Enumeration of m-Endomorphisms

Louis Rubin and Brian Rushton

July 22, 2015

Abstract

An m-endomorphism on a free semigroup is an endomorphism that sends every generator to a word of length $\leq m$. Two m-endomorphisms are combinatorially equivalent if they are conjugate under an automorphism of the semigroup. In this paper, we specialize an argument of N . G. de Bruijn to produce a formula for the number of combinatorial equivalence classes of m-endomorphisms on a rank- n semigroup. From this formula, we derive several little-known integer sequences.

1 Acknowledgments

We thank the anonymous referee, whose numerous observations and suggestions led to substantial revision. This research was supported by Temple University's Undergraduate Research Program.

2 Introduction

Let D be a nonempty set of symbols, and let D^{+}be the set of all finite strings of one or more elements of D. That is, $D^{+}=\left\{d_{1} \ldots d_{k} \mid k \in \mathbb{N}, d_{i} \in D\right\}$. Paired with the operation of string concatenation, D^{+}forms the free semigroup on D. If $d_{1}, \ldots, d_{k} \in D$, then we refer to the natural number k as the length of the string $d_{1} \ldots d_{k}$. Denote the length of $W \in D^{+}$by $|W|$.

By a semigroup endomorphism (or, simply, an endomorphism) on D^{+}, we mean a mapping $\phi: D^{+} \rightarrow D^{+}$satisfying $\phi\left(W_{1} W_{2}\right)=\phi\left(W_{1}\right) \phi\left(W_{2}\right)$ for all $W_{1}, W_{2} \in D^{+}$. Note that if ϕ is an endomorphism on D^{+}and $d_{1}, \ldots, d_{k} \in D$, then $\phi\left(d_{1} \ldots d_{k}\right)=\phi\left(d_{1}\right) \ldots \phi\left(d_{k}\right)$; this shows that an endomorphism on D^{+}is determined by its action on the elements of D. On the other hand, any mapping $f: D \rightarrow D^{+}$extends uniquely to the endomorphism $\phi_{f}: D^{+} \rightarrow D^{+}$defined by $\phi_{f}\left(d_{1} \ldots d_{k}\right)=f\left(d_{1}\right) \ldots f\left(d_{k}\right)$, and it is straightforward to verify that ϕ_{f} is an automorphism (that is, a bijective endomorphism) precisely when f is a bijection on D.
Example 1. Let $D=\{a, b\}$, and let $f: D \rightarrow D^{+}$be defined by $f(a)=a b$ and $f(b)=a$. Then, for example,

$$
\phi_{f}(a b a b a)=f(a) f(b) f(a) f(b) f(a)=a b a a b a a b
$$

Let $\operatorname{End}\left(D^{+}\right)$be the collection of all endomorphisms on D^{+}, and let $m \in \mathbb{N}$. Then $\phi \in \operatorname{End}\left(D^{+}\right)$is called an \boldsymbol{m}-endomorphism if and only if $|\phi(d)| \leq m$ for all $d \in D$. Note that the mapping ϕ_{f} from Example 1 is an m-endomorphism for all $m \geq 2$. Now let Γ be the set of all m-endomorphisms on D^{+}. That is,

$$
\Gamma=\left\{\phi \in \operatorname{End}\left(D^{+}\right): \phi(D) \subseteq R\right\}
$$

where $R=\left\{W \in D^{+}:|W| \leq m\right\}$. Consider the set Ω consisting of all mappings $f: D \rightarrow R$. Then we may write

$$
\Gamma=\left\{\phi_{f}: f \in \Omega\right\}
$$

We can put Γ into one-to-one correspondence with Ω by sending each m endomorphism to its restriction to D. Moreover, if $|D|=n \in \mathbb{N}$, then the size of these sets is easily evaluated in view of the fact that $|R|=\sum_{i=1}^{m} n^{i}$. In particular, if $n>1$, then $|R|=\frac{n^{m+1}-n}{n-1}$, and

$$
|\Gamma|=|\Omega|=\left(\frac{n^{m+1}-n}{n-1}\right)^{n}
$$

However, in this paper we shall be interested in counting the number of classes of m-endomorphisms under a particular equivalence relation. To motivate our definition of equivalence on Γ, we define a relation \sim on Ω as follows:

$$
f_{1} \sim f_{2} \Longleftrightarrow \text { there exists a bijection } g: D \rightarrow D \text { such that } f_{2} \circ g=\phi_{g} \circ f_{1} .
$$

As an exercise, the reader may wish to verify that \sim satisfies the reflexive, symmetric, and transitive properties required of any equivalence relation. In §2.1, however, it will be shown that \sim is a specific instance of a well-known equivalence relation induced by a group acting on a nonempty set.

Example 2. Let f be as in Example 1 (with $D=\{a, b\}$). Consider the bijection $g: D \rightarrow D$ defined by $g(a)=b$ and $g(b)=a$. Now let $f_{1}: D \rightarrow D^{+}$be given by $f_{1}(a)=b$ and $f_{1}(b)=b a$. Then
$\left(f_{1} \circ g\right)(a)=f_{1}(g(a))=f_{1}(b)=b a=g(a) g(b)=\phi_{g}(a b)=\phi_{g}(f(a))=\left(\phi_{g} \circ f\right)(a)$
and

$$
\left(f_{1} \circ g\right)(b)=f_{1}(g(b))=f_{1}(a)=b=g(a)=\phi_{g}(a)=\phi_{g}(f(b))=\left(\phi_{g} \circ f\right)(b),
$$

which shows that $f \sim f_{1}$.

Remark 1. Perhaps a more intuitive illustration of \sim is as follows. If we let f and f_{1} be as in the preceding example, then the respective graphs of f and f_{1} are $\{(a, a b),(b, a)\}$ and $\{(a, b),(b, b a)\}$. But the graph of f_{1} can be obtained by applying the bijection g to each element of D that appears in the graph of f. In other words,

$$
\{(g(a), g(a) g(b)),(g(b), g(a))\}=\{(a, b),(b, b a)\}
$$

Since the graphs of f and f_{1} are "the same" up to a permutation of a and b, we wish to consider these mappings equivalent, and \sim provides the desired equivalence relation.

Extending \sim to an equivalence relation on Γ leads to the following definition. If $f, h \in \Omega$, then ϕ_{f} is combinatorially equivalent to ϕ_{h} if and only if there exists a bijection $g: D \rightarrow D$ such that $\phi_{h} \circ \phi_{g}=\phi_{g} \circ \phi_{f}$. To state precisely the aim of this paper: Given a set of symbols D with $|D|=n$, we wish to produce a formula for the number of equivalence classes in Γ under the relation of combinatorial equivalence. To this end, we shall specialize an argument of N . G. de Bruijn (namely, that for Theorem 1 in [1]) to produce a formula for the number of classes in Ω under the relation \sim. But it is easy to check that for all $f, h \in \Omega, f \sim h$ if and only if ϕ_{f} is combinatorially equivalent to ϕ_{h}. Hence, there is a well-defined correspondence given by

$$
[f] \leftrightarrow\left[\phi_{f}\right]
$$

between the equivalence classes in Ω and those in Γ, and it follows that our formula will also provide the number of m-endomorphisms on D^{+}up to combinatorial equivalence. Moreover, once this formula is obtained, we can fix one of the variables n, m and let the other run through the natural numbers in order to derive integer sequences, many of which appear to be little-known.

2.1 Group Actions

For the reader's convenience, we review group actions. The following material (through Proposition 1) is paraphrased from [5]. Let G be a group and S a nonempty set. A left action of G on S is a function

$$
\begin{aligned}
& : G \times S \rightarrow S, \\
& \cdot(g, s) \rightarrow g \cdot s
\end{aligned}
$$

such that for all $g_{1}, g_{2} \in G$ and for all $s \in S$,

1. $\left(g_{1} g_{2}\right) \cdot s=g_{1} \cdot\left(g_{2} \cdot s\right)$ (where $g_{1} g_{2}$ denotes the product of g_{1}, g_{2} in G), and
2. $e \cdot s=s$ (where e is the identity element of G).

A left action induces the well-known equivalence relation E on the set S given by

$$
(a, b) \in E \Longleftrightarrow g \cdot a=b \text { for some } g \in G
$$

for all $a, b \in S$. We refer to the equivalence classes under this relation as the orbits of G on S. The following result (known as "Burnside's Lemma") gives an expression for the number of these, provided that G and S are finite.

Proposition 1. 5] Let S be a finite, nonempty set, and suppose there is a left action of a finite group G on S. Then the number of orbits of G on S is

$$
\frac{1}{|G|} \sum_{g \in G}|\{s \in S: g \cdot s=s\}| .
$$

Thus, the number of orbits of G on S equals the average number of elements of S that are "fixed" by an element of G. We now show that the relation \sim from $\S 2$ is a specific instance of the relation E described above. To see this, let D be a finite nonempty set, and let $\operatorname{Sym}(D)$ denote the symmetric group on D (i.e., the group of all bijections on D). Then $\operatorname{Sym}(D)$ acts on the set Ω according to the rule

$$
g \cdot f=\phi_{g} \circ f \circ g^{-1}
$$

for all $g \in \operatorname{Sym}(D), f \in \Omega$. (One can easily verify that • defined in this way is indeed a left action.) Now, for any $f_{1}, f_{2} \in \Omega$, we have

$$
\begin{aligned}
f_{1} \sim f_{2} & \Longleftrightarrow f_{2} \circ g=\phi_{g} \circ f_{1} \text { for some } g \in \operatorname{Sym}(D) \\
& \Longleftrightarrow f_{2}=\phi_{g} \circ f_{1} \circ g^{-1} \text { for some } g \in \operatorname{Sym}(D) \\
& \Longleftrightarrow g \cdot f_{1}=f_{2} \text { for some } g \in \operatorname{Sym}(D) \\
& \Longleftrightarrow\left(f_{1}, f_{2}\right) \in E .
\end{aligned}
$$

It follows that the equivalence classes in Ω under the relation \sim are just the orbits of $\operatorname{Sym}(D)$ on Ω. Enumerating the elements of $\operatorname{Sym}(D)$ by $g_{1}, \ldots, g_{n!}$, we find the number of orbits to be

$$
\begin{equation*}
\frac{1}{n!} \sum_{r=1}^{n!}\left|\left\{f \in \Omega: f \circ g_{r}=\phi_{g_{r}} \circ f\right\}\right| . \tag{1}
\end{equation*}
$$

For any permutation g of a finite set, and for each natural number j, let $c(g, j)$ denote the number of cycles of length ${ }^{1} j$ occurring in the cycle decomposition of g. (This notation comes from [1].) The quantities $c(g, j)$ will play a role in the evaluation of $\left|\left\{f \in \Omega: f \circ g_{r}=\phi_{g_{r}} \circ f\right\}\right|$, which occurs in the next section. Our evaluation is a modification of de Bruijn's counting argument in $\$ 5.12$ of 2 .

[^0]
3 Main Results

We now produce a formula for the number of equivalence classes in Ω under the relation \sim. Let D be a finite set, and suppose that $g \in \operatorname{Sym}(D)$ is the product of disjoint cycles of lengths $k_{1}, k_{2}, \ldots, k_{\ell}$, where $k_{1} \leq k_{2} \leq \ldots \leq k_{\ell}$. Then the sequence $k_{1}, k_{2}, \ldots, k_{\ell}$ is called the cycle type of g. For example, if $D=\{a, b, c, d, e\}$, then the permutation $g=(a)(b, c)(d, e)$ has cycle type $1,2,2$. The following lemma will be useful.

Lemma 1. Let D be a finite set, and let $g \in \operatorname{Sym}(D)$ have cycle type $k_{1}, k_{2}, \ldots, k_{\ell}$. For each $1 \leq i \leq \ell$, select a single $d_{i} \in D$ from the cycle corresponding to k_{i}. (Thus, k_{i} is the smallest natural number such that $g^{k_{i}}\left(d_{i}\right)=d_{i}$.) Now suppose that $f \in \Omega$. Then $f \circ g=\phi_{g} \circ f$ if and only if for each $1 \leq i \leq \ell$, the following holds:

1. $\left(f \circ g^{j}\right)\left(d_{i}\right)=\left(\phi_{g}^{j} \circ f\right)\left(d_{i}\right)$ for all $j \in \mathbb{N}$.
2. $f\left(d_{i}\right)$ is of the form $d_{1}^{\prime} \ldots d_{k \leq m}^{\prime}$, where $d_{1}^{\prime}, \ldots, d_{k}^{\prime} \in D$ each belong to a cycle in g whose length divides k_{i}.

Proof. First assume that $f \circ g=\phi_{g} \circ f$. Then condition 1 follows from an inductive argument. But $f\left(d_{i}\right)=f\left(g^{k_{i}}\left(d_{i}\right)\right)=\phi_{g}^{k_{i}}\left(f\left(d_{i}\right)\right)$. Write $f\left(d_{i}\right)=d_{1}^{\prime} \ldots d_{k}^{\prime}$, where $d_{1}^{\prime}, \ldots, d_{k}^{\prime} \in D$ and $k \leq m$. Then

$$
d_{1}^{\prime} \ldots d_{k}^{\prime}=\phi_{g}^{k_{i}}\left(d_{1}^{\prime} \ldots d_{k}^{\prime}\right)=g^{k_{i}}\left(d_{1}^{\prime}\right) \ldots g^{k_{i}}\left(d_{k}^{\prime}\right)
$$

In particular, for each $1 \leq t \leq k$, we have $d_{t}^{\prime}=g^{k_{i}}\left(d_{t}^{\prime}\right)$. This implies that

$$
\left(d_{t}^{\prime}, g\left(d_{t}^{\prime}\right), g^{2}\left(d_{t}^{\prime}\right), \ldots, g^{k_{i}-1}\left(d_{t}^{\prime}\right)\right)
$$

is a cycle whose length divides k_{i}. The conclusion follows.
Conversely, suppose that condition 1 holds. (Condition 2 is superfluous here.) Let $d \in D$. Then there exist $i, j \in \mathbb{N}$ such that $d=g^{j}\left(d_{i}\right)$. Now,

$$
\begin{aligned}
f(g(d)) & =f\left(g\left(g^{j}\left(d_{i}\right)\right)\right) \\
& =f\left(g^{1+j}\left(d_{i}\right)\right) \\
& =\phi_{g}^{1+j}\left(f\left(d_{i}\right)\right) \\
& =\phi_{g}\left(\phi_{g}^{j}\left(f\left(d_{i}\right)\right)\right) \\
& =\phi_{g}\left(f\left(g^{j}\left(d_{i}\right)\right)\right) \\
& =\phi_{g}(f(d)) .
\end{aligned}
$$

Therefore, $f \circ g=\phi_{g} \circ f$, so the proof is complete.
Once again, suppose that $|D|=n$, and label the elements of $\operatorname{Sym}(D)$ by $g_{1}, \ldots, g_{n!}$. For each $1 \leq r \leq n$!, we can find the number of $f \in \Omega$ satisfying

$$
\begin{equation*}
f \circ g_{r}=\phi_{g_{r}} \circ f \tag{2}
\end{equation*}
$$

Suppose that g_{r} has cycle type $k_{r 1}, k_{r 2}, \ldots, k_{r \ell_{r}}$. For each $1 \leq i \leq \ell_{r}$, select a single element $d_{r i} \in D$ from the cycle corresponding to $k_{r i}$. Then Lemma 1 implies that any $f \in \Omega$ satisfying (2) is determined by its values on each $d_{r i}$. Hence, to find the number of f satisfying (2), we need only count the number of possible images of $d_{r i}$ under such an f, and then take the product over all i. But the m or fewer elements of D comprising the string $f\left(d_{r i}\right)$ must each belong to a cycle in the decomposition of g_{r} whose length divides $k_{r i}$. For each $1 \leq k \leq m$, there are

$$
\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}
$$

choices of $f\left(d_{r i}\right)$ such that $\left|f\left(d_{r i}\right)\right|=k$. Hence, there are

$$
\sum_{k=1}^{m}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}
$$

total choices of $f\left(d_{r i}\right)$. Taking the product over all i, it follows that the number of f satisfying (2) is

$$
\begin{equation*}
\prod_{i=1}^{\ell_{r}}\left(\sum_{k=1}^{m}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}\right) \tag{3}
\end{equation*}
$$

Thus, we've evaluated $\left|\left\{f \in \Omega: f \circ g_{r}=\phi_{g_{r}} \circ f\right\}\right|$, and putting together (1) and (3) gives an expression for the number of equivalence classes in Ω under the relation \sim. Recalling that these classes are in one-to-one correspondence with the classes in Γ under the relation of combinatorial equivalence, we obtain our main result:

Theorem 1. If $|D|=n$, then the number of m-endomorphisms on D^{+}, up to combinatorial equivalence, is the value of

$$
\begin{equation*}
\frac{1}{n!} \sum_{r=1}^{n!}\left(\prod_{i=1}^{\ell_{r}}\left(\sum_{k=1}^{m}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}\right)\right) \tag{4}
\end{equation*}
$$

where $g_{1}, \ldots, g_{n!}$ are the elements of $\operatorname{Sym}(D)$, and $k_{r 1}, \ldots, k_{r \ell_{r}}$ is the cycle type of g_{r}.

Example 3. Let $D=\{a, b\}$. We find the number of classes of 1-endomorphisms on D^{+}. The elements of $\operatorname{Sym}(D)$ (in cycle notation) are $g_{1}=(a)(b)$ and $g_{2}=$ (a, b). Evidently, $c\left(g_{1}, 1\right)=2, c\left(g_{2}, 1\right)=0$, and $c\left(g_{2}, 2\right)=1$. Using Theorem 1, there are

$$
\begin{aligned}
\frac{1}{2}\left(c\left(g_{1}, 1\right)^{2}+2 c\left(g_{2}, 2\right)\right) & =\frac{1}{2}\left(2^{2}+2\right) \\
& =3
\end{aligned}
$$

classes of 1-endomorphisms on D^{+}. These are given by

$$
\left\{\begin{array}{lll}
a & \rightarrow & a \\
b & \rightarrow & b
\end{array}\right\},\left\{\begin{array}{lll}
a & \rightarrow & b \\
b & \rightarrow & a
\end{array}\right\}, \text { and }\left\{\begin{array}{lllll}
a & \rightarrow & a \\
b & \rightarrow & a
\end{array} \equiv \begin{array}{lll}
a & \rightarrow & b \\
b & \rightarrow & b
\end{array}\right\} .
$$

We can extend the result of Example 3 by fixing $n=2$ and letting m be arbitrary. From (4), we find that the number of classes m-endomorphisms on D^{+}, where $|D|=2$, is

$$
\frac{1}{2}\left(\left(2^{m+1}-2\right)^{2}+\left(2^{m+1}-2\right)\right)
$$

Running m through the natural numbers, we obtain values $3,21,105,465,1953, \ldots$. This is the sequence A134057 in the On-line Encyclopedia of Integers. (See [3].) However, for $n=3$, the number of classes of m-endomorphisms becomes

$$
\frac{1}{6}\left(\left(\frac{3^{m+1}-3}{2}\right)^{3}+3 m\left(\frac{3^{m+1}-3}{2}\right)+2\left(\frac{3^{m+1}-3}{2}\right)\right)
$$

Letting $m=1,2,3,4, \ldots$ gives values $7,304,9958,288280, \ldots$. This sequence appears to be little-known, and has been submitted by the authors to the OEIS.

3.1 An Alternative Formulation of Theorem 1

We now present a slight rewording of Theorem 1. In order to compute the number of equivalence classes of m-endomorphisms (where $|D|=n$), we need not, in practice, consider each element of $\operatorname{Sym}(D)$ individually. Rather, we need only consider the cycle types of these permutations. The following well-known result gives the number of permutations in $\operatorname{Sym}(D)$ of a given cycle type.

Proposition 2. 4] Let $|D|=n$, and let $g \in \operatorname{Sym}(D)$. Suppose that $m_{1}, m_{2}, \ldots, m_{s}$ are the distinct integers appearing in the cycle type of g. For each $j \in\{1,2, \ldots, s\}$, abbreviate $c_{j}=c\left(g, m_{j}\right)$. Let C_{g} be the set of all permutations in $\operatorname{Sym}(D)$ whose cycle type is that of g. Then

$$
\begin{equation*}
\left|C_{g}\right|=\frac{n!}{\prod_{j=1}^{s} c_{j}!m_{j}^{c_{j}}} \tag{5}
\end{equation*}
$$

For convenience, we shall say that $g \in \operatorname{Sym}(D)$ fixes the mapping $f \in \Omega$ if and only if $f \circ g=\phi_{g} \circ f$. Now, two bijections in $\operatorname{Sym}(D)$ with the same cycle type must fix the same number of $f \in \Omega$. Therefore, in order to derive an expression for the number of classes of m-endomorphisms on D^{+}, we can select a single representative in $\operatorname{Sym}(D)$ of each possible cycle type, then determine the number of $f \in \Omega$ fixed by each representative using expression (3), multiply
this number by the corresponding value of (5), and then sum up over all of our representatives and divide by $n!$. But the cycle types in $\operatorname{Sym}(D)$ are precisely the integer partitions of n, namely, the nondecreasing sequences of natural numbers whose sum is n. If $p(n)$ denotes the number of integer partitions of n, then we may restate Theorem 1 as follows.

Corollary 1. Let $|D|=n$, and suppose that $g_{1}, \ldots, g_{p(n)} \in \operatorname{Sym}(D)$ have distinct cycle types. Then the number of m-endomorphisms on D^{+}, up to combinatorial equivalence, is the value of

$$
\begin{equation*}
\frac{1}{n!} \sum_{r=1}^{p(n)}\left(\left|C_{g_{r}}\right| \prod_{i=1}^{\ell_{r}}\left(\sum_{k=1}^{m}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}\right)\right) \tag{6}
\end{equation*}
$$

where $k_{r 1}, \ldots, k_{r \ell_{r}}$ is the cycle type of g_{r}, and $C_{g_{r}}$ is as in Proposition 2.
Example 4. To illustrate Corollary 1, we find the number of classes of m endomorphisms when $|D|=4$. Let $D=\{a, b, c, d\}$. As previously mentioned, the cycle types in $\operatorname{Sym}(D)$ are the integer partitions of 4 . There are five such partitions:

$$
\begin{aligned}
4 & =1+1+1+1 \\
& =1+1+2 \\
& =2+2 \\
& =1+3 \\
& =4 .
\end{aligned}
$$

Hence, the bijections

$$
\begin{gathered}
g_{1}=(a)(b)(c)(d), g_{2}=(a)(b)(c, d), g_{3}=(a, b)(c, d), g_{4}=(a)(b, c, d), \text { and } \\
g_{5}=(a, b, c, d)
\end{gathered}
$$

encompass all possible cycle types in $\operatorname{Sym}(D)$. Direct calculation using (5) yields

$$
\left|C_{g_{1}}\right|=1,\left|C_{g_{2}}\right|=6,\left|C_{g_{3}}\right|=3,\left|C_{g_{4}}\right|=8, \text { and }\left|C_{g_{5}}\right|=6 .
$$

Thus, by Corollary 1 , the number of classes of m-endomorphisms when $n=4$ is

$$
\begin{gathered}
\frac{1}{24}\left(\left(\frac{4^{m+1}-4}{3}\right)^{4}+6\left(2^{m+1}-2\right)^{2}\left(\frac{4^{m+1}-4}{3}\right)+3\left(\frac{4^{m+1}-4}{3}\right)^{2}\right. \\
\left.+8 m\left(\frac{4^{m+1}-4}{3}\right)+6\left(\frac{4^{m+1}-4}{3}\right)\right)
\end{gathered}
$$

Proceeding along the lines of Example 4, we find that there are

$$
\begin{aligned}
& \frac{1}{120}\left(\left(\frac{5^{m+1}-5}{4}\right)^{5}+10\left(\frac{3^{m+1}-3}{2}\right)^{3}\left(\frac{5^{m+1}-5}{4}\right)+15 m\left(\frac{5^{m+1}-5}{4}\right)^{2}\right. \\
& +20\left(2^{m+1}-2\right)^{2}\left(\frac{5^{m+1}-5}{4}\right)+20\left(2^{m+1}-2\right)\left(\frac{3^{m+1}-3}{2}\right) \\
& \left.+30 m\left(\frac{5^{m+1}-5}{4}\right)+24\left(\frac{5^{m+1}-5}{4}\right)\right)
\end{aligned}
$$

classes of m-endomorphisms when $n=5$, and

$$
\begin{aligned}
& \frac{1}{720}\left(\left(\frac{6^{m+1}-6}{5}\right)^{6}+15\left(\frac{4^{m+1}-4}{3}\right)^{4}\left(\frac{6^{m+1}-6}{5}\right)+45\left(2^{m+1}-2\right)^{2}\left(\frac{6^{m+1}-6}{5}\right)^{2}\right. \\
& +15\left(\frac{6^{m+1}-6}{5}\right)^{3}+40\left(\frac{3^{m+1}-3}{2}\right)^{3}\left(\frac{6^{m+1}-6}{5}\right)+120 m\left(\frac{3^{m+1}-3}{2}\right)\left(\frac{4^{m+1}-4}{3}\right) \\
& +40\left(\frac{6^{m+1}-6}{5}\right)^{2}+90\left(2^{m+1}-2\right)^{2}\left(\frac{6^{m+1}-6}{5}\right)+90\left(2^{m+1}-2\right)\left(\frac{6^{m+1}-6}{5}\right) \\
& \left.+144 m\left(\frac{6^{m+1}-6}{5}\right)+120\left(\frac{6^{m+1}-6}{5}\right)\right)
\end{aligned}
$$

classes of m-endomorphisms when $n=6$. Letting m run through \mathbb{N} in these cases, we again obtain sequences that are not well-known. The following tables display the values of (6) for $n, m \leq 6$.

	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
$m=1$	1	3	7	19	47
$m=2$	2	21	304	6,915	207,258
$m=3$	3	105	9,958	$2,079,567$	$746,331,322$
$m=4$	4	465	288,280	$556,898,155$	$2,406,091,382,736$
$m=5$	5	1,953	$7,973,053$	$144,228,436,231$	$7,567,019,254,708,782$
$m=6$	6	8,001	$217,032,088$	$37,030,504,349,475$	$23,677,181,825,841,420,408$

	$n=6$
$m=1$	130
$m=2$	$7,773,622$
$m=3$	$409,893,967,167$
$m=4$	$19,560,646,482,079,624$
$m=5$	$916,131,223,607,107,471,135$
$m=6$	$42,770,482,829,102,570,213,645,988$

Remark 2. The sequence $1,3,7,19,47,130, \ldots$ is sequence A 001372 in the OEIS.

4 Two Natural Variations

In this section, we highlight two natural variations of Corollary 1. First, we restrict our attention to endomorphisms on D^{+}that send each element of D to a string of length exactly m. We then consider m-endomorphisms of the so-called free monoid, which contains the empty string. Expressions analogous to those in $\S 3$ are derived in each case.

$4.1 \quad m$-Uniform Endomorphisms

Fix $n, m \in \mathbb{N}$, and suppose that $|D|=n$. Then $\phi \in \operatorname{End}\left(D^{+}\right)$is called an \boldsymbol{m}-uniform endomorphism if and only if $|\phi(d)|=m$ for each $d \in D$. In this section, we produce a formula for the number of m-uniform endomorphisms on D^{+}up to combinatorial equivalence. To begin, let $g_{1}, \ldots, g_{p(n)} \in \operatorname{Sym}(D)$ have distinct cycle types. We now put $R=\left\{W \in D^{+}:|W|=m\right\}$ and take Ω to be the set of all mappings of D into R. For each $1 \leq r \leq p(n)$, we ask for the number of $f \in \Omega$ satisfying

$$
f \circ g_{r}=\phi_{g_{r}} \circ f
$$

Once again, if g_{r} has cycle type $k_{r 1}, \ldots, k_{r \ell_{r}}$, then for each $1 \leq i \leq \ell_{r}$ we select an element $d_{r i}$ from the cycle corresponding to $k_{r i}$, and count the number of possible values of $f\left(d_{r i}\right)$. In this case, we must have $\left|f\left(d_{r i}\right)\right|=m$, where the elements of D comprising the string $f\left(d_{r i}\right)$ each belong to a cycle whose length divides $k_{r i}$. Hence, there are

$$
\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{m}
$$

choices of $f\left(d_{r i}\right)$, and multiplying over all i yields

$$
\prod_{i=1}^{\ell_{r}}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{m}
$$

as the value of $\left|\left\{f \in \Omega: f \circ g_{r}=\phi_{g_{r}} \circ f\right\}\right|$. Noting that permutations in $\operatorname{Sym}(D)$ of the same cycle type fix the same number of $f \in \Omega$, we multiply by $\left|C_{g_{r}}\right|$, sum with respect to r, and divide by n ! to obtain the following.

Corollary 2. If $|D|=n$ and $g_{1}, \ldots, g_{p(n)} \in \operatorname{Sym}(D)$ have distinct cycle types, then the number of m-uniform endomorphisms on D^{+}, up to combinatorial equivalence, is the value of

$$
\begin{equation*}
\frac{1}{n!} \sum_{r=1}^{p(n)}\left(\left|C_{g_{r}}\right| \prod_{i=1}^{\ell_{r}}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{m}\right) \tag{7}
\end{equation*}
$$

where $k_{r 1}, \ldots, k_{r \ell_{r}}$ is the cycle type of g_{r}, and $C_{g_{r}}$ is as in Proposition 2.
When $n=2$, the number of m-uniform endomorphisms on D^{+}, up to combinatorial equivalence, is

$$
\frac{1}{2}\left(2^{2 m}+2^{m}\right)
$$

Letting $m=1,2,3,4, \ldots$ gives values $3,10,36,136, \ldots$. This is the sequence A007582 from the OEIS. Moreover, when $n=3$ there are

$$
\frac{1}{6}\left(3^{3 m}+3 \cdot 3^{m}+2 \cdot 3^{m}\right)
$$

classes of m-uniform endomorphisms, and letting m run through \mathbb{N} gives the sequence $7,129,3303,88641, \ldots$, which is not well-known. Continuing, the expressions when $n=4,5,6$ are

$$
\begin{gathered}
\frac{1}{24}\left(4^{4 m}+6 \cdot 2^{2 m} \cdot 4^{m}+3 \cdot 4^{2 m}+8 \cdot 4^{m}+6 \cdot 4^{m}\right) \\
\frac{1}{120}\left(5^{5 m}+10 \cdot 3^{3 m} \cdot 5^{m}+15 \cdot 5^{2 m}+20 \cdot 2^{2 m} \cdot 5^{m}+20 \cdot 2^{m} \cdot 3^{m}+30 \cdot 5^{m}+24 \cdot 5^{m}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\frac{1}{720}\left(6^{6 m}+15 \cdot 4^{4 m} \cdot 6^{m}+45 \cdot 2^{2 m} \cdot 6^{2 m}+15 \cdot 6^{3 m}+40 \cdot 3^{3 m} \cdot 6^{m}\right. \\
\left.+120 \cdot 3^{m} \cdot 4^{m}+40 \cdot 6^{2 m}+90 \cdot 2^{2 m} \cdot 6^{m}+90 \cdot 2^{m} \cdot 6^{m}+144 \cdot 6^{m}+120 \cdot 6^{m}\right)
\end{gathered}
$$

respectively. The following tables display the values of (7) for $n, m \leq 6$.

	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
$m=1$	1	3	7	19	47
$m=2$	1	10	129	2,836	83,061
$m=3$	1	36	3,303	700,624	$254,521,561$
$m=4$	1	136	88,641	$178,981,696$	$794,756,352,216$
$m=5$	1	528	$7,973,053$	$45,813,378,304$	$2,483,530,604,092,546$
$m=6$	1	2,080	$64,570,689$	$11,728,130,323,456$	$7,761,021,959,623,948,401$

	$n=6$
$m=1$	130
$m=2$	$3,076,386$
$m=3$	$141,131,630,530$
$m=4$	$6,581,201,266,858,896$
$m=5$	$307,047,288,863,992,988,160$
$m=6$	$14,325,590,271,500,876,382,987,456$

4.2 The Free Monoid

If we adjoin the unique string of length 0 (denoted by ϵ) to the set D^{+}, then we form the set D^{*}. Paired with the operation of string concatenation, D^{*} forms the free monoid on D. We refer to ϵ as the empty string, and it serves as the identity element in D^{*}. That is, for any $W \in D^{*}$,

$$
W \epsilon=W=\epsilon W
$$

We define an endomorphism on D^{*} to be a mapping $\phi: D^{*} \rightarrow D^{*}$ such that $\phi\left(W_{1} W_{2}\right)=\phi\left(W_{1}\right) \phi\left(W_{2}\right)$ for all $W_{1}, W_{2} \in D^{*}$.

Remark 3. Note that if ϕ is an endomorphism on D^{*}, then $\phi(\epsilon)=\epsilon$. This follows since for any $W \in D^{*}$, we have

$$
\phi(W)=\phi(\epsilon W)=\phi(\epsilon) \phi(W)
$$

which implies that $\phi(\epsilon)$ has length 0 .
Now, an m-endomorphism on D^{*} is an endomorphism such that $|\phi(d)| \leq m$ for all $d \in D$. Thus, an m-endomorphism on D^{*} can map elements of D to ϵ. To determine the number of m-endomorphisms on D^{*} up to combinatorial equivalence, we put $R=\left\{W \in D^{*}:|W| \leq m\right\}$, and for each $g \in \operatorname{Sym}(D)$, we ask for the number of $f: D \rightarrow R$ that are fixed by g. Again, it suffices to count the number of possible images under such an f of a single $d \in D$ from each cycle in the decomposition of g, and then multiply over all the cycles. But there is now one additional possible value of $f(d)$: the empty string. Hence, if d belongs to a cycle of length k_{i}, then we have

$$
1+\sum_{k=1}^{m}\left(\sum_{j \mid k_{i}} j c\left(g_{r}, j\right)\right)^{k}=\sum_{k=0}^{m}\left(\sum_{j \mid k_{i}} j c\left(g_{r}, j\right)\right)^{k}
$$

choices of $f(d)$. From this observation, we deduce the following.
Corollary 3. Let $|D|=n$, and suppose that $g_{1}, \ldots, g_{p(n)} \in \operatorname{Sym}(D)$ have distinct cycle types. Then the number of m-endomorphisms on D^{*}, up to combinatorial equivalence, is the value of

$$
\begin{equation*}
\frac{1}{n!} \sum_{r=1}^{p(n)}\left(\left|C_{g_{r}}\right| \prod_{i=1}^{\ell_{r}}\left(\sum_{k=0}^{m}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}\right)\right) \tag{8}
\end{equation*}
$$

where $k_{r 1}, \ldots, k_{r \ell_{r}}$ is the cycle type of g_{r}, and $C_{g_{r}}$ is as in Proposition 2.
When $n=2$, the number of m-endomorphisms on D^{*}, up to combinatorial equivalence, is

$$
\frac{1}{2}\left(\left(2^{m+1}-1\right)^{2}+\left(2^{m+1}-1\right)\right)
$$

This is sequence A006516 from the OEIS. The corresponding expressions for $n=3,4,5,6$ are

$$
\frac{1}{6}\left(\left(\frac{3^{m+1}-1}{2}\right)^{3}+3(m+1)\left(\frac{3^{m+1}-1}{2}\right)+2\left(\frac{3^{m+1}-1}{2}\right)\right)
$$

$$
\begin{gathered}
\frac{1}{24}\left(\left(\frac{4^{m+1}-1}{3}\right)^{4}+6\left(2^{m+1}-1\right)^{2}\left(\frac{4^{m+1}-1}{3}\right)+3\left(\frac{4^{m+1}-1}{3}\right)^{2}\right. \\
\left.+8(m+1)\left(\frac{4^{m+1}-1}{3}\right)+6\left(\frac{4^{m+1}-1}{3}\right)\right) \\
\frac{1}{120}\left(\left(\frac{5^{m+1}-1}{4}\right)^{5}+10\left(\frac{3^{m+1}-1}{2}\right)^{3}\left(\frac{5^{m+1}-1}{4}\right)+15(m+1)\left(\frac{5^{m+1}-1}{4}\right)^{2}\right. \\
+20\left(2^{m+1}-1\right)^{2}\left(\frac{5^{m+1}-1}{4}\right)+20\left(2^{m+1}-1\right)\left(\frac{3^{m+1}-1}{2}\right) \\
\left.+30(m+1)\left(\frac{5^{m+1}-1}{4}\right)+24\left(\frac{5^{m+1}-1}{4}\right)\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\frac{1}{720}\left(\left(\frac{6^{m+1}-1}{5}\right)^{6}+15\left(\frac{4^{m+1}-1}{3}\right)^{4}\left(\frac{6^{m+1}-1}{5}\right)\right. \\
+45\left(2^{m+1}-1\right)^{2}\left(\frac{6^{m+1}-1}{5}\right)^{2}+15\left(\frac{6^{m+1}-1}{5}\right)^{3} \\
+40\left(\frac{3^{m+1}-1}{2}\right)^{3}\left(\frac{6^{m+1}-1}{5}\right)+120(m+1)\left(\frac{3^{m+1}-1}{2}\right)\left(\frac{4^{m+1}-1}{3}\right) \\
+40\left(\frac{6^{m+1}-1}{5}\right)^{2}+90\left(2^{m+1}-1\right)^{2}\left(\frac{6^{m+1}-1}{5}\right) \\
\left.+90\left(2^{m+1}-1\right)\left(\frac{6^{m+1}-1}{5}\right)+144(m+1)\left(\frac{6^{m+1}-1}{5}\right)+120\left(\frac{6^{m+1}-1}{5}\right)\right)
\end{gathered}
$$

Once again, the sequences given by these expressions appear to be little-known. The following tables give the values of (8) for $n, m \leq 6$.

	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$
$m=1$	2	6	16	45	121
$m=2$	3	28	390	8,442	244,910
$m=3$	4	120	10,760	$2,180,845$	$770,763,470$
$m=4$	5	496	295,603	$563,483,404$	$2,421,556,983,901$
$m=5$	6	2,016	$8,039,304$	$144,651,898,755$	$2,370,422,688,990,078$
$m=6$	7	8,128	$217,629,416$	$37,057,640,711,850$	$23,683,244,198,577,149,289$

	$n=6$
$m=1$	338
$m=2$	$8,967,034$
$m=3$	$419,527,164,799$
$m=4$	$19,636,295,549,860,505$
$m=5$	$916,720,535,022,517,503,173$
$m=6$	$42,775,066,732,111,188,868,070,978$

5 (χ, ζ)-Patterns

In closing, we briefly place the relation \sim from $\S 2$ into a more general context. Let G be a finite group, and let N and M be finite nonempty sets. Suppose that $\chi: G \rightarrow \operatorname{Sym}(N)$ and $\zeta: G \rightarrow \operatorname{Sym}(M)$ are group homomorphisms. Denote the set of all functions from N into M by M^{N}. (This notation comes from [1].) De Bruijn introduced the equivalence relation $E_{\chi, \zeta}$ on M^{N} defined by

$$
\left(f_{1}, f_{2}\right) \in E_{\chi, \zeta} \Longleftrightarrow f_{2} \circ \chi(\gamma)=\zeta(\gamma) \circ f_{1} \text { for some } \gamma \in G
$$

Example 5. 1 Suppose that N is a set of size $n \in \mathbb{N}$, and define an equivalence relation S on the set of all mappings of N into itself by

$$
\left(f_{1}, f_{2}\right) \in S \Longleftrightarrow f_{2} \circ \gamma=\gamma \circ f_{1} \text { for some } \gamma \in \operatorname{Sym}(N)
$$

Letting $G=\operatorname{Sym}(N), M=N$, and $\chi=\zeta$ be the identity homomorphism on $\operatorname{Sym}(N)$ shows that S is a special case of the relation $E_{\chi, \zeta}$. Moreover, the sequence in Remark 2 gives the number of equivalence classes under S for $n=1,2,3 \ldots$ (See $\S 3$ of [1].)

The relation $E_{\chi, \zeta}$ stems from the left action of G on M^{N} given by

$$
\gamma \cdot f=\zeta(\gamma) \circ f \circ \chi\left(\gamma^{-1}\right)
$$

for all $\gamma \in G, f \in M^{N}$. De Bruijn referred to the orbits of G on M^{N} as (χ, ζ)-patterns, and provided a formula for the number of these by applying Burnside's Lemma, and then evaluating $\left|\left\{f \in M^{N}: \gamma \cdot f=f\right\}\right|$ for each $\gamma \in G$. (See [1].) But the relation \sim on the set $\Omega=\{$ mappings of D into $R\}$, where $0<|D|<\infty$ and $R=\left\{W \in D^{+}:|W| \leq m\right\}$, is a special instance of the relation $E_{\chi, \zeta}$. To see this, take $N=D, M=R$, and $G=\operatorname{Sym}(D)$. Let χ be the identity homomorphism on $\operatorname{Sym}(D)$, and define $\zeta: G \rightarrow \operatorname{Sym}(R)$ by

$$
\zeta(g)=\left.\phi_{g}\right|_{R}
$$

for all $g \in \operatorname{Sym}(D)$. Then for any $g, g^{\prime} \in \operatorname{Sym}(D)$,

$$
\zeta\left(g \circ g^{\prime}\right)=\left.\phi_{g \circ g^{\prime}}\right|_{R}=\left.\left(\phi_{g} \circ \phi_{g^{\prime}}\right)\right|_{R}=\left.\left.\phi_{g}\right|_{R} \circ \phi_{g^{\prime}}\right|_{R}=\zeta(g) \circ \zeta\left(g^{\prime}\right),
$$

so ζ is a group homomophism. Now, for any $f_{1}, f_{2} \in \Omega$, we have

$$
\begin{aligned}
f_{1} \sim f_{2} & \Longleftrightarrow f_{2} \circ g=\phi_{g} \circ f_{1}=\left.\phi_{g}\right|_{R} \circ f_{1} \text { for some } g \in \operatorname{Sym}(D) \\
& \Longleftrightarrow f_{2} \circ \chi(g)=\zeta(g) \circ f_{1} \text { for some } g \in \operatorname{Sym}(D) \\
& \Longleftrightarrow\left(f_{1}, f_{2}\right) \in E_{\chi, \zeta} .
\end{aligned}
$$

It follows that the equivalence classes in Ω under the relation \sim are (χ, ζ) patterns, for χ, ζ chosen as above. In particular, our Theorem 1 is a special case of de Bruijn's formula.

References

[1] N.G. de Bruijn. Enumeration of Mapping Patterns. Journal of Combinatorial Theory, Series A, 12(1):14-20. 1972.
[2] N.G. de Bruijn. Pólyas Theory of Counting. chapter 5 in Applied Combinatorial Mathematics, Edwin F. Bechenbach, ed., pp 144-184, John Wiley \& Sons, New York, 1964.
[3] The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 1996-present; https://oeis.org.
[4] Dummitt, D.S., Foote, Richard M., Abstract Algebra, 3rd edition, pp 126132, Wiley, 2004.
[5] Malik, Davender S. and Mordeson, John N. and Sen, M.k., Fundamentals of Abstract Algebra, pp 173-176, McGraw-Hill, 1997.

[^0]: ${ }^{1}$ There should be no confusion between the notions of 'string length' and 'cycle length'.

