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Abstract. We consider weighted generating functions of trees where the weights are prod-
ucts of functions of the sizes of the subtrees. This work begins with the observation that
three different communities, largely independently, found substantially the same result con-
cerning these series. We unify these results with a common generalization. Next we use the
insights of one community on the problems of another in two different ways. Namely, we use
the differential equation perspective to find a number of new interesting hook length formu-
lae for trees, and we use the body of examples developed by the combinatorial community
to give quantum field theory toy examples with nice properties.

1. Introduction

The tree factorial, t!, for a rooted tree, t, is the product of the sizes of the subtrees of t.
For example

! = 1 · 2 · 1 · 4 = 8.

The tree factorial is an elegant and classical function on rooted trees. Three different com-
munities each working with rooted trees for different reasons generalized this simple example
in their own language and from their own perspective. The main results of each of these
generalizations are equivalent over their common hypotheses.

The first community is the enumerative combinatorics community. For the tree factorial

itself, Knuth ([17] p70) gave as an exercise to show that |t|!
t!

counts the number of ways
to label a plane tree, t, with increasing labels. The enumerative combinatorics perspective
is to use generalizations of the tree factorial to produce equations which equate a power
series, called a hook length series, to the generating function of a combinatorial class. These
equations, called hook length formulae, are of importance in combinatorics as they often
imply bijections between combinatorial classes.

An early example of a hook length formula was given by Postnikov in 2004 [24]:

(1)
∑
t∈Bn

n!
∏

v∈V (t)

(
1 +

1

|tv|

)
= 2n(n+ 1)n−1.

The left hand side of the equation is a hook length series that also counts the number of
bicoloured binary plane trees with a particular labelling. The right side of the equation counts
the number of bicoloured labeled forests. In 2005, Seo [26] developed a bijection between
these two combinatorial classes. Other combinatorial works on hook length formulae include:
[2, 25, 12, 7, 14, 30, 5, 29, 15, 6, 9, 18].

Kuba and Panholzer [19] discovered a general identity of hook length series in the form
of a recurrence relation on the coefficients of the hook length series. More recently they
extended their results to a study of multilabelled increasing trees [20].

1

ar
X

iv
:1

41
2.

60
53

v1
  [

m
at

h.
C

O
] 

 1
8 

D
ec

 2
01

4



The second community is the B-series community. B-series are power series solutions of
differential equations indexed by trees which were originally developed in the analysis of
Runge-Kutta methods [4]. The tree factorial is used as a statistic in the analysis of Runge-
Kutta methods for computing approximate solutions of differential equations [13]. Mazza in
[22] gives a theorem concerning such B-series solutions which is equivalent to the Kuba and
Panholzer recurrence.

The third community is the community which takes a Hopf algebraic approach to renor-
malization in quantum field theory. This approach began with the work of Connes and
Kreimer [8]. The underlying algebraic structure here is the same as for B-series, a fact which
was recognized by Brouder in 2000 [3]. 1

t!
defines the simplest non-trivial Feynman rules

for rooted trees and is the leading term more generally, see Panzer [23, p. 38]. Panzer [23]
extended this to a broader understanding of how the algebraic structure and the Feynman
rules interact. His Feynman rules on trees function as hook weights and so again hook length
formulae appear.

Each community thus has a differently flavoured and independently achieved, perspective
on the main result. From an enumerative combinatorics perspective the result is given in
terms of coefficient extraction, from the B-series perspective the result is given in terms of
a differential equation, and from the combinatorial Hopf algebra and quantum field theory
perspective the result is given in terms of an integral equation and a universal property. We
bring the results of all three communities together into a common language, explaining their
set ups and giving a common generalization.

We then look at two ways in which we can use the insights of one community to throw
light on the questions of another. First, in section 4 we look at using the differential equation
formulation to obtain new combinatorial insights. Specifically, we develop new methods to
apply the differential equation in cases where the hook weights are not nice functions in the
sense that they are either piecewise or their growth is too fast. We then give a table of
new hook length formulae, some found using these methods and some found with existing
methods. Second, in section 5 we use the many examples from the enumerative combinatorics
to obtain interesting toy models for quantum field theory. Given a hook length formula, the
translation into quantum field theory language is as follows: the tree class used determines
the Dyson-Schwinger equation; the hook weight determines the Feynman rules; the hook
length formula itself gives a nice form for the Green function.

The first four sections consist of results from the first author’s MSc thesis [16].

2. Background and notation

We will follow the notation of Flajolet and Sedgewick [10] for combinatorial specifications
and generating functions. Combinatorial classes will be given script letters, e.g. C, with the
generating function of the class being given the associated roman letter, e.g. C(z), except
as otherwise specified. Cn denotes those elements of C of size n, and generating functions
are ordinary in the unlabelled case C(z) =

∑
n≥0 |Cn|zn and exponential in the labelled case

C(z) =
∑

n≥0 |Cn|zn/n!. We use standard combinatorial operators including × for cartesian
product, ? for labelled product, and seq for the sequence operator.

Here we are primarily interested in combinatorial classes of trees. An unlabelled (labelled)
class of trees, T , is simple if there exists a combinatorial operator, Φ, and a size preserving
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bjiection, γ : T → Z×Φ(T ), (γ : T → Z?Φ(T )), such that for all x ∈ Φ(T ), x = {t1, . . . , tk}
for some t1, . . . , tk ∈ T and for t ∈ T , γ(t) = (•, {t1, . . . , tk}) if and only if t is a tree where
t1, . . . , tj are the subtrees of t whose roots are the children of the root of t. Thus a simple
tree is one where every vertex has a Φ-structure of children. Write φ for the power series
corresponding to the combinatorial operator Φ.

For a forest, f , and a vertex, v ∈ V (f), we denote as fv the subtree of f whose root is v.
For a subset of vertices, W ⊂ V (f), we denote fW to be the forest with trees, fv for v ∈ W .

In order to define the main theorem and use its applications to prove hook length formulae,
we shall define decorated trees. A decorated tree is a rooted tree where each vertex is given
a positive integer size. The size of a decorated tree is the sum of the sizes of it vertices.

We can define simple classes of decorated trees similarly to simple classes of ordinary
trees. We say a unlabelled (labelled) class of decorated trees, T ′, is simple if there exists a
bivariate combinatorial operator, Φ, and a size preserving bjiection, γ : T ′ → Z ×Φ(Z, T ′),
(γ : T ′ → (Z ? Φ(Z, T ′)), such that for all x ∈ Φ(Z, T ′), x = (•i, {t1, . . . , tk}) for some
t1, . . . , tk ∈ T ′ and i ∈ N and for t ∈ T ′, γ(t) = (•, (•i−1, {t1, . . . , tk})) if and only if t is a
tree where t1, . . . , tj are the subtrees of t whose roots are the children of the root of t and
the root of t has size i.

We can build an algebra out of any rooted tree class, T , by simply taking the polynomial
algebra generated by the elements of the class. Viewing monomials of trees as disjoint
unions of trees we can also view this algebra as the vector space spanned by all forests of
trees from T with disjoint union as multiplication. Note that even if T is a simple class of
trees we have not imposed a Φ-structure on the forests – in cases where the Φ-structure has a
natural algebraic interpretation this can be done, for example plane trees would correspond
to the noncommutative polynomial algebra to preserve the order structure on forests, see for
example [11].

Suppose now that T is a simple class of trees. Then every subtree of a tree in the class is
also in the class, and so we can define a bialgebra structure using the following coproduct

∆(f) =
∑
W

fW ⊗ (f \ fW )

where the sum runs over subsets of vertices of the forest f with no two vertices descendants
one of the other. The counit in this case is the algebra homomorphism which maps the empty
tree to 1 and maps every nonempty tree to 0. This gives a graded connected bialgebra and
hence a Hopf algebra. In the case where T is the class of all rooted trees, either decorated
or undecorated, this is known as the Connes-Kreimer Hopf algebra of rooted trees and we
will denote it HR in the undecorated case and HR′ in the decorated case.

Define B+ ∈ End(HR) such that for trees, t1, . . . , tn, B+(t1 · · · tn) is the tree whose root is
adjacent to the trees t1, . . . , tn. Tor each decoration c ∈ Z≥0 we can define B+ ∈ End(H ′R)
such that B+(t1 · · · tn) is the tree constructed in the same way with root given size c.

3. The unified result

In this section we will discuss the results of each community and give an encapsulating
result. To begin with we need some definitions and notation.
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3.1. Preliminaries. We say a map, B, from a class of forests, T , to a field, K, is a hook
weight if there exist Bn ∈ K such that for all forests f ∈ T : B(f) =

∏
v∈V (f)B|fv |.

We can take the power series of a hook weight applied to each tree in a class of trees. We
call this power series the hook length series of T with respect to B and denote it by

FT ,B(z) =
∑
t∈T

B(t)z|t|.

For a power series φ(x) =
∑

n≥0 φnx
n, we call, Fφ,B(z) given by

Fφ,B(z) =
∑
t∈O′

wφ(t)B(t)z|t|,

the hook length series of φ. Here O ∼= Z × seq(O) is the class of plane trees and wφ(t) =∏
v∈t φdeg(v).
We can also define hook weights for decorated forests. A map, B : T ′ → K, is called

a hook weight of the class of decorated forests, T ′, if there exist Bn ∈ K such that for all
decorated forests, f ∈ T ′: B(f) =

∏
v∈V (f)B|fv |. This definition is the same as for ordinary

trees except that the size of a decorated forest is the sum of the size of its vertices instead
of the number of vertices it has.

Thus we can also define the hook length series for a class of decorated trees, T ′:

FT ′,B(z) =
∑
t∈T ′

B(t)z|t|

and for a power series ϕ(z, x) =
∑

n,m≥0 φm,nz
mxn:

Fϕ,B(z) =
∑
t∈O′

wϕ(t)B(t)z|t|

where O′ ∼= seq(Z) × seq(O′) is the class of decorated plane trees and wϕ(t) =∏
v∈t ϕ|v|−1,deg(v).

The B-series and quantum field theory communities take a more functional approach and
so we need the following additional definitions. For a hook weight, B, let LB ∈ End(K[z])
be the map defined by LB(zn) = Bn+1z

n+1 and extended linearly. Similarly, define L∗B to be
the linear operator such that L∗B(zn) = (n+ 1)Bn+1z

n for all n ∈ N.
Define θ to be the operator that takes f(z) to θ(f)(z) = z d

dz
f(z). A useful property of

this operator is that P (θ)(zn) = P (n)zn for all polynomials, P (x) ∈ K[x].

3.2. The main result. Now we are ready to give the main result, first without decorations
and then with decorations, as found in the first author’s MSc thesis [16].

Theorem 3.1. Let φ(x) be a formal power series and B be a hook weight. Then we have
the following three properties.

(1) Fφ,B satisfies the recurrence:

[zn]Fφ,B(z) = Bn[zn−1]φ(Fφ,B(z)), ∀k ≥ 1.

(2) Fφ,B satisfies:

Fφ,B(z) = LB(φ(Fφ,B(z))).
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(3) Fφ,B is a solution to the differential equation:

F ′φ,B(z) = L∗B(1 + θ)(φ(Fφ,B(z))).

The first item of the theorem is Kuba and Panholzer’s result [19]. The second item
is Mazza’s result [22]. The combinatorial community also had this differential equation
formulation in certain cases [21, 1, 5, 26, 12, 20]. Panzer [23] had some particular cases in
the form of the third item. He also looked at decorated trees as they are very natural in the
renormalization Hopf algebra context. In the decorated language we can give a simultaneous
generalization of all of these results as follows.

Theorem 3.2. Let ϕ(z, x) be a bivariate formal power series and B be a hook weight. Then
we have the following three properties.

(1) Fϕ,B satisfies the recurrence:

[zn]Fϕ,B(z) = Bn[zn−1]ϕ(z, Fϕ,B(z)), ∀k ≥ 1.

(2) Fϕ,B satisfies:
Fϕ,B(z) = LB(ϕ(z, Fϕ,B(z))).

(3) Fϕ,B is a solution to the differential equation:

F ′ϕ,B(z) = L∗B(1 + θ)(ϕ(z, Fϕ,B(z))).

Proof. We will first prove the recurrence by induction on n.
For n = 1,

[z1]Fϕ,B(z) = wϕ(•)B(•) = ϕ0,0B1 = B1[z
0]ϕ(z, Fϕ,B(z)).

For n > 1,

[zn]Fϕ,B(z) =
∑
t∈O′n

wϕ(t)B(t)

=
n∑
i=1

∑
j≥1

ϕi,jBn

∑
n1+···+nj=n−i−1

n1,...,nj≥1

∑
t1∈O′n1

,...,tj∈O′nj

j∏
l=1

(wϕ(tl)B(tl))

= Bn

n∑
i=1

∑
j≥1

ϕi,j
∑

n1+···+nj=n−i−1

n1,...,nj≥1

j∏
l=1

 ∑
tl∈O′nl

wϕ(tl)B(tl)


= Bn

n∑
i=1

∑
j≥1

ϕi,j
∑

n1+···+nj=n−i−1

n1,...,nj≥1

j∏
l=1

[znl ]Fϕ,B(z)

= Bn[zn−1]ϕ(z, Fϕ,B(z)).

The other two properties are equivalent to the recurrence. This can be seen by applying
coefficient extraction to the equations:

[zn]F ′(z) = (n+ 1)[zn+1]F (z)

and
[zn]L∗B(1 + θ)(ϕ(z, Fϕ,B(z))) = (n+ 1)Bn+1[z

n]ϕ(z, Fϕ,B(z))
5



give that the differential equation is equivalent to the recurrence. Also,

[zn]LB(ϕ(z, Fϕ,B(z))) = Bn+1[z
n]ϕ(z, Fϕ,B(z))

gives that the second property is equivalent to the recurrence. �

4. Using the differential equation in enumerative combinatorics

The first item in the theorems does not explain why some choices of class and final form
result in nice hook weights, or why certain classes and hook weights give a nice final form. It
also doesn’t give any hint of where to look for novel hook length formulae of combinatorial
interest which are not simple extensions of know results.

The differential equation perspective gives a little bit of traction on these issues. One
way for a choice of hook weight and tree class to have a nice hook length formula is if the
differential equation is solvable. One place to look for novel hook length formulae is among
appropriate differential equations. We have a number of such new hook length formulae,
all but one of which were first reported in the first author’s MSc thesis [16] and are shown
here in table 1. Kuba and Panholzer also recently realized the value differential equations
for finding interesting formulae in their new study on bilabelled trees ([20] section 5).

To be able to deal with hook weights which do not correspond nicely to continuous func-
tions we first need to develop some tools.

4.1. New tools for tree hook length formulae. To use the differential equation we need
to convert the hook weights, which are defined on the natural numbers, to functions defined
on R>0. To extract useful information from the differential equation these functions need to
stay as simple as possible. Some hook weights naturally correspond to piecewise functions
and are best dealt with by breaking the tree specification up to match the pieces, as discussed
in the first two methods below. Others have an exponential dependence which is not well-
behaved in the differential equation but can be dealt with by scaling as discussed in the third
method below.

4.1.1. Leafless method and system method. The first method we present is called the system
method. The method is used when

Bk =


B

(1)
k if k ∈ P1

...

B
(m)
k if k ∈ Pm

for some partition P1 ∪ · · · ∪ Pm = N+ and L∗
B(i) 6= LB(j) for all i 6= j.

For a combinatorial class, C, and set, S ∈ N, let CS =
⋃
n∈S Cn.

Given a simple tree class T suppose that it can be easily separated into classes: TP1 , . . . , TPm

with each class satisfying some psuedo-simple relation:

TPi
∼= Z × Φi(TP1 , . . . , TPm).

From theorem 3.2, each FTPi
,B(i)(z) satisfies a differential equation of the form:

F ′TPi
,B(i)(z) = L∗B(i)(1 + θ)φi(FTP1

,B(1)(z), FTPm ,B
(m)(z)).

By adding the solutions to the system of differential equations together we obtain FT ,B(z).
6



Splitting T into such and using the system of differential equations to prove a hook length
formula is called the system method.

In the special case where

Bk =

{
a if k = 1

g(k) if k > 1

for some function g with g(1) undefined or g(1) 6= a, we get the system T1 ∼= φ0Z and
T>1
∼= Z × (Φ(T ) − φ0). In this case the system method is called the leafless method. It

is so called because it essentially removes the leaves of the trees to produce the differential
equation. An example of how to use the leafless method can be found in example 4.2.

4.1.2. Scaled method. The final method we shall present is called the scaled method. The
scaled method is used when

Bk = rk−1Ck

for some other hook weight C. In this case:

L∗B(x) =
∞∑
i=0

i∑
j=0

(
m

i

)
(ln r)i

ri!
cm−ix

m,

which does not give an easily solvable differential equation.
We can bypass this by the following observation

Proposition 4.1. Suppose B and C are hook weights satisfying Bk = rk−1Ck for some
r ∈ K. Then LB(p(z)) = LC(p(rz)) for all p(z) ∈ K[z].

Proof. For n ∈ N we have

LC((rz)n) = Cn+1r
nzn+1 = Bn+1z

n+1 = LB(zn).

Therefore, by linearity, LB(p(z)) = LC(p(rz)) for all p(z) ∈ K[z]. �

The proposition implies that

[zn]L∗B(1 + θ)x(z) = [zn]L∗C(1 + θ)x(rz).

Therefore for the simple tree class, T , FT ,B solves the differential equation:

F ′T ,B(z) = L∗C(1 + θ)φ(FT ,B(rz)).

Using this differential equation to prove a hook length formula is called the scaled method
We call this method the scaled method because we scale the hook length series by r.

4.2. New hook length formulae. In the first author’s MSc thesis [16], he collected known
hook length formula into a catalogue of tables. Here we present a portion of that table, in
table 1, that includes the hook length formula discovered and proved by the first author. The
method column of table 1 explains how the formula was found and can be proved: by the
Kuba-Panholzer recurrence (KP), by the Mazza differential equation (DE), by the leafless
method (Leaf), by the system method (Sys), by the scaled method (Sc) or some combination
as indicated.

The second formula of the table is new to this paper and is discussed in more detail in
example 4.3.
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Table 1. Table of new hook length formulae

φ B F method

(1 + x)2 Bk = ((k−1)!)2
(2k−1)! Fn = 2n

(n+1)!n!
KP

(1 + x)2 Bk = k Fn = A699n+1 KP

1 + x+ x2 Bk =

{
1 if k = 1
1

k−1 if k > 1
F (z) = z

1−z DE

(1 + x)r Bk = 1

(k+r−2
r−1 )

F (z) = z
1−z KP

1 + xr Bk =

{
1 if k = 1

(r−1)!rr−1∏r−2
i=0 (k+ir−1)

if k > 1
F (z) = z

1−zr KP

1
1−x Bk =

{
1 if k = 1

22−k if k > 1
F (z) = z

1−z Sc+Leaf

1
1−x Bk =


1 if k ≤ 2
(
√
−1)k−1

2
if k > 2 is odd

(
√
−1)k−2

2
if k > 2 is even

F (z) = z+z2

1+z2
Sc+Sys

1
(1−x)2 Bk = 1

k
F (z) = 1− (1− 3z)

1
3 DE

1
(1−x)2 Bk =

{
1 if k = 1

1
2k−3(k+2)

if k > 1
F (z) = z

1−z Sc+Leaf

ex Bk = 1 + 1
k

F (z) = −2 log
(

1+
√
1−4z
2

)
DE

ex Bk = 1

k(k+a−2
a−1 )

F (z) = a log
(

a
a−z

)
KP

ex Bk = 2
k
− 1 F (z) = log

(
z +
√

1 + z2
)

DE

cosh(x) Bk = 2
k
− 1 F (z) = log

(
z +
√

1 + z2
)

DE

1− log(1− x) Bk =

{
1 if k = 1
1
k
− 1 if k > 1

F (z) = 1 + z −
√

1 + z2 Leaf

1− log(1− x) Bk =

{
1 if k = 1

k − 1 if k > 1
F (z) = 1− 1∑

n≥0 n!z
n Leaf

1− log(1− x) Bk =

{
1 if k = 1
k−1

2k−1−1 if k > 1
F (z) = z

1−z Sc+Leaf

Example 4.2. This example illustrates how to use two of the new methods, the leafless
method and the scaled method, in conjunction to prove a hook length formula.

Let Bk = 2
2k−1 if k > 1 and B1 = 1. Also let φ(x) = 1

1−x ; this φ encodes the class of plane
trees. Finally let F = Fφ,B.

Since Bk contains a factor of 1
2k−1 we shall use the scaled method. Let Ck = 2 then

Bk = Ck
1

2k−1 . By the scaled method

L∗B(1 + θ)(x(z)) = L∗C(1 + θ) (x (z/2)) = 2x (z/2) + 2z
d

dz
x (z/2) ,

8



because L∗C(n) = 2n.
Since 22−1 = 2 6= 1 = B1, to use the differential equation to solve this hook length formula

we need to use the leafless method. By the leafless method, F (z) solves the differential
equation

F ′(z)− φ0B1 = L∗B(1 + θ)(φ(F (z))).

Putting these two methods together we get that F (z) solves the differential equation:

F ′(z)− 1 =
2

1− F (z/2)
+

F ′(z/2)

(1− F (z/2))2
.

Plugging in F (z) = z
1−z we can see that the differential equation is satisfied.

Therefore, Fφ,B(z) = z
1−z .

Example 4.3. Let Bk = k and φ(x) = (1 + x)2 then F (z) = Fφ,B(z) satisfies the recurrence

[zn]F (z) = n[zn−1](1 + F (z))2.

This recurrence is similar to the recurrence

Sn = (n− 1)
n−1∑
j=1

SjSn−j

from [28]. The Sn here count the number of irreducible arc diagrams. The OEIS number
[27] of this sequence is A699. If we consider S(z) =

∑
n≥1 Sn+1z

n then

[zn]S(z) = Sn+1

= n
n∑
j=1

SjSn+1−j

= n[zn−1](S1 + S(z))2.

Since S1 = 1, we have that S(z) = F (z).

5. Using tree hook length formulae in quantum field theory

Combinatorial Dyson-Schwinger equations are functional equations with solutions in
HR[[z]] using grafting operators, products, inverses, and the empty tree, I. As an exam-
ple consider

X(z) = I− zB+(X(z)−1)

where the inverted series should be expanded as a geometric series. This has as a solution

X(z) = I− z − z2 − z3
(

+
)
− z4

(
+ + 2 +

)
+ · · · .

It is possible to have more than one B+ appearing and to have linked systems of equations.
The precise definition of what forms are allowed depends on the context at hand, compare for
example [11] and [31], but in all cases they act as specifications for tree classes: B+ plays the
role of Z×, inverses play the role of seq. The series which arise as solutions to combinatorial
Dyson-Schwinger equations are intermediates between the combinatorial classes themselves
and usual generating functions. Linear combinations of trees appear as coefficients, not just
the number of trees, but since these are trees in HR they appear with coefficients reflecting
how many trees of a given shape appear in the specified class.
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To convert combinatorial Dyson-Schwinger equations into analytic Dyson-Schwinger equa-
tions, which are the honest-to-goodness Dyson-Schwinger equations of physics, we need sim-
ply to apply Feynman rules. In the physical situation Feynman rules are rules which convert
Feynman graphs into integrals with each edge and vertex of the graph contributing a factor
to the integrand. These integrals are divergent in interesting cases and need to be renormal-
ized. The end result is a function of various physical parameters, such as the momenta of
the particles coming in and out of the process.

In our situation, we have series in trees and we will follow Panzer ([23] p38) by defining
Feynman rules as algebra morphisms, φ : HR → A, to some commutative algebra, A,
satisfying φ◦B+ = L◦φ for some L ∈ End(A). In the physics case A would be some algebra
of functions of the parameters.

Hook weights provide a family of simple examples of such Feynman rules. Panzer showed
([23] Theorem 2.4.6) that for any L ∈ End(A) there exists a unique morphism of unital
algebras Lρ : HR → A such that Lρ ◦ B+ = L ◦ Lρ and analogously for the decorated case
([23] section 2.5). Specifically for hook weights we get

Proposition 5.1. Let B be a hook weight. For any forest, f , we have
LBρ(f) = B(f)z|f |.

Hook length Feynman rules are particularly simple in that their one parameter comes with
power the size of the forest and thus carries no new information compared to the counting
variable we already had. Thus in this very simple case we can conflate the two parameters
and so for us A will be K[z] and our Green functions will be single variable functions.

In still simplified but more physically realistic cases the Feynman rules would give polyno-
mials in a parameter, call it T , of degree the size of the tree. Then the Green functions would
be functions of both T and z where any monomial in the expansion of the Green function
would have degree in z at least as large as the degree in T . The part with the same degree in
z and T is known in quantum field theory calculations as the leading log part. Thus another
interpretation of the very special case we are discussing here is as the leading log part of a
more complicated set up.

Returning to hook length Feynman rules, consider what the hook length formulae mean in
this context. Hook length formulae tell us that particular choices of combinatorial class and
hook weight give nice series, say with a closed form or a nice combinatorial interpretation. In
quantum field theory language hook length formulae give us particular choices of combina-
torial Dyson-Schwinger equation and Feynman rules so that the analytic Dyson-Schwinger
equation has a closed form, or otherwise is combinatorially nice.

Example 5.2. For example, take Postnikov’s formula, given in the introduction as (1). Here
we are looking at binary trees, so the Dyson-Schwinger equation is X(z) = I+ zB+(X(z)2).
The hook weight is given by Bk = 1 + 1

k
, so the Feynman rules, φ, are

t 7→
∏
v∈t

(
1 +

1

|tv|

)
z|t|,

or equivalently

φ(B+(f)) = z

(
1 +

1

|f |

)
φ(f).
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Then Postnikov’s formula tells us that Fn = 2n(n+1)n−1. Taking the exponential generating

function we get F (z) = −W (−2z)
2z

− 1 where W is the Lambert W -function (see [16] p12 for
details). So the Green function G(z) = 1 + F (z) comes from a series expansion of the
Lambert W -function.

Example 5.3. As another example consider the eighth formula in table 1. This is a nice
example because it is new and it uses the usual inverse of tree factorial Feynman rules. The
tree specification in this case is T = Z × seq(T )2 so the Dyson-Schwinger equation is

X(z) = I− zB+

(
1

X(z)2

)
.

Then the hook length formula tells us that the Green function is

G(z) = 1− F (z) = (1− 3z)
1
3 ,

which is a nice closed form.

A final point concerns the coalgebra structure. B+ is a Hochschild 1-cocycle [8], specifically

∆B+ = (id⊗B+)∆ +B+ ⊗ I

and similarly for each Ba
+ in the decorated case. Panzer shows ([23] Theorem 2.4.6) that if

A is a bialgebra and ∆L = (id ⊗ L)∆ + L ⊗ 1 then Lρ is a bialgebra homomorphism, and
if further A is a Hopf algebra then Lρ is a Hopf algebra homomorphism. The analogous
statement holds in the decorated case ([23] section 2.5).

Unfortunately, only multiples of the inverse of tree factorial are 1-cocycles.

Proposition 5.4. Let B be a hook weight. Define ∆ on K[z] by extending ∆(z) = 1⊗z+z⊗1
as an algebra homomorphism. If

LB∆ = (id⊗ LB)∆ + LB ⊗ 1

then Bn = c/n for some c ∈ K.

Proof.

Bn+1

n+1∑
i=0

(
n+ 1

i

)
zi ⊗ zn+1−i = LB∆(zn) = (id⊗ LB)∆ + LB ⊗ 1

=
n∑
i=0

(
n

i

)
Bn−i+1z

i ⊗ zn−i+1 +Bn+1z
n+1 ⊗ 1

Equating coefficients we get

Bn+1

(
n+ 1

i

)
= Bn−i

(
n

i

)
for all 0 ≤ i ≤ n and so in particular with i = n, Bn+1(n+ 1) = B1 giving the result. �

Therefore the inverse of tree factorial is special in this quantum field theory context.
None-the-less there are many interesting examples using the inverse of tree factorial (see [16]
chapter 6 for a comprehensive listing) and the other hook weights are at least buildable by
B+ – that is they are Feynman rules by the present definition.
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