, it allows for an expansion

ΦR(Γ) =

rΓ∑

j=1

cΓj (θ)L
j . (64)

By the renormalization group

cΓj = c⊗j1 ∆̃j−1(Γ), (65)

where c1 is the function c1 : Γ → cΓ1 . Here, we identified the tensor-product of values with their product (C⊗CC ≃ C):

c⊗j1 : H⊗ · · · ⊗ H
︸ ︷︷ ︸

j times

→ C. (66)

Note that c⊗j1 is a symmetric function by construction.
This leads to a strict inequality on the co-radical degrees

r[Γ1,Γ2] < rΓ1 + rΓ2 , (67)

which implies the result, Eq. (59).
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2. Proof of Claim 2

We also have that renormalized Feynman rules are character-like, (Eq. (60)),

ΨR(u�Θ v) = ΨR(u) ·ΨR(v) (68)

∀u, v ∈ HW . This is a direct consequence of Chen’s Lemma [2, 9] in this context.
To show that ΨR(a)/L is a period ∀a ∈ HL is non-trivial only for letters in the image of Θ. Therefore, it suffices

to consider Feynman graphs (with fixed labels on their edges) that are nested insertions of primitive graphs into each
other: a Hopf algebra element Γ is a flag if there exists a sequence of primitive graphs γi, 1 ≤ i ≤ rΓ, with

∆̃rΓ−1(Γ) = γ1 ⊗ · · · ⊗ γrΓ . (69)

Similarly, we say that a sum G of rΓ flags Gi,

G =
∑

i

qiGi, qi ∈ Q, (70)

is a symmetrized flag if there exists a sequence of primitive graphs γi, 1 ≤ i ≤ rΓ, with

∆̃rΓ−1(G) =
∑

σ

γσ(1) ⊗ · · · ⊗ γσ(rΓ). (71)

The
∑

σ-sum is over rΓ! unsigned permutations. Instead of having the full permutation group acting, one could also
make do with permutations so as to make the rhs co-commutative, if so desired.
For a given flag Γ, and hence given sequence of primitive graphs γi, 1 ≤ i ≤ rΓ, let nΓ be the cardinality of the set

XΓ := {Γ a flag|∆̃rΓ−1(Γ) = γ1 ⊗ · · · ⊗ γrΓ}, (72)

so nΓ = |XΓ|.
A symmetrized flag is complete if qi = 1/nGi in Eq.(70).
Finally, renormalized Feynman rules are a forest sum [2] in graph polynomials ψ, φ (see [2] for notation):

ΦR(Γ) =

∫
∑

f∈FΓ

(−1)|f |
log

φΓ/fψf+φ
0
fψΓ/f

φ0
Γ/f

ψf+φ0
fψΓ/f

ψ2
Γ/fψ

2
f

. (73)

Here, φ∅ = 0, ψ∅ = 1.
The coefficient Φ1

R of the L-linear term is

Φ1
R(Γ) =

∫
∑

f∈FΓ

(−1)|f |
1

ψ2
Γ/fψ

2
f

φΓ/fψf

φΓ/fψf + φfψΓ/f
, (74)

if the renormalization point preserves scattering angles.
We then have the following result on the angle-independence of symmetrized flags: for any symmetrized flag G,

Φ1
R(G) :=

∑

i

qiΦ
1
R(Γi) =

∑

i

qi

∫
∑

f∈FΓi

(−1)|f |
1

ψ2
Γi/f

ψ2
f

. (75)

This justifies that Υ−1(Θ(·, ·)) is primitive in the Hopf algebra of Feynman graphs: to any set S of letters, we can
assign a unique complete symmetrized flag GS of Feynman graphs corresponding to the letters in S. We set Θ(S)
such that

ΨR(Θ(S)) = −Φ1
R(GS). (76)

¿From Eq. (75) follows that Θ(S) can indeed be regarded as a new letter in HW because it is independent of scattering
angles by construction.
We now prove Eq. (75): it follows immediately from writing Eq.(74) as elementary symmetric polynomials in the

variables φx, ψx, with x ranging over all necessary forests and co-forests, which is possible precisely for symmetrized
flags. Indeed, the denominator in Eq.(74)

φΓ/fψf + φfψΓ/f (77)
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is symmetric under exchange of φ ↔ ψ, while in symmetrized flags, we also have co-commutativity which ensures
symmetry under Γ/f ↔ f . Hence, in the sum for symmetrized flags, the factor

φΓ/fψf

φΓ/fψf + φfψΓ/f
(78)

in Eq.(74) turns to unity. This proves Eq.(75).
Let us consider an example: Have a look at the first two graphs in Figure 1. The graph γ1 has three vertices, the

graph γ2 has five.
Accordingly, there are three graphs γ1,i, 1 ≤ i ≤ 3, obtained by replacing a vertex of γ1 by γ2, and five graphs γ2,i,

1 ≤ i ≤ 5, obtained by replacing a vertex of γ2 by γ1.
We have the reduced co-products

∆̃γ1,i = γ2 ⊗ γ1, ∀1 ≤ i ≤ 3, ∆̃γ2,i = γ1 ⊗ γ2, ∀1 ≤ i ≤ 5. (79)

Set

X =
1

3

(
3∑

i=1

γ1,i

)

+
1

5

(
5∑

i=1

γ2,i

)

. (80)

We have ∆̃(X) = γ1 ⊗ γ2 + γ2 ⊗ γ1, so X is a symmetrized flag, and it is complete. Then,

ΦR(X) =
1

3

(
3∑

i=1

ΦR(γ1,i)

)

+
1

5

(
5∑

i=1

ΦR(γ2,i)

)

. (81)

Using Eq.(74) and the reduced co-products above, we indeed find that the second Symanzik polynomial appearing in
Eq.(74) drops out in this co-commutative sum of symmetrized graph insertions

Φ1
R(X) =

∫
(

1

3

(
3∑

i=1

1

ψ2(γ1,i)

)

+
1

5

(
5∑

i=1

1

ψ2(γ2,i)

)

− 1

ψ2(γ1)ψ2(γ2)

)

, (82)

which is an example of the above result (see also [1]).

C. Filtration algorithm

1. Presentation of the filtration algorithm

It is not difficult to filter w1 and w2 in the solution of any DSE (as occurring in Eq. (45)). However, to filter higher
order coefficients (wn for n > 2) requires a canonical algorithm that we give here.
Consider for example wYuk

n for n = 1, 2, 3 (see Eq. (46)),

wYuk
1 = a1, (83)

wYuk
2 = a2 + a1a1 =

1

2
a1 �Θ a1 −

1

2
Θ(a1, a1) + a2, (84)

wYuk
3 = a3 + 3a2a1 + a1a2 + 3a1a1a1 + a1Θ(a1, a1). (85)

We already filtered wYuk
1 and wYuk

2 without much effort but it is not obvious to see the filtration for wYuk
3 . The

required filtration algorithm is the following loop over the length k of occurring words:

1. Bring all words with length k into lexicographical order using the concatenation commutator (respect the Hall
basis). This introduces words with length (k−1), as we treat concatenation (multi-)commutators as own letters.

2. Repeat step 1. for the full shuffle products of the k corresponding letters and insert them into the expression.
All words with length k drop out, the introduced full shuffle products remain untouched in the remainder.
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We start with the maximal length of occurring words down to k = 2. Hence, in the case of wn, we perform the above
loop for k = n, . . . , 2.
Let us illustrate this for wYuk

3 . The only word with length k = 3 in Eq. (85) is a1a1a1 and it is already given in
lexicographical order. We calculate the corresponding full shuffle product

a1 �Θ a1 �Θ a1 = 6a1a1a1 + 3a1Θ(a1, a1) + 3Θ(a1, a1)a1 +Θ(a1, a1, a1) (86)

and insert it into wYuk
3 such that the word a1a1a1 drops out. Hence,

wYuk
3 = a3 −

3

2
Θ(a1, a1)a1 −

1

2
a1Θ(a1, a1) + 3a2a1 + a1a2 −

1

2
Θ(a1, a1, a1) +

1

2
a1 �Θ a1 �Θ a1 (87)

and we proceed with k = 2. The term a1 �Θ a1�Θ a1 remains untouched during the rest of the filtration.
The words a2a1 and Θ(a1, a1)a1 are not in lexicographical order, we write

wYuk
3 = a3 +

3

2
[a1,Θ(a1, a1)]− 2a1Θ(a1, a1)− 3[a1, a2] + 4a1a2 −

1

2
Θ(a1, a1, a1) +

1

2
a1 �Θ a1 �Θ a1, (88)

where we only introduced Hall basis elements ([a1, a2] instead of [a2, a1] etc.). The respective shuffle products are

a1 �Θ a2 =2a1a2 − [a1, a2] + Θ(a1, a2), (89)

a1 �Θ Θ(a1, a1) =2a1Θ(a1, a1)− [a1,Θ(a1, a1)] + Θ(a1, a1, a1) (90)

(they are already brought into lexicographical order using the concatenation commutator). Inserting Eqs. (89, 90)
into Eq. (88) finally results in

wYuk
3 =

1

2
a1�Θ a1�Θ a1 + 2a1�Θ a2 − a1 �Θ Θ(a1, a1) + a3 +

1

2
[a1,Θ(a1, a1)]− [a1, a2] +

1

2
Θ(a1, a1, a1)

− 2Θ(a1, a2). (91)

The explicit filtration algorithm is the basis for Section IV. There, we derive the relations for next-to{j}-leading
log terms in the log expansion (Eq. (1)). However, we first give some basics to Hall words and concatenation (multi-)
commutator letters. This explains, why the filtration algorithm described above is redundancy-free.

2. Hall words and concatenation (multi-)commutators

In the Hopf algebra of Feynman graphs H, any Γ ∈ H evaluates to ΦR(Γ) =
∑rΓ

j=1 c
Γ
j L

j . Here, Γ ∈ grrΓ(H) and

the cΓj are given through Eq.(65). In particular, this amounts for j = rΓ to an evaluation of products of primitive
elements.
Through Υ, we inherit the same properties for words [8]: any u ∈ HW evaluates to ΨR(u) =

∑ru
j=1 d

u
jL

j, where

u ∈ grru(HW ) and

duj = c
Υ−1(u)
j . (92)

In particular, this amounts for j = ru to an evaluation of products of letters. Note that Υ preserves the co-radical
degree.
The above filtration algorithm answers the question how to obtain non-leading logs, j < ru, from the letters

that constitute u. For this, we first have to consider the lower central series filtration gr•(L) of the Lie algebra
L, grk(L) = Lk/Lk+1 and its associated grading. Secondly, we have to consider the filtrations and gradings of the
universal enveloping algebra: gr•(UL) by its augmentation and gr•(UL) by its co-radical.
We will use that grk(UL) is isomorphic to the k-fold symmetric tensor-power of L by the Poincaré–Birkoff–Witt

theorem:

grk(UL) ∼ Sym
(
ρU (L)⊗k

)
. (93)

Let η : HW → UL as before. We have the commutative diagrams

HW ⊗HW
�Θ //

η⊗η

��

HW

η

��

UL ⊗ UL
mU // UL

HW ⊗HW

η⊗η

��

HW
∆
oo

η

��

UL ⊗ UL UL
∆U

oo

(94)
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and two more, by replacing η → η−1 and downward pointing arrows by upward pointing ones. These determine the
action of η once we have defined it on letters a ∈ HL (η(ai) = [xi], η(Θ(ai, aj)) = [Θ(xi, xj)] . . .). For example, the
degree two image η(aa) of the word aa with respect to gr•(UL) is

1
2 [x⊗ x], with η(a) = [x].

We define Feynman rules for elements [s] ∈ UL by

ΨηR : [s] → ΨR(η
−1([s])). (95)

In particular for homogeneous elements [s] ∈ grj(UL) we have ΨηR([s]) ∼ Lj , by construction.
The structure of renormalized Feynman rules then allows us to regain the above filtration algorithm on words w as

w → ΘU





|w|
∑

j=1

Pj

(

η⊗|w|∆̃|w|−1(w)
)



 . (96)

Here, Pj is the projection into the grade j piece, Pj(η(w)) ∈ grj(UL), ∀η(w) ∈ UL. ΘU is the map [x1 ⊗ . . .⊗ xj ] →
η ◦Θ(η−1([x1]), . . . , η

−1([xj ])), where the η−1([xi]) ∈ HL are letters by construction (xi ∈ L).
The lower central series filtration grk(L) = Lk/Lk+1 filters in particular gr1(UL) ∼ L. Thus, using the Hall basis

of UL and the invertibility of η finally allows us to write the filtration algorithm in the word algebra HW with
concatenation multi-commutators.
Indeed, the rhs of Eq.(96) is of degree one by construction as it is in the image of ΘU . This suffices, as the degree-j

piece is a product of the corresponding j degree-one pieces obtained in ∆̃j−1(w).
Let us consider an example. Words on three letters a1, a2, a3 have a Hall basis, which for their degree one part can

be written in

{y1 := Θ(a1, a2, a3), y2 := Θ(a1, [a2, a3]), y3 := Θ(a2, [a1, a3]), y4 := Θ(a3, [a1, a2]),

y5 := [a2, [a1, a3]], y6 := [a3, [a1, a2]]}. (97)

In degree one this is the inverse image η−1 of the elements

{x1x2x3, x1[x2, x3], x2[x1, x3], x3[x1, x2], [x2, [x1, x3]], [x3, [x1, x2]]} (98)

in UL written in Hall basis notation (ordered and omitting the symmetric tensor product). These form a standard
Hall basis on three ‘letters’ x1, x2, x3 dual to a1, a2, a3 in UL.
There are six words on three distinct letters a1, a2, a3. For their degree one part, these can be written in the basis

above:

a1a2a3 =(y1 + 3y2 + 3y3 + 3y4 + 2y5 + 4y6)/6, (99)

a1a3a2 =(y1 − 3y2 + 3y3 + 3y4 + 2y5 + 4y6)/6, (100)

a2a1a3 =(y1 + 3y2 + 3y3 − 3y4 − 4y5 − 2y6)/6, (101)

a2a3a1 =(y1 + 3y2 − 3y3 − 3y4 − 4y5 − 2y6)/6, (102)

a3a1a2 =(y1 − 3y2 − 3y3 + 3y4 + 2y5 − 2y6)/6, (103)

a3a2a1 =(y1 − 3y2 − 3y3 − 3y4 + 2y5 − 2y6)/6. (104)

Inverting these equations expresses the degree one elements yi through the six words on the left. These correspond to

linear combinations of Feynman graphs BΓi
+ ◦BΓj

+ ◦BΓk
+ (I), i, j, k ∈ {1, 2, 3} which map under Υ to the corresponding

words. For example,

y2 ≡ Θ(a1, [a2, a3]) = η−1P1η(a1a2a3 − a1a3a2 + a2a3a1 − a3a2a1), (105)

with

ΨR(y2) = Ψ1
R(a1a2a3 − a1a3a2 + a2a3a1 − a3a2a1). (106)

Furthermore P3(a1a2a3 − a1a3a2 + a2a3a1 − a3a2a1) = 0 so there is no term ∼ L3, whilst the term in L2 is

Ψ1
R(a1)Ψ

1
R([a2, a3])−

1

2

(
Ψ1
R(a2)Ψ

1
R([a1, a3]) + Ψ1

R(a3)Ψ
1
R([a2, a1])

)
. (107)
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This gives us a definition in terms of Feynman diagrams for

Υ−1(y2) =
(

BΓ1
+ BΓ2

+ BΓ3
+ (I)−BΓ1

+ BΓ3
+ BΓ2

+ (I) +BΓ2
+ BΓ3

+ BΓ1
+ (I)−BΓ3

+ BΓ2
+ BΓ1

+ (I)
)

−BΓ1
+ (I)

(

BΓ2
+ BΓ3

+ (I)−BΓ3
+ BΓ2

+ (I)
)

+
1

2

(

BΓ2
+ (I)

(

BΓ1
+ BΓ3

+ (I)−BΓ3
+ BΓ1

+ (I)
)

+BΓ3
+ (I)

(

BΓ2
+ BΓ1

+ (I)−BΓ1
+ BΓ2

+ (I)
))

, (108)

which defines a L-linear term.
Let us now describe the standard Hall basis for a set of words on n distinct letters in general. The case of repeated

letters follows easily. There are n! words we can form. First, we count with the help of the Möbius function µ the
number of available concatenation multi-commutators Cn.

Cn =

n∑

j=2

(
n

j

)

(−1)n−jCjn = (n− 1)!, (109)

with Cjn = 1
n

∑

d|n µ(d)j
n/d the well-known number of multi-commutators of degree n on an alphabet of size j.

Let P(n) be the set of partitions p of the integer n with the following properties:

n = p1 + · · ·+ pk, pi ≤ pi+1, pi ≥ 2, i ≥ 2. (110)

We allow for at most one such pi to be marked, which we indicate as ṗi. Furthermore, if p1 = 1, p1 must be marked.
If p contains such a distinguished marked ṗi, we say p is marked at i, else it is unmarked.
The marking reflects the fact that gr1(L) = L/[L,L] is distinguished amongst all grj(L).
We say that a partition q of a set An of n letters is compatible with the partition p of the integer n, if it is a

disjoint union of sets Api of pi letters according to p. Letters in Aṗi are completely symmetrized, while all other sit
in multi-commutators of degree pj .
Assume p ∈ P(n) is unmarked. Then we assign a set of letters

Xq = {ΘU(l1, · · · , lk)} (111)

on k multi-commutators li ∈ Cpi on letters pi ∈ Api to it.
If p is marked at i, we assign a set of letters

Xq = {ΘU(l1, · · · , lk, a1, · · · , api), aj ∈ Aṗi}. (112)

Then, summing over all partitions p and all partitions of letters q compatible with it, we get n! different words which
form a base for the degree one elements of UL.
If a partition p contains an unmarked integer pi say ri times, the symmetry factor S(p) of p is S(p) :=

∏

i ri!. Then,
we indeed count

n! =
∑

p

(
n

p1 · · · pk

)
1

S(p)

k∏

i=1

Ni, (113)

where Ni = Cpi if p is not marked at i, and Ni = 1 if it is marked at i.
We complete this section by giving a final example. For four distinct letters, we can have the partition p = 4 + 0

with p unmarked. So it will provide six elements in C4. For the partition p = 1̇ + 3 we have 4 = 4!
3! possibilities

to choose three letters for C3 which itself has two elements, whilst the fourth letter belongs to 1̇. For the partition
p = 2̇+2 we have 6 = 4!

2!2! possibilities to choose two letters for a one-element C2 while the other two letters constitute

2̇. For p = 2 + 2 we get a non-trivial symmetry factor and have 3 = 4!
2!2!

1
2! possibilities to form the product C2 × C2.

Finally, we have the partition 4̇. This gives a single element - the symmetric sum over all permutations of four letters.
Counting, we get

24 = 1× 6 + 4× 2 + 6× 1 + 3× 1× 1 + 1. (114)

All such words are independent by construction and using Eq.(109) repeatedly there are n! of them. They hence form
a base.
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IV. RELATIONS FOR THE LOG EXPANSION

We now present the main result of our work: how to write the next-to{j}-leading log order as a function of terms up
to O(αj+1) in the log-expansion (Eq. (1))? We first introduce a convenient notation for multiplicities of full shuffle
products in a filtered word. Secondly, we derive generating functions for these multiplicities using the example of the
Yukawa propagator. We derive the generating functions for the QED photon self-energy in Appendix A.

A. Notation

We represent the multiplicity of shuffle products in a filtered word by []-bracketed matrices m, for example

wYuk
2 = m1a1 �Θ a1 +m2Θ(a1, a1) +m3a2. (115)

Each matrix denotes a number, in our case m1 = −m2 = 1/2, m3 = 1 (see Eq. (84)). In the following we say that a
matrix m belongs to a shuffle product S, when it gives the multiplicity of S in a filtered word. We also say that S is
the respective shuffle product to m.
Each matrix m with corresponding shuffle product S is built as follows: the first row contains the numbers of letters

a1, a2,. . . in S. The other rows represent one letter Θ(. . .) in S each, s.t. . . . contains mij letters aj for the i-th row.
For example, the filtered word w14 contains the term,

w14 =





4 1 0
2 0 1
1 1 0



 a�Θ4
1 �Θ a2 �Θ Θ(a1, a1, a3)�Θ Θ(a1, a2) + . . . (116)

We index matrices m if the respective shuffle S contains (multi-)commutator letters [·, ·] by the commutator letters
themselves. For example, the filtered word w6 contains the term

w6 =

[
1
2

]

[a1,a2]

a1 �Θ Θ(a1, a1)�Θ [a1, a2] + . . . (117)

We treat indexed matrices separately in Section IVE. First though, we only treat index-free matrices and hence, full
shuffle products without (multi-)commutator letters.
Now, consider an unfiltered word wn that is recursively defined via a DSE. In our case of the Yukawa propagator,

this is Eq. (46). A matrix with {} brackets represents the number of words in wn that consists of a given set of letters.
The matrix entries encode the particular set of letters in full analogy to the case of [] brackets above. For example,







4 1 0
2 0 1
1 1 0






(118)

represents the number of words with four letters a1, one a2, one Θ(a1, a1, a3) and one Θ(a1, a2) in the unfiltered word
wn. As another example, wYuk

3 contains the terms 3a2a1 and a1a2 (see Eq. (85)), hence { 1 1 } = 3 + 1 = 4.
We always represent a []-bracketed matrix by a lower case letter and the same matrix with {} brackets by the

corresponding capital letter (m →M).
The defined matrices can have any sizes. Filling zeros does not change the multiplicity of the corresponding shuffle

product.
We call a row ‘Θ-row’ when it is not the first row of a matrix. We consider two matrices with two Θ-rows

interchanged to be the same object, since they represent the same number (�Θ is symmetric). For example




1 1
2 0
1 1



 ≡





1 1
1 1
2 0



 . (119)

Let two matrices m1, m2 with corresponding shuffle products S1 and S2 be given. We define the matrix m1 ⊕m2

such that it belongs to the shuffle product S1 �Θ S2. This defines a special summation of matrices, denoted by ⊕.
This is realized as follows: ⊕ adds up each first row as in ordinary matrix summation and writes the Θ-rows one
below the other. We can even add matrices with different sizes by filling zeros. For example,





4 1 0
2 0 1
1 1 0



 =

[
2 1
1 1

]

⊕
[
0 0 0
2 0 1

]

⊕
[
2
]
. (120)
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We define matrices

pj =
[
δ1j δ2j δ3j . . .

]
, (121)

as well as the useful vectors

u =
(
1 1 1 . . .

)
, v =

(
1 2 3 . . .

)
, w =

(
1 0 0 . . .

)
(122)

with appropriate sizes. We use these vectors to notate some properties of matrices. We calculate products of matrices
and vectors by ordinary matrix multiplication and not by replacing the matrix by the corresponding number. For
example, a matrix m that occurs in the filtered word wn of a DSE fulfills umvT = n. Let nΘ(m) be the number of
nonzero Θ-rows. Then, we define

|m| := wmuT + nΘ(m), (123)

which is the number of letters in the respective shuffle product.
Note that once, a matrix representing a number is contracted with a vector, the result is regarded as a real vector,

um1 + um2 = u(m1 ⊕m2). (124)

We introduce a function S acting on two matrices, say m1 and m2 with respective shuffle products S1 and S2.
S(m1,m2) counts the number of combinatorial possibilities to work out some shuffle products in S2 such that the
resulting expression contains one term S1. For example,

S
([

0 0
1 1

]

,
[
1 1

]
)

= 1, S
([

3 0
1 1

]

,
[
4 1

]
)

=

(
4
1

)

= 4, S











2 0 1
2 0 0
1 1 0
2 0 1




 ,

[
5 1 1
2 0 1

]




 =

(
5
1

)

·
(
4
2

)

= 30. (125)

We comment on the second example: the corresponding shuffle product of [ 4 1 ] is a�Θ 4
1 �Θ a2 and there are 4

possibilities to work out one of the shuffle products to derive

a�Θ 4
1 �Θ a2 = a�Θ 3

1 �Θ a1a2 + a�Θ 3
1 �Θ a2a1 + a�Θ 3

1 �Θ Θ(a1, a2). (126)

The last term on the rhs is the respective shuffle product of [ 3 0
1 1 ].

We relate {}-bracketed matrices to []-bracketed matrices. Consider for example m = [ 1 1 1 ] and the respective
shuffle product S = a1�Θ a2�Θ a3. Computing S gives 3! words that consists of the letters a1, a2 and a3. Ordering
these words using the filtration algorithm,

a2a1 → a1a2 − [a1, a2] (127)

does not change the overall number of words with letters a1, a2 and a3. It only introduces new words with commutator
letters. We have thus,

{
1 1 1

}
= 3!

[
1 1 1

]
. (128)

In general,

M =
∑

m′

|m|!S(m,m′)m′, (129)

where the sum is over all possible matrices m′. If m has only one row, S(m,m′) = 1 if m′ = m and S(m,m′) = 0
otherwise. Eq. (129) then readsM = |m|!m, as in Eq. (128). Ifm consists of more than one row, the reader may verify
that indeed, Eq. (129) is the correct generalization. Note that Eq. (129) only holds for index-free matrices. Indeed,
the number of words that consist of a certain (commutator-free) set of letters does not change when introducing
concatenation commutators during the filtration algorithm.
We introduce generating functions for the multiplicities (matrices) m. Let M be a matrix with integer entries

except for the upper left entry, which is just a dot. A matrix m is said to be equivalent to M, m ∼ M, if replacing
the upper left entry to a dot yields M. We define

M = M(z) =

m 6=[ 0 ]
∑

m∼M

mz|m|. (130)
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M(z) is a function in z, represented by a matrix. It generates all m ∼ M,

m =
1

|m|!

(
d

dz

)|m|

M(z)
∣
∣
∣
z=0

. (131)

Examples of generating functions are

[
•
]
=

∞∑

N=1

[
N
]
zN ,

[
• 1
1 1

]

=

∞∑

N=0

[
N 1
1 1

]

zN+2,





• 2 0
2 0 0
1 0 1



 =

∞∑

N=0





N 2 0
2 0 0
1 0 1



 zN+4. (132)

We translate two properties of matrices m to generating functions M. First, we sum generating functions M in
the same special way as matrices m. The dot remains untouched, for example

[
• 1
1 1

]

⊕
[
• 0 0
2 0 1

]

⊕
[
•
]
=





• 1 0
2 0 1
1 1 0



 . (133)

Secondly, let m̃ ∼ M with m̃11 = 0. We define |M| := |m̃|. Summation and absolute value of generating functions
will be useful in Section IVC.

B. Derivation of the master differential equation

We find another relation between a {}-bracketed matrixM and []-bracketed matrices by use of the recursive equation
Eq. (46). Let the lhs of Eq. (46) be an unfiltered word wn and let the words wti on the rhs be filtered words. Let
M be the number of words consisting of a certain set of letters on the lhs, a {}-bracketed matrix hence. On the rhs,
only terms that constitute these words are taken into account. Note that we have uMvT = umvT = n.
The recursive relation for M is

M = δ|m|1δnΘ(m)0 +

umv
T−1∑

j=1

(
1− δm1j 0

)
umv

T−j
∑

k=1

(
2j − 2 + k

k

) (∗)
∑

(|m| − 1)!S
(

m⊖ pj ,
⊕

i

mi

)

m1m2 . . .mk, (134)

where m is still, the same matrix as M but with [] brackets. (∗) sums integers ti as in Eq. (46) and matrices mi such
that

(∗) : ti ≥ 1, i = 1 . . . k,
k∑

i=1

ti = umvT − j, umiv
T = ti, upj +

∑

i

umi = um. (135)

We explain the different terms in Eq. (134) individually. First, δ|m|1δnΘ(m)0 corresponds to the an term in Eq. (46).
The integers j and k range over the same numbers as in Eq. (46). The term (1 − δm1j0) gives 1(0) if the respective

words to M do (not) contain the letter aj . Only if they do contain aj , they may arise from the term B
aj
+ (. . .) in

Eq. (46). Since we introduce filtered words wti into the rhs in Eq. (46), we obtain expressions B
aj
+ (S), where S is

a full shuffle product. S is built out of k shuffles, namely terms in wt1 , wt2 , . . ., wtk . We therefore claim that S
is the respective shuffle product to

⊕

i=1...kmi. Each matrix mi belongs to a full shuffle product in wti . Condition
(∗) in Eq. (135) consists of two parts. The first three relations correspond to the third sum in Eq. (46). The fourth
equation together with the factor S(·, ·) in Eq. (134) ensure that the letters in S together with the letter aj (matrix
pj) constitute the set of letters in M . S consists of (|m| − 1) letters, which gives rise to the factor of (|m| − 1)! in
Eq. (134).
We now derive an inhomogeneous linear differential equation for the corresponding generating function to m, i.e.

M(z) (see Eq. (130)). Therefore, inserting Eq. (129) into Eq. (134) yields

|m|m =−
∑

m′ 6=m

|m|S(m,m′)m′ + δ|m|1δnΘ(m)0

+
umv

T−1∑

j=1

(
1− δm1j 0

)
umv

T−j
∑

k=1

(
2j − 2 + k

k

) (∗)
∑

S
(

m⊖ pj ,
⊕

i

mi

)

m1m2 . . .mk. (136)
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The final step is to multiply with z|m|−1 and to sum over all matrices that are equivalent to m. This gives the master
differential equation. Indeed, on the lhs we obtain M(z)′,

M(z)′ =
∑

m∼M



−
∑

m′ 6=m

d

dz
z|m|−|m′|S(m,m′)m′z|m

′| + δ|m|1δnΘ(m)0 +

umv
T−1∑

j=1

umv
T−j

∑

k=1

(
2j − 2 + k

k

)

×
(∗)
∑

z|m|−1−
∑

i |mi|S
(

m⊖ pj,
⊕

i

mi

)

m1z
|m1|m2z

|m2| . . .mkz
|mk| ×

{

1, j = 1

(1− δm1j 0), else



 . (137)

See Eq. (135) for the summation (∗) of integers ti and matrices mi. From Eq. (130), we read off the initial condition

M(0) = 0. (138)

Let us consider a first example: for M(z) = [ • ], the first term in Eq. (137) vanishes. The last term only gives a
non-zero value for j = 1. ∀i ≤ k, mi = [ ti ]. The S function gives 1 for

⊕

imi ⊕ pj = m and 0 otherwise. Together
with the initial condition in Eq. (138), we find

[
•
]′
= 1 +

∑

k≥1

[
•
]k

=
1

1−
[
•
] ⇒

[
•
]
= 1−

√
1− 2z. (139)

We can now derive the homogeneous part of the differential master equation Eq. (137). On the rhs, the only terms
including the function M(z) itself occur in the sum for j = 1, when (k − 1) of the matrices mi are equivalent to [ • ]
and the k-th matrix is equivalent to m. Using Eq. (139), we obtain

M(z)′|hom. =
∑

k≥1

k
[
•
]k−1 M(z) =

1

1− 2z
M(z). (140)

Hence, the differential equation Eq. (137) reduces to an integration using the Ansatz

M(z) =
C(z)√
1− 2z

, C(0) = 0. (141)

We read off the initial condition for C from Eq. (138). In particular, the integration is

M(z) =
1√

1− 2z

(∫

M(z)′|inhom.
√
1− 2z dz + c

)

, (142)

where we obtain M(z)′|inhom. from Eq. (137). c is an appropriate integration constant such that M(0) = 0.
Further general simplifications of the differential master equation are not obvious. The problem is that the functions

S in Eq. (137) give individual numbers that do not generalize and so have to be worked out case-by-case. They result
in an overall differential operator acting on whatever follows. We demonstrate this in several examples, which will
give us next-to and next-to-next-to-leading log generating functions.[104]

C. Generating functions for index-free matrices with nΘ(m) = 0

One exception is the case that M only contains one row, nΘ(m) = 0. These generate the matrices m that belong
to full shuffle products S without Θ(·, ·) letters. ‘Index-free’ means that S also does not contain [·, ·] letters.
Here, S(m,m′) reduces to 1 if m = m′ and to 0 otherwise. Thus, the first term in Eq. (137) is zero. The other S

term constrains

m1 ⊕m2 ⊕ . . .mk ⊕ pj = m (143)

[104] We call a function M(z) next-to{j}-leading log generating function when it occurs in the log-expansion (Eq. (1)) for a certain value of
j.
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hence,
∑

i |mi|+1 = |m|. We denote the generating functions of mi and pj by Mi and Pj to be consistent. We obtain

M(z)′ = δ|M|0 + δ|M|1 +

∞∑

j,k=1

(
2j − 2 + k

k

) (∗∗)
∑

M1(z)M2(z) . . .Mk(z)×
{

1, j = 1

(1− δM1j 0), else
, (144)

where (∗∗) sums the generating functions M1, . . ., Mk such that

(∗∗) : M1 ⊕M2 ⊕ . . .⊕Mk ⊕ Pj = M. (145)

In the following, we give some examples that constitute the next-to{j}-leading log expansions.

1. The generating function [ • 1 ]

The first example is M(z) = [ • 1 ]. The respective shuffle products to the matrices m ∼ M are a�ΘN
1 �Θ a2 for

N ∈ N. The sum in Eq. (144) only gives non-zero values if j = 1 or j = 2. For j = 1, Pj = P1 = [ • ] and Eq. (145) is
only fulfilled if one Mi matches M. This part belongs to the homogeneous differential equation.
For j = 2, Pj = P2 = M and we find Mi(z) = [ • ] ∀i ≤ k from Eq. (145).
Thus, the inhomogeneous part of Eq. (144) reads

[
• 1

]′ ∣
∣
inhom.

= 1 +

∞∑

k=1

(
2 + k
k

)
[
•
]k

=
1

(
1−

[
•
])3 =

1
√
1− 2z

3 . (146)

We used Eq. (139) in the last line. We insert this result into Eq. (142) and obtain

[
• 1

]
=

1√
1− 2z

log

(
1√

1− 2z

)

. (147)

2. The generating function [ • 0 1 ]

Matrices m ∼ M(z) = [ • 0 1 ] belong to the shuffle products a�ΘN
1 �Θ a3 for N ∈ N. The sum in Eq. (144) gives

non-zero values only if j = 1 or j = 3. As in the previous example, the j = 1 part belongs to the homogeneous
differential equation.
For j = 3, Pj = P3 = M and we find Mi(z) = [ • ] ∀i ≤ k from Eq. (145).
Thus, the inhomogeneous part of Eq. (144) reads

[
• 0 1

]′ ∣
∣
inhom.

= 1 +

∞∑

k=1

(
4 + k
k

)
[
•
]k

=
1

(
1−

[
•
])5 =

1
√
1− 2z

5 . (148)

We insert this result into Eq. (142) and obtain

[
• 0 1

]
= − 1

2
√
1− 2z

+
1

2
√
1− 2z

3 . (149)

3. The generating function [ • 2 ]

M(z) = [ • 2 ] is the final next-to-next-to-leading log generating function for matrices m ∼ M with nΘ(m) = 0. The

matrices m belong to the shuffle products a�ΘN
1 �Θ a2 �Θ a2 for N ∈ N. Thus, the sum in Eq. (144) gives non-zero

values only if j = 1 or j = 2.
If j = 1, Pj = P1 = [ • ]. There are two possibilities to choose the matrices Mi such that Eq. (145) is fulfilled.

However, only one of these belongs to the inhomogeneous part of the differential equation: for two integers i ≤ k,
Mi = [ • 1 ] and for all other i, Mi = [ • ].
If j = 2, Eq. (145) is only satisfied if one of the matrices Mi is [ • 1 ] and the others are equal to [ • ].
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We finally find the inhomogeneous part of Eq. (144),

[
• 2

]′ ∣
∣
inhom.

=

∞∑

k=1

(
k
2

)
[
•
]k−2 [• 1

]2
+

∞∑

k=1

(
2 + k
k

)

k
[
•
]k−1 [• 1

]

=
1

(
1−

[
•
])3

[
• 1

]2
+

3
(
1−

[
•
])4

[
• 1

]

=
1

√
1− 2z

5

(

log2
(

1√
1− 2z

)

+ 3 log

(
1√

1− 2z

))

. (150)

We used the previous results in Eqs. (139,147) in the last line. Inserting this into Eq. (142) and performing the
integration finally results in

[
• 2

]
=

1

2
√
1− 2z

− 1

2
√
1− 2z

3 +
1

√
1− 2z

3 log

(
1√

1− 2z

)

+
1

2
√
1− 2z

3 log2
(

1√
1− 2z

)

. (151)

D. Generating functions for index-free matrices with nΘ(m) 6= 0

The respective full shuffle products of index-free matrices m with nΘ(m) 6= 0 contain at least one letter Θ(·, ·) but
no [·, ·] letters. Here, we have to proceed from the master differential equation Eq. (137) to obtain M(z)′|inhom. in
Eq. (142). We treat the different next-to{j}-leading log generating functions in separate subsections.

1. The generating function [ •2 ]

The first example is the next-to-leading log generating function M(z) = [ •2 ]. Matrices m ∼ M belong to the shuffle

products a�ΘN
1 �Θ Θ(a1, a1) for N ∈ N.

In Eq. (137), we replace the sum over m ∼ M by a sum over N ∈ N such that m = [N2 ]. In the first term on the
rhs, only m′ = [N+2 ] yields a non-vanishing function S. In particular,

S
([
N
2

]

,
[
N + 2

]
)

=

(
N + 2

2

)

=
(N + 2)(N + 1)

2
. (152)

The other sum only survives if j = 1 and hence pj = p1 = [ 1 ]. The integers ti in the (∗)-sum range such that
∑

i ti = N + 2 − j = N + 1 (see Eq. (135)). Furthermore, in the first argument of the function S, m⊖ pj =
[
N−1
2

]
.

For the inhomogeneous part of the differential equation, this implies that mi = [ ti ] ∀i ≤ k such that
⊕

imi = [N+1 ].
Then,

S
([
N − 1

2

]

,
[
N + 1

]
)

=

(
N + 1

2

)

=
(N + 1)N

2
. (153)

All together, we obtain
[
•
2

]′ ∣
∣
∣
∣
inhom.

=

∞∑

N=0

(

− d

dz
z(N+1)−(N+2) (N + 2)(N + 1)

2

[
N + 2

]
zN+2

+
∑

k≥1

∑

∑

i ti=N+1

z((N+1)−1−
∑

i ti) (N + 1)N

2

[
t1
]
zt1 . . .

[
tk
]
ztk

)

=

∞∑

N=0



− d

dz

1

z

1

2
z2

d2

dz2
[
N + 2

]
zN+2 +

∑

k≥1

∑

∑

i ti=N+1

1

z

1

2
z2

d2

dz2
[
t1
]
zt1 . . .

[
tk
]
ztk





=− d

dz

z

2

d2

dz2
[
•
]
+
∑

k≥1

z

2

d2

dz2
[
•
]k

=− 1

2

d2

dz2
(
1−

√
1− 2z

)

=− 1

2
√
1− 2z

3 . (154)
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In the third line, we used the explicit expression for the generating function [ • ] (Eq. (139)).
Inserting this result into Eq. (142), we finally obtain

[
•
2

]

= − 1

2
√
1− 2z

log

(
1√

1− 2z

)

. (155)

[ • 1 ] (Eq. (147)) and [ •2 ] are the only necessary generating functions to derive relations for the next-to-leading log
order. It is surprising that they are related by a factor of −1/2,

[
•
2

]

= −1

2

[
• 1

]
. (156)

2. The generating function [ •3 ]

Now, consider the next-to-next-to-leading log generating function M(z) = [ •3 ]. Matrices m ∼ M belong to the

shuffle products a�ΘN
1 �Θ Θ(a1, a1, a1) for N ∈ N.

Again in Eq. (137), we replace the sum over m ∼ M by a sum over N ∈ N such that m = [N3 ]. The first term
consists of two parts, m′ = [N+3 ] and m′ =

[
N+1
2

]
. For other m′, S(m,m′) vanishes. In particular,

S
([
N
3

]

,
[
N + 3

]
)

=

(
N + 3

3

)

=
(N + 3)(N + 2)(N + 1)

6
, S

([
N
3

]

,

[
N + 1

2

])

=

(
N + 1

1

)

= N + 1. (157)

The sum over j only gives a non-zero value for j = 1. Hence pj = p1 = [ 1 ] and the integers ti in the (∗)-sum require
∑

i ti = N + 3− j = N + 2 (see Eq. (135)). The first argument of the function S becomes m⊖ pj =
[
N−1
3

]
. For the

inhomogeneous part of the differential equation, this implies that either
⊕

imi = [N+2 ] or
⊕

imi = [N2 ]. The first

case is realized if mi = [ ti ] ∀i ≤ k. The second case implies that one of the matrices mi is equal to
[
ti−2
2

]
and the

rest of the matrices mi = [ ti ]. We compute

S
([
N − 1

3

]

,
[
N + 2

]
)

=

(
N + 2

3

)

=
(N + 2)(N + 1)N

6
, S

([
N − 1

3

]

,

[
N
2

])

=

(
N
1

)

= N. (158)
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We use all these observations to obtain the inhomogeneous part of the differential equation Eq. (137),

[
•
3

]′ ∣
∣
∣
∣
inhom.

=
∞∑

N=0

(

− d

dz
z(N+1)−(N+3) (N + 3)(N + 2)(N + 1)

6

[
N + 3

]
zN+3

− d

dz
z(N+1)−(N+2)(N + 1)

[
N + 1

2

]

zN+2

+
∑

k≥1

∑

∑

i ti=N+2

z(N+1)−1−
∑

i ti
(N + 2)(N + 1)N

6

[
t1
]
zt1 . . .

[
tk
]
ztk

+
∑

k≥1

∑

∑

i ti=N+2

z(N+1)−1−(
∑

i ti−1)N k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2

2

]

ztk−1

)

=

∞∑

N=0

(

− d

dz

1

z2
1

6
z3

d3

dz3
[
N + 3

]
zN+3 − d

dz

1

z
z2

d

dz

1

z

[
N + 1

2

]

zN+2

+
∑

k≥1

∑

∑

i ti=N+2

1

z2
1

6
z3

d3

dz3
[
t1
]
zt1 . . .

[
tk
]
ztk

+
∑

k≥1

∑

∑

i ti=N+2

1

z
z2

d

dz

1

z
k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2

2

]

ztk−1

)

=− d

dz

z

6

d3

dz3
[
•
]
− d

dz
z
d

dz

1

z

[
•
2

]

+
∑

k≥1

z

6

d3

dz3
[
•
]k

+
∑

k≥1

z
d

dz

1

z
k
[
•
]k−1

[
•
2

]

=− d

dz

z

6

d3

dz3
[
•
]
− d

dz
z
d

dz

1

z

[
•
2

]

+
z

6

d3

dz3
1

1−
[
•
] + z

d

dz

1

z

1
(
1−

[
•
])2

[
•
2

]

=
1

√
1− 2z

5 − 1

2
√
1− 2z

d

dz

(
1

z
log

(
1√

1− 2z

))

. (159)

In the last line, we used the explicit formulas for the generating functions [ • ] and [ •2 ] (Eqs. (139,155)).
Inserting Eq. (159) into the integration in Eq. (142) finally results in

[
•
3

]

=
1

2
√
1− 2z

3 − 1

2
√
1− 2z

1

z
log

(
1√

1− 2z

)

. (160)

3. The generating function [ • 0
1 1 ]

Now, consider M(z) = [ • 0
1 1 ]. The respective shuffle products to the matrices m ∼ M are a�ΘN

1 �Θ Θ(a1, a2) for
N ∈ N.
In Eq. (137), we replace the sum over m ∼ M by a sum over N ∈ N such that m = [N 0

1 1 ]. Here, only m
′ = [N+1 1 ]

contributes to the first sum and we calculate

S
([
N 0
1 1

]

,
[
N + 1 1

]
)

=

(
N + 1

1

)

= N + 1. (161)

In the second sum, j = 1 and pj = p1 = [ 1 ]. The integers ti in the (∗)-sum are constraint by
∑

i ti = N+3−j = N+2

(see Eq. (135)). The first argument of the function S becomes m ⊖ pj =
[
N−1 0
1 1

]
. The second argument must be

⊕

imi = [N 1 ] since we only consider the inhomogeneous part of the differential equation. Thus, one of the matrices
mi is equal to [ ti−2 1 ] and the rest of the matrices mi = [ ti ]. In particular,

S
([
N − 1 0

1 1

]

,
[
N 1

]
)

=

(
N
1

)

= N. (162)



25

We deduce the inhomogeneous part of the differential equation Eq. (137),

[
• 0
1 1

]′ ∣
∣
∣
∣
inhom.

=
∞∑

N=0

(

− d

dz
z(N+1)−(N+2)(N + 1)

[
N + 1 1

]
zN+2

+
∑

k≥1

∑

∑

i ti=N+2

z(N+1)−1−(
∑

i ti−1)N k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2 1

]
ztk−1

)

=

∞∑

N=0

(

− d

dz

1

z
z2

d

dz

1

z

[
N + 1 1

]
zN+2

+
∑

k≥1

∑

∑

i ti=N+2

1

z
z2

d

dz

1

z
k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2 1

]
ztk−1.

)

=− d

dz
z
d

dz

1

z

[
• 1

]
+
∑

k≥1

z
d

dz

1

z
k
[
•
]k−1 [• 1

]

=− d

dz
z
d

dz

1

z

[
• 1

]
+ z

d

dz

1

z

1
(
1−

[
•
])2

[
• 1

]

=− 3
√
1− 2z

5 +
1√

1− 2z

d

dz

1

z
log

(
1√

1− 2z

)

. (163)

In the last line, we used the explicit formulas for the generating functions [ • ] and [ • 1 ] (Eqs. (139,147)).
We plug Eq. (163) into Eq. (142) and obtain

[
• 0
1 1

]

=
1

2
√
1− 2z

− 3

2
√
1− 2z

3 +
1√

1− 2z

1

z
log

(
1√

1− 2z

)

. (164)

4. The generating function
[

•
2
2

]

The function M(z) =
[
•
2
2

]

generates the rationalsm ∼ M to the respective shuffle products a�ΘN
1 �ΘΘ(a1, a1)�Θ

Θ(a1, a1) for N ∈ N.

Consider Eq. (137). We replace the sum over m ∼ M by a sum over N ∈ N such that m =
[
N
2
2

]

. Here, only the

matrices m′ = [N+4 ] and m′ =
[
N+2
2

]
contribute to the first sum and we find

S









N
2
2



 ,
[
N + 4

]



 =
1

2

(
N + 4

2

)(
N + 2

2

)

=
(N + 4)(N + 3)(N + 2)(N + 1)

8
, (165)

S









N
2
2



 ,

[
N + 2

2

]


 =

(
N + 2

2

)

=
(N + 2)(N + 1)

2
. (166)

In the second sum, j = 1 and pj = p1 = [ 1 ] as before. The integers ti in the (∗)-sum range over
∑

i ti = N+4−j = N+3

(see Eq. (135)). The first argument of the function S is m⊖pj =
[
N−1
2
2

]

. Here, there are three possibilities for
⊕

imi

in the second sum of Eq. (137). First,
⊕

imi = [N+3 ] and mi = [ ti ] ∀i ≤ k. Secondly,
⊕

imi =
[
N+1
2

]
, which implies

that one of the matricesmi is equal to
[
ti−2
2

]
and the rest of the matricesmi = [ ti ]. In the third case,

⊕

imi =
[
N−1
2
2

]

.

Note that
⊕

imi ∼ M did not occur in the previous examples because it was part of the homogeneous differential

equation Eq. (137). Here, we realize
⊕

imi =
[
N−1
2
2

]

within the inhomogeneous part of the differential equation: two
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of the matrices mi are equal to
[
ti−2
2

]
and the rest of the matrices mi = [ ti ]. The corresponding functions S(·, ·) give

S









N − 1
2
2



 ,
[
N + 3

]



 =
1

2

(
N + 3

2

)(
N + 1

2

)

=
(N + 3)(N + 2)(N + 1)N

8
, (167)

S









N − 1
2
2



 ,

[
N + 1

2

]


 =

(
N + 1

2

)

=
(N + 1)N

2
, (168)

S









N − 1
2
2



 ,





N − 1
2
2







 = 1. (169)

We simplify the inhomogeneous part of the differential equation Eq. (137) as follows:





•
2
2





′ ∣
∣
∣
∣
∣
inhom.

=

∞∑

N=0

(

− d

dz
z(N+2)−(N+4) (N + 4)(N + 3)(N + 2)(N + 1)

8

[
N + 4

]
zN+4

− d

dz
z(N+2)−(N+3) (N + 2)(N + 1)

2

[
N + 2

2

]

zN+3

+
∑

k≥1

∑

∑

i ti=N+3

z(N+2)−1−
∑

i ti
(N + 3)(N + 2)(N + 1)N

8

[
t1
]
zt1 . . .

[
tk
]
ztk

+
∑

k≥1

∑

∑

i ti=N+3

z(N+2)−1−(
∑

i ti−1) (N + 1)N

2
k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2

2

]

ztk−1

+
∑

k≥1

∑

∑

i ti=N+3

z(N+2)−1−(
∑

i ti−2)

(
k
2

)
[
t1
]
zt1 . . .

[
tk−2

]
ztk−2

[
tk−1 − 2

2

]

ztk−1−1

[
tk − 2

2

]

ztk−1

)

=

∞∑

N=0

(

− d

dz

1

z2
1

8
z4

d4

dz4
[
N + 4

]
zN+4 − d

dz

1

z

1

2
z3

d2

dz2
1

z

[
N + 2

2

]

zN+3

+
∑

k≥1

∑

∑

ti
=N+3

1

z2
1

8
z4

d4

dz4
[
t1
]
zt1 . . .

[
tk
]
ztk

+
∑

k≥1

∑

∑

ti
=N+3

1

z

1

2
z3

d2

dz2
1

z
k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2

2

]

ztk−1

+
∑

k≥1

∑

∑

ti
=N+3

k(k − 1)

2

[
t1
]
zt1 . . .

[
tk−2

]
ztk−2

[
tk−1 − 2

2

]

ztk−1−1

[
tk − 2

2

]

ztk−1

)

=− d

dz

z2

8

d4

dz4
[
•
]
− d

dz

z2

2

d2

dz2
1

z

[
•
2

]

+
∑

k≥1

z2

8

d4

dz4
[
•
]k

+
∑

k≥1

z2

2

d2

dz2
1

z
k
[
•
]k−1

[
•
2

]

+
∑

k≥1

k(k − 1)

2

[
•
]k−2

[
•
2

]2

=− d

dz

z2

8

d4

dz4
[
•
]
− d

dz

z2

2

d2

dz2
1

z

[
•
2

]

+
z2

8

d4

dz4
1

1−
[
•
] +

z2

2

d2

dz2
1

z

1
(
1−

[
•
])2

[
•
2

]

+
1

(
1−

[
•
])3

[
•
2

]2

.

(170)

We use the previous results in Eqs. (139,155) and insert the resulting expression into Eq. (142).



27

A little calculation yields





•
2
2



 =− 1

8
√
1− 2z

− 3

8
√
1− 2z

3 +
1

4
√
1− 2z

3 log

(
1√

1− 2z

)

+
1

2
√
1− 2z

1

z
log

(
1√

1− 2z

)

+
1

8
√
1− 2z

3 log2
(

1√
1− 2z

)

. (171)

5. The generating function [ • 1
2 0 ]

The only next-to-next-to-leading log generating function left is M(z) = [ • 1
2 0 ]. It generates the rationals m ∼ M

with the respective shuffle products a�ΘN
1 �Θ a2�Θ Θ(a1, a1) for N ∈ N.

In Eq. (137), we replace the sum over m ∼ M by a sum over N ∈ N such that m = [N 1
2 0 ]. The function S in the

first sum vanishes except for m′ = [N+2 1 ]:

S
([
N 1
2 0

]

,
[
N + 2 1

]
)

=

(
N + 2

2

)

=
(N + 2)(N + 1)

2
. (172)

In the second sum, either j = 1 or j = 2. This is the main difference to the previous examples. The sum does not
vanish for j = 2 because M1 2 = 1. For j = 1, pj = p1 = [ 1 ] as before. Then, the integers ti in the (∗)-sum range
over

∑

i ti = N +4− j = N +3 (see Eq. (135)). Furthermore, m⊖ pj =
[
N−1 1
2 0

]
in the first argument of the function

S, which implies that either
⊕

imi = [N+1 1 ] or
⊕

imi =
[
N−1 1
2 0

]
. In the first case, there is one i ≤ k such that

mi = [ ti−2 1 ] and for all other i ≤ k, mi = [ ti ]. In the second case, one of the matrices mi must be equal to [ ti−2 1 ]
and another one must be equal to

[
ti−2
2

]
. The rest of the matrices mi = [ ti ]. The corresponding S-function factors

are

S
([
N − 1 1

2 0

]

,
[
N + 1 1

]
)

=

(
N + 1

2

)

=
(N + 1)N

2
, (173)

S
([
N − 1 1

2 0

]

,

[
N − 1 1

2 0

])

= 1. (174)

For j = 2, pj = p2 = [ 0 1 ]. The integers ti in the (∗)-sum then require
∑

i ti = N + 4 − j = N + 2. Furthermore,
m ⊖ pj = [N2 ] in the first argument of the function S. Thus, either

⊕

imi = [N+2 ] or
⊕

imi = [N2 ]. In the former
case, mi = [ ti ] ∀i ≤ k. In the latter case, one of the matrices mi must be equal to

[
ti−2
2

]
and the other matrices

mi = [ ti ]. The corresponding functions S(·, ·) give

S
([
N
2

]

,
[
N + 2

]
)

=

(
N + 2

2

)

=
(N + 2)(N + 1)

2
, (175)

S
([
N
2

]

,

[
N
2

])

= 1. (176)
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Using these observations yields the inhomogeneous part of the differential equation Eq. (137),

[
• 1
2 0

]′ ∣
∣
∣
∣
inhom.

=
∞∑

N=0

(

− d

dz
z(N+2)−(N+3) (N + 2)(N + 1)

2

[
N + 2 1

]
zN+3

+
∑

k≥1

∑

∑

i ti=N+3

z(N+2)−1−(
∑

i ti−1) (N + 1)N

2
k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2 1

]
ztk−1

+
∑

k≥1

∑

∑

i ti=N+3

z(N+2)−1−(
∑

i ti−2)k(k − 1)
[
t1
]
zt1 . . .

[
tk−2

]
ztk−2

[
tk−1 − 2 1

]
ztk−1−1

[
tk − 2

2

]

ztk−1

+
∑

k≥1

(
2 + k
k

)
∑

∑

i ti=N+2

z(N+2)−1−
∑

i ti
(N + 2)(N + 1)

2

[
t1
]
zt1 . . .

[
tk
]
ztk

+
∑

k≥1

(
2 + k
k

)
∑

∑

i ti=N+2

z(N+2)−1−(
∑

i ti−1) k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2

2

]

ztk−1

)

=

∞∑

N=0

(

− d

dz

1

z

1

2
z3

d2

dz2
1

z

[
N + 2 1

]
zN+3

+
∑

k≥1

∑

∑

i ti=N+3

1

z

1

2
z3

d2

dz2
1

z
k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2 1

]
ztk−1

+
∑

k≥1

∑

∑

i ti=N+3

k(k − 1)
[
t1
]
zt1 . . .

[
tk−2

]
ztk−2

[
tk−1 − 2 1

]
ztk−1−1

[
tk − 2

2

]

ztk−1

+
∑

k≥1

(
2 + k
k

)
∑

∑

i ti=N+2

1

z

1

2
z2

d2

dz2
[
t1
]
zt1 . . .

[
tk
]
ztk

+
∑

k≥1

(
2 + k
k

)
∑

∑

i ti=N+2

k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2

2

]

ztk−1

)

=− d

dz

z2

2

d2

dz2
1

z

[
• 1

]
+
∑

k≥1

z2

2

d2

dz2
1

z
k
[
•
]k−1 [• 1

]
+
∑

k≥1

k(k − 1)
[
•
]k−2 [• 1

]
[
•
2

]

+
∑

k≥1

(
2 + k
k

)
z

2

d2

dz2
[
•
]k

+
∑

k≥1

(
2 + k
k

)

k
[
•
]k−1

[
•
2

]

=− d

dz

z2

2

d2

dz2
1

z

[
• 1

]
+
z2

2

d2

dz2
1

z

1
(
1−

[
•
])2

[
• 1

]
+

2
(
1−

[
•
])3

[
• 1

]
[
•
2

]

+
z

2

d2

dz2
1

(
1−

[
•
])3

+
3

(
1−

[
•
])4

[
•
2

]

. (177)

We insert this into the integration in Eq. (142). We also need Eqs. (139,147,155) and after some calculation, we
obtain
[
• 1
2 0

]

=
1

√
1− 2z

3 − 1
√
1− 2z

3 log

(
1√

1− 2z

)

− 1√
1− 2z

1

z
log

(
1√

1− 2z

)

− 1

2
√
1− 2z

3 log2
(

1√
1− 2z

)

. (178)

E. Generating functions for indexed matrices

In this paper, we do not give a general method to obtain the generating functions for indexed matrices. In this
section however, we derive the two ‘indexed generating functions’

[
•
]

[a1,a2]
=
∑

N≥0

[
N
]

[a1,a2]
zN+1,

[
•
]

[a1,Θ(a1,a1)]
=
∑

N≥0

[
N
]

[a1,Θ(a1,a1)]
zN+1. (179)
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These generate the indexed matrices [N ][a1,a2] and [N ][a1,Θ(a1,a1)]
that belong to the full shuffle products

a�ΘN
1 �Θ [a1, a2], a�ΘN

1 �Θ [a1,Θ(a1, a1)] (180)

respectively. These shuffles make part of the filtered words wN+3 (Eq. (46)) and map to the next-to-next-to-leading
log order in the log-expansion. In particular, [ • ][a1,a2] and [ • ][a1,Θ(a1,a1)]

complete the set of generating functions

that are necessary to obtain the next-to-next-to-leading log expansion. We will work on a general method to derive
indexed generating functions in future work.

1. The generating function [ • ][a1,a2]

Only words with (N − 2) letters a1 and one letter a2 in the unfiltered word wN can contribute to the term
[
N − 3

]

[a1,a2]
a�ΘN−3
1 �Θ [a1, a2] (181)

in the filtered word wN . Consider Eq. (46) and let the words wti on the rhs be filtered. Then,

wN =Ba1+
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
a�Θ t1
1 �Θ . . .�Θ

[
tk−1

]
a
�Θ tk−1

1 �Θ

([
tk − 3

]

[a1,a2]
a�Θ tk−3
1 �Θ [a1, a2]

)

+Ba1+
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
a�Θ t1
1 �Θ . . .�Θ

[
tk−1

]
a
�Θ tk−1

1 �Θ

[
tk − 2 1

]
a�Θ tk−2
1 �Θ a2

+Ba2+
∑

k≥1

(
2 + k
k

)
∑

∑

i ti=N−2

[
t1
]
a�Θ t1
1 �Θ . . .�Θ

[
tk
]
a�Θ tk
1 + . . . , (182)

where the dots represent all missing terms in Eq. (46), for example

Ba1+
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
a�Θ t1
1 �Θ . . .�Θ

[
tk−1

]
a
�Θ tk−1

1 �Θ

([
tk − 4

]

[a1,[a1,a2]]
a�Θ tk−4
1 �Θ [a1, [a1, a2]]

)

. (183)

All these other terms do not contribute to [N−3 ][a1,a2]a
�Θ N−3
1 �Θ [a1, a2] in the filtered word. Indeed, the only

missing terms in Eq. (182) that give words with (N − 2) letters a1 and one a2 include one of the multi-commutator
letters [a1, . . . [a1, a2] . . .] in the shuffle product. Computing all these shuffles and filtrating the resulting words will
not give words with (N − 3) letters a1 and one [a1, a2] but words with multi-commutator letters.
Given a filtered word wN , one regains the original unfiltered word by first computing all shuffle products in wN

and then, computing all (multi-)commutators. This can be seen by a look at the filtration algorithm in Section III C.
For the first term in Eq. (182), this implies that we must first compute the shuffle products in the bracket. Secondly,
we have to replace the commutator letter [a1, a2] by a1a2 − a2a1 and finally, we must compute all remaining shuffle
products to obtain the respective terms in the unfiltered word wN (Eq. (182)).
Let us calculate the unfiltered wN . We are only interested in words that contribute to [ • ][a1,a2]. Hence, when

computing the shuffle products in Eq. (182), we shift all words with Θ(·, ·) letters to the . . . terms. In the following,
it is convenient to define the words

A(p, q) := a1 . . . a1
︸ ︷︷ ︸

p×

a2 a1 . . . a1
︸ ︷︷ ︸

q×

, (184)

B(p, q) := a1 . . . a1
︸ ︷︷ ︸

p×

[a1, a2] a1 . . . a1
︸ ︷︷ ︸

q×

(185)

for p, q ∈ N. We note that

a�Θp
1 �Θ [a1, a2] =p!(A(p+ 1, 0)−A(0, p+ 1))+ . . . , (186)

a�Θp
1 �Θ A(q, 0) =p!

p
∑

r=0

(
q + r
r

)

A(q + r, p− r) + . . . , (187)

a�Θp
1 �Θ A(0, q) =p!

p
∑

r=0

(
q + r
r

)

A(p− r, q + r) + . . . , (188)

a�Θp
1 �Θ a2 =p!

p
∑

q=0

A(q, p− q) + . . . (189)
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The dots collect all words that consist of other letters than one a2 and some a1. Using these relations in Eq. (182),
we obtain

wN =
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

] [
tk − 3

]

[a1,a2]
(tk − 3)!(N − 1− tk)!

N−1−tk∑

p=0

(
tk − 2 + p

p

)

× (A(tk − 1 + p,N − 1− tk − p)− A(N − tk − p, tk − 2 + p))

+
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

] [
tk − 2 1

]
(N − 3)!

N−3∑

p=0

A(p+ 1, N − 3− p)

+
∑

k≥1

(
2 + k
k

)
∑

∑

i ti=N−2

[
t1
]
. . .
[
tk
]
(N − 2)!A(0, N − 2) + . . . (190)

wN is still unfiltered. Now, the filtration algorithm brings the words A(p, q) into lexicographical order using the
concatenation commutator. In our case, a2 is sorted to the right,

A(p, q) = −B(p, q − 1) +A(p+ 1, q − 1), ⇒ A(p, q) = A(p+ q, 0)−
q−1
∑

r=0

B(p+ r, q − 1− r). (191)

In this section, a filtration algorithm that sorts a2 to the left would be more convenient because the last term in
Eq. (190) would already be given in lexicographical order. Since the resulting filtered words must not depend on the
lexicographical order of letters, we now assume throughout this section that we work with a filtration algorithm that
sorts a2 to the left,

A(p, q) = B(p− 1, q) +A(p− 1, q + 1), ⇒ A(p, q) = A(0, p+ q) +

p−1
∑

r=0

B(p− 1− r, q + r). (192)

This change does not effect the final generating functions [ • ][a1,a2] and the respective generated matrices. Inserting

Eq. (192) into Eq. (190) yields

wN =
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

] [
tk − 3

]

[a1,a2]
(tk − 3)!(N − 1− tk)!

N−1−tk∑

p=0

(
tk − 2 + p

p

)

×
(
tk−2+p
∑

q=0

B(tk − 2 + p− q,N − 1− tk − p+ q)−
N−tk−p−1
∑

q=0

B(N − tk − p− 1− q, tk − 2 + p+ q)

)

+
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

] [
tk − 2 1

]
(N − 3)!

N−3∑

p=0

p
∑

q=0

B(p− q,N − 3− p+ q)

+
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

] [
tk − 2 1

]
(N − 2)!A(0, N − 2)

+
∑

k≥1

(
2 + k
k

)
∑

∑

i ti=N−2

[
t1
]
. . .
[
tk
]
(N − 2)!A(0, N − 2) + . . . (193)

The last two terms together are equal to {N−2 1 }A(0, N − 2), see Section IVC1.
Step 2 of the filtration loop in Section III C 1 computes

a�ΘN−2
1 �Θ a2 = (N − 2)!

N−2∑

p=0

A(p,N − 2− p) + . . . (194)

and brings all the words A(p,N − 2 − p) on the rhs into lexicographical order using Eq. (192). Hence, in Eq. (193),
A(0, N − 2) is replaced by

A(0, N − 2) =
1

(N − 1)!
a�ΘN−2
1 �Θ a2 −

1

N − 1

N−2∑

p=1

p−1
∑

q=0

B(p− 1− q,N − 2− p+ q). (195)
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Thus, after step 2 of the respective filtration loop,

wN =
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

] [
tk − 3

]

[a1,a2]
(tk − 3)!(N − 1− tk)!

N−1−tk∑

p=0

(
tk − 2 + p

p

)

×
(
tk−2+p
∑

q=0

B(tk − 2 + p− q,N − 1− tk − p+ q)−
N−tk−p−1
∑

q=0

B(N − tk − p− 1− q, tk − 2 + p+ q)

)

+
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

] [
tk − 2 1

]
(N − 3)!

N−3∑

p=0

p
∑

q=0

B(p− q,N − 3− p+ q)

+
[
N − 2 1

]
a�ΘN−2
1 �Θ a2 −

1

N − 1

{
N − 2 1

}
N−2∑

p=1

p−1
∑

q=0

B(p− 1− q,N − 2− p+ q) + . . . (196)

Note that we do not take the filtered term [N−2 1 ]a�ΘN−2
1 �Θ a2 into account because it does not contribute to the

term in Eq. (181).
We now proceed as in the derivation of the master differential equation in Section IVB. We denote by {N−3 }[a1,a2]

the number of words on the rhs of Eq. (196) with (N − 3) letters a1 and one letter [a1, a2]. As in Section IVA,
{N−3 }[a1,a2] is related to the indexed matrix [N−3 ][a1,a2] by

[
N − 3

]

[a1,a2]
=

1

(N − 2)!

{
N − 3

}

[a1,a2]
. (197)

We obtain {N−3 }[a1,a2] by setting all words B(·, ·) on the rhs of Eq. (196) to 1, hence

{
N − 3

}

[a1,a2]
=
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

][
tk − 3

]

[a1,a2]
(tk − 3)!(N − 1− tk)!

N−1−tk∑

p=0

(
tk − 2 + p

p

)

(2tk + 2p−N − 1)

+
∑

k≥1

∑

∑

i ti=N−1

(N − 1)!

2
k
[
t1
]
. . .
[
tk−1

] [
tk − 2 1

]
− N − 2

2

{
N − 2 1

}
. (198)

Standard combinatorial calculation yields

(tk − 3)!(N − 1− tk)!

N−1−tk∑

p=0

(
tk − 2 + p

p

)

(2tk + 2p−N − 1) =
(N − 1)!

tk(tk − 1)
. (199)

Furthermore, we find {N−2 1 } = (N−1)![N−2 1 ] from Eq. (129). We divide Eq. (198) by (N−1)! and insert Eq. (197)
on the lhs. This results in

1

N − 1

[
N − 3

]

[a1,a2]
=
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

] 1

tk(tk − 1)

[
tk − 3

]

[a1,a2]

+
∑

k≥1

∑

∑

i ti=N−1

1

2
k
[
t1
]
. . .
[
tk−1

] [
tk − 2 1

]
− N − 2

2

[
N − 2 1

]
. (200)

Finally, we multiply with zN−1 and sum over all N ∈ N. This will give us
∫
[ • ][a1,a2]dz on the lhs with zero integration

constant. On the rhs, we obtain
∫
[
•
]

[a1,a2]
dz =

∞∑

N=0

(
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

1

tk(tk − 1)

[
tk − 3

]

[a1,a2]
ztk

+
∑

k≥1

∑

∑

i ti=N−1

z

2
k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2 1

]
ztk−1 − z2

2

d

dz

1

z

[
N − 2 1

]
zN−1

)

=
∑

k≥1

k
[
•
]k−1

∫ (∫
[
•
]

[a1,a2]
dz

)

dz +
∑

k≥1

z

2
k
[
•
]k−1 [• 1

]
− z2

2

d

dz

1

z

[
• 1

]

=
1

1− 2z

∫ (∫
[
•
]

[a1,a2]
dz

)

dz +
1

4
√
1− 2z

− 1

4
√
1− 2z

3 +
1

2
√
1− 2z

log

(
1√

1− 2z

)

, (201)
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where we used the explicit form of the generating functions [ • ] and [ • 1 ] in the last line (Eqs. (139,147)). Again, the
integration constants are zero.

Eq. (201) is an ordinary first order differential equation for
∫ (∫

[ • ][a1,a2]dz
)

dz with the same homogeneous part

as in the case of index-free generating functions, see Section IVB. We can thus, use Eq. (142) to obtain
∫ (∫

[
•
]

[a1,a2]
dz

)

dz = −
√
1− 2z

4
+

1

4
√
1− 2z

−
√
1− 2z

4
log

(
1√

1− 2z

)

− 1

4
√
1− 2z

log

(
1√

1− 2z

)

. (202)

The second derivative finally results in the generating function

[
•
]

[a1,a2]
=

1

4
√
1− 2z

3 − 1

4
√
1− 2z

5 +
1

4
√
1− 2z

3 log

(
1√

1− 2z

)

− 3

4
√
1− 2z

5 log

(
1√

1− 2z

)

. (203)

2. The generating function [ • ][a1,Θ(a1,a1)]

In this section, we derive the generating function [ • ][a1,Θ(a1,a1)]
for the matrices [N−3 ][a1,Θ(a1,a1)]

. These belong to

the shuffle products a�ΘN−3
1 �Θ [a1,Θ(a1, a1)] in the filtered word wN .

In full analogy to the previous section, we derive an equivalent to Eq. (198). In the partly filtered wN , we denote
the number of words with (N − 3) letters a1 and one letter [a1,Θ(a1, a1)] by

{
N − 3

}

[a1,Θ(a1,a1)]
= (N − 2)!

[
N − 3

]

[a1,Θ(a1,a1)]
. (204)

We then find

{
N − 3

}

[a1,Θ(a1,a1)]
=
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

] [
tk − 3

]

[a1,Θ(a1,a1)]
(tk − 3)!(N − 1− tk)!

N−1−tk∑

p=0

(
tk − 2 + p

p

)

× (2tk + 2p−N − 1) +
∑

k≥1

∑

∑

i ti=N−1

(N − 1)!

2
k
[
t1
]
. . .
[
tk−1

]
[
tk − 2

2

]

+
∑

k≥1

∑

∑

i ti=N−1

S
([
N − 3

2

]

,
[
N − 1

]
)

(N − 1)!

2

[
t1
]
. . .
[
tk
]
− N − 2

2

{
N − 2

2

}

. (205)

Compared to Eq. (198), we made the obvious replacements

[
tk − 3

]

[a1,a2]
→
[
tk − 3

]

[a1,Θ(a1,a1)]
,

[
tk − 2 1

]
→
[
tk − 2

2

]

,
{
N − 2 1

}
→
{
N − 2

2

}

. (206)

The only new term is the third one. It arises because on the rhs of Eq. (182), one must also consider the term

Ba1+
∑

k≥1

∑

∑

i ti=N−1

[
t1
]
a�Θt1
1 . . .

[
tk
]
a�Θtk
1 (207)

and calculate

a�ΘN−1
1 = (N − 1)! a1 . . . a1

︸ ︷︷ ︸

(N−1)×

+S
([
N − 3

2

]

,
[
N − 1

]
)

a�ΘN−3
1 �Θ Θ(a1, a1). (208)

We divide Eq. (205) by (N − 1)! and use Eqs. (129,199,204) to obtain

1

N − 1

[
N − 3

]

[a1,Θ(a1,a1)]
=
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
. . .
[
tk−1

] 1

tk(tk − 1)

[
tk − 3

]

[a1,Θ(a1,a1)]

+
∑

k≥1

∑

∑

i ti=N−1

1

2
k
[
t1
]
. . .
[
tk−1

]
[
tk − 2

2

]

+
∑

k≥1

∑

∑

i ti=N−1

S
([
N − 3

2

]

,
[
N − 1

]
)

1

2

[
t1
]
. . .
[
tk
]

−N − 2

2

[
N − 2

2

]

− N − 2

2
S
([
N − 2

2

]

,
[
N
]
)
[
N
]
. (209)
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As in the previous section, we multiply with zN−1 and sum over all N ∈ N. With

S
([
N − 2

2

]

,
[
N
]
)

=
N(N − 1)

2
, (210)

we find

∫
[
•
]

[a1,Θ(a1,a1)]
dz =

∞∑

N=0

(
∑

k≥1

∑

∑

i ti=N−1

k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

1

tk(tk − 1)

[
tk − 3

]

[a1,Θ(a1,a1)]
ztk

+
∑

k≥1

∑

∑

i ti=N−1

z

2
k
[
t1
]
zt1 . . .

[
tk−1

]
ztk−1

[
tk − 2

2

]

ztk−1

+
∑

k≥1

∑

∑

i ti=N−1

z2

4

d2

dz2
[
t1
]
zt1 . . .

[
tk
]
ztk − z2

2

d

dz

1

z

[
N − 2

2

]

zN−1 − z2

4

d3

dz3
[
N
]
zN

)

=
∑

k≥1

k
[
•
]k−1

∫ (∫
[
•
]

[a1,Θ(a1,a1)]
dz

)

dz +
∑

k≥1

z

2
k
[
•
]k−1

[
•
2

]

+
∑

k≥1

z2

4

d2

dz2
[
•
]k

− z2

2

d

dz

1

z

[
•
2

]

− z2

4

d3

dz3
[
•
]

=
1

1− 2z

∫ (∫
[
•
]

[a1,Θ(a1,a1)]
dz

)

dz − 1

8
√
1− 2z

+
1

8
√
1− 2z

3 − 1

4
√
1− 2z

log

(
1√

1− 2z

)

.

(211)

Note that the third and the fifth term on the rhs of the second equation cancel. This is an interesting incidence.
Because of Eq. (156), the inhomogeneous parts of the differential equations Eqs. (201,211) only differ by a factor of
−1/2. We therefore obtain

[
•
]

[a1,Θ(a1,a1)]
= −1

2

[
•
]

[a1,a2]
= − 1

8
√
1− 2z

3 +
1

8
√
1− 2z

5 −
1

8
√
1− 2z

3 log

(
1√

1− 2z

)

+
3

8
√
1− 2z

5 log

(
1√

1− 2z

)

.

(212)

F. Results

We now demonstrate the power of the generating functions derived in the previous sections: one can write the
next-to{j}-leading log order as a function of terms up to O(αj+1) in the log-expansion (Eq. (1)). We will show this for
the Yukawa fermion propagator (Eq. (3)) up to j ≤ 2 using the explicit generating functions obtained in the previous
section. They are also collected in the second column of Table I. We discuss our results for j = 0, 1, 2 separately.

1. Leading log expansion

Consider the filtered solution WYuk of the DSE Eq. (43), see Eq. (45). The leading log order is

WYuk|l.l. =
∑

n≥1

(
αnwYuk

n

) ∣
∣
l.l.
. (213)

Contributing terms in the filtered words wn map to Ln under renormalized Feynman rules since the leading log order
is ∝ αnLn. These are only the full shuffle products a�Θ n

1 (see Section III B that ΨR (a�Θ n
1 ) ∝ Ln). Thus,

WYuk|l.l. =
∑

n≥0

αn
[
n
]
a�Θ n
1 = αa1 +

1

2
α2a1 �Θ a1 +

1

2
α3a�Θ3

1 +
5

8
α4a�Θ4

1 +
7

8
α5a�Θ5

1 + . . . (214)

See the first row of Table II for the explicit multiplicities. Acting with renormalized Feynman rules ΨR on both sides
results in

ΨR (WYuk)
∣
∣
l.l.

=
∑

n≥0

[
n
]
αnΨR(a1)

n =
[
•
] ∣
∣
z→αΨR(a1)

. (215)
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We write this equation in terms of Feynman graphs. Therefore, set ΨR = ΦR ◦Υ−1. We find that ΨR(a1) = ΦR(Γ1)
on the rhs using the properties of the Hopf algebra morphism Υ−1 in Eqs. (35-40). On the lhs, ΨR(WYuk) =
ΦR(XYuk) ≡ GR(XYuk), which is the full Green function of the fermion propagator. Hence, Eq. (215) yields

GR(XYuk)
∣
∣
l.l.

=
[
•
] ∣
∣
z→αΦR(Γ1)

. (216)

Using Eq. (139) for the generating function [ • ], we finally obtain

GR(XYuk)
∣
∣
l.l.

= 1−
√

1− 2αΦR(Γ1). (217)

Without this result, the computation of GR(XYuk)
∣
∣
l.l.

would be quite more complicated, even impossible. Computing

GR(XYuk)
∣
∣
l.l.

the ordinary way includes to calculate an infinite number of Feynman integrals with any number of

loops. For example, the graphs BΓ1
+

(

BΓ1
+

(

BΓ1
+ (. . .)

))

contribute to GR(XYuk)
∣
∣
l.l.

. Using our formula in Eq. (217),

we only need to compute the one-loop Feynman integral ΦR(Γ1) to derive the full leading log order Green function
GR(XYuk)

∣
∣
l.l.

.

2. Next-to-leading log expansion

The next-to-leading log order of Eq. (45) is

WYuk|n.l.l. =
∑

n≥1

(αnwYuk
n )

∣
∣
n.l.l.

. (218)

Contributing terms of the filtered words wn map to Ln−1 under renormalized Feynman rules since the next-to-leading

log order is ∝ αnLn−1. These are the full shuffle products a
�Θ (n−2)
1 �Θ a2 and a

�Θ (n−2)
1 �Θ Θ(a1, a1). Indeed,

renormalized Feynman rules are character-like. ΨR acting on a full shuffle product of n− 1 letters is ∝ Ln−1 in the
log-expansion, see Section III B. Thus,

WYuk

∣
∣
n.l.l.

=
∑

n≥2

(
[
n− 2 1

]
(αa1)

�Θ (n−2)
�Θ

(
α2a2

)
+

[
n− 2
2

]

(αa1)
�Θ (n−2)

�Θ

(
α2Θ(a1, a1)

)
)

. (219)

Acting with renormalized Feynman rules ΨR on both sides results in

ΨR (WYuk)
∣
∣
n.l.l.

=
∑

n≥2

(
[
n− 2 1

]
αn−2ΨR(a1)

n−2α2ΨR(a2) +

[
n− 2
2

]

αn−2ΨR(a1)
n−2α2ΨR(Θ(a1, a1))

)

=
[
• 1

] ∣
∣
z→αΨR(a1)

α2ΨR(a2) +

[
•
2

] ∣
∣
∣
∣
z→αΨR(a1)

α2ΨR(Θ(a1, a1)). (220)

Again, we write ΨR = ΦR ◦ Υ−1 and obtain the full next-to-leading log order renormalized Green function of the
Yukawa fermion propagator on the lhs. On the rhs, the only subtle point is that Θ(a1, a1) has no single corresponding
Feynman graph. However, we find the period

ΨR(Θ(a1, a1)) = ΦR ◦Υ−1(Θ(a1, a1)) = ΦR ◦Υ−1
(
(a1 �Θ a1)− 2Ba1+ (a1)

)
= ΦR(Γ1)

2 − 2ΦR

(

BΓ1
+ (Γ1)

)

. (221)

Thus,

GR(XYuk)
∣
∣
n.l.l.

=
[
• 1

] ∣
∣
z→αΦR(Γ1)

α2ΦR(Γ2) +

[
•
2

] ∣
∣
∣
∣
z→αΦR(Γ1)

α2
(

ΦR(Γ1)
2 − 2ΦR

(

BΓ1
+ (Γ1)

))

. (222)

Using the generating functions in Eqs. (147,155), we finally derive

GR(XYuk)
∣
∣
n.l.l.

=
α2

√

1− 2αΦR(Γ1)
log

(

1
√

1− 2αΦR(Γ1)

)(

ΦR(Γ2) + ΦR

(

BΓ1
+ (Γ1)

)

− 1

2
ΦR(Γ1)

2

)

. (223)

This is an enormous simplification: we only need to compute the one-loop Feynman integral ΦR(Γ1) as well as the two-

loop integrals ΦR(Γ2) and ΦR

(

BΓ1
+ (Γ1)

)

to calculate the full next-to-leading log order Green function GR(XYuk)
∣
∣
n.l.l.

.
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3. Next-to-next-to-leading log expansion

The next-to-next-to-leading log order of Eq. (45) is

WYuk|n.n.l.l. =
∑

n≥1

(αnwYuk
n )

∣
∣
n.n.l.l.

. (224)

Contributing terms of the filtered words wn must map to Ln−2 under renormalized Feynman rules since the next-
next-to-leading log order is ∝ αnLn−2. These are the full shuffle products

a
�Θ (n−3)
1 �Θ a3, a

�Θ (n−4)
1 �Θ a

�Θ 2
2 , (225)

a
�Θ (n−3)
1 �Θ Θ(a1, a1, a1), a

�Θ (n−3)
1 �Θ Θ(a1, a2), (226)

a
�Θ (n−4)
1 �Θ Θ(a1, a1)

�Θ 2, a
�Θ (n−4)
1 �Θ a2�Θ Θ(a1, a1), (227)

a
�Θ (n−3)
1 �Θ [a1, a2], a

�Θ (n−3)
1 �Θ [a1,Θ(a1, a1)]. (228)

¿From Eq. (224),

WYuk|n.n.l.l. =
∑

n≥0

(

[
n− 3 0 1

]
(αa1)

�Θ (n−3)
�Θ

(
α3a3

)
+
[
n− 4 2

]
(αa1)

�Θ (n−4)
�Θ

(
α2a2

)
�Θ 2

+

[
n− 3
3

]

(αa1)
�Θ (n−3)

�Θ

(
α3Θ(a1, a1, a1)

)
+

[
n− 3 0
1 1

]

(αa1)
�Θ (n−3)

�Θ

(
α3Θ(a1, a2)

)

+





n− 4
2
2



 (αa1)
�Θ (n−4)

�Θ

(
α2Θ(a1, a1)

)
�Θ 2

+

[
n− 4 1
2 0

]

(αa1)
�Θ (n−4)

�Θ

(
α2a2

)
�Θ

(
α2Θ(a1, a1)

)

+
[
n− 3

]

[a1,a2]
(αa1)

�Θ (n−3)
�Θ

(
α3[a1, a2]

)
+
[
n− 3

]

[a1,Θ(a1,a1)]
(αa1)

�Θ (n−3)
�Θ

(
α3[a1,Θ(a1, a1)]

)

)

.

(229)

Acting with renormalized Feynman rules ΨR on both sides results in

ΨR (WYuk)
∣
∣
n.n.l.l.

=

(

[
• 0 1

]
α3ΨR(a3) +

[
• 2

]
α4ΨR(a2)

2 +

[
•
3

]

α3ΨR(Θ(a1, a1, a1))+

[
• 0
1 1

]

α3ΨR(Θ(a1, a2))

+





•
2
2



α4ΨR(Θ(a1, a1))
2 +

[
• 1
2 0

]

α4ΨR(a2)ΨR(Θ(a1, a1))

+
[
•
]

[a1,a2]
α3ΨR([a1, a2]) +

[
•
]

[a1,Θ(a1,a1)]
α3ΨR([a1,Θ(a1, a1)])

)∣
∣
∣
∣
∣
z→αΨR(a1)

. (230)

We write ΨR = ΦR ◦ Υ−1 and obtain the full next-to-next-to-leading log order Green function on the lhs. On
the rhs, for example ΨR(a3) = ΦR(Γ3). However, the letters Θ(a1, a1, a1), Θ(a1, a2), [a1, a2], [a1,Θ(a1, a1)] have no
obvious corresponding Feynman graphs. We therefore write

Θ(a1, a1, a1) = 3Ba1+
(
Ba1+ (a1)

)
+

3

2
a1�Θ Θ(a1, a1)−

1

2
a1�Θ a1�Θ a1, (231)

Θ(a1, a2) = −Ba1+ (a2)−Ba2+ (a1) + a1�Θ a2, (232)

[a1, a2] =Ba1+ (a2)−Ba2+ (a1), (233)

[a1,Θ(a1, a1)] = 2Ba1+ (a1�Θ a1)−Ba1+
(
Ba1+ (a1)

)
+

1

2
a1 �Θ Θ(a1, a1)−

1

2
a1�Θ a1 �Θ a1. (234)
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Now, we act with ΨR = ΦR ◦Υ−1 and use Eq. (221). We thus, find the periods

ΨR(Θ(a1, a1, a1)) =3ΦR

(

BΓ1
+

(

BΓ1
+ (Γ1)

))

− 3ΦR(Γ1)ΦR

(

BΓ1
+ (Γ1)

)

+ΦR(Γ1)
3, (235)

ΨR(Θ(a1, a2)) = − ΦR

(

BΓ1
+ (Γ2)

)

− ΦR

(

BΓ2
+ (Γ1)

)

+ΦR(Γ1)ΦR(Γ2), (236)

ΨR([a1, a2]) =ΦR

(

BΓ1
+ (Γ2)

)

− ΦR

(

BΓ2
+ (Γ1)

)

, (237)

ΨR([a1,Θ(a1, a1)]) = 2ΦR

(

BΓ1
+ (Γ1 ∪ Γ1)

)

− ΦR

(

BΓ1
+

(

BΓ1
+ (Γ1)

))

− ΦR(Γ1)ΦR

(

BΓ1
+ (Γ1)

)

. (238)

Inserting these identities together with Eq.(221) into Eq. (230), we finally obtain the next-to-next-to-leading log order
Green function,

GR(XYuk)
∣
∣
n.n.l.l.

=α3

(

[
• 0 1

]
ΦR(Γ3) + α

[
• 2

]
ΦR(Γ2)

2

+

[
•
3

](

3ΦR

(

BΓ1
+

(

BΓ1
+ (Γ1)

))

− 3ΦR(Γ1)ΦR

(

BΓ1
+ (Γ1)

)

+ΦR(Γ1)
3
)

+

[
• 0
1 1

] (

−ΦR

(

BΓ1
+ (Γ2)

)

− ΦR

(

BΓ2
+ (Γ1)

)

+ΦR(Γ1)ΦR(Γ2)
)

+ α





•
2
2





(

ΦR(Γ1)
2 − 2ΦR

(

BΓ1
+ (Γ1)

))2

+ α

[
• 1
2 0

]

ΦR(Γ2)
(

ΦR(Γ1)
2 − 2ΦR

(

BΓ1
+ (Γ1)

))

+
[
•
]

[a1,a2]

(

ΦR

(

BΓ1
+ (Γ2)

)

− ΦR

(

BΓ2
+ (Γ1)

))

+
[
•
]

[a1,Θ(a1,a1)]

(

2ΦR

(

BΓ1
+ (Γ1 ∪ Γ1)

)

− ΦR

(

BΓ1
+

(

BΓ1
+ (Γ1)

))

− ΦR(Γ1)ΦR

(

BΓ1
+ (Γ1)

))
)∣
∣
∣
∣
∣
z→αΦR(Γ1)

. (239)

We refer to the second column of Table I for the explicit expressions of the generating functions. This shows the explicit
dependence of the full next-to-next-to-leading log order Green function GR(XYuk)

∣
∣
n.n.l.l.

on the Feynman graphs

Γ1, Γ2, BΓ1
+ (Γ1) , Γ3, BΓ1

+ (Γ2) , BΓ2
+ (Γ1) , BΓ1

+

(

BΓ1
+ (Γ1)

)

, BΓ1
+ (Γ1 ∪ Γ1) . (240)

These are at most, three-loop graphs.

Appendix A: Relations for the log-expansion of the QED photon self-energy

We relate the next-to{j}-leading log order to the first (j +1) terms of perturbation theory in the QED photon self-
energy Green function GR(XQED). There are two differences to the Yukawa propagator Green function. (Consider
the DSEs Eqs. (46,47). First, there are no insertion points in the one-loop primitive propagator graph. The sum in
Eq. (47) starts with j = 2 rather than j = 1 in Eq. (46). This will simplify the following calculations drastically.
Secondly, the term

(
2j−2+k

k

)
in Eq. (46) is replaced by

(
j−2+k
k

)
in Eq. (47). This will change the structure 1/

√
1− 2z

in the generating functions of Yukawa theory to 1/(1− z) in QED.
In the first part, we treat index-free matrices. The corresponding shuffle products do not contain [·, ·]-letters. We

repeat the same steps to derive the master differential equation as in Yukawa theory. The two mentioned differences
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in the respective DSEs Eqs. (46,47) change Eq. (137) to

M(z)′ =
∑

m∼M



−
∑

m′ 6=m

d

dz
z|m|−|m′|S(m,m′)m′z|m

′| + δ|m|1δnΘ(m)0 +
umv

T−1∑

j≥2

(1 − δm1j 0)

umv
T−j

∑

k≥1

(
j − 2 + k

k

)

×
(∗)
∑

z|m|−1−
∑

i |mi|S
(

m⊖ pj ,
⊕

i

mi

)

m1z
|m1|m2z

|m2| . . .mkz
|mk|



 , (A1)

(∗) : ti ≥ 1, i = 1 . . . k,

k∑

i=1

ti = umvT − j, umiv
T = ti,

∑

i

umi + upj = um. (A2)

This is an ordinary equation for M(z)′ and no differential equation because the sum starts with j = 2. We therefore
call Eq. (A1)master equation. We must integrate the master equation to obtainM(z) such thatM(0) = 0 (Eq. (138)).
Eqs. (130,131) remain valid,

M = M(z) =

m 6=(0)
∑

m∼M

mz|m|, m =
1

|m|!

(
d

dz

)|m|

M(z)
∣
∣
∣
z=0

. (A3)

Consider for example the case M(z) = [ • ]. The matrices m ∼ M belong to the shuffle products a�ΘN
1 . Since there

is no Ba1+ , we already know that [N ] = 0 for N > 1. In the master equation, all terms vanish except for δ|m|1δnΘ(m)0.

Integrating the remaining equation [ • ]
′
= 1 yields

[
•
]
= z, (A4)

which generates the matrices [N ] = δN 1 as expected (see Eq. (A3)).
In the following, we derive the generating functions up to next-to-next-to-leading log order for the QED photon

self-energy. As in Section IV, we consider the cases nΘ(m) = 0 and nΘ(m) 6= 0 separately. In Section A3, we treat
indexed matrices m.

1. Generating functions for index-free matrices with nΘ(m) = 0

Index-free matrices with nΘ(m) = 0 belong to shuffle products without Θ(·, ·)- and [·, ·]-letters. In full analogy to
the Yukawa propagator, only one row in M(z) reduces the master equation to

M(z)′ = δ|M|0 + δ|M|1 +

∞∑

j≥2,k≥1

(1− δM1j 0)

(
j − 2 + k

k

) (∗∗)
∑

M1(z)M2(z) . . .Mk(z), (A5)

where

(∗∗) : M1 ⊕M2 ⊕ . . .⊕Mk ⊕ Pj = M. (A6)

a. The generating function [ • 1 ]

Let M(z) = [ • 1 ]. The sum in Eq. (A5) is non-zero only for j = 2. Then, Pj = P2 = M and Mi = [ • ] = z ∀i ≤ k.
We obtain

[
• 1

]′
= 1 +

∑

k≥1

[
•
]k

=
1

1− z
⇒
[
• 1

]
= log

(
1

1− z

)

. (A7)

b. The generating function [ • 0 1 ]

Let M(z) = [ • 0 1 ]. The sum in Eq. (A5) is non-zero only for j = 3. Then, Pj = P3 = M and Mi = [ • ] = z
∀i ≤ k. We obtain

[
• 0 1

]′
= 1 +

∑

k≥1

(
k + 1
k

)
[
•
]k

=
1

(1− z)2
⇒
[
• 0 1

]
= −1 +

1

1− z
. (A8)
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The term −1 is the integration constant such that [ • 0 1 ](0) = 0.

c. The generating function [ • 2 ]

Let M(z) = [ • 2 ]. The sum in Eq. (A5) is non-zero only for j = 2. Then, Pj = P2. Eq. (A6) implies that for one
i ≤ k, Mi = [ • 1 ] = log (1/(1− z)) and for all other i, Mi = [ • ] = z. We obtain

[
• 2

]′
=
∑

k≥1

k
[
•
]k−1 [• 1

]
=

1

(1 − z)2
log

(
1

1− z

)

⇒
[
• 2

]
= 1− 1

1− z
+

1

1− z
log

(
1

1− z

)

. (A9)

2. Generating functions for index-free matrices with nΘ(m) 6= 0

We now treat full shuffle products that contain Θ(·, ·)-letters but no [·, ·]-letters. Here, we have to proceed from the
master equation Eq. (A1). The following generating functions simplify to zero,

[
•
2

]

=

[
•
3

]

=





•
2
2



 = 0. (A10)

The reason is that the sum in the master equation starts with j = 2.

a. The generating function [ • 0
1 1 ]

There is another simplification due to the missing (j = 1)-term. If the first row of a matrix m is of the form
[N 0 0 ... ] with arbitrary N , then the second (and more complicated) term on the rhs of the master equation Eq. (A1)
yields zero. For example for the next-to-next-to-leading log generating function [ • 0

1 1 ], Eq. (A1) reduces to

[
• 0
1 1

]′

=

∞∑

N=0

(

− d

dz
z(N+1)−(N+2)S

([
N 0
1 1

]

,
[
N + 1 1

]
)
[
N + 1 1

]
zN+2

)

=

∞∑

N=0

(

− d

dz

1

z
(N + 1)

[
N + 1 1

]
zN+2

)

=

∞∑

N=0

(

− d

dz

1

z
z2

d

dz

1

z

[
N + 1 1

]
zN+2

)

= − d

dz
z
d

dz

1

z

[
• 1

]
. (A11)

Integration with suitable initial conditions and using Eq. (A7) result in

[
• 0
1 1

]

= − d

dz

[
• 1

]
+

1

z

[
• 1

]
= − 1

1− z
+

1

z
log

(
1

1− z

)

. (A12)
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b. The generating function [ • 1
2 0 ]

For M(z) = [ • 1
2 0 ], the master equation Eq. (A1) reduces to

[
• 1
2 0

]′

=

∞∑

N=0

(

− d

dz
z(N+2)−(N+3)S

([
N 1
2 0

]

,
[
N + 2 1

]
)
[
N + 2 1

]
zN+3

+
∑

k≥1

∑

∑

i ti=(N+4)−2

z(N+2)−1−
∑

i tiS
([
N
2

]

,
[
N + 2

]
)
[
t1
]
zt1 . . .

[
tk
]
ztk

)

=

∞∑

N=0

(

− d

dz

1

z

(
N + 2

2

)
[
N + 2 1

]
zN+3 +

∑

k≥1

∑

∑

i ti=N+2

1

z

(
N + 2

2

)
[
t1
]
zt1 . . .

[
tk
]
ztk

)

=

∞∑

N=0

(

− d

dz

1

z

z3

2

d2

dz2
1

z

[
N + 2 1

]
zN+3 +

∑

k≥1

∑

∑

i ti=N+2

1

z

z2

2

d2

dz2
[
t1
]
zt1 . . .

[
tk
]
ztk

)

=− d

dz

z2

2

d2

dz2
1

z

[
• 1

]
+
∑

k≥1

z

2

d2

dz2
[
•
]k

=
d

dz

(

−z
2

2

d2

dz2
1

z
log

(
1

1− z

)

+
z

2

d

dz

1

1− z
− 1

2

1

1− z

)

. (A13)

In the last line, we used Eqs. (A4,A7). We integrate with suitable initial conditions and obtain

[
• 1
2 0

]

=
1

2
+

1

2(1− z)
− 1

z
log

(
1

1− z

)

. (A14)

3. Generating functions for indexed matrices

As in Yukawa theory, we only calculate the generating functions [ • ][a1,a2] and [ • ][a1,Θ(a1,a1)]
that belong to the

shuffle products a�ΘN
1 �Θ [a1, a2] and a

�ΘN
1 �Θ [a1,Θ(a1, a1)].

We find

[
•
]

[a1,Θ(a1,a1)]
= 0 (A15)

because the sum in Eq. (47) starts with j = 2.
For the generating function [ • ][a1,a2], Eq. (201) reduces to

∫
[
•
]

[a1,a2]
dz = −z

2

2

d

dz

1

z

[
• 1

]
(A16)

because in Eq. (182), the first two terms are missing. Here, the derivation of the generating function is even simpler
than in all previous cases. One only needs to differentiate instead of integrating or solving a differential equation.
We differentiate Eq. (A16) and use the explicit form of [ • 1 ] in Eq. (A7). This results in

[
•
]

[a1,a2]
=

1

2(1− z)
− 1

2(1− z)2
. (A17)

4. Results

We repeat the steps in Section IVF to write the next-to{j}-leading log order as a function of terms up to O(j + 1)
in the log-expansion (Eq. (1)). We show this up to j ≤ 2 and use Eqs. (216,222,239), which are universally valid (in
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the QED case below several terms vanish):

GR(XYuk)
∣
∣
l.l.

=
[
•
]
|z→αΦR(Γ1), (A18)

GR(XYuk)
∣
∣
n.l.l.

=
[
• 1

] ∣
∣
z→αΦR(Γ1)

α2ΦR(Γ2) +

[
•
2

] ∣
∣
∣
∣
z→αΦR(Γ1)

α2
(

ΦR(Γ1)
2 − 2ΦR

(

BΓ1
+ (Γ1)

))

, (A19)

GR(XYuk)
∣
∣
n.n.l.l.

=α3

(

[
• 0 1

]
ΦR(Γ3) + α

[
• 2

]
ΦR(Γ2)

2

+

[
•
3

](

3ΦR

(

BΓ1
+

(

BΓ1
+ (Γ1)

))

− 3ΦR(Γ1)ΦR

(

BΓ1
+ (Γ1)

)

+ΦR(Γ1)
3
)

+

[
• 0
1 1

] (

−ΦR

(

(BΓ1
+ (Γ2)

)

− ΦR

(

BΓ2
+ (Γ1)

)

+ΦR(Γ1)ΦR(Γ2)
)

+ α





•
2
2





(

ΦR(Γ1)
2 − 2ΦR

(

BΓ1
+ (Γ1)

))2

+ α

[
• 1
2 0

]

ΦR(Γ2)
(

ΦR(Γ1)
2 − 2ΦR

(

BΓ1
+ (Γ1)

))

+
[
•
]

[a1,a2]

(

ΦR

(

BΓ1
+ (Γ2)

)

− ΦR

(

BΓ2
+ (Γ1)

))

+
[
•
]

[a1,Θ(a1,a1)]

(

2ΦR

(

BΓ1
+ (Γ1 ∪ Γ1)

)

− ΦR

(

BΓ1
+

(

BΓ1
+ (Γ1)

))

− ΦR(Γ1)ΦR

(

BΓ1
+ (Γ1)

))
)∣
∣
∣
∣
∣
z→αΦR(Γ1)

. (A20)

For the leading log and next-to-leading log expansions, we use the explicit generating functions in the third column
of Table I. For the next-to-next-to-leading log order, we only discard the zero functions. Thus, we finally obtain

GR(XQED)
∣
∣
l.l.

=αΦR(Γ1), (A21)

GR(XQED)
∣
∣
n.l.l.

=α2ΦR(Γ2) log

(
1

1− αΦR(Γ1)

)

, (A22)

GR(XQED)
∣
∣
∣
n.n.l.l.

=α3

(

[
• 0 1

]
ΦR(Γ3) + α

[
• 2

]
ΦR(Γ2)

2

+

[
• 0
1 1

](

−ΦR

(

(BΓ1
+ (Γ2)

)

− ΦR

(

BΓ2
+ (Γ1)

)

+ΦR(Γ1)ΦR(Γ2)
)

+ α

[
• 1
2 0

]

ΦR(Γ2)
(

ΦR(Γ1)
2 − 2ΦR

(

BΓ1
+ (Γ1)

))

+
[
•
]

[a1,a2]

(

ΦR

(

BΓ1
+ (Γ2)

)

− ΦR

(

BΓ2
+ (Γ1)

))
)∣
∣
∣
∣
∣
z→αΦR(Γ1)

. (A23)

See the third column of Table I for the remaining generating functions.

Appendix B: Some multiplicities of shuffles in filtered words

We list some multiplicities m that are generated by the generating functions obtained so far, see Table I. We
treat the Yukawa fermion propagator and the QED photon self-energy separately. If sequences are known, we say so
explicitly and refer to [16].

1. Yukawa fermion propagator

The generating functions that are necessary to simplify the log-expansion of the Yukawa fermion propagator up to
next-to-next-to-leading log order are collected in the second column of Table I. Some of the corresponding multiplicities
are collected in Table II.
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P
P
P
P
P
PP

m
N

0 1 2 3 4 5

[

N
]

0 1 1
2

1
2

5
8

7
8

[

N 1
]

1 2 23
6

22
3

563
40

1627
60

[

N
2

]

− 1
2

−1 − 23
12

− 11
3

− 563
80

− 1627
120

[

N 0 1
]

1 3 15
2

35
2

315
8

693
8

[

N 2
]

3
2

41
6

265
12

3707
60

114961
720

219803
560

[

N
3

]

1
2

11
6

61
12

253
20

7141
240

113623
1680

[

N 0
1 1

]

−2 − 20
3

− 53
3

− 214
5

− 5933
60

− 46597
210





N
2
2





1
24

3
8

389
240

1291
240

314431
20160

93403
2240

[

N 1
2 0

]

− 5
6
− 25

6
− 857

60
− 833

20
− 559579

5040
− 156603

560

[

N
]

[a1,a2]
−1 −6 − 71

3
− 155

2
− 9129

40
− 18823

30

[

N
]

[a1,Θ(a1,a1)]
1
2

3 71
6

155
4

9129
80

18823
60

TABLE II: List of some multiplicities m occurring in the filtration of the Yukawa fermion propagator graphs. These are derived
from the generating functions up to next-to-next-to-leading log order in the second column in Table I.

[ • ] generates the exponential sequence of double factorial odd numbers A001147,

[
N
]
=

(2N − 3)(2N − 5)(2N − 7) . . . 1

N !
=:

(2N − 3)!!

N !
. (B1)

Furthermore, [ • 1 ] generates the exponential series for the scaled sums of odd reciprocals A004041. The formula is

[
N 1

]
=

(2N + 1)!!

(N + 1)!

N∑

k=0

1

2k + 1
. (B2)

We finally find

[
N 0 1

]
=

(2N + 2)!

N !(N + 1)!2N+1
(B3)

(exponential sequence A001879). As far as we are concerned, there are no known sequences for the other rationals in
Table II.

2. QED photon self-energy

The generating functions that are necessary to simplify the log-expansion of the photon self-energy Green function
up to next-to-next-to-leading log order are given in the third column of Table I. Some of the corresponding rationals
are listed in Table III. The reader immediately checks that these numbers look much simpler than in the Yukawa
case. Indeed, four rows only contain zero numbers (the first line is almost zero, [N ] = δN 1).
We find the trivial sequences

[
N 0 1

]
= 1,

[
N 0
1 1

]

= −N + 1

N + 2
,

[
N 1
2 0

]

=
N + 1

2(N + 3)
,

[
N
]

[a1,a2]
= −N + 1

2
. (B4)



42

P
P
P
P
P

PP
m

N
0 1 2 3 4 5

[

N
]

1 0 0 0 0 0

[

N 1
]

1 1
2

1
3

1
4

1
5

1
6

[

N
2

]

0 0 0 0 0 0

[

N 0 1
]

1 1 1 1 1 1

[

N 2
]

1
2

5
6

13
12

77
60

29
20

223
140

[

N
3

]

0 0 0 0 0 0

[

N 0
1 1

]

− 1
2
− 2

3
− 3

4
− 4

5
− 5

6
− 6

7





N
2
2



 0 0 0 0 0 0

[

N 1
2 0

]

1
6

1
4

3
10

1
3

5
14

3
8

[

N
]

[a1,a2]
− 1

2
−1 − 3

2
−2 − 5

2
−3

[

N
]

[a1,Θ(a1,a1)]
0 0 0 0 0 0

TABLE III: List of some multiplicities m occurring in the filtration of the QED photon self-energy graphs. These are derived
from the generating functions up to next-to-next-to-leading log order in the third column in Table I

One also finds that [N 2 ] is the exponential series of the generalized Stirling numbers A001705,

[
N 2

]
=

1

N + 2

N∑

k=0

k + 1

N + 1− k
. (B5)
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