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Abstract

The study of the structure of quantum states can provide insight into the possi-
bilities of quantum mechanics applied to quantum communication, cryptography and
computations, as well as the study of condensed matter systems. For example, it shows
the physical restrictions on the ways how a quantum state can be used and allows us
to tell which quantum states are equivalent up to local operations. Therefore, it is
crucial for any analysis of the properties and applications of quantum states.
This PhD thesis is dedicated to the study of the interplay between symmetries of

quantum states and their self-similar properties. It consists of three connected threads
of research: polynomial invariants for multiphoton states, visualization schemes for
quantum many-body systems and a complex networks approach to quantum walks on
a graph.
First, we study the problem of which many-photon states are equivalent up to the

action of passive linear optics. We prove that it can be converted into the problem
of equivalence of two permutation-symmetric states, not necessarily restricted to the
same operation on all parties. We show that the problem can be formulated in terms
of symmetries of complex polynomials of many variables, and provide two families of
invariants, which are straightforward to compute and provide analytical results. Fur-
thermore, we prove that some highly symmetric states (singlet states implemented
with photons) offer two degrees of robustness — both against collective decoherence
and against a photon loss. Additionally, we provide two proposals for experiments,
feasible with an optical setup and current technology: one related to the direct mea-
surement of a family of invariants using photon-counting, and the other concerting
the protection of transmitted quantum information employing the symmetries of the
state.
Second, we study a family of recursive visualization schemes for many-particle sys-

tems, for which we have coined the name “qubism”. While all many-qudit states can be
plotted with qubism, it is especially useful for spin chains and one-dimensional trans-
lationally invariant states. This symmetry results in self-similarity of the plot, making
it more comprehensible and allowing to discover certain structures. This visualization
scheme allows to compare states of different particle numbers (which may be useful in
numerical simulations when particle number is an open parameter) and puts emphasis
on correlations between neighboring particles. The visualization scheme can be used to
plot probability distribution of sequences, e.g. related to series of nucleotides in RNA
and DNA or — aminoacids in proteins. However, unlike classical probabilistic ensem-
bles of sequences, visualizing quantum states offers more — showing entanglement and
allowing to observe quantum phase transitions.
Third, we study quantum walks of a single particle on graphs, which are classical

analogues of random walks. Our focus in on the long-time limit of the probability
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distribution. We define “quantumness” to be the difference between the probability
distributions of the quantum and related classical random walks. Moreover, we study
how (especially in the long-time limit) off-diagonal elements of the density matrix
behave. That is, we measure coherence between different nodes, and we use them
to perform quantum community detection — splitting of a graph into subgraphs in
such a way that the coherence between them is small. We perform a bottom-up
hierarchical aggregation, with a scheme similar to modularity maximization, which is a
standard tool for the, so called, community detection for (classical) complex networks.
However, our method captures properties that classical methods cannot — the impact
of constructive and destructive interference, as well as the dependence of the results
on the tunneling phase.
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1 Introduction

1.1 Background
This PhD thesis is divided into three chapters, each one describing a distinct thread

of research:

• Invariants for bosonic and symmetric states,

• Visualization of quantum sequences,

• Quantum walks on complex networks.

Yet, these threads are connected through common concepts and methods related to
study of entanglement, symmetry with respect to interchange of particles and self-
similarity of quantum systems. An illustrative graph of these concepts and their rela-
tions is depicted in Fig. 1.1.

1.1.1 Historical background
While quantum mechanics dates back to the beginning of the 20th century [2], only

in the last decades it was started being considered as a tool for information processing,
that is, communication, cryptography and computation [3]. One of the first research in
that line was a study of the information capacity for transmission of information with
quantum [4] rather than classical states [5]. The result, now known as Holevo’s bound,
is that regardless if we are operating with classical or quantum d-level states, we can
transmit up to log2(d) bits of information per state. That is, for this particular task
there is no advantage of using quantum states over classical states. However, many
other works show significant differences between classical and quantum states. Perhaps
the most striking is Bell’s theorem [6], putting bounds on certain correlations, which
cannot be broken by any probability distribution stemming from classical mechanics.
Much to the surprise of the author, it turned out that some quantum states break the
bound. Thus, in particular, quantum mechanics cannot be thought as a classical theory
with yet unknown parameters, settling a dispute, which looked as purely philosophical
[7, 8]. Stronger-than-classical correlations inspired the FLASH paper [9], a protocol
for faster-than-light communication. While, as expected, this result could not hold,
the flaw in it was so subtle, that it inspired further progress [10, 11], starting from the
no-cloning theorem [12, 13], a proof that there can be no machine making copies of an
arbitrary quantum state.
Impossibility to clone an unknown state offers certain advantages — we may use

quantum states to transmit information that we do not want to be copied. If one
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Figure 1.1: A graph of the main concepts of this thesis and their relations.

party (let us call her Alice) sends a quantum message to a friend (let us call him Bob),
then any trial of our enemy to make a copy of the message will disturb the message
Bob receives. This property is utilized in protocols for generating shared secret keys,
allowing for perfectly secure cryptography [14, 15].
Another application of quantum information is quantum computation. Feynman is

attributed with the first idea to use the principles of quantum mechanics for computa-
tion [16]. Moreover, his intuition that quantum systems can simulate other quantum
system turned out to be correct [17]. The first quantum algorithms offered significant
speedup for testing whether a function is constant [18], the computation of the discrete
logarithm [19], and database access [20]. Unfortunately, the power of quantum infor-
mation and computation comes at the price of another intrinsic quantum mechanic

2



1.1 Background

problem: its extreme sensitivity to noise. As the number of parameters grows expo-
nentially with the number of particles, even a small noise, attenuation or uncertainty
of the setting may result in drastic changes of subtle parameters of the state. The
typical classical approach to overcome this problem is to amplify the signal, so that it
becomes much stronger than noise and presents redundancy against losses. However,
in quantum information this strategy is disallowed, because of the no-cloning property,
which allows secure communication. Moreover, on the one hand the pervasiveness of
interaction between particles makes creation of entangled states feasible, but on the
other hand it makes it easy to have an uncontrollable evolution and to entangle our
system with the environment. These uncontrolled interactions are operationally the
same as the loss of quantum properties in the form of decoherence [21].

1.1.2 Properties of quantum mechanics

Mathematically, quantum states are described as vectors in a complex Hilbert space.
Pure quantum states of d-levels, or qudits, are represented by vectors of d dimensions
and complex entries,

|ψ〉 =


ψ1

ψ2

...
ψd

 . (1.1)

When we perform a measurement in the computational basis, the probability of ob-
taining a given outcome is the absolute value squared of the respective vector entry

P (i) = ψ∗i ψi = |ψi|2, (1.2)

also know as the Born rule. The only linear operations that preserve probability are
unitary operations. Consequently, when describing a purely quantum evolution, we
restrict ourselves to using only these operations.
When considering a composite system of many distinguishable subsystems, the

recipe to construct its wavefunction is given by the tensor product of wavefunctions
representing each subsystem

|ψ〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φN 〉. (1.3)

Thus, the probability of getting a particular outcome is independent from other mea-
surements

P (i1, i2, . . . , iN ) = P1(i1)P2(i2) · · ·PN (iN ). (1.4)

Tensor product acts as a Cartesian product on the Hilbert space basis. So for sub-
systems of dimensions d1, d2, . . . and dN the dimension of the global Hilbert space
is d1d2 · · · dN . Not all quantum states of many particles can be written as a product
state (1.3). These states are called entangled states [22]. If each subsystem has di-
mension d, then product states constitute a manifold of N(d−1) complex dimensions.

3



1 Introduction

However, if we consider all possible states, we get a manifold of dN − 1 complex pa-
rameters. Consequently, from a measure-theoretic perspective, almost all pure states
are entangled.
In many scenarios we need to deal with statistical mixtures of pure states. This can

be done by using density matrices. For a pure state |ψ〉 it is defined as

ρ|ψ〉 = |ψ〉〈ψ|. (1.5)

That is, its entries are ρij = ψiψ
∗
j . The diagonal of density matrix consists of the

probabilities of the different outcomes, given the measurement is performed in the
computational basis. The statistical mixture of two states, with probabilities µ and
(1− µ) can be written as

ρ = µρ1 + (1− µ)ρ2. (1.6)

This description encapsulates the fact that different mixtures of pure states can yield
the same quantum correlations. Moreover, it allows straightforward calculation of
expectations values of operators A, that is

〈A〉 = Tr[Aρ]. (1.7)

For mixed states the notion of entanglement is more complicated. The most standard
approach is to define separable states as states being in the convex hull of ρ|ψ〉, where
|ψ〉 are product states, i.e.

ρ =
∑
i

p(i)ρ|ψi〉. (1.8)

Yet, unlike for pure states, the problem to tell whether a given state is separable or
not is NP-hard [23].
While mixed states are harder to analyze than pure states, they are essential to study

quantum mechanics itself. That is, even if we study a pure state of two particles, its
subsystems are generally in a mixed state. When we study any state described by ρ,
the state of its subsystem A after ignoring subsystem B reads

ρA = TrA [ρ] , (1.9)

where TrA is the partial trace. This operation traces out everything but the system A
(in this case, it traces out the subsystem B), that is

[ρA]iA;jA =
∑
iB ,jB

[ρ]iA,iB ;jA,jB . (1.10)

Use of a mixed state to analyze a subsystem is not only done because of our ignorance,
i.e. lack of knowledge, of subsystem B. The other party can be light years away, and
whatever we do cannot be affected by operations performed on the remote subsystem.
Or even, the other party may have crossed the event horizon of a black hole, so even
in principle its information may not be accessible to us.
The notion of entanglement does depend on the choice of subsystems with respect to

which we want to assess entanglement. Consider a single photon that passes through a

4



1.1 Background

50% : 50% beam splitter. If we choose to represent our quantum states with particles,
the state is given by

|A〉+ |B〉√
2

, (1.11)

with the following meaning: a photon is in a superposition of mode A and mode B, with
equal amplitudes. As any state of a single particle it is always in the form a product
state (1.3), thus is not entangled. However, if we move to the second quantization
picture, describe our state with the occupation of modes, A and B, then the state is

|0, 1〉+ |1, 0〉√
2

, (1.12)

that is, a superposition of

• having no photons in mode A and a photon in mode B,

• having a photon in mode A and no photons in mode B,

which is entangled. Depending on the problem we study, we may want to use one
representation or the other.

1.1.3 Entanglement

The non-local character of quantum effects provides a motivation for defining entan-
glement as quantum correlations that cannot be generated by local operations, even if
assisted by classical communication.
As a simple example, a product state |00〉 can be converted by local operations to
|10〉, another product state. However, there are no local operations that would allow
transforming |00〉 into an entangled state (|00〉+ |11〉)/

√
2.

Since product states can be simulated by classical devices, practically all intrinsi-
cally quantum protocols need to rely on entanglement. However, even arbitrary small
entanglement is sufficient for universal quantum computation [24]. In quantum in-
formation, we are typically interested in properties up to the choice of local basis.
Consequently, typical entanglement measures are defined up to local unitary opera-
tions1. This notion is formalized by entanglement monotones [25] — non-increasing
quantities under local operations.
The easiest case to study entanglement is a bipartite system in a pure state. Let us

call the parts A and B, each of size N . In this case all entanglement properties can
be studied by choosing a convenient pair of local bases. This procedure, called the
Schmidt decomposition, reads

|ψ〉 =
∑
k

λk|φk〉 ⊗ |ϕk〉, (1.13)

1 A generic quantum information scientist will not tell a difference between (|01〉 − |10〉)/
√

2 and
(|00〉+ |11〉)/

√
2.
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1 Introduction

where λk are non-negative real numbers and {|φk〉}k is a set of orthonormal vectors
for subsystem A (and analogously for {|ϕk〉}k and B). Technically, the Schmidt de-
composition is the singular value decomposition of matrix |ψ〉iA,iB , that isψ11 . . . ψ1N

...
. . .

...
ψN1 . . . ψNN

 = (1.14)

|φ1〉 · · · |φN 〉


λ1 0

. . .
0 λN


|ϕ1〉 · · · |ϕN 〉


T

. (1.15)

Since it is equivalent to changing local bases, the only quantities related to entangle-
ment is the set of Schmidt values, i.e. {λk}k. For a product state there is only one
non-zero Schmidt value. Two states present the same entanglement if and only if they
set of Schmidt values is the same. The Schmidt values contain the same information
as

Tr[ρqA] = Tr[ρqB ] =
∑
k

λqk. (1.16)

Consequently, the study of reduced density matrices is related to invariants for a
quantum state. That is, the study of a subsystem is an important tool for studying
properties of the global system.
Multipartite entanglement is significantly more difficult to analyze. In similarity

with the bipartite case, one approach is to consider polynomials in the wavefunction
coordinates such that they are invariant with respect to local unitary operations. While
this method is general, there is no easy procedure to find a complete set of independent
invariants. Mathematically, these invariants can be expressed as expectation values of
many copies of the initial state [26]. Thus, also taking a supersystem plays a role in
the study of the properties of quantum states.
In this thesis we restrict to the study of entanglement for pure states. While a lot

of research in quantum information is focused on qubits, we work mainly on systems
of finite, but arbitrary, dimension. In a number of cases the qudit case is significantly
harder than the qubit case and either requires qualitatively different proofs to show
the same properties or have properties that cannot be reduced to the qubit case.

1.1.4 Quantum information with photons
One practical and promising tool for quantum information are excitations of elec-

tromagnetic field, that is, photons. They are massless particles, with spin 1 and Bose
statistics. Their main advantage is the ease of creation, transmission and measure-
ment. Photons travel in transparent media without interaction among themselves or
entangling to the environment. Consequently, a quantum state created with photons
in one place can be processed and measured in another place. In fact, many hallmark
properties of quantum information were first demonstrated using photons, for example
BB84 protocol for cryptography [27], quantum teleportation [28] and Bell test [29].

6



1.1 Background

Photon pure states, as any bosons, can be described as a polynomial of creation
operators acting on the electromagnetic vacuum, for example(

1
3
√

2
a†31 + 1√

3
a†1a
†
2 + 1√

3
a†3

)
|Ω〉, (1.17)

where by |Ω〉 we denote the vacuum state, and the state being described reads is
superposition of

• three photons in mode 1,

• one photon in mode 1 and one photon in mode 2,

• one photon in mode 3.

Since creation operators commute, the permutation symmetry of bosonic states is
ingrained in the polynomial representation.
Not every multiphoton state can be easily created. The easiest ones are coherent

states, which are naturally created by lasers, and squeezed states — states of light
which can be created by the propagation of a strong light beam through a nonlinear
crystal. More difficult methods of state creation is via cavity quantum electrodynamics
[30, 31]. Further processing can be done using linear optics, i.e. beam splitters and
phase retarders. Other operations are significantly harder to perform, e.g. quantum
non-demolition measurements [32, 33], or give only probabilistic results, e.g. condi-
tional measurement [34].

1.1.5 Entanglement invariants for symmetric states

Passive linear optics can be understood as the set of operations on multi-photon
states restricted to many-particle interference [35], but without interaction among the
particles. Even this small subset of all conceivable operations is useful for quantum
communication and cannot be efficiently simulated by classical computers [36]. Along
with conditional measurement, linear optics is as powerful as a universal quantum
computer [37].
Since it is easy to apply linear optics operations in a laboratory, the difficulty of

quantum state generation, processing and measurement is related to transformations
that cannot be performed in this framework. In this thesis, we have undertaken the
task of finding out which photon states can be reached from a given state, using only
linear optics.
Our key contribution is the introduction of two families of invariants [38], which are

straightforward to compute and provide both numerical and analytical insight into the
geometry of permutation-symmetric states [39]. They are expressed as the expecta-
tion values of polynomials in annihilation and creation operators, and are related to
particular symmetries of the state. Moreover, we show an experimental scheme, using
an optical setting, to directly measure the values for one of the families of invariants.
We show that our problem is equivalent to the problem of assessing the equivalence

7



1 Introduction

between permutation-symmetric states of distinguishable particles [40]. This in par-
ticular builds a bridge between invariants for linear operations acting on bosonic states
and entanglement properties of distinguishable states.
Even if photons are relatively uncoupled from transparent media, at distances suit-

able for practical applications particle loss and interaction with the environment is
inevitable. We show a way to overcome these problems by transmitting quantum in-
formation encoded in singlet states built with photons [41]. These states are invariant
under collective decoherence. At the same time, the quantum information they carry
is immune against all one-particle losses. We propose an experimental protocol as a
proof-of-principle demonstration of these properties.

1.1.6 Quantum sequences and qubism

Quantum entanglement of many particles is difficult to describe and quantify even
for pure states. If we want to get insight into the structure of a given state, one
approach is to calculate its various entanglement measures. In order to analyze the
full state, we introduce a visualization scheme, called qubism, for pure states of many
d-level particles, which generates two-dimensional images [42]. We plot all amplitudes
of a given state in the computational basis, and arrange them in a specific way, which
makes certain quantum properties visible, see Fig. 1.2. In particular, due to the
recursive nature of the plot, translational symmetry shows up as self-similarity of the
plot, while entanglement shows up as a type of this self-similarity.
One-dimensional spin chains constitute an interesting class of Hamiltonians, which

play a role as toy models and have proved to be a fruitful ground for developing
techniques for analyzing many-body states. Properties such as ferromagnetism, block
entanglement, transport properties [43] and correlation length were studied in such
systems, especially in the context of quantum phase transitions. One of the most
relevant task of quantum many-body physics is to investigate how does the ground
state change with the parameters in the Hamiltonian [44]. We employ qubism to
exhibit particular properties of spin chains and show how the plot can be used to
make conjectures about the structure of the state. We show that phase transitions are
usually apparent, and can be seen without previous knowledge of the order parameter.
For numerous physical systems the ground state is a singlet state [45], that is, belongs
to subspace of zero total angular momentum — also this property is visible in the plot.

1.1.7 Complexity and the Rényi entropy

Self-similarity of qubistic plots can be not only seen, but also quantified, using their
fractal dimensions. As we deal with a probability distribution derived from quantum
mechanics, rather than a set, its fractal dimension can be characterized as a function,
rather than a single number. We use the Rényi entropy [46] of the order q, which is
defined as:

Hq =
1

1− q log2

(
N∑
i=1

pqi

)
, (1.18)
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1.1 Background

Figure 1.2: Qubism, a 2D plotting scheme of many-body wavefunctions. Top: A recipe
for the recursive visualization scheme. For the first iteration level the basis
for the first two particles, |00〉, |01〉, |10〉 and |11〉, is mapped into one
of the four smaller squares (left). Next, we repeat the procedure for the
next two particles, taking the smaller squares as the starting point (right).
Bottom: Examples of qubistic plots for qubit states of N = 12 particles.
We plot the ground state for the Heisenberg Hamiltonian with the periodic
boundary conditions (left) and the half-filled Dicke state (right). Satura-
tion represents the absolute value of the amplitude and color represent the
sign.

where (p1, . . . , pN ) is a probability distribution. Its scaling properties with coarse-
graining of the plot can be quantified as the multifractal dimensions [47, 48]. That
is, for fractals the entropy (1.18) is expected to grow linearly as we are doubling the
resolution. The fractal dimension is defined as the linear coefficient. The parameter
q is related to the sensitivity to low and high probability densities. In particular, for
q → 0 we obtain the fractal dimension of the support, i.e. all non-zero probabilities,

9



1 Introduction

whereas for q → ∞ we obtain the fractal dimension of the set of the most probable
outcomes.
The Rényi entropy has applications to other quantum problems, in particular for

the entropic uncertainty principle [49, 50], a generalization of Heisenberg’s uncertainly
principle. Moreover, a quantum variant of the Rényi entropy, where instead of sum-
ming probabilities we perform Tr[ρq], has applications in assessing the purity of a
mixed state. Consequently, when applied to reduced density matrices, these entropies
are entanglement invariants.
Additionally, the Rényi entropy has applications in the study of other complex

systems, e.g. probability distribution and degree distribution on complex networks.
Its low value implies high heterogeneity of a network.

1.1.8 Quantum complex networks

Many complex systems can be represented in an abstract way as a graph, that is, a
set of nodes connected by edges. When we analyze real systems these graphs are called
complex networks [51, 52]. The structure of a complex networks can be characterized
with a number of parameters. The simplest one beyond the node and edge count is the
degree distribution, that is, the distribution of nodes with respect to the number of
outgoing edges. This parameter allows us to tell how homogeneous or heterogeneous
are nodes with respect to their connection to other nodes. Sometimes the degree
distribution function can be identified as a power law.
In quantum mechanics, a Hamiltonian can be viewed as a graph, with edges between

nodes being weighted by the respective transition amplitudes. The unitary evolution
of a quantum state can be interpreted as a quantum walk, in which the walker tunnels
to its neighboring nodes. Unlike for a classical random walk, in which the probability
distribution converges to a steady state, in a quantum walk the long-time behavior
does depend on the initial state and oscillates rather than converges to a steady state.
Nonetheless, a natural question would be to compare classical and quantum behavior.
We have found that after averaging out oscillations, the probability distributions are
close to each other, and their difference depends on the degree distribution of the
network [53].
In order to get insight into the structure of a complex network, we can split a graph

into communities [54], that is subgraphs, each of them with nodes more densely con-
nected inside that with the rest of the graph. It allows both to study in depth each
subgraph and to analyze a coarse-grained graph, with communities being the new
nodes. An archetypal community would be a clique — a subgraph with all nodes
connected within itself and with no outgoing edges. However, in real-world data com-
munities are typically less pronounced, see Fig. 1.3.
There is no universal recipe for community detection, i.e. splitting a graph into

communities. A typical approach is to define some target function, which is maximal
for the best splitting. Perhaps the most common one is modularity [55, 56] — a
quantity measuring how much more nodes are connected inside a community that
with the outside. But even for modularity, an exact maximization is an NP-complete
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Figure 1.3: An example of community detection applied for graph visualization: net-
work of tags associated with quantum-mechanics on Physics - Stack Ex-
change, a questions and answers site. The area of each node is proportional
to the number of questions labeled by a given tag. Edge widths are related
to the number of questions with both tags. Edge shades are related to cor-
relation between two tags: P (tag1 ∩ tag2)/[P (tag1)P (tag2)]. Each color
represents a distinct community, based on a greedy modularity maximiza-
tion. This open-source project by the author is accessible via the following
link: http://stared.github.io/tagoverflow/.
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1 Introduction

problem [57], so heuristic methods are important, for example greedy or hierarchical
models, inspired by renormalization [58].
Another important question is related to the strength of quantum effects. At small

scales quantum effect are apparent — energies of molecules are directly based on
quantum mechanics. However, biological systems do not seem to exhibit long-range
quantum effects. So, even at the level of a single excitation, how can we assess a typical
scale for quantum effects? We focus on a physical system, light harvesting complex II,
utilized by plants to absorb light.
To investigate regions with strong quantum effects, we introduce a community de-

tection method suited for quantum walks [59]. Our approach is to look at the behavior
of a single excitation, performing a quantum walk from a given site. We distinguish
between nodes for which interference effects are relevant and those for which they are
not. The distinction is established via the density matrix. We define the splitting of a
graph into communities as removing all coherence between communities. Our target
functions, instead of the modularity, are typical quantum informational measures of
the purity of a state or the fidelity of a quantum channel.

1.2 Structure

This PhD thesis is divided into three chapters, each one describing a distinct thread
of research, connected through common concepts and methods related to study of
entanglement, symmetry and self-similarity of quantum systems. All chapters are
aimed to be self-contained, and they can be read in any order.
In Chapter 2: Invariants for bosonic and symmetric states we study the prob-

lem of which many-photon states are equivalent up to the action of passive linear
optics. We prove that it can be converted into the problem of equivalence of two
permutation-symmetric states, not necessarily restricted to the same operation on all
parties. We show that the problem can be formulated in terms of symmetries of com-
plex polynomials of many variables, and provide two families of invariants, which are
straightforward to compute and provide analytical results. Furthermore, we prove
that some highly symmetric states (singlet states implemented with photons) offer
two degrees of robustness — both against collective decoherence and a photon loss.
Additionally, we provide two proposals for experiments, feasible with an optical setup
and current technology: one related to the direct measurement of a family of invariants
using photon-counting, and the other on protecting transmitted quantum information
employing the symmetries of the state.
In Chapter 3: Visualization of quantum sequences we study a family of re-

cursive visualization schemes for many-particle systems, for which we have coined the
name qubism. While all many-qudit states can be plotted with qubism, it is especially
useful for spin chains and one-dimensional translationally invariant states. This sym-
metry results in self-similarity of the plot, making it more comprehensible and allowing
us to discover certain structures from it. This visualization scheme allows to compare
states of different particle numbers (which may be useful in numerical simulations
when particle number is an open parameter) and puts emphasis on correlations be-
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tween neighboring particles. The visualization scheme can be used to plot probability
distribution of sequences, e.g. related to series of nucleotides in RNA and DNA or —
amino acids in proteins. However, unlike classical probabilistic ensembles of sequences,
visualizing quantum states offers more — showing entanglement and allowing us to
observe quantum phase transitions.
In Chapter 4: Quantum walks on complex networks we study quantum walks

of a single particle on graphs, which are quantum analogues of classical random walks.
Our focus in on the long-time limit of the probability distribution. We define “quan-
tumness” to be the difference between the probability distributions of the quantum
and related random walks. Moreover, we study how (especially in the long-time limit)
off-diagonal elements of the density matrix behave. That is, we measure coherence
between different nodes, and we use this coherence to perform quantum community
detection — splitting of a graph into subgraphs in such a way that the coherence
between them is small. We perform a bottom-up hierarchical aggregation, with a
scheme similar to modularity maximization, which is a standard tool for the, so called,
community detection for (classical) complex networks. However, our method captures
properties that classical methods cannot — the impact of constructive and destructive
interference, as well as the dependence of the results on the tunneling phase.

1.3 Contribution
This PhD thesis is based on the following peer-reviewed papers and preprints, in

the chronological order:

• [41], Chapter 2, especially Sec. 2.6:
P. Migdał, K. Banaszek,
Immunity of information encoded in decoherence-free subspaces to particle loss,
Phys. Rev. A 84, 052318 (2011), arXiv:1107.3786,

• [42], Chapter 3:
J. Rodriguez-Laguna, P. Migdał, M. Ibanez Berganza, M. Lewenstein, G. Sierra,
Qubism: self-similar visualization of many-body wavefunctions,
New J. Phys. 14 053028 (2012), arXiv:1112.3560, appeared in the New Journal
of Physics Highlights of 2012,

• [40], Chapter 2, especially Sec. 2.4:
P. Migdał, J. Rodriguez-Laguna, M. Lewenstein,
Entanglement classes of permutation-symmetric qudit states: symmetric opera-
tions suffice,
Phys. Rev. A 88, 012335 (2013), arXiv:1305.1506,

• [38], Chapter 2, especially Sec. 2.5:
P. Migdał, J. Rodríguez-Laguna, M. Oszmaniec, M. Lewenstein,
Multiphoton states related via linear optics,
Phys. Rev. A 89, 062329, arXiv:1403.3069, selected by PRA as Editors’ Sugges-
tion,
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• [53], Chapter 4, especially Sec. 4.2:
M. Faccin, T. Johnson, J. Biamonte, S. Kais, P. Migdał,
Degree Distribution in Quantum Walks on Complex Networks,
Phys. Rev. X 3, 041007 (2013), arXiv:1305.6078,

• [59], Chapter 4, especially Sec. 4.3:
M. Faccin, P. Migdał, T. Johnson, J. Biamonte, V. Bergholm,
Community Detection in Quantum Complex Networks,
Phys. Rev. X 4, 041012 (2014), arXiv:1310.6638.

Moreover, the author wrote a paper in mathematical psychology [60]. Additionally,
the author contributed to open source projects related to the thesis, in particular:

• QuTiP (qutip.org, a Python package for quantum physics): implemented qubism
and other visualizations of many body quantum states, improved the Bloch
sphere visualization [61],

• Wikipedia article on matrix product states [62].

14

http://qutip.org/


2 Invariants for bosonic and
symmetric states

2.1 Introduction

In quantum physics, one of the fundamental symmetries is the symmetry with re-
spect to exchange of particles. At least in three dimensional space, particles need
either to be symmetric with respect to interchange of particles (bosons) or antisym-
metric (fermions). Even for distinguishable particles (i.e. fermions and bosons, but
when each particle occupy exclusive sets of modes, e.g. different spatial positions)
symmetry with respect to exchange of particles still plays a role. A permutation-
symmetric state is a state of the maximal total spin [63]; on the opposite end there is
singlet subspace (i.e. the subspace with total spin zero), having some antisymmetric
properties.
In quantum information, we are almost always interested in properties up to the

choice of local basis. Consequently, typical entanglement measures are defined up to
local unitary operations. In particular, entanglement monotones [25] — defined as
quantities non-increasing by local operations.
In this chapter we study the relation between symmetries of the state (especially:

permutation symmetry and singlet state) and its capabilities to be used in information
theory. We attempt to answer the question which pairs of states can be transformed
into each other within a fixed set of operations.
The content of this chapter is the following. In Sec. 2.2 we present an overview

and background knowledge related to entanglement and its relation to symmetries,
in particular — local unitary equivalence. Sec. 2.3 introduces some notation and
basic mathematical facts that we use through this chapter. In particular we introduce
basics of the geometry of Hilbert space, equivalences with respect to local operations
and provide simple examples. In Sec. 2.4 we show rigorously the relation between
geometry of bosonic states subjected to linear operations and the local equivalence of
permutation-symmetric states. Moreover, as a byproduct of the methods we apply,
we introduce a discrete family of states, which contains W and GHZ states as special
cases. In Sec. 2.5 we introduce two families of polynomial invariants to test whether
two many-photon states can be related via linear optics. We show their relation to
the geometry of bosonic states and propose an experimental setup for their direct
measurement. In Sec. 2.6 it is shown that creating singlet states from bosons does not
only protect the information against collective decoherence, but also makes it immune
to one-particle loss. Unless explicitly stated, we work on pure states with fixed number
of particles n, each with the same number of levels d.
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2 Invariants for bosonic and symmetric states

2.2 Overview
Entanglement is perhaps the most important resource for quantum information (for

a review see [22]), and its characterization is one of the key tasks of quantum theory.
Particularly difficult is the problem of characterizing entangled mixed states (for a
recent review of various necessary criteria see [64]). The problem for pure states is
much simpler. But even in this case, only a few settings are completely understood
— in particular, bipartite entanglement, where the Schmidt decomposition provides a
method of classification of pure entangled states of two parties [22]. In a multipartite
scenario very little is known about the different classes of entanglement. Typical
questions that one would like to answer concern entanglement classes of pure states
which are invariant with respect to local operations, typically assumed to constitute
a group (unitary, general linear, etc.). The corresponding classes of states are called
then LU-, SLOCC-equivalent, etc., where LU denotes local unitary, and SLOCC —
stochastic local operation and classical communications. Only a few rigorous results
are known concerning these questions, which we list below

• For three qubits a generalization of the Schmidt decomposition has been formu-
lated (see [65] and references therein) — this result provides a classification of
invariant states with respect to local unitaries. There is a considerable amount
of work regarding this and the related problem of geometrical invariants by the
Sudbery group [66, 67].

• Classification of entanglement of three qubit states according to LU and SLOCC
has been presented in Ref. [68, 69] and [70], respectively.

• Classification of entanglement of 4 qubits according to SLOCC has been pre-
sented in Ref. [71] (see also a series of papers by Miyake [72, 73]).

• For many qudits a multiparticle generalization of the Schmidt decomposition
[66, 74] provides a general way to answer whether two states are LU-equivalent.

There is also a considerable amount of work on many-qubit states cf. [75–78], but
very little is known about general many qudit states. The difficulty of classifying
entanglement for multipartite pure states is one of the motivations for considering
restricted families of states. Such restrictions are typically introduced by considering
symmetries [79], which might be physically motivated. In this spirit many authors
considered totally permutation-symmetric pure states of n qubits (cf. [80–85]), since
such states naturally describe systems of many bosons, and appear frequently in the
context of quantum optics. Similarly, quantum correlations in totally antisymmetric
states (as representative states of fermions) have been intensively investigated (for a
review see [86] and references therein). In the next introductory subsection we focus
on symmetric states and their particular role in physical applications.
A many-qudit wavefunction can be permutation-symmetric for two reasons. One is

when it describes a system of bosons, so that the particles are indistinguishable on a
fundamental level. Second is when the particles are distinguishable but, because of a
particular setting (e.g. a Hamiltonian for which the particles form an eigenstate), they
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2.2 Overview

happen to be in permutation-symmetric state. The latter situation occurs for instance
for the Lipkin-Meshkov-Glick model [87] of nuclear shell structure, and related models
of quantum chaos [88]. It is worth stressing that the two situations are not the same.
In the later case we are able to manipulate each particle separately in a different way,
while in the first we are restricted to operations modifying each boson in the same way.
The question is whether those two settings give rise to same entanglement classes, i.e.
if for symmetric states the classification can be reduced to studying operations that act
in the same way on all particles. Moreover, the entanglement geometry of permutation-
symmetric states is interesting and relevant, e.g. for quantum computation using linear
optics [36]. As mentioned above, this question was widely studied in the qubit case
[81, 85, 89], but most of the obtained results are not-applicable for qudit systems of
dimension d > 2, the general case which we are going to address.
In the field of quantum optics, this question can be recast in this way: can a given

multi-photon state, |ψ1〉, be transformed into another one, |ψ2〉, using only linear op-
tics? By (passive) linear optics we mean the use of beam-splitters and wave plates,
which is known to be equivalent to the action of arbitrary unitary operations on each
mode [90]. This question bears special relevance both in theory and practical appli-
cations. On the theoretical side, linear optics with postselection has been proved to
be able to efficiently realize a universal quantum computer [37, 91]. But even with-
out postselection, linear optics transformations of multi-photon states constitute an
intermediate stage between classical and full-fledged quantum computation [36]. On
the practical side, our ability to generate decoherence-free states [92, 93] relies on our
ability to transform multi-photon states. Operation by linear optics can be viewed
as multi-particle interference, as opposed to multi-particle interaction. But beyond a
generic interference phenomenon, it bears effects which are specific to bosons [35, 94].
In this chapter we consider equivalence under linear optics transformations of pure

states of n photons in d modes, disregarding the possibility of postselection. We show
that the problem is equivalent to the LU-equivalence of bosonic states.
As an illustration, let us consider a state of two photons occupying two different

modes or channels, |ψ1〉 = |1, 1〉 – i.e. one photon in each mode. It is possible to
transform this state into |ψ2〉 = (|2, 0〉−|0, 2〉)/

√
2 using Hong-Ou-Mandel interference

[95] (i.e.: two-photon interference in a 50% : 50% beam splitter), but it is not possible
to place both photons in the same channel with 100% efficiency, i.e.: |ψ3〉 = |2, 0〉 is
not achievable. Of course, it is always possible to perform postselection, measuring the
number of photons in the second channel and retaining only the states that contain
none, but the efficiency will drop to 50%. Translating the problem to LU-equivalence,
we can say that a state (|01〉P + |10〉P )/

√
2 (one particle in one mode and one in the

other, symmetrized) is not equivalent to state |00〉P (both particles in the same state).
Moreover, quantum systems are powerful yet fragile carriers of information. The

ability to create and manipulate superposition states offers verifiably secure cryptog-
raphy [96, 97], reduces the complexity of certain computational problems [98], and
enables novel communication protocols [99]. However, in practical settings one needs
to protect the quantum states carrying information against decoherence, i.e. uncon-
trolled interactions with the environment. This is accomplished by building redun-
dancy into the physical implementation. Compared to the classical case, this task
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is much more challenging [100] due to limitations in handling quantum information,
boldly exemplified by the no-cloning theorem [12]. When an ensemble of elementary
quantum systems decoheres through symmetric coupling with the environment, one
can identify collective states that remain invariant in the course of evolution. These
states span a so-called decoherence-free subspace (DFS) that is effectively decoupled
from the interaction with the environment [101–103]. More generally, it is possible to
identify subspaces that can be formally decomposed into a tensor product of two sub-
systems, one of which absorbs decoherence, while the second one, named a noiseless
subsystem or a decoherence-free subsystem, remains intact [104].

2.3 Preliminaries

2.3.1 Representations and notation for symmetric states
Let us consider the system of n-photons in d modes. There are, at least, two possible

descriptions of the Hilbert space Sdn describing the system. In a mode description, i.e.:
the second quantization picture (see for example [105]), Sdn is treated as a subspace
of the full Fock space Fock

(
Cd
)
. Let ~n ≡ (n1, · · · , nd) be a multi-index denoting the

photon count for each mode and let |~n| = ∑d
k=1 nk. The basis states spanning Sdn are

specified by the photon count on each mode,

|~n〉 =
(an1

1 )† · · · (and

d )†√
(n1!) · · · (nd!)

|Ω〉 ≡ ã†~n|Ω〉, |~n| = n . (2.1)

In the above expression |Ω〉 is the Fock vacuum, a1, . . . , ad are annihilation operators,
and ã†~n is a normalized monomial defined as above, creating |~n〉 from vacuum.
In a particle description, Hilbert space Sdn is treated as the permutation-symmetric

subspace of (Cd)⊗n, Symn
(
Cd
)
. Let us fix the basis vectors of Cd: |1〉, |2〉, . . . , |d〉.

Basis states of
(
Cd
)⊗n with a simple tensorial form,

|φ〉 = |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 , ik ∈ {1, . . . , d} , (2.2)

are not permutation symmetric. A basis for Symn
(
Cd
)
is obtained from product

vectors in (Cd)⊗n by symmetrization over all factors in the tensor product. Let us
define an asymmetric state from given mode counts ~n = {n1, · · · , nd}:

|~n〉A ≡ |1〉⊗n1

P ⊗ |2〉⊗n2

P ⊗ · · · ⊗ |d〉⊗nd

P . (2.3)

In the above expression we explicitly put the subscript P to emphasize that we deal
with tensor product of states in particle representation. The state |~n〉A can be thought
of as a naive state in particle representation with the corresponding photon counts for
each mode. The corresponding normalized symmetric state is given by:

|~n〉 =

√
n1! . . . nd!√

n!

∑
perm

|1〉⊗n1

P ⊗ |2〉⊗n2

P ⊗ · · · ⊗ |d〉⊗nd

P , (2.4)
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where the sum is over the different permutations of the factors appearing in the ten-
sor product. Notice the required normalization factor. There exists another way of
expressing the state |~n〉 in particle basis

|~n〉 = N(~n) P (n)
sym|~n〉A , (2.5)

where P (n)
sym is the projector onto the completely symmetric subspace of (Cd)⊗n and

the normalization factor N(n) is given by

N(n) =

√
n!

n1! · · ·nd!
. (2.6)

During most of this chapter, we will work within the mode description, as it is more
natural for dealing with boson states. However, in some parts of this paper we will
use also the particle representation and we will proceed between them both, when it
is convenient. States written in the particle representation will have a subscript P .
States written in mode representation will have commas between modes.
An arbitrary pure state of the system can be written as:

|ψ〉 =
∑
|~n|=n

α~n |~n〉 , (2.7)

where α~n are complex amplitudes and |~n〉 are normalized states with fixed number of
photons in each mode. To each state |ψ〉 we associate a unique homogeneous polyno-
mial in the creation operators according to the recipe:

|ψ〉 =
∑
|~n|=n

α~n |~n〉 = f†|Ω〉 → f† ≡
∑
|~n|=n

α~n ã
†
~n . (2.8)

2.3.2 Local unitary equivalence
In quantum information processing one practical questions is which states can be

achieved from state |ψ〉, with quantum operations applied only to individual particles.
There are two important operation protocols (see [83] for a reference):

• Local Operations and Classical Communication (LOCC),

• Stochastic Local Operations and Classical Communication (SLOCC).

Both of them allow local operations (such as unitary operations or measurements)
and exchange of classical information — perhaps with measurements or operations
being conditional on already obtained outcomes. The difference between LOCC and
SLOCC is that in the first case we require deterministic success, while in the later —
success with some non-zero (however small) probability.
A typical example of a LOCC protocol would deterministically distinguishing two

orthogonal states with only local projection measurements (with basis of subsequent
measurement being dependent on the previous measurement outcomes) [106].
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One key characteristics of states, derived from LOCC and SLOCC, are classes states
that are equivalent with respect to them — i.e. for each pair of states from a class
there is a S(LOCC) protocol that does |ψ1〉 7→ |ψ2〉 and another one performing the
reverse operation |ψ2〉 7→ |ψ1〉. Not every (S)LOCC transformation can be reversed.
For example, we can map an entangled state into a product state (by measurements
and applying appropriate unitary operations), but the inverse is not possible.
For LOCC, states are equivalent if and only if there exist local unitary operations

U1, . . . , Un such that:
U1 ⊗ U2 ⊗ · · · ⊗ Un|ψ1〉 = |ψ2〉. (2.9)

This should not be surprising: we cannot make non-trivial measurements (not to
disturb the state) and consequently, we cannot get any information for communication.
The only operations that we are free to perform are local unitary operations. That
is, LOCC-equivalence is the same as local unitary equivalence, or LU-equivalence, and
we will use the later term. For qubits, the problem was solved in [77, 78] using normal
forms..
For SLOCC, pure states are equivalent if and only if there exist local invertible

operations A1, . . . , An (not necessarily unitary, normal or diagonalizable) such that:

A1 ⊗A2 ⊗ · · · ⊗An|ψ1〉 = |ψ2〉. (2.10)

The original proof is in [70]. It can be expressed as follows: on each particle we perform
a positive operator-valued measurement (POVM). That is, for the i-th particle we use
operators {Ãki }k, such that ∑

k

Ãk†i Ã
k
i = I (2.11)

and for each k we get an outcome

Ãki |ψ〉√
〈ψ|∑k Ã

k†
i Ã

k
i |ψ〉

(2.12)

with probability
pk = 〈ψ|Ãk†i Ãki |ψ〉. (2.13)

. We set Ã1
i equal to Ai, up to normalization. Then, by conditioning our result on

getting outcome "1" for every particle, we obtain |ψ2〉 as in (2.10). Moreover, we need
to impose that Ai is invertible, so as to guarantee that we are able to go back from
|ψ2〉 to |ψ1〉. As we see, also in this case we were able to avoid communicating: we
are able to set local operations in advance and condition the result on a particular
measurement outcome.
To give some taste of equivalence classes both with respect to LOCC and SLOCC,

we perform the Schmidt decomposition on a pure state of two particles

|ψ1〉 =
∑
k

λk|φk〉 ⊗ |ϕk〉, (2.14)

where {|φk〉} and {|ϕk〉} are sets of orthonormal one-particle states and the Schmidt
values λk are non-negative real numbers, in decreasing order. Then state |ψ1〉:
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• is LU-equivalent to |ψ2〉 iff they have the same Schmidt values,

• is SLOCC-equivalent to |ψ2〉 iff they have the same number of non-zero Schmidt
values.

In particular, for two qubits all equivalence classes are represented by

• LU-equivalence: one-parameter family
√

1− λ2|00〉+ λ|11〉 for 0 ≤ λ ≤ 1/
√

2,

• SLOCC-equivalence: a discrete family of two states — a product state |00〉 and
an entangled state (|00〉+ |11〉)/

√
2.

In general, entanglement classes for more than two particles are much more involved,
even for the symmetric qubit (d = 2) states with three [70] or four [71] particles.
Let us see how this problem can be stated for bosonic systems. First, let us describe

the action of (passive) linear optics on pure states described in different representations.
Within the mode representation, the action of linear optics is expressed mathematically
as the application of unitary operations on the creation operators, i.e.:

a′†i =

d∑
j=1

Uija
†
j , (2.15)

where U ∈ SU(d). Conversely, all SU(d) operations among the modes can be achieved
with a sequence of two-mode operations, such as beam-splitters and wave plates, in
a way which resembles the action of Euler angles [107]. We use the word passive,
since we want to exclude operations that are linear in both creations and annihilation
operators, but do mix them (i.e. squeezing). Alternatively, in particle representation,
transformation (2.15) is equivalent to the action of the same U on each particle:

|ψ′〉P = U⊗n|ψ〉P . (2.16)

The equivalence between both representations corresponds to the equivalence between
the first and second quantization pictures for bosonic states [105]. Instead of a unitary
operation U , we can use any d×d complex matrix A. We also use passive linear optics,
and add ancillary modes (empty on input, conditioned to be empty on output) so that

U =

[
tA B
C D

]
(2.17)

is unitary for some number t and matrices B, C and D. For the equivalence relation
we need to assume that A is invertible.
We are ready to state the problem of equivalence between two bosonic pure states

under the action of linear optics. The problem is formulated as follows. Given two
pure states, |ψ1〉 = f†1 |Ω〉 and |ψ2〉 = f†2 |Ω〉 ∈ Sdn, we ask whether there exists a unitary
transformation on the modes U ∈ SU(d) such that f1 and f2 are related by a rotation
among the variables

f2(~a)† = f1(U∗~a)† . (2.18)
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2 Invariants for bosonic and symmetric states

Alternatively, in the particle description, (2.18) is equivalent to

|ψ2〉P = U ⊗ U ⊗ · · · ⊗ U |ψ1〉P . (2.19)

Both problems can be directly translated to their stochastic variants, with A ∈ GL(d).
Formula (2.19) is a special case of (2.9), with all unitary operations being the same,
i.e.

U ≡ U1 = U2 = . . . = Un, (2.20)
and analogously with (2.10). Certainly, if states are related by (2.19), they are also
LU-equivalent. But, if two pure permutation-symmetric states are LU-equivalent, does
it mean that they are related by linear optics? We show it in Sec. 2.4 (see also our
paper [40]), both for LU-equivalence and SLOCC-equivalence.

2.3.3 Invariants
As it was stated in the introduction, our approach to the equivalence problem (2.18)

is based on the construction of particular classes of invariants of the local unitary
group representing linear optics. Let us consider the action of a group G on some set
X. For x ∈ X and g ∈ G, let us denote the action of g on x by g · x, which again
belongs to X. A function h : X 7→ X is invariant under the action of G if and only if

h(g · x) = h(x) for all x ∈ X and all g ∈ G . (2.21)

In our case we have X = Sdn, G = SU(d) and the action of G is given by (2.15)
or, equivalently, by (2.16). A theorem by Hilbert states that, for a compact group
G acting in a unitary fashion on a finite dimensional vector space, there exists a
finite number of independent invariants (which are polynomial in the coordinates of
|ψ〉) that are able to distinguish whether two vectors belong to the same orbit of G
[26, 108, 109]. A convenient way to write down the invariants involves using tensor
diagrams [110] — they make it explicit why certain polynomials are invariant and
allow us to avoid multiple index contractions. Thus, the LU-equivalence problem can
be solved completely once the minimal set of independent polynomial invariants is
known. This problem is in general unsolved. For recent developments in the theory
of invariants in the context of entanglement theory see [111]. In our work we do not
attempt to study all invariants of the action of SU (d) on Sdn. Instead, we focus on
two families of invariants, analyzing their usefulness and physical relevance.
There are relevant differences between structures of LU and and SLOCC invariants.

Since LU-equivalence is characterized by a compact group acting on vector space,

• there is a finite number of polynomial invariants that are necessary to distinguish
orbits,

• all invariant polynomials can be written as a sum of polynomials of a particular
form [68].

In SLOCC, or equivalently — equivalence up to local invertible operations, the previous
statements do not hold. For example, for one SLOCC invariant, the Schmidt number
(i.e. number of non-zero Schmidt values), there is no continuous function (let alone
polynomial), as |00〉+ ε|11〉 has Schmidt rank 2 for arbitrary small ε > 0.
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2.3 Preliminaries

2.3.4 Simple examples
Before considering the general problem, let us focus on simple cases for LU-equivalence

of symmetric states:

• only two particles (n = 2) in an arbitrary number of modes, or, alternatively,

• an arbitrary number of particles in just two modes (d = 2), i.e.: permutation-
symmetric states for qubits,

• multi-particle squeezed coherent states (i.e. Gaussian states).

In particular, for the first two cases, we want to show explicitly how the bosonic mode
description is related to the particle representation.

Two particles

For two particles it suffices to perform a variant of the Schmidt decomposition, for
symmetric states [112], i.e.:

|ψ〉 =

d∑
i=1

λi|φi〉P ⊗ |φi〉P , (2.22)

where λi ≥ 0 and |φi〉 are pairwise orthogonal states, the same for both particles.
Thus, two pure states of two photons are related by linear optics if and only if they
have the same sets of Schmidt values {λi}. In this case, the polynomial f(~a) (as in
(2.8)) is formally a quadratic polynomial in the number of modes, d. The Schmidt
decomposition allows us to rewrite it as:

f =

d∑
i=1

λi√
2
b2i (2.23)

for a certain set of new variables ~b, such that b†i |Ω〉 = |φi〉, which are related to ~a by
a unitary rotation, i.e. ~b = U~a.
Bear in mind that the operation we had performed is not diagonalization, since:

• Mµν ≡ |ψ〉µν is a symmetric matrix, not necessarily Hermitian,

• U ⊗ U |ψ〉 is equivalent to UMUT , not UMU†.

Two modes and Majorana representation

When there are just two modes (d = 2), it is possible to use the Majorana stellar
representation (see e.g. [39, 113, 114] for a short introduction) and write the state as:

|ψ〉 = A

n∏
i=1

(
cos

(
θi
2

)
a†1 + eiϕi sin

(
θi
2

)
a†2

)
|Ω〉, (2.24)
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2 Invariants for bosonic and symmetric states

where pairs (θi, ϕi) can be interpreted as coordinates of points on the Bloch sphere,
and A is a normalizing factor. Equation (2.24) is equivalent to a factorization of the
homogeneous polynomial defined in eq. (2.8) in the following form:

f(a1, a2) = Ãan2

n∏
i=1

(
a1
a2
− xi

)
, (2.25)

where Ã is the coefficient of an1 , and we have introduced variables xi = −eiϕi tan(θi/2).
Linear optics acts on this representation as a rotation of the Bloch sphere as a whole.
Consequently, two states are related by linear optics if and only if their Majorana
representations are related by rotation [82].
Let us show how to decide whether two symmetric n-qubit states are equivalent

under linear operations. First, we apply the Majorana stellar representation to both
states, resulting in two sets of vectors, {~vi}i∈{1,...,n} and {~ui}i∈{1,...,n}. They may
differ by a rotation (i.e. an element of SO(3)) and a permutation. Let us choose an
ordered pair of two non-parallel vectors (~u1, ~u2). Then, for every ordered pair from
the first set (~vi, ~vj) for i 6= j, if their scalar products match (~vi · ~vj = ~u1 · ~u2) we can
construct a unique rotation that rotates the first pair into the second. Then we check
whether such rotation rotates every ~vi into a distinct vector ~uσi. If it does, states are
equivalent. If if it does not for all pairs, two states are not equivalent. As the number
of ordered pairs of two different vectors is n2 − n, the algorithm complexity is the
maximum of n2 and the complexity of an algorithm for factorization of an n-degree
polynomial of one variable (to get the Majorana stellar representation).

Gaussian states

Gaussian states of light are states for which the Wigner function is Gaussian (as well
as other quasi-probability distributions [115]). Pure Gaussian states can be written as
[116]

|ψ〉 = exp

(∑
i

αia
†
i − α∗i ai

)
exp

∑
ij

Qija
†
ia
†
j

 |Ω〉, (2.26)

where a complex symmetric matrix Q is related to squeezing and a complex vector ~α
is related to displacing the center.
They are of special importance, since they are both simple to generate and analyze

[117–120]. Unlike other states we analyze in this chapter, Gaussian states have an
unbounded number of photons, with the sole exception of the vacuum state. Their en-
tanglement was studies with respect to modes [121–123], with applications to standard
quantum information operations [3] such as quantum teleportation [124] or quantum
key distribution [125]. Gaussian states are the only pure states described by non-
negative Winger function. Since the behavior of Gaussian states is similar to some
classical states, the negativity of Wigner function [126] can be used to measure certain
aspects of non-classicality of quantum states.
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Continuous-variable systems are typically studied using canonical position and mo-
mentum or equivalently — creation and annihilation operators[

ai
a†i

]
=

1√
2

[
1 i
1 −i

] [
xi
pi

]
(2.27)

for each mode i. Multiplying the wavefunction by a phase rotates all x and p.
General affine operations on creation and annihilation, called linear unitary Bogoli-

ubov transformations, are of the form

~a 7→ A~a+B~a† + ~α, (2.28)

where A and B are responsible for rotation and squeezing and ~α for displacing. A and
B are related, so that the output modes fulfill the canonical commutation relations.
For passive linear optics A ≡ U∗ is unitary and both B and ~α are zero. That is, it does
not mix creation with annihilation operators, or displace them. In particular, passive
linear optics preserves the number of particles.
Let us stick to creation and annihilation operations, since they can easily represent

the action of linear optics, that is[
~a
~a†

]
7→
[
U∗ 0
0 U

] [
~a
~a†

]
(2.29)

whereas for the canonical position and momentum it is slightly more complicated[
~x
~p

]
7→
[
Re[U ] Im[U ]
−Im[U ] Re[U ]

] [
~a
~a†

]
, (2.30)

what can be derived using (2.27).
All pure Gaussian states are related by (2.28). But which states are related only by

passive linear optics? Let us focus on ~α = ~0. The problem has the same geometry as
the two-particle case studied in Sec. 2.3.4, thus can be solved with the same method
(mathematically speaking, Gaussian states (2.26) are exponents of two-particle states).
However, we take another route, which sheds light on physical properties of Gaussian
states.
The key observation is that each squeezing (2.28) can be decomposed as a series of

operations: a passive optics, a one-mode squeezing and another passive optics [116] (see
also [120, A.2]), using so-called Bloch-Messiah decomposition, which can be used to
analyze modes of link squeezing, e.g. as in [127]. One-mode squeezings are operations
of the form

xi 7→ exp(−ri)xi, pi 7→ exp(ri)pi (2.31)

for real ri ≥ 0 called squeezing parameters. If we start from the vacuum state, then
such squeezing results in

〈ψ|x2
i |ψ〉 = exp(−2r)/2, 〈ψ|p2

i |ψ〉 = exp(2r)/2, (2.32)
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2 Invariants for bosonic and symmetric states

which saturate the Heisenberg’s uncertainty principle. We may conclude that with
passive optics operations we can build a normal form of a state, i.e one with no
correlations between modes and modes squeezed as in (2.32).
Let us calculate a correlator for a Gaussian state:

ρij = 〈ψ|a†iaj |ψ〉, (2.33)

which can be thought to a generalization of a one-particle reduced density matrix.
This matrix bears exact information to decide whether two states are related via
linear optics. By diagonalizing (2.33)

ρ 7→ UρU† (2.34)

we get new, pairwise uncoupled modes. On the diagonal we get eigenvalues, i.e.:

〈ψ|a†iai|ψ〉 = 1
2 〈ψ|

(
x2
i + p2

i − 1
)
|ψ〉 = 1

2 cosh(2ri)− 1
2 , (2.35)

where we used (2.32), and which is in one-to-one correspondence with the squeezing
parameter. Consequently, if two non-displaced Gaussian states have the same spectrum
of (2.33), they are related by passive linear optics, and the exact transformation is
DU , where U is a unitary matrix diagonalizing (2.33), and D is a diagonal matrix
with phases, rotating each position-momentum pairs.

2.4 SLOCC and LOCC equivalence of
permutationally symmetric pure states

In this section we present two results, main for our paper [40]. The first one is
that, when testing whether two permutation-symmetric n qudit states are equivalent
under local transformations, the search can be restricted to operators which act in the
same way on every particle. This property was proven for qubits [82, 128, 129] in the
SLOCC variant (though the unitary version can be deduced from their proof). For
general qudit system it remained so far an open question [83, Sec.5.1.1.]. That is, in
the course of this work, we prove that:

Theorem 1. Let us consider two permutation-symmetric states of n qudits (i.e. d-
level particles), |ψ〉 and |ϕ〉, for which there exist invertible d× d matrices A1, . . . , An
such that

A1 ⊗A2 ⊗ . . .⊗An|ψ〉 = |ϕ〉. (2.36)

Our result implies that then there exists an invertible d× d matrix A such that

A⊗A⊗ . . .⊗A|ψ〉 = |ϕ〉. (2.37)

If we restrict ourselves to unitary matrices A1, . . . , An, then A is unitary.
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2.4 SLOCC and LOCC equivalence of permutationally symmetric pure states

For Ai unitary, (2.36) is a condition of equivalence of states under reversible local
operations (or LU-equivalence), which is proven to be the same as equivalence with
respect to local operations and classical communication (LOCC) [25, 130]. Moreover,
in both cases we provide a direct construction for A as a function of A1, . . . , An. Our
second result stems from the consideration of stabilizers of states [84] in the form of a
matrix B acting on one particle, and its inverse B−1 acting on another one. Only for
very specific states there are such B, which are non-trivial. We show that the Jordan
form of B, disregarding the values of the eigenvalues, is an invariant for SLOCC-
equivalence, and analyze it in detail, providing a coarse-grained classification of the
relevant entanglement classes. If each block of the Jordan form of B has a distinct
eigenvalue, then there is a unique stabilized state, up to local operations. In particular,
we find as entanglement class representatives a d-level generalization of the n-particle
GHZ state

|0〉n + . . .+ |d− 1〉n√
d

, (2.38)

and one possible generalization of the W state for d > 2, i.e. a state with all single
particle state indices adding up to d− 1, that is(

n+ d− 2

d− 1

)−1/2 ∑
i1+...+in=d−1

|i1〉|i2〉 . . . |in〉, (2.39)

which we call excitation state.
For two particles both classes coincide, as e.g.

|00〉+ |11〉+ |22〉 ∼= |02〉+ |11〉+ |20〉 (2.40)

Table 2.1 summarizes the entanglement classes related to Jordan blocks for the simplest
non-trivial case, i.e. n = 3 particles (a general construction is in (2.76)). We adopt a
special notation for the Jordan block structure. Outer brackets separate eigenspaces
with different eigenvalues, while the inner brackets separate different Jordan blocks of
the same eigenvalue. Each number is dimension of a single Jordan block. Ordering of
the terms does not matter, neither in inner or outer brackets. For example: {{2}} is
a matrix with only one Jordan block, {{1, 1}} is proportional to the identity matrix
and {{1}, {1}} is a matrix with two different eigenvalues, that is (λ1 6= λ2):

{{2}} ≡
[
λ1 1
0 λ1

]
(2.41)

{{1, 1}} ≡
[
λ1 0
0 λ1

]
(2.42)

{{1}, {1}} ≡
[
λ1 0
0 λ2

]
(2.43)

The number of different Jordan block structures for a given d is given by double
partitions [131].
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d Block structure A class representative
2 {{2}} |001〉+ |010〉+ |001〉
{{1, 1}} (not unique) any state
{{1}, {1}} |000〉+ |111〉

3 {{3}} |002〉+ |020〉+ |200〉
+|011〉+ |101〉+ |110〉

{{2, 1}} (not unique)
{{1, 1, 1}} (not unique) any state
{{2}, {1}} |001〉+ |010〉+ |100〉+ |222〉
{{1, 1}, {1}} (not unique)
{{{1}, {1}, {1}}} |000〉+ |111〉+ |222〉

Table 2.1: A summary of entaglement classes related to Jordan blocks, for the case of
three qubits (d = 2) and qutrits (d = 3). The notation is explained in the
main text (2.41). The general construction for the unique states is given in
(2.76).

This work is organized as follows: in Section 2.4.1 we prove that it is sufficient to
study invariance under symmetric transformations. We supplement it with a construc-
tion of the symmetric transformation in Section 2.4.2. In Section 2.4.3 we discuss the
entanglement classes which can be obtained by studying stabilizer operators related
to one-particle transformations.

2.4.1 Symmetric operations suffice
We start with an approach similar to the one of [82]. Let us consider two permutation-

symmetric states, |ψ〉 and |ϕ〉 ∈ S, with S denoting the symmetric subspace of the
full Hilbert space. If (2.36) holds, then any different permutation of A1, . . . , An will
also work. In order to show this property explicitly, we may use |ψ〉 = Pσ|ψ〉 and
|ϕ〉 = Pσ−1 |ϕ〉, where Pσ is a permutation matrix for the permutation of particles σ,
i.e. Pσ|i1i2 . . . in〉 = |iσ(1)iσ(2) . . . iσ(n)〉.
Since all Ai are invertible, it means in particular that(

A−1
2 ⊗A−1

1 ⊗ . . .⊗A−1
n

)
(A1 ⊗A2 ⊗ . . .⊗An) |ψ〉 = |ψ〉 (2.44)

or, equivalently, (
B ⊗B−1 ⊗ I⊗ . . .⊗ I

)
|ψ〉 = |ψ〉, (2.45)

where B = A−1
2 A1.

From now on, we will use a subscript in parenthesis to indicate the position of an
operator in the tensor product, e.g.

B(2) ≡ I⊗B ⊗ I⊗ . . .⊗ I, (2.46)

where the total number of factors is n. Without the loss of generality, we use operations
on the first and the second particle.
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2.4 SLOCC and LOCC equivalence of permutationally symmetric pure states

First, let us show that if an operation on one particle can be reversed by applying
the inverse operation on a different particle, then that single-particle operation must
preserve permutation symmetry of the state.

Lemma 1. For a symmetric |ψ〉 ∈ S the equality (2.45)

B(1)B
−1
(2) |ψ〉 = |ψ〉 (2.47)

holds if and only if
B(1)|ψ〉 ∈ S. (2.48)

Proof.

B(1)|ψ〉 ∈ S ⇔ B(1)|ψ〉 = B(2)|ψ〉 (2.49)

⇔ B(1)B
−1
(2) |ψ〉 = |ψ〉 (2.50)

Now we will show that the action of the aforementioned single-particle operation
B(1) can be expressed as an operation acting in the same way on every particle S⊗n.
Intuitively, we must search for an n-th root of B. But not all such n-th roots will
work, as the following example shows:
Consider S = σx, which is a square root of B = I, acting on |00〉 ∈ S. While

B(1)|00〉 ∈ S, S(1)|00〉 = |10〉 6∈ S, and S⊗S|00〉 = |11〉, which, despite being symmet-
ric, is not the desired state. Thus, the relevant question is: which one is the appropriate
n-th root? Before we can proceed, we need a few lemmas.

Lemma 2. If |ψ〉 ∈ S, X(1)|ψ〉 ∈ S and Y(2)|ψ〉 ∈ S, then X(1)Y(2)|ψ〉 ∈ S ⇔ the
commutator acting on the state vanishes [X(1), Y(1)]|ψ〉 = 0.

Proof. If the final state is symmetric, we may permute the first two particles without
altering the result:

0 = X(1)

(
Y(2)|ψ〉

)
− Y(1)

(
X(2)|ψ〉

)
(2.51)

= X(1)

(
Y(1)|ψ〉

)
− Y(1)

(
X(1)|ψ〉

)
(2.52)

= [X(1), Y(1)]|ψ〉. (2.53)

To see how commutativity is important, take as an example

X =

[
1 1
0 1

]
, Y =

[
0 1
1 0

]
. (2.54)

acting on |ψ〉 = (|01〉 + |10〉)/
√

2 (i.e. |ψ〉, X(1)|ψ〉 and Y(2)|ψ〉 are symmetric, but
X ⊗ Y |ψ〉 = (|00〉+ |01〉+ |11〉)/

√
2 is not).

29
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Lemma 3. Moreover, for n ≥ 3 the commutator acting on the state always vanishes,
i.e. [X(1), Y(1)]|ψ〉 = 0.

Proof.

X(1)Y(1)|ψ〉 = X(1)Y(3)|ψ〉 = X(2)Y(3)|ψ〉 (2.55)
= Y(3)X(2)|ψ〉 = Y(1)X(1)|ψ〉 (2.56)

Lemma 4. If X(1)|ψ〉 is symmetric, then Xp
(1)|ψ〉 is symmetric for all natural p (in-

teger if X is invertible).

Proof. We use mathematical induction with respect to p, starting at p = 0. Since
X commutes with Xp (even without the restriction to a specific state), then using
Lemma 2, Xp

(1)|ψ〉 ∈ S implies that Xp+1
(1) |ψ〉 ∈ S. If X is invertible, we may use the

same argument for X and X−p, respectively.

Corollary 1. Moreover, we get

Xp
(1)|ψ〉 = Xp1 ⊗Xp2 ⊗ . . .⊗Xpn |ψ〉, (2.57)

for any integers pi (can be negative if X is invertible) that add up to p.

Corollary 2. In particular, f(X)(1)|ψ〉 ∈ S for any analytic function f(z).

Theorem 2. For any X and |ψ〉 ∈ S it holds that if

X(1)|ψ〉 = |φ〉 ∈ S (2.58)

then there exists a single-particle operator S such that Sn = X, S(1)|ψ〉 ∈ S and

(S ⊗ S ⊗ . . .⊗ S) |ψ〉 = |φ〉. (2.59)

Proof. The proof outline is the following: we prove that, among the n-th roots of
operator X, there is (at least) one, S, which can be expressed as a polynomial of X;
following Corollary 2, we get S(1)|ψ〉 ∈ S and the rest of the theorem follows.
The n-th root function is multivalued, so we can not use it to prove the theorem

as it stands. Let us, then, prove that there exists a polynomial function f , such that
[f(X)]n = X.
Let {λi} be the eigenvalues of X, with algebraic multiplicities {mi} (i.e. size of the

largest Jordan block related to such eigenvalue). Matrix function theory [132, Chapter
1] states that the action of any analytical function f on a matrix X is completely
determined by the set of values {f(λi)}, along with the derivatives

{
f (k)(λi)

}
, up to

degree mi. Let us choose, for each i separately, f(λi) and f (k)(λi) from the same
branch of the complex n-th root function. It is always possible to find a polynomial
f that takes exactly those values and derivatives at the eigenvalues of X, e.g., via
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2.4 SLOCC and LOCC equivalence of permutationally symmetric pure states

Hermite interpolation. Thus, we can define S ≡ f(X), and we have Sn = X, as
required.
Combining this result with the corollaries, we get that

S⊗n|ψ〉 = Sn(1)|ψ〉 = X(1)|ψ〉. (2.60)

The converse of theorem 2 is false. Take, e.g., S = σx and |ψ〉 = |00〉. It is true that
S ⊗ S|00〉 = |11〉 ∈ S, yet there is no B such that B(1)|00〉 = |11〉.

2.4.2 Explicit formula for symmetrization
In this section we provide the explicit form of A, given all Ai. Let Bij ≡ A−1

i Aj .
Thus, operator B in the previous section would correspond to B12 with the new nota-
tion. Transforming (2.36) we get

A1 ⊗A2 ⊗ . . .⊗An|ψ〉 (2.61)
= A1 ⊗A1B12 ⊗ . . .⊗A1B1n|ψ〉 (2.62)

= A⊗n1 B12 (2)B13 (3) . . . B1n (n)|ψ〉. (2.63)

All B1j (j)|ψ〉 are symmetric states, similarly to B(1)|ψ〉. Consequently, the last part
can be reshuffled as

A⊗n1 (B11B12 . . . B1n)(1) |ψ〉. (2.64)

Note that no requirements are imposed about their commutativity. Using Lemma 2
we get A = A1S, where S is an appropriate n-th root of B11B12 . . . B1n.
Moreover, when all Ai are unitary, then S is unitary, since roots of unitary matrices

can be chosen to be unitary given that f(UXU†) = Uf(X)U† for all unitary U . This
finalizes the proof of Theorem 1.

2.4.3 Symmetry classes from single-particle stabilizers
A well-known strategy in the search for entanglement classes theory is to study the

dimension of the stabilizers of a state [84], i.e.: operators X such that X|ψ〉 = |ψ〉. In
our case it is natural to consider stabilizers in the form of X = B(1)B

−1
(2) , and state

that B stabilizes |ψ〉 ∈ S as a convenient shorthand notation. Following Lemma 1, B
stabilizes |ψ〉 ∈ S if and only if B(1)|ψ〉 ∈ S. Bear in mind that a set of B stabilizing a
particular state is guaranteed to form a group only for n ≥ 3, as follows from Lemma
3.
Let us consider the Jordan normal form J of B. We have shown that all local

operations for symmetric states are equivalent to the action of the same single-particle
operation on all qudits: A⊗n. Consequently, if a state is stabilized by B, a SLOCC
transformed state is stabilized by some ABA−1, i.e.: the Jordan form of the stabilizer
is preserved.
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Below, we prove the following facts relating the Jordan form of B to the stabilized
states. First, that the precise eigenvalues are not important — only their degeneracies
matter (see notation from Table 2.1). Second, that stabilized states do never mix
eigenspaces of different eigenvalues. In particular, it means that the problem can be
split into a direct sum over distinct eigenvalues. Third, we will show the explicit form
of a state stabilized by a single Jordan block. Fourth, we show that when eigenvalues
are non-degenerate, there is an unique state related to it (up to SLOCC). Fifth, we
proceed to writing down states for multiple Jordan blocks with the same eigenvalue.
This will complete the characterization of states stabilized by any B.

Theorem 3. The set of states stabilized by B does not depend on the particular values
of its eigenvalues, as long as (non-)degeneracy is preserved.

Proof. We will show that mapping eigenvalues to different ones does not break the sta-
bilizer’s condition. Let choose a complex function f(z) such that (i) for all eigenvalues
f(λi) = λ̃i, and (ii) f (k)(λi) = δ0k for all k up to the algebraic multiplicity of each λi.
Now, f(B)(1) is also a stabilizer of |ψ〉, with the same Jordan blocks, but arbitrarily
set eigenvalues.

In particular, for d = 2 the only two non-trivial Jordan forms of B are related to the
GHZ state (two different eigenvalues) and W state (single eigenvalue). We proceed to
showing that stabilized states never mix subspaces with different eigenvalues.
Given a subspace V , let us denote by Symn(V ) the permutation-symmetric subspace

of V ⊗n. Then:

Theorem 4. For a given Jordan form J with generalized eigenspaces V1, . . . , Vp for
distinct eigenvalues, stabilized states are of the form

|ψ〉 ∈
p⊕
i=1

Symn(Vi). (2.65)

That is, they contain no vectors mixing components from Jordan blocks of different
eigenvalues.

Proof. Let |µ〉 and |ν〉 be one-particle states (µ, ν ∈ {0, . . . , d − 1}) that belong to
blocks of J with a different eigenvalues. Let us take f(B) mapping all subspaces to
zero, except the one to which |µ〉 belongs, which we map to 1. Suppose that |ψ〉 has a
component containing a product of |µ〉 and |ν〉 (at different sites). Then, in particular,
it has |µ〉|ν〉|ξ〉 and |ν〉|µ〉|ξ〉, for some symmetric ξ (perhaps containing |µ〉 or |ν〉 as
well). But

f(B)(1) (|µ〉|ν〉|ξ〉+ |ν〉|µ〉|ξ〉) (2.66)
= |µ〉|ν〉|ξ〉. (2.67)

The right hand side cannot be paired with any other terms in order to make a sym-
metric state. Thus f(B)(1)|ψ〉 is not symmetric, which contradicts the assumption.
Thus, a stabilized state can not contain a term with a product of elements from two
Jordan subspaces with different eigenvalues.
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2.4 SLOCC and LOCC equivalence of permutationally symmetric pure states

Thus, when J has d distinct eigenvalues, then the stabilized state is a generalized
GHZ:

|ψ〉 = α0|0〉n + . . .+ αd−1|d− 1〉n. (2.68)

When we consider local unitary equivalence, then the set of {|αi|2}i∈{0,...,d−1} distin-
guishes classes, whereas for SLOCC, the state is equivalent to any other with the same
number of non-zero αi.
Now, it suffices to focus on a Jordan subspace related to a single eigenvalue. Still, for

a single eigenvalue there may be more than one Jordan blocks, i.e. invariant subspaces.
We start with the analysis of a single Jordan block, then generalize our result to more
blocks with the same eigenvalue.

Theorem 5. Let K be a k× k Jordan block with eigenvalue zero, i.e.
∑k−1
i=1 |i− 1〉〈i|.

Its stabilized states are

|ψ〉 =

k−1∑
j=0

αj |Ej〉, (2.69)

where |Ej〉 is a symmetric state with j excitations, i.e. a symmetrized sum of all basis
states for which the sum of the particle indices is j:

|Ej〉 =
∑

i1+...+in=j

|i1〉|i2〉 . . . |in〉. (2.70)

Proof. First, let us show that all states K(1)|Ej〉 are symmetric, as long as j < k.

K(1)|Ej〉 =
∑

i1+...+in=j

|i1 − 1〉|i2〉 . . . |in〉 (2.71)

=
∑

i′1+...+in=j−1

|i′1〉|i2〉 . . . |in〉 = |Ej−1〉, (2.72)

where we use | − 1〉 ≡ 0 as a convenient shorthand notation. Now we can apply a
substitution i′1 = i1 − 1 and change the summation limit (thus requiring j < k).
Let us now show that all stabilized states |ψ〉 have the form of (2.69). We proceed

by induction with respect to n, the number of particles. For n = 1 (inductive basis),
all basis states are stabilized. Now, let us assume that the condition works up to a
given n. As K(1) reduces the total number of excitations by one, it suffices to look
at subspaces of fixed j. Together with the inductive assumption (in particular, the
fact that the first n particles must remain in a permutation symmetric state after
application of K(1)) we get a general form

|ξ〉 =

j∑
l=0

βl|Ej−l〉|l〉. (2.73)
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2 Invariants for bosonic and symmetric states

To find the actual constraints on βl, we just note that the assumed symmetry of
K(1)|ξ〉 implies that

K(1)|ξ〉 =

j−1∑
l=0

βl|Ej−l−1〉|l〉 (2.74)

= K(n+1)|ξ〉 =

j∑
l=1

βl|Ej−l〉|j − 1〉. (2.75)

Again, with a simple shift of index, and using the orthogonality of the components, we
get βl = βl+1. Thus, there is only one state (up to a factor) for a given j that remains
symmetric after K(1).

When considering SLOCC-equivalence, we may take |Ek−1〉 as a representative of
the states stabilized by K(1). The reason is that all other states (with αk−1 6= 0) can
be built from it via an operator

∑k−1
j=0 αk−1−jK

j
(1). This operator is invertible, since its

determinant is αkk−1. Throughout the derivation, we work with unnormalized states
for convenience. The properly normalized excitation state is given in equation (2.39).

Theorem 6. There is a unique (up to SLOCC operations) state stabilized by B if and
only if each Jordan block of B has a distinct eigenvalue.
A n > 2 particle state |ψ〉 ∈ S, stabilized by B, is unique (up to SLOCC) if and only

if each block of its Jordan form has a distinct eigenvalue and no other B′ exists with
a greater number of eigenvalues or a lesser number of Jordan blocks.

The formulation may seem complicated, but we want to exclude degenerate states,
which are also stabilized by other operators. For the excitation state we want to ensure
that amplitude of the (d−1) excitations is non-zero (otherwise it is stabilized also by a
matrix with two eigenvalues), or, for the GHZ states, that all amplitudes are non-zero
(otherwise, two eigenvalues can be merged into one, forming a single Jordan block).
For example, a three qutrit pure state |000〉 + |111〉 is stabilized by a matrix with
its Jordan block structure {{1}, {1}, {1}} (as for the GHZ state). However, unlike
|000〉 + |111〉 + |222〉 (the GHZ state), it is also stabilized by a matrix with one less
Jordan block {{1}, {2}}.

Proof. ′ ⇐′
We have already shown that the GHZ-like state with all amplitudes different from

zero is unique, as well as the excitation state with non-zero amplitude for the highest
excitation. It follows as well for any state without blocks of the same eigenvalue, as
the problem can be split into a problem for each eigenvalue.

• If any amplitude is zero in the GHZ-like case, the state is also stabilized by a B
with a Jordan block of dimension two.

• If the amplitude of for the highest excitation is zero, in the excitation state, the
state is also stabilized with a B with one more eigenvalue.
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2.4 SLOCC and LOCC equivalence of permutationally symmetric pure states

′ ⇒′
If there are two blocks with the same eigenvalue, then we can take two one-particle

eigenvectors |µ〉 and |ν〉 having the same eigenvalue. Let us look at the projection
of |ψ〉 on the subspace spanned by Symn(lin{|µ〉, |ν〉}). Then, in particular, a linear
combination with non-zero coefficients of elements with zero, one and two |ν〉 states
among all other |µ〉 does not give rise to more blocks or eigenvalues, but gives rise to
some states which cannot be interchanged with local operations.

Corollary 3. The number of Jordan block structures with non-degenerate eigenvalues
is the same as the number of integer partitions of d [133].
A general construction of such state is

#blocks⊕
i=1

|Eki〉, (2.76)

where ki is the dimension of the i-th Jordan block, in descending order. In particular,
for GHZ there are only blocks of size ki = 1, whereas for the excitation state there is
only one block, k1 = d.

It is also relevant to ask about stabilized states for B whose Jordan decomposition
contains two different blocks with the same eigenvalue. Let us use a one-particle basis
given by |i(b)〉, where i denotes excitation-level (i.e. the largest i such that J i acting
on this vector is non-zero) and b the Jordan block to which it belongs. First, we notice
that the sum of the excitations j in a given state is decreased by 1 after action of K(1).
Second, we notice that the excitations can be distributed among all Jordan subspaces
which are big enough (i.e. all blocks of size strictly lesser than j). Moreover, the
distribution among such Jordan subspaces needs to be permutation-invariant.

Theorem 7. An unnormalized state of excitation j distributed among s blocks (with
weights n1, n2, . . . adding up to n, related to distribution of excitations among Jordan
blocks) reads

|En1,n2,...
j 〉 =

∑
~b:#i=ni

∑
i1+...+in=j

|i(b1)
1 〉 . . . |i(bn)

n 〉. (2.77)

We will show by induction that only states of the form |En0,n1,...
j 〉 are stabilized by

such J .

For example, one excitation j = 1 among two particles, distributed among two
modes (n1 = 1, n2 = 1) reads

|E1,1
1 〉 = |0(1)1(2)〉+ |1(1)0(2)〉 (2.78)

+ |0(2)1(1)〉+ |1(2)0(1)〉. (2.79)

35



2 Invariants for bosonic and symmetric states

Proof. The induction basis is for n = 1 and holds trivially (as it works for all states).
So let us assume that (2.77) holds for n.
For n+ 1 particles, a generic state with fixed j and n1, n2, . . . is

j∑
l=0

∑
b=1

βl,b|En1−δb1,n1−δb1,...
j−l 〉|l(b)〉. (2.80)

Applying J(1) and J(n+1) on the state above, we get a relation βl,b = βl+1,b = βb.
Moreover, from the condition of permutation symmetry for blocks (i.e. components
with the same (b)) we get that all β need to be the same, so it is of the form (2.77).

This finalizes the classification of symmetric states for which (2.45) holds.

2.5 Invariants as functions of creation and
annihilation operators

Having shown that problem of relating bosonic states by linear optics is the same
that asking whether they are equivalent with respect to local unitary operations, we
focus on specific methods for bosonic states that provide analytic invariants, basing
on our work [38]. These invariants are built upon f†, the homogeneous polynomial
on the creation operators which transforms the vacuum into our state. We present
two families of LU-invariants, i.e.: two sets of complex-valued functions on the Hilbert
space which are invariant under linear optics:

• The spectrum of the operator ff†.

• The moments: vacuum expectation values of the operators fkf†k, for any natural
k.

The considered invariants are both simple to calculate and, as we will show, sufficient
to distinguish states in many practical situations, even some states which are generally
difficult to handle.
This part of the work is organized as follows. In Section 2.5.2 we present the con-

struction and relevance of spectral invariants related to the operator ff†. We show
that, despite being infinite dimensional, this operator can be easily diagonalized, as it
separates into blocks of fixed numbers of particles (not related to the photon count)
which are related to many-body correlators. In Section 2.5.3 we discuss the second set
of invariants: vacuum expectation values of fkf†k. It corresponds to the projection
of the tensor power of k copies of our state (in the particle basis) onto the completely
symmetric Hilbert space. In Section 2.5.4 we apply our methods in concrete examples.
We show that, using our invariants, we can solve the LU-equivalence problem for two
particles in two modes and for three particles in two modes. We also study which
states from the four-particle singlet subspace can be reached using linear optics from
another state in the same singlet subspace. Moreover, we show that, at least in some
cases, k-particle blocks of ff† provide more invariants than k-particle reduced density
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2.5 Invariants as functions of creation and annihilation operators

matrices. In Section 2.5.5 we propose an interferometric scheme that, in principle,
allows for a direct measurement of this set of invariants. Moreover, such scheme al-
lows direct experimental creation of states given by the polynomial fk for an arbitrary
k. Some technical discussions are left for Sec. 2.5.6, where we introduce Schwinger-
like representation for expressing arbitrary k-body correlations in terms of normally
ordered creation and annihilation operators.

2.5.1 Reduced density matrix
One of straightforward methods for checking whether two states are LU-equivalent

is comparing spectra of their reduced density matrices. As we are working on per-
mutation symmetric states, it does not matter which particle we choose, and thus we
have family of density matrices parameterized by a number from 1 to n. The simplest
one is the one-particle density matrix

ρij = 〈ψ|a†jai|ψ〉. (2.81)

For two particles, two state are LU-equivalent if, and only if, they have the same spectra
of the one-particle reduced density matrix, see Schmidt decomposition in Sec. 2.3.4.
The same condition holds for the Gaussian states, as shown in Sec. 2.3.4.
In general it is a necessary, but not sufficient, condition for LU-equivalence. Even

for a pure state of three symmetric qubits it is no longer the case — reduced density
matrices offer 1 invariant, whereas there are three, see Sec. 2.5.4. For general relation of
expectation values of creation and annihilation operators and reduced density matrices,
see Sec. 2.5.6.

2.5.2 Spectral method
Let us consider the d-mode, n-particle bosonic state given in equation (2.7), |ψ〉 =

f†|Ω〉, where f(a1, · · · , ad) is a homogeneous polynomial of degree n in the annihilation
operators for the modes. Now, let us consider the operator ff†.
We will show that:

• its spectrum is invariant with respect to SU(d) transformations (2.15),

• it may be decomposed into an infinite number of blocks of finite size, but

• the first n blocks suffice to reconstruct the state.

Invariance of the spectrum

Theorem 8. The spectrum of ff† is invariant with respect to arbitrary rotations
between the modes, that is,

Sp
[
f(~a)f†(~a)

]
= Sp

[
f(U~a)f†(U~a)

]
(2.82)

for every U ∈ SU(d).
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2 Invariants for bosonic and symmetric states

Proof. Each unitary operator acting on the modes U = exp(iH) (with Hermitian H)
can be promoted to act on the full Fock-space via a second quantization extension:

Ũ = exp

i d∑
i,j=1

Hija
†
iaj

 , (2.83)

where Ũ ∼= U⊗n on our Hilbert space Sdn. This operator Ũ is unitary and acts on
monomials in a natural way, i.e.: Ũ†ajŨ =

∑
i Ujiai, which can be checked with the

Hadamard lemma. Consequently,

f(U~a)f†(U~a) = Ũ†f(~a)f†(~a)Ũ , (2.84)

i.e.: the two operators are unitarily related and, thus, they have the same spectrum.

Block Decomposition

Since operator f is a homogeneous polynomial of degree n on the annihilation opera-
tors, each summand in operator ff† contains n creation and n annihilation operators.
Thus, ff† preserves the number of photons k, and decomposes into blocks ff†|k. Let
~k and ~k′ be multi-indices with |~k| = |~k′| = k. Then, matrix elements of ff†|k can be
shown to correspond to correlators of our state:

〈~k′| ff† |~k〉 = 〈Ω| ã~k′ ff† ã
†
~k
|Ω〉

=〈Ω| f ã~k′ ã
†
~k
f† |Ω〉 = 〈ψ| ã~k′ ã

†
~k
|ψ〉. (2.85)

For example, for two modes and particle numbers k ∈ {0, 1, 2}, the blocks are given
by:

ff†|k=0 =
[
〈ψ|1|ψ〉

]
(2.86)

ff†|k=1 =

[
〈ψ|a1a

†
1|ψ〉 〈ψ|a1a

†
2|ψ〉

〈ψ|a2a
†
1|ψ〉 〈ψ|a2a

†
2|ψ〉

]
(2.87)

ff†|k=2 = (2.88)
〈ψ|a

2
1a
†2
1

2 |ψ〉 〈ψ|a
2
1a
†
1a
†
2√

2
|ψ〉 〈ψ|a

2
1a
†2
2

2 |ψ〉
〈ψ|a1a2a

†2
1√

2
|ψ〉 〈ψ|a1a2a

†
1a
†
2|ψ〉 〈ψ|

a1a2a
†2
2√

2
|ψ〉

〈ψ|a
2
2a
†2
1

2 |ψ〉 〈ψ|a
2
2a
†
1a
†
2√

2
|ψ〉 〈ψ|a

2
2a
†2
2

2 |ψ〉

 .
The matrix elements of ff†|k are k-particle correlators. For k = 0, the only matrix

element is the norm of the state. Note that the spectrum of ff† is real, as each block
ff†|k is a Hermitian matrix.
Unitary rotations do not change the particle count. Consequently, the block struc-

ture is preserved under rotations and, thus, the Sp[ff†|k] are invariants. If the eigen-
values for two states differ, Sp[f1f

†
1 |k] 6= Sp[f2f

†
2 |k], then the two states can not be
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related by a unitary rotation of the modes. The converse is, in general, not true —
states related by complex conjugation (of f), so preserving the spectrum, are not nec-
essarily related by linear optics (see 2.5.4 for an example). It, however, remains an
open question whether the converse (up to complex conjugation) is true.
Instead of the eigenvalues, we may compute the characteristic polynomial:

wk(λ) = det
[
ff†|k − λI

]
. (2.89)

Since its coefficients are in one-to-one correspondence with the spectrum, the method is
equally powerful. Moreover, the coefficients of wk(λ) are polynomials in the coefficients
of f , which is closer in spirit to formulation of Hilbert’s theorem. An alternative, but
equivalent, route is to investigate the moments ff†|k, Tr[(ff†|k)l]. They are in one to
one correspondence with the characteristic polynomial wk(λ) by the virtue of Newton
identities [134]. For k = 1, the block is related to the single-particle reduced density
matrix (see Sec. 2.5.1), i.e.:

ρ1 = ff†|k=1 − nI. (2.90)

For k > 1 we do not recover the reduced k-particle density matrix and, as we will show,
ff†|k can provide more entanglement invariants than the spectrum of the reduced
density matrices with those respective particle numbers.
Even the first block can give interesting results. We can show that no-go observation

for deterministically changing one Fock state into another using with linear optics. Let
us look at ff†|1. As it is a Fock state, its matrix is diagonal (i.e terms 〈ψ|aia†j |ψ〉 vanish
for i 6= j). The diagonal values, and therefore the eigenvalues, are 〈ψ|aia†i |ψ〉 = ni+ 1.
As they are invariants, two Fock states can be deterministically related by linear optics
if and only if they have the same photon counts (up to a permutation of modes).

Correlators and reconstruction

Knowledge of ff†|k for all block particle numbers k ≤ n suffices to reconstruct
the state f†|Ω〉. The reconstruction strategy is to build the matrix elements of the
corresponding density matrix

ρ~n~n′ = 〈ψ|a†~na~n′ |ψ〉, (2.91)

which can be done by using the commutation relations in order to express the anti-
normally ordered terms into terms with normal ordering.
However, we do not claim that higher blocks with k > n are not important. While

they are not required to reconstruct the state, there might be pairs of states whose
polynomials w0 up to wn coincide, yet their wk differ for some k > n. That is,
eigenvalues do not capture relative orientation of eigenvectors for different blocks.
Eigenvalues for k > n might incorporate relations between eigenvectors for k ≤ n.
Let us provide a more straightforward way to reconstruct the state, which does not

involve calculating inverting the normal ordering of the operators. Let us recall the
notion of frame representation of a many qudit state [135]. Let {σi} be an orthogonal
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(in trace norm) set of generators of SU(d) plus the identity (i.e. a basis for d × d
Hermitian matrices). For SU(2) we may just choose the Pauli matrices: {I, σx, σy, σz}.
Any density matrix of a n-qudit state can be written as:

ρ =
∑

i1,··· ,in
ti1i2...inσ

i1 ⊗ σi2 ⊗ . . .⊗ σin ≡
∑
~ı

t~ıσ
~ı, (2.92)

Note that for permutation-symmetric states, ti1i2...in must be permutation-symmetric.
Since the {σi} are orthogonal, the state can be reconstructed from the expectation val-
ues of strings of σi operators:

ti1i2...in =
1

2n
Tr
[
σi1 ⊗ σi2 ⊗ . . .⊗ σin ρ

]
. (2.93)

Expectation values of permutation-symmetric strings of σi can be obtained from
the correlators ff†|k, as shown in Appendix (2.5.6). The idea behind the proof is the
use of a Schwinger-like representation, related to the one for spin systems —see [45,
Chapter 7.2], and develop identities of the form

〈ψ|
(∑
perm

σ~ı

)
|ψ〉 = 〈Ω|fA(~ı)f†|Ω〉, (2.94)

where A(~ı) is a polynomial in creation and annihilation operators. From a practical
perspective it allows calculating the expectation value without immersing everything
in the full Hilbert space of distinguishable particles, which has a very high dimension.
For example, for d = 2, we get the following relation

〈ψ|
∑
perm

(I)⊗nI ⊗ (σx)⊗nx ⊗ (σy)⊗ny ⊗ (σz)⊗nz |ψ〉 (2.95)

= 〈Ω|f :
(
a†a+ b†b

)nI
(
a†b+ b†a

)nx (2.96)

×
(
−ia†b+ ib†a

)ny
(
a†a− b†b

)nz
: f†|Ω〉,

where nI + nx + ny + nz = n (covering all symmetric correlators), the sum is over
all n! permutations and :expression: stands for the normal ordering, i.e. putting the
creation operators on the left and the annihilation on the right. Note that, for most
of this chapter, we use anti-normal ordering, as we work with operators of the form
fkf†k.

2.5.3 Symmetric component of tensor powers

An alternative set of invariants can be found by studying the symmetric component
of tensor copies of a given multi-photon state, taken in the particle representation.
Typically, |ψ〉⊗kP is not permutation-symmetric, therefore it does not describe a

boson state. However, we will show that its projection on the symmetric subspace is
proportional to f†k|Ω〉, a kn-photon state in d modes.
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Let us give an example, with n = 2 and d = 2, |ψ〉 = |1, 1〉 = 1
g
√

2
(|12〉P + |21〉P ). If

we multiply it tensorially with itself, we get |ψ〉⊗2
P = 1

2 (|12〉P + |21〉P )⊗(|12〉P + |21〉P ).
This is not a valid photon state, because it is not permutation-symmetric:

1
2 (|1212〉P + |1221〉P (2.97)
+|2112〉P + |2121〉P )

Nonetheless, it can be projected on the permutation-symmetric subspace, Symkn(Cd).
Let P (kn)

sym stand for that projector, where the upper index represents the number of
particles to be symmetrized, in this case — kn. Then,

〈ψ|⊗2
P P (4)

sym|ψ〉⊗2
P =

2

3
(2.98)

because (2.97) contains 4 out of 6 possible permutations,

P (4)
sym|1212〉P = 1

6 (|1122〉P + permutations) . (2.99)

In order to make the LU-invariance of those values 〈ψ|⊗kP P
(kn)
sym |ψ〉⊗kP manifest, we

will show their relation to
〈Ω|fkf†k|Ω〉 (2.100)

i.e.: the vacuum expectation values of fkf†k for all k ∈ N. These are easy to compute
and their invariance is straightforward, since the vacuum is rotation-invariant. Thus,
we will prove the following:

Theorem 9. For every homogeneous polynomial f , such that |ψ〉 = f†|Ω〉, the state
generated by its k-th power is proportional to the state |ψ〉⊗kP projected on the fully
symmetric space of all particles, that is,

f†k|Ω〉 =

√
(kn)!√
(n!)k

P (kn)
sym |ψ〉⊗kP , (2.101)

so, in particular:
〈Ω|fkf†k|Ω〉 = (kn)!

(n!)k
〈ψ|⊗kP P (kn)

sym |ψ〉⊗kP . (2.102)

Proof. Let {~n(1), · · · , ~n(k)} be k multi-indices, denoting photon count at each mode,
i.e., for the vector with index m, we have

~n(m) = {n(m)
1 , · · · , n(m)

d }. (2.103)

Let us denote by |~n(m)| =
∑
l n

(m)
l the total photon count. The monomial operator

defined in (2.1), ã†
~n(1)+···+~n(k) , can be written in terms of the individual normalized

monomials as

ã†
~n(1) ã

†
~n(2) · · · ã†~n(k) = M(~n(1), · · · , ~n(k)) ã†

~n(1)+···+~n(k) (2.104)
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where

M(~n(1), · · · , ~n(k)) ≡
d∏
l=1

√√√√ (n
(1)
l + · · ·+ n

(k)
l )!

(n
(1)
l )! · · · (n(k)

l )!
(2.105)

is the normalization factor. Let us express f†k|Ω〉 as a sum of terms of this kind:

(f†)k|Ω〉 =
∑

~n(1),··· ,~n(k)

α~n(1) · · ·α~n(k)

×M(~n(1), · · · , ~n(k)) ã†
~n(1)+···+~n(k) |Ω〉 (2.106)

so, the coefficient for |~I〉 ≡ ã†~I |Ω〉 is∑
~n(1)+···+~n(k)=~I

α~n(1) · · ·α~n(k) ·M(~n(1), · · · , ~n(k)) (2.107)

where ~I is a multi-index for nk photons in d modes.
Now, let us consider the right hand side of (2.101). The tensor product |ψ〉⊗k can

be written as:

|ψ〉⊗kP =
∑

~n(1),··· ,~n(k)

α~n(1) · · ·α~n(k) |~n(1)〉P ⊗ · · · ⊗ |~n(k)〉P , (2.108)

Notice that the action of several partial projections on symmetric subspaces followed
by a global projection on the symmetric subspace is equivalent to just the final global
projection. Consequently,

P knsym

(
|~n(1)〉P ⊗ · · · ⊗ |~n(k)〉P

)
= N(~n(1)) · · ·N(~n(k))P (kn)

sym(
P (n)
sym(|~n(1)〉A)⊗ · · · ⊗ P (n)

sym(|~n(k)〉A)
)

(2.109)

= N(~n(1)) · · ·N(~n(k))P (kn)
sym

(
|~n(1) + · · ·+ ~n(k)〉A

)
=

N(~n(1)) · · ·N(~n(k))

N(~n(1) + · · ·+ ~n(k))
|~n(1) + · · ·+ ~n(k)〉 =

=

√
(kn)!√
(n!)k

M(~n(1), · · · , ~n(k))|~n(1) + · · ·+ ~n(k)〉 (2.110)

Applying the above relations to (2.108) we get

P knsym|ψ〉⊗kP =
∑

~n(1),··· ,~n(k)

α~n(1) · · ·α~n(k)

√
(kn)!√
(n!)k

(2.111)

×M(~n(1), · · · , ~n(k))|~n(1) + · · ·+ ~n(k)〉

which is a state proportional to (2.106), with the proportionality factor
√

(kn)!/(n!)k,
thus we have shown (2.101).
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2.5 Invariants as functions of creation and annihilation operators

This tensor product symmetrization trick bears resemblance to the use of Clebsch-
Gordan coefficients. Indeed, already for k = 2 the result is useful: |ψ〉⊗2 is not
permutation-symmetric unless |ψ〉 = |φ〉⊗n for some single-particle state |φ〉.
It is possible to prepare an experimental setup to measure 〈fkf†k〉. We have to

prepare k copies of the state and project each k-tuple of modes into their symmetric
combination. For example, if k = 2, two modes are symmetrized using a beam-splitter.
Then, 〈f2f†2〉 is the probability amplitude for losing no photons in the procedure. In
general, taking copies of bosonic states and calculating projections offers a way to
measure multi-particle entanglement, since taking k copies provides a way to measure
Rényi entropy of order k of the given subsystems [136].
There is another interpretation of 〈fkf†k〉 in polynomial language. The quantity we

are investigating is known as the Bombieri norm of homogeneous polynomials [137] (in
this case, fk), which is known to be invariant under unitary rotations of the variables.
This quantity can be expressed as an integral of |f(~a)|2k over the (complex) unit
sphere |~a| = 1, [138, 139] (equivalently, see [36, Lemma 15], where it is called Fock
Inner Product).

2.5.4 Examples

The previous two sections have introduced two sets of LU-invariants for n-photon
states in d-modes. The question to be addressed in this section is the following: can
those invariants help us determine the LU-equivalence classes of relevant states? We
will start our discussion with a benchmark problem, which can be solved in many
different ways: n = 2 photons in d = 2 modes. Then, we will proceed to the case of
n = 3 particles, still in d = 2 modes, which is the first non-trivial case, although it
is well understood. We will show that, in that case, the right number of polynomial
invariants is recovered. Our last example is a much more complicated system: n = 4
photons in d = 8 modes with some additional symmetries.

2 particles in 2 modes

The simplest example is n = 2 particles in d = 2 modes:

f = α20
a21√

2
+ α11a1a2 + α02

a22√
2
. (2.112)

There is just a single invariant. Let us study how we can obtain it using the methods
described in this paper. In our case it suffices to look at a block of k = 1 particles:[

3|α20|2 + 2|α11|2 + |α02|2
√

2(α?20α11 + α?11α02)√
2(α20α

?
11 + α11α

?
02) |α20|2 + 2|α11|2 + 3|α02|2

]
(2.113)

Its characteristic polynomial is

w2(λ) = λ2 − Tr
(
ff†|k=1

)
λ+ det

(
ff†|k=1

)
, (2.114)
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2 Invariants for bosonic and symmetric states

where coefficients are

Tr
(
ff†|k=1

)
= 4

(
|α20|2 + |α11|2 + |α02|2

)
,

det
(
ff†|k=1

)
= 4

(
|α20|2 + |α11|2 + |α02|2

)2
−(|α20|2 − |α02|2)2 + 2|α?20α11 + α?11α02|2. (2.115)

The trace gives only the normalization, which is the same information contained in
ff†|k=0, and which we can set to 1. The determinant, on the other hand, gives a new
invariant.
Alternatively, we can factorize the (degree 2) polynomial: f = f1f2. In other terms,

we can make use of the Majorana stellar representation [39, Ch. 7]:

|ψ〉 =
1√
N
f†1f

†
2 |Ω〉 (2.116)

=
1√
2N

(|φ1〉P ⊗ |φ2〉P + |φ2〉P ⊗ |φ1〉P ) , (2.117)

where
√
N is a normalization factor and f†i |Ω〉 ≡ |φi〉. Since U ∈ SU(2) acts on

the representation as a simultaneous rotation of the points, for two particles the only
invariant is the angle between the states, or equivalently |〈φ1|φ2〉|2. A straightforward
(albeit tedious) calculation gives

|〈φ1|φ2〉|2 =
|α20|2 + |α11|2 + |α02|2 − |α2

11 − 2α20α02|
|α20|2 + |α11|2 + |α02|2 + |α2

11 − 2α20α02|
. (2.118)

Along with the normalization condition it yields the invariant

|α2
11 − 2α20α02|2 = 3− det

(
ff†|k=1

)
. (2.119)

The above is 0 and 1 for orthogonal and parallel vectors |φi〉, respectively.
It is also possible to find the 〈fkf†k〉 invariants associated to k copies. For k = 2

we obtain:

22

4! 〈Ω|f2f†2|Ω〉 = 1− 1
3 |α2

11 − 2α20α02|2. (2.120)

In particular, for each orbit under linear optics, we can give a representative, for
example

cos(θ)√
2
a2

1 +
sin(θ)√

2
a2

2 (2.121)

for θ ∈ [0, π4 ).

Three qubits

The case of n = 3 photons in d = 2 modes can be viewed as three qubits in a
permutation-symmetric state, and is more involved. A full list of invariants is listed
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2.5 Invariants as functions of creation and annihilation operators

in [68]. Disregarding mirror-reflection (i.e.: anti-unitary operators) there are 6 invari-
ants, which reduce to 4 when we take into account normalization and permutation-
symmetry. A normal form can be employed [65, 66, 140] which, when particularized
to a permutation-symmetric state, gives

|ψ〉 =p (|001〉P + |010〉P + |100〉P ) /
√

3

+q|111〉P + r exp(iϕ)|000〉P , (2.122)

where all parameters (p, q, r, ϕ) are real. In this section, we use modes {0, 1}, which
are more prevalent in description of qubits, {1, 2} (in most of this paper we start
enumeration from 1). Or, in polynomial notation:

f = α30
a30√

6
+ α21

a20a1√
2

+ α03
a31√

6
, (2.123)

where α30 is complex and both α21 and α03 are real parameters.
Our main result is that both the set of moments 〈fkf†k〉 with k ≤ 5 and the

characteristic polynomials of the blocks ff†|k≤2 provide all invariants. This can be
checked by computing the matrix of partial derivatives of these invariants with respect
to the parameters determining state (2.122) at, e.g., the point (p = q = r = 1, ϕ =
π/4), and observing that is has maximal rank.
This result implies that blocks of ff† convey more information than reduced density

matrices, which are known to provide only 2 invariants, including the normalization
(note that for 1 qubits spectra of one-particle and two-particle reduced density matrix
are the same). Beyond this dimensionality test, it is relevant to test whether those
invariants can distinguish between states related by complex conjugation (or reflection,
in terms of the Majorana representation), i.e.: |ψ〉 and |ψ〉∗. In general, for n ≥ 3,
such states do not need to be related by a unitary transformation (as, in the Majorana
representation, 3 indistinguishable unit vectors need not to have mirror symmetry).
Unfortunately, neither moments nor block spectra can distinguish a state from its
complex conjugate (as we already noted in Sec. 2.5.2).

Four-particle singlet state

As a more interesting example we consider n = 4 photons in d = 8 modes, composing
four qubits whose singlet-subspace determines a logical qubit, see Fig. 2.1. There are
three Hilbert spaces that are relevant for this scenario: the total Hilbert space S8

4 , the
4-qubit subspace H4, and the two-dimensional singlet subspace Hs, which determines
the logical qubit, structured by the following inclusions:

S8
4 ⊃ H4 ⊃ Hs . (2.124)

We address here the following natural question: starting with a particular singlet
state |ψ〉 ∈ Hs, which singlet states (also in Hs) can be obtained from it using only
linear optics? Before proceeding further, let us first describe the details of the con-
struction of the 4-qubit and the singlet subspaces of S8

4 .
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2 Invariants for bosonic and symmetric states

Let us denote the by {ai, bi}4i=1 the four annihilation operators required to span
S8

4 , where the ai refer to horizontal and the bi to vertical polarizations of the i-th
beam. We define the 4-qubit subspace H4 ⊂ S8

4 , as a subspace spanned by states that
have exactly one particle in each of the four pairs of modes: (ai, bi). This subspace
has dimension 16 and is isomorphic to the Hilbert space of four distinguishable qubits
(C)

⊗4. Action of the local unitary group SU(2)⊗4 on H4 is modeled by the action
of global linear optics operations that do not mix pairs (ai, bi). The two-dimensional
singlet subspace, Hs, is defined as the subspace of H4, which is invariant under the
action of any collective unitary rotations on all four qubits, V ⊗4.
The above construction was first introduced in [102] as the simplest example of a

decoherence-free subspace for collective rotations, and it has been created experimen-
tally [141]. In [41] it was shown that the logical qubit is immune to one-particle loss
and a protocol for quantum key distribution using such states and linear optics was
provided.

U

a1

b1

a′1
b′1

a2

b2

a′2
b′2

a3

b3

a′3
b′3

a4

b4

a′4
b′4

Figure 2.1: Linear transformations for a state with 4 photons distributed among 8
modes, S8

4 . We consider states having exactly one photon in each pair
of nodes (denoted by green boxes). This subspace is equivalent to the
Hilbert space of 4 distinguishable particles, H4. Furthermore, we study
singlet states, i.e. states that are invariant with respect to U = V ⊗4, for
all unitary V , where each V acts on the respective pair of modes.

Let us describe the structure of the singlet space in the mode description. For each
pair of beams we can define the two-photon singlet state:

s12 = (a1b2 − b1a2) /
√

2, (2.125)

i.e. s†12|Ω〉 = (|HV 〉 − |V H〉) /
√

2, where |H〉 and |V 〉 stand for horizontal and vertical
polarization, respectively. Those two-photon singlet states can be paired in three
inequivalent ways in order to build a global n = 4 state:

s12s34, s13s42, s14s23. (2.126)

These three states are not orthogonal, since they span a two-dimensional subspace. In
fact, the ordering of particles in s13s42 was selected so that the scalar product between
each pair is −1/2. To form an orthogonal basis, we prepare two linear combinations
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2.5 Invariants as functions of creation and annihilation operators

of them, resembling circular polarization states:

l =
√

2
3 (s12s34 + εs13s42 + ε2s14s23) (2.127)

r =
√

2
3 (s12s34 + ε2s13s42 + εs14s23), (2.128)

where ε = exp(i2π/3).
Let us introduce the following parametrization for our state

f = cos( θ2 )l + sin( θ2 )eiϕr, (2.129)

where θ ∈ [0, π) and ϕ ∈ [0, 2π), so that we can absorb the sign in θ. As it is a logical
qubit (i.e. a two dimensional Hilbert space), it can be represented on the Bloch sphere,
see Fig. 2.2.

Figure 2.2: Arrows stand for s12s34, s13s42 and s14s23. On the poles there are l and
r states, as defined in (2.127). Points represent a single state subjected to
action related to all permutations of pairs of modes modes.

Now let us compute the moments up to a few copies:

〈f2f†2〉 = 17
2 − 1

2 cos(2θ),

〈f3f†3〉 = 290− 42 cos(2θ)− 8 sin3(θ) cos(3ϕ), (2.130)

as a side note, the normalization factors (as in (2.102)) are 1/70 and 1/34650, respec-
tively. I.e.: the states are very far from being coherent.
Consequently, we obtain two invariants:

cos(2θ) and cos(3ϕ). (2.131)

This results restricts the allowed operations within linear optics. If we restrict ourselves
further, only to operations preserving the singlet subspace, then the only possible
operations, in the Bloch representation (see Fig. 2.2) are: rotation along the equator by
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2 Invariants for bosonic and symmetric states

2π/3 and 4π/3, rotation around states (2.126) by π, and mirror reflection with respect
the equatorial plane. In particular, there are no continuous allowed transformations
[142] for such singlet states. Let show how to implement all those operations, with the
exception of the mirror reflection.
What are the possible operations which hold the state within the singlet subspace?

Of course, different parings can be interchanged by permuting beams. For example,
(2 ↔ 3) changes s12s34 into −s13s24 (and the same changing (1 ↔ 4)). Exchange of
any two particles acting on any of the three two-singlet parings produces a state with
a minus sign. Thus, permuting particles preserves the singlet subspace.
The group of permutations of 4 particles has 24 elements, which can be generated

by two-particle swaps:

(1↔ 2) or (3↔ 4) : l 7→ −r, r 7→ −l (2.132)

(1↔ 3) or (2↔ 4) : l 7→ −ε2r, r 7→ −εl (2.133)

(1↔ 4) or (2↔ 3) : l 7→ −εr, r 7→ −ε2l, (2.134)

which can be checked directly by permuting particles in (2.127). On the Bloch sphere,
they are just rotations by π around one of the states (2.126). Composition of two
permutations allows us to reach cyclic permutations of the three particles, e.g. (1 →
2 → 3 → 1). It turns out that such permutations result in φ 7→ φ + 2π/3 and
φ 7→ φ+ 4π/3.
Thus we reached all operations unitary operations allowed by (2.131), with one

exception. It does not cover antiunitary operations (reflections on Bloch sphere θ 7→
π − θ). Thus, it is still possible that there are linear operations not preserving the
singlet subspace that map some states into their complex conjugates. Nonetheless,
this computation provides the most systematic study of the geometry of the simplest
singlet qubit state implemented with photons, to the best of the authors’ knowledge.
Alternatively, we can use the spectrum of ff†|k for different values of k. It suffices

to check the two-particles block, i.e. ff†|2, which is a 36 × 36 matrix. The highest
degree terms of its characteristic polynomial read:

w2(λ) = λ36 (2.135)

− λ35 1
4 (17139 cos(2θ))

+ λ34 1
72 (9084959 + 1605 cos(2θ)

+ 4 cos(3ϕ) sin3(θ)
)
− . . . ,

which yield the same invariants as the moments.

2.5.5 Experimental recipe for tensor product in mode basis
In this section we study tensor product in the mode representation |ψ〉kM , which is

different and more physically relevant than tensor product in the particle represen-
tation discussed in Sec. 2.5.3. Furthermore, we provide experimentally-feasible way
do directly measure the invariants 〈Ω|fkf†k|Ω〉, defined as in (2.100), as related to
success-rate of creation of states f†k|Ω〉 from k copies of state f†|Ω〉.
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2.5 Invariants as functions of creation and annihilation operators

To start with, let us look at example of n = 3 particles in d = 2 modes, raised to
power k = 2 (

1√
2
(|0, 3〉M + |2, 1〉M )

)⊗2

(2.136)

= 1
2 (|0, 3, 0, 3〉M + |0, 3, 2, 1〉M (2.137)

+|2, 1, 0, 3〉M + |2, 1, 2, 1〉M ) . (2.138)

This is a valid photon state (as permutation-symmetry of particles is built-in in the
mode representation), of 6 particles in 4 modes.
In general, raising a bosonic state to tensor power, in the mode representation, yields

in kn photons in kd modes (not kd particles in d modes, as in the tensor power for
particle representation). Tensor product in mode representation has a direct physical
interpretation. If we create k optical tables the same setups, each one producing
state |ψ〉, then |ψ〉⊗kM is the quantum state produced by the laboratory. As we see,
multiplying state also multiplies number of modes, as there is one more parameter
related to the number of optical table.
The question is if it this product can be related to f†k in some way? The answer is

positive. This time instead of symmetrizing particles (as we did for |ψ〉⊗kP ) we need to
reduce number of modes from kd to d, by performing some symmetrization of modes.
We can write

|ψ〉⊗kM = f†(a(1,1), . . . , a(d,1)) (2.139)

× f†(a(1,2), . . . , a(d,2))× . . . (2.140)

× f†(a(1,k), . . . , a(d,k))|Ω〉. (2.141)

That is, if we are taking a number of copies of a bosonic state, then we in fact multiply
number of modes. The second index is related to copy.
System is symmetrized with respect to particles inside mode, by construction. To

symmetrize among modes, we need to project it on symmetric combination of respec-
tive modes

b(i,1) =
a(i,1) + . . .+ a(i,k)√

k
, (2.142)

where all b(i,j) need to be pairwise orthogonal. It can be realized with linear optics,
as unitary rotation of modes. In particular, we may employ Fourier transform (i.e.
~bi = F~ai for each group of modes), and we are interested in the constant term.

When inverting Fourier transform, each mode can be expressed as a linear combi-
nation of b(i,j), where states with different indices are orthogonal, and weight of b(i,1)

is always 1/
√
k.

Consequently,

f†(a(1,j), . . . , a(d,j)) (2.143)

=f†
(

1√
k
b(1,1) +O, . . . , 1√

k
b(d,1) +O

)
(2.144)

=k−n/2f†(b(1,1), . . . , b(d,1)) +O, (2.145)
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where by O we denote terms containing at least one b(i,j 6=1). Thus, by using (2.143)
for every component of (2.139) we get

k−kn/2f†k(b(1,1), . . . , b(d,1)) +O. (2.146)

|ψ〉 F

|ψ〉 F

|ψ〉 F

Figure 2.3: Experimental setup example for d = 3 modes (and F operators) and k = 3
copies (and outcome channels per operator).

Consequently, we have one more interpretation of f†k|Ω〉. It is the state you get
when following the recipe, pictured in Fig. 2.3:

• Create k copies of an n-photon state.

• Perform interference on each group of respective modes.

• Postselect results in which for each group of modes no photon was detected in
non-first output mode.

Our probability to succeed is

〈Ω|fkf†k|Ω〉
kkn

≤ (kn)!

(n!)kkkn
≈ k−1/2(2πn)(1−k)/2, (2.147)

where the approximation is due to Stirling’s formula for (kn)! and n!. That is, invariant
〈Ω|fkf†k|Ω〉 can be measured experimentally, as statistic of no clicks in detectors, in
the described setting.
For the simplest case of n = 1, d = 1 and k = 2, the Fourier transform becomes

F =

[
1√
2

1√
2

− 1√
2

1√
2

]
. (2.148)

and we get Hong-Ou-Mandel interference with postselection, allowing us to produce
state two photons in one mode |2, 0〉M from two photons in two modes |1, 1〉M , with
50% postselection efficiency.
Moreover, a similar experimental scheme as above can be used to produce states of

the from

f†1 · · · f†k |Ω〉, (2.149)
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where all f†i |Ω〉 are states of a fixed number of photons (perhaps different for each i).
The success rate is

〈Ω|fk · · · f1f
†
1 · · · f†k |Ω〉

kn1+···+nk
. (2.150)

This follows directly from (2.143) applied to a product of functions.

2.5.6 Schwinger representation of symmetric operators

Below we provide technical calculations to show that (2.95) and (2.96) are the same
on permutation-symmetric states, i.e.

〈ψ|
∑
perm

(I)⊗nI ⊗ (σx)⊗nx ⊗ (σy)⊗ny ⊗ (σz)⊗nz |ψ〉

= 〈Ω|f :
(
a†a+ b†b

)nI
(
a†b+ b†a

)nx

×
(
−ia†b+ ib†a

)ny
(
a†a− b†b

)nz
: f†|Ω〉.

We proof a general variant of it, for qudits.

Auxiliary notation

Let us introduce the following notation:

a†µ =
1√
n+ 1

n∑
i=0

|µ〉i (2.151)

aµ =
1√
n

n−1∑
i=0

〈µ|i, (2.152)

where |µ〉i means insert |µ〉 between i-th and (i+ 1)-th particle, whereas 〈µ|i removes
i-th particle. The n is the total number of particles in the state it is acting on. We
show that this notation is consistent, i.e. the left hand sides of (2.151) act like creation
and annihilation operators, respectively. However, the right hand side can be applied
on any state, not only a permutation symmetric one.
For example: (

2∑
i=0

|2〉i
)
|01〉P (2.153)

= (|2〉0 + |2〉1 + |2〉2) |01〉P (2.154)
= |201〉P + |021〉P + |012〉P (2.155)
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and

(
2∑
i=0

〈2|i
)
|201〉P (2.156)

= (〈2|0 + 〈2|1 + 〈2|2) |201〉P (2.157)
= 〈2|2〉|01〉P + 〈2|0〉|21〉P + 〈1|2〉|20〉P (2.158)
= |01〉P . (2.159)

A straightforward check on n-particle permutation-symmetric states Dicke state
show that this (abuse of) notation makes sense. That is, let us check that:

a†µã
†
~n|Ω〉 =

(
1√
n+ 1

n∑
i=0

|µ〉i
)
|~n〉, (2.160)

aµã
†
~n|Ω〉 =

(
1√
n

n−1∑
i=0

〈µ|i
)
|~n〉. (2.161)

We proceed by writing a state in particle representation as in (2.4). For the conve-
nience, without the loss of generality, let us pick µ = 1,

√
n+ 1a†1

√
n!

n1! · · ·nd!
|n1, · · · , nd〉 (2.162)

=

(
n∑
i=0

|1〉i
)

(|1〉n1

P · · · |d〉nd

P + perm.) (2.163)

= (n1 + 1)
(
|1〉n1+1

P · · · |d〉nd

P + perm.
)

(2.164)

= (n1 + 1)

√
(n+ 1)!

(n1 + 1)! · · ·nd!
|n1 + 1, · · · , nd〉, (2.165)

where perm. means inequivalent permutations. Factor (n1 + 1) in the third line comes
from

(n+ 1)
n!

n1! · · ·nd!
/ (n+ 1)!

(n1 + 1)! · · ·nd!
, (2.166)

that is, putting n+ 1 particles and comparing number of inequivalent terms in permu-
tation, for the initial and final state.
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And analogously for annihilation:

√
na1

√
n!

n1! · · ·nd!
|n1, · · · , nd〉 (2.167)

=

(
n−1∑
i=0

〈1|i
)

(|1〉n1

P · · · |d〉nd

P + perm.) (2.168)

= n
(
|1〉n1−1

P · · · |d〉nd

P + perm.
)

(2.169)

= n

√
(n− 1)!

(n1 − 1)! · · ·nd!
|n1 − 1, · · · , nd〉. (2.170)

This time n in the third line comes from

n1
n!

n1! · · ·nd!
/ (n− 1)!

(n1 − 1)! · · ·nd!
. (2.171)

Proof

We start the proof with the following observation. When we remove a particle from
a symmetric state, there result does not depend which one (state of all other particles
always permutation symmetric). That is

〈µ|i|ψ〉 = 〈µ|j |ψ〉 =
1

n

(
n−1∑
i=0

〈µ|i
)
|ψ〉, (2.172)

where the last equality is a consequence of the former (for an n-particle state).
Consequently, when acting on n-particle symmetric state we get, we write subsequent

annihilation and creation operators as a single sum:

a†µ1
· · · a†µk

aνk · · · aν1 |ψ〉 (2.173)

=
(n− k)!

n!

∑
i1,...,ik

∑
j1,...,jk

(2.174)(
|µ1〉i1 · · · |µk〉ik〈νk|jk · · · 〈ν1|j1

)
|ψ〉 (2.175)

=

 ∑
i1,...,ik

|µ1〉i1 · · · |µk〉ik〈νk|ik · · · 〈ν1|i1

 |ψ〉, (2.176)

where instead of the sum over j1, . . . , jk we put jp = ip using (2.172).
Note that as creation and annihilation operations add and subtract particles (re-

spectively), indices in a product do refer to different set of particles and need to be
carried out iteratively. That is, summation over jp goes from jp = 0 to n− p.
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2 Invariants for bosonic and symmetric states

We need to show one more thing: ∑
i1,...,ik

|µ1〉i1 · · · |µk〉ik〈νk|ik · · · 〈ν1|i1

 |ψ〉 (2.177)

=

 ∑
p.d. l1,...,lk

|µ1〉l1〈ν1|l1 · · · |µk〉lk〈νk|lk

 |ψ〉, (2.178)

where by p.d. we mean pairwise different. In fact the only thing we need to do is to
relabel each component of the sum. In the first line ip ∈ 0, . . . , n− p, while in the
second — lp ∈ 0, . . . , n− 1 but disallow repetitions. If in the first line we relabel in
such a way that we don’t forget about particles that we removed with 〈ν1|ip , then we
get lp.
When we combine (2.175) with (2.177) we get an important relation

a†µ1
· · · a†µk

aνk · · · aν1 |ψ〉 (2.179)

=

 ∑
p.d. l1,...,lk

|µ1〉l1〈ν1|l1 · · · |µk〉lk〈νk|lk

 |ψ〉. (2.180)

After showing relation (2.179), we proceed to the main part of the proof. Any
symmetrized product of matrices is multilinear in their matrix entries, defined by
((µ1, ν1), . . . , (µn, νn)), where each µi (and νi) is in {0, . . . , d− 1}, that is∑

~ı∈σ({1,...,n})
|µ1〉i1〈ν1|i1 . . . |µn〉in〈νn|in . (2.181)

So we need to show that for a sum of distinct matrix elements give the corresponding
normally ordered operators. When we apply (2.179), we get

: a†µ1
aν1 . . . a

†
µn
aνn :, (2.182)

what completes the proof.
Bear in mind that in (2.182) we get n creation and annihilation operators, regardless

of the multi-particle operator we want to use. When we use only a k-particle operator,
the formula can be simplified, what we show in the examples.

Examples

Below, for the clarity, we will work with qubits and use a and b for the annihilation
operators of |0〉 and |1〉, respectively.
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2.6 Singlet space for photons and information protection

First, we see that

n∑
i=1

σxi = a†b+ b†a (2.183)

n∑
i=1

σyi = −ia†b+ ib†a (2.184)

n∑
i=1

σzi = a†a− b†b, (2.185)

which is the standard Schwinger representation of operators for symmetric states,
where we directly applied (2.175), e.g. for symmetrized σy

n∑
j=1

σyj =

n∑
j=1

(−i|0〉j〈1|j + i|1〉j〈0|j) (2.186)

= −ia†b+ ib†a. (2.187)

Now, let us look at symmetrized product of two operators, e.g. σxi and σzj :∑
i 6=j

σxi ⊗ σzj (2.188)

=
∑
i 6=j

(|0〉i〈1|i + |1〉i〈0|i) (|0〉j〈0|j − |1〉j〈1|j) (2.189)

=
∑
i 6=j

(|0〉i〈1|i|0〉j〈0|j − |0〉i〈1|i|1〉j〈1|j (2.190)

+|1〉i〈0|i|0〉j〈0|j − |1〉i〈0|i|1〉j〈1|j) (2.191)

=
(
a†2ab− a†b†b2 + a†b†a2 − b†2ab

)
(2.192)

=:
(
a†b+ b†a

) (
a†a− b†b

)
: (2.193)

were we applied (2.179) to change summation to creation and annihilation operators.

2.6 Singlet space for photons and information
protection

In this section we study singlet subspace implemented with bosons (as in Sec.2.5.4),
basing on our work [41]. We prove that for a system of qubits, subjected to collec-
tive decoherence in the form of perfectly correlated random SU(d) unitaries, quantum
superpositions stored in the decoherence free subspace are fully immune against the re-
moval of one particle. This provides a feasible scheme to protect quantum information
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2 Invariants for bosonic and symmetric states

encoded in the polarization state of a sequence of photons against both collective depo-
larization and one photon loss. We provide a scheme for experimental demonstration
with photon quadruplets using currently available technology.
We consider the DFS for an ensemble of n qudits, i.e. elementary d-level systems,

composed of states |ψ〉 that are invariant with respect to an arbitrary perfectly corre-
lated SU(d) transformation:

V ⊗n|ψ〉 = |ψ〉, V ∈ SU(d). (2.194)

Note, that in this context we consider distinguishable particles. That is, one we imple-
ment n particles with n photons in nd modes. In the context of a multi-photon states,
singlet states as defined above are states invariant with respect to

U = V ⊗n. (2.195)

We show that this DFS features an additional degree of robustness, namely that
the stored quantum information is immune to the loss of one of the qudits, regardless
of the encoding. This result, specialized to the polarization state of single photons
for which d = 2, offers combined protection against two common optical decoherence
mechanisms: photon loss [142, 143] due to reflections, scattering, residual absorption,
etc. as well as collective depolarization that occurs inevitably in optical fibers used for
long-haul transmission [92, 144, 145]. Consequently, we provide here rigorous founda-
tions to a speculation presented in Ref. [146] that DFS-based quantum cryptography
can be made tolerant also to photon loss. It is worth noting that another physical
realization of the qubit case can be also an ensemble of spin- 1

2 particles [147] coupled
identically to a varying magnetic field.
The section is organized as follows. First, in Sec. 2.6.1 we briefly review the geometry

of the singlet subspace for an ensemble of qubits and we explicitly show the robustness
of the four qubit DFS, which spans the logical qubit space. This particular case
leads us to a proposal for a proof-of-principle experiment based on currently available
photonic technologies that demonstrates the robustness of DFS encoding, presented
in Sec. 2.6.2. The general proof for an arbitrary d that a quantum superposition
encoded in an SU(d) DFS remains immune against the loss of one particle is described
in Sec. 2.6.3.

2.6.1 Example with logical qubits

Because of two relevant physical realizations using photons and spin-1/2 particles,
we will first discuss the qubit case with d = 2. The complete Hilbert space of an
ensemble of n qubits, each described by a two-dimensional spin-1/2 space H1/2, can
be subjected to Clebsch-Gordan decomposition [63]

(H1/2)⊗n =

n/2⊕
j=(n mod 2)/2

C
Kj

n ⊗Hj , (2.196)
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where the direct sum is taken with the step of one and Kj
n are multiplicities of spin-j

Hilbert spaces Hj , given explicitly by

Kj
n =

2j + 1

n/2 + j + 1

(
n

n/2 + j

)
. (2.197)

The action of V ⊗n, where V is any SU(2) transformation, affects onlyHj in Eq. (2.196),
leaving CK

j
n unchanged. In particular, for an even number of n qubits forming the

ensemble, the singlet subspace corresponding to j = 0 is free from decoherence. Fur-
thermore, removing one particle from that ensemble maps any initial state from the
singlet subspace onto a certain state from the doublet subspace CK

1/2
n−1 ⊗ H1/2. Be-

cause K1/2
n−1 = K0

n, it is plausible that the quantum superposition will end up entirely

in the decoherence-free subsystemC
K

1/2
n−1 where it will remain protected from collective

depolarization.

|Ξ1〉

t t t t
|Ξ2〉

t tt t
|Ξ3〉

t tt t
Figure 2.4: Diagrams depicting three non-equivalent products of two-qubit singlet

states defined in Eq. (2.198). The qubits are represented as dots with
connections identifying pairs that form singlet states.

The simplest non-trivial case is n = 4 physical qubits encoding one logical qubit.
Let us consider three states from the four-qubit DFS defined as products, same as in
(2.126),

|Ξ1〉 = |Ψ−〉12|Ψ−〉34,

|Ξ2〉 = |Ψ−〉13|Ψ−〉42, (2.198)

|Ξ3〉 = |Ψ−〉14|Ψ−〉23,

where |Ψ−〉ij = (|01〉ij−|10〉ij)/
√

2 is the singlet state of qubits i and j. These states,
shown schematically in Fig. 2.4, form an overcomplete set in the DFS. For concreteness,
let us select |Ξ1〉 and |Ξ3〉 as a non-orthogonal basis. Any state of the logical DFS
qubit can be written as a superposition

|ψ〉 = α|Ξ1〉+ β|Ξ3〉, (2.199)

where α and β are complex amplitudes. Without loss of generality we can assume that
the first physical qubit has been lost. The remaining three qubits are described by an
equally weighted statistical mixture of two states:

|ψ(0)〉1̄ = α|1〉2|Ψ−〉34 + β|Ψ−〉23|1〉4
|ψ(1)〉1̄ = α|0〉2|Ψ−〉34 + β|Ψ−〉23|0〉4, (2.200)
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2 Invariants for bosonic and symmetric states

where |·〉1̄ denotes the state of all qubits but the first one. It is easy to see that a collec-
tive transformation V ⊗3 leaves the statistical mixture 1

2

(
|ψ(0)〉1̄〈ψ(0)|+ |ψ(1)〉1̄〈ψ(1)|

)
intact.
After the loss of the first particle, the initial four-qubit state from Eq. (2.199)

can be recovered through the following procedure. First, one needs to measure in
a non-destructive way the z component of the total pseudospin operator σz2 +σz3 +σz4 ,
where σz = |0〉〈0| − |1〉〈1|, in order to discriminate |ψ(0)〉 from |ψ(1)〉. If the re-
sult corresponding to |ψ(1)〉 is obtained, we apply a collective rotation (σx)⊗3, where
σx = |0〉〈1|+ |1〉〈0|. This yields the state |ψ(0)〉1̄. In the second step, one replaces the
lost qubit with a new one prepared in a state |+〉1 = 1√

2
(|0〉1 + |1〉1) and applies a

controlled rotation which restores the original state |ψ〉:
(
|0〉1〈0| ⊗ I⊗3 + |1〉1〈1| ⊗ (σx)

⊗3)(|+〉1|ψ(0)〉1̄
)

= |ψ〉 (2.201)

Note that this rotation can be realized as a sequence of three C-NOT gates.
The robustness of DFS to particle loss can be intuitively understood in the following

way. DFS states owe their invariance with respect to collective unitary transformation
to a very rigid structure. In fact, if we write a DFS state as a superposition in the
computational basis for individual qubits, the state of one qubit can be determined
unambiguously from the states of the remaining ones. This suggests that the loss of
one particle does not destroy any information. Futher, it is always possible to repair
the state as there is only one unique way to fit the lost particle such that the singlet
symmetry is recovered.

2.6.2 Experimental scheme

We will now present a proposal a feasible experiment that demonstrates the robust-
ness of DFS encoding using photon quadruplets that can be generated in the process
of parametric down-conversion [92, 141, 148]. The basis states |0〉 and |1〉 correspond
in this case to horizontal and vertical polarizations of individual photons. Let us
consider four-photon states |Ξk〉, k = 1, 2, 3, defined in Eq. (2.198) as well as their
orthogonal complements in the two-dimensional DFS, which we will denote as |Ξ⊥k 〉.
The index k corresponds to three non-equivalent orderings of the photons and it can
be changed by suitable rerouting of the photons. As demonstrated in [92], the states
|Ξ1〉 and |Ξ⊥1 〉 can be discriminated unambiguously by detecting polarizations in the
horizontal-vertical basis |0〉, |1〉 for photons 12 and in the diagonal basis (|0〉± |1〉)/

√
2

for photons 34. Restricted to the DFS subspace, this strategy yields the standard
projective measurement.
It is easy to check that the above individual measurement no longer works if one

of the photons is missing. It turns out that this problem can be solved by resorting
to collective measurements. Suppose that we interfere photon pairs 12 and 34 on two
separate balanced beam splitters, playing the role linear-optics Bell state analyzers
[149]. The state |Ξ1〉 will yield exactly one photon in each output port of each beam
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splitter. In contrast, because the orthogonal state |Ξ⊥1 〉 can be written as [104]:

|Ξ⊥1 〉 =
1√
3

(
|00〉12|11〉34 + |11〉12|00〉34 − |Ψ+〉12|Ψ+〉34

)
, (2.202)

where |Ψ+〉ij = (|01〉ij + |10〉ij)/
√

2, it will always produce two photons at the same
output port for each of the two beam splitters. If one photon is lost, the states |Ξ1〉 and
|Ξ⊥1 〉 will still give distinguishable outcomes: registering two photons at a single output
unambiguously heralds |Ξ⊥1 〉, while registering a photon pair at two different outputs
of the same beam splitters detects |Ξ1〉. The third photon will emerge separately from
the second beam splitter. This detection scheme is summarized in Fig. 2.5.
An interesting question is whether the scheme described above could be exploited

for quantum key distribution. The scalar products between any two the states |Ξk〉
and |Ξl〉 with k 6= l are equal to 〈Ξk|Ξl〉 = − 1

2 . In the Bloch representation of the
two-dimensional DFS, they form a regular triangle inscribed into a great circle on
the Bloch sphere, constituting a so-called trine that warrants cryptographic security
[146, 150, 151]. To generate a key, the sender Alice could prepare photon quadruplets in
one of randomly selected states |Ξ1〉, |Ξ2〉, or |Ξ3〉. The ability to perform a projection
onto any pair of orthogonal states |Ξk〉, |Ξ⊥k 〉 would enable the receiving party Bob to
tell, in the case when an outcome |Ξ⊥k 〉 is obtained, which state has definitely not been
prepared by Alice. Such correlations between Alice’s preparations and Bob’s outcomes
can be distilled into a secure key.
We have shown that the projective measurement onto |Ξk〉, |Ξ⊥k 〉 can be implemented

in a way that tolerates the loss of one photon. In a cryptographic setting, the crucial
issue is to ensure that an eavesdropper Eve does does not map the state of intercepted
photons outside the DFS, which may enable eavesdropping attacks beyond those al-
ready studied [146, 150, 151]. To verify that this is not the case, Bob could perform
in principle a full quantum state reconstruction on some of the transmissions, which
however would be resource consuming. We conjecture that a sufficient strategy to
detect such an attack would be: (i) to detect polarizations of photons emerging after
the beam splitters; (ii) for a subset of transmissions to count directly received photons
to ensure that no multiphoton states in individual input paths occur; (iii) for another
subset of transmissions to apply before the beam splitters random and uncorrelated
transformations V ⊗V and V ′⊗V ′ and check that states |Ξk〉 always yield the correct
outcome when Bob used the matching basis for his measurement.

2.6.3 General proof
The reasoning presented in Sec. 2.6.1 can be generalized to any even number of n > 4

qubits by considering DFS states given by products of two-qubit singlet states. Such
states form an overcomplete set in the DFS [152], which enables one to follow directly
the steps described for four qubits. The robustness of DFS encoding can be shown
more generally for an ensemble of n qudits, i.e. d-dimensional systems. In this case, a
DFS satisfying Eq. (2.194) exists only when n is a multiple of d, which follows from
the structure of the Young tableux for irreducible representations of tensor products
of the SU(d) group [153].
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|Ξk〉

{{1
,

1},
{1,

1}}

{{
1,

1},
{1
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0}}
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k 〉{{
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{2
,

0}}
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,
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Figure 2.5: An experimental scheme for loss-tolerant detection of a logical qubit en-
coded in four photons. The projection basis |Ξk〉, |Ξ⊥k 〉, where k = 1, 2, 3,
is selected by a suitable rerouting of input photons. Pairs of photons are
interfered on two balanced beam splitters and photon numbers are counted
at their outputs. Combinations of outcomes for individual detectors that
correspond to unambiguous identification of |Ξk〉 and |Ξ⊥k 〉 are indicated
with photon numbers in curly brackets. The ordering within both inner
and outer brackets does not matter.

As before, for concreteness we will consider removal of the first qudit. Let us consider
arbitrary two states |ψ〉 and |Φ〉 from the DFS and expand them in the form analogous
to Eq. (2.200):

|ψ〉 =
1√
d

d−1∑
i=0

|i〉1|ψ(i)〉1̄, |Φ〉 =
1√
d

d−1∑
i=0

|i〉1|Φ(i)〉1̄ (2.203)

where |i〉1, i = 0, . . . , d− 1 is an orthonormal basis in the space of the first qudit, and
|ψ(i)〉1̄ =

√
d 1〈i|ψ〉 and |Φ(i)〉1̄ =

√
d 1〈i|Φ〉 are states of the remaining n − 1 qudits.

We will first show that the following general property holds:

1̄〈Φ(i)|ψ(j)〉1̄ = δij〈Φ|ψ〉. (2.204)

As we will see, this property guarantees that the loss of one particle does not destroy
the quantum information encoded in the DFS.
In order to show that for i 6= j the states |Φ(i)〉 and |ψ(j)〉 are orthogonal as implied

by Eq. (2.204), let us consider the action of a diagonal unitary operator D⊗n, where
D = diag(eiφ0 , . . . , eiφd−1) with arbitrary phases φ0, . . . , φd−1 that sum up to zero.
Invariance of |Φ(i)〉1̄ and |ψ(j)〉1̄ under D⊗n implies that in the basis formed by tensor
products of states |0〉, · · · , |d−1〉 they are composed only from terms that have exactly
n/d particles in each of these d states. Consequently, projecting the first qudit on
orthogonal states |i〉1 and |j〉1 leaves the remaining qudits in distinguishable states.
In order to verify the case when i = j in Eq. (2.204) it is convenient to use the

transformation of states |ψ(i)〉1̄ under the action of V ⊗(n−1). In order to derive this
transformation, let us rewrite the invariance condition from Eq. (2.194) to the form
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V †⊗ I⊗(n−1)|ψ〉 = I⊗V ⊗(n−1)|ψ〉 and project the first qudit onto
√
d 1〈i|. This yields

the identity:

V ⊗(n−1)|ψ(i)〉1̄ =
√
d
(

1〈i|V †
)
|ψ〉 =

d−1∑
j=0

(
〈j|V |i〉

)∗|ψ(j)〉1̄ (2.205)

Let us now specialize this result to a special unitary transformation that cyclically
shifts the labelling of the basis states:

W = (−1)d−1
d−1∑
i=0

|i+ 1〉〈i|, (2.206)

where the addition i + 1 is understood to be modulo d. Using this W in Eq. (2.205)
implies that |ψ(i+1)〉 = (−1)d−1W⊗(n−1)|ψ(i)〉, i.e. |ψ(i)〉 and |ψ(i+1)〉 are related by a
unitary that is independent of |ψ〉. This means that 〈Φ(i+1)|ψ(i+1)〉 = 〈Φ(i)|ψ(i)〉. This
fact combined with expanding the scalar product 〈Φ|ψ〉 using Eq. (2.203) completes
the proof of Eq. (2.204).
With Eq. (2.204) in hand, further steps are straightforward. A removal of the first

qudit maps a state |ψ〉 onto a statistical mixture

%1̄ = Tr1
(
|ψ〉〈ψ|

)
=

1

d

d−1∑
i=0

|ψ(i)〉1̄〈ψ(i)|. (2.207)

Eq. (2.204) implies that analogously to the SU(2) case the components with different i
occupy orthogonal subspaces. Within each subspace the state is fully preserved, which
follows from applying Eq. (2.204) to pairs of states from an arbitrary basis in the
DFS. The final step is to show that the state %1̄ is invariant with respect to V ⊗(n−1).
This is a consequence of the fact that both the initial state |ψ〉 and the procedure of
tracing out a particle are invariant with respect to SU(d) transformations. Explicitly,
the invariance of %̂1̄ can be verified with a calculation based on Eq. (2.205):

V ⊗(n−1)%1̄(V †)⊗(n−1) =

d−1∑
i=0

(
1〈i|V †

)
|ψ〉〈ψ|

(
V |i〉1

)
(2.208)

= Tr1
(
|ψ〉〈ψ|

)
= %1̄. (2.209)

Thus the encoded state is fully preserved.
Concluding, we have shown that DFS encoding is immune to removing one particle.

Unfortunately, this property does not seem to generalize in a straightforward manner to
the loss of more particles. For example, when two qubits are removed from a four-qubit
DFS state, the result will be either a singlet state of the remaining two qubits, or a
statistical mixture of the singlet and triplet states which does not preserve the original
superposition. This observation holds also for any higher even number of qubits.
Nevertheless, our result shows how to protect information in the few-photon regime
from both collective depolarization and the first-order effects of linear attenuation. We
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have proposed an experimental demonstration of this combined protection which can
provide a robust quantum cryptography protocol.
Finally, let us note that although the proof of robustness against the qudit loss was

based on the assumption that Eq. (2.194) is satisfied for every SU(d) matrix, the DFS
fulfilling this condition protects quantum superpositions from any decoherence mech-
anism that involves a subset of SU(d) transformations. Therefore our considerations
apply to a range of physical systems, for example higher-spin particles in a magnetic
field or multilevel atoms interacting with optical fields.

2.7 Further questions

We analyzed the problem of which states with a fixed number of photons n in d
modes can be related using only linear optics. This problem may be mathematically
formulated in terms of which homogeneous polynomials of degree n in d complex
variables may be related by a unitary transformation between them (or linear, if we
allow postselection of ancillary modes).
We relate this problem to the problem of equivalence of pure states of distinguishable

particles, with respect to local operations (i.e. LU- and SLOCC-equivalence). We show
that the study of homogeneous operations, i.e.: those where the same single-particle
operator acts on each particle, suffices. Furthermore, we introduce and analyze entan-
glement classification by checking which one-particle operations preserve permutation
symmetry. In that classification we obtain a sequence of states, unique up to SLOCC.
In one extreme we find the multiparticle GHZ state, whereas on the other there is a
(d−1) excitation state, which is a natural generalization of the W state resulting from
the classification scheme.
Some questions are left open:

• Whether invariance under all local operations (that is, not only invertible oper-
ations) on symmetric states can be represented as the same transformation for
each particle.

• Does it work for mixed states?

• Whether the application of k-particle transformations on permutation-symmetric
states which are reversible by acting on other part will give rise to different
entanglement classification.

We passive linear optics with no postselection we introduce two families of invariants.
Both are based on the global creation operator, which creates the state, |ψ〉 = f†(~a)|Ω〉,
which can be written as a homogeneous polynomial on the creation operators for each
mode. The first set of the invariants is just the spectrum of the operator ff†. The
second one is the set of moments of the form 〈Ω|fkf†k|Ω〉. This second set of invariants
can receive a physical interpretation, since they are related to the probability of not
losing particles when k copies of the original state are prepared, and the symmetric
channel is postselected.
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The main open question is whether our invariants are fine-grained enough to ensure
that if two multiphoton states have the same invariants, they can be connected with
linear optics and complex conjugation. We have computed the invariants for a variety
of situations, and found that they provide a complete characterization of the equiva-
lence classes in all of them. However, this question is not yet answered in the general
case.
Regarding future work, we would like to make the following remarks. First of all, a

proof that these invariants provide a full characterization would be very desirable. Or,
alternatively, a counterexample, which would lead us to find better invariants. Second,
both methods can be applied for fermions with no modifications beyond changing
bosonic by fermionic operators. It deserves investigation whether this method provides
new invariants in that case, or whether it simplifies the derivation of already known
ones. A third line of future research will be to extend our results to mixed states, or
states without a fixed number of particles. In this last case, moments can still be used,
but the spectral method becomes impractical (as ff† not longer can be decomposed
into blocks). But perhaps the most practical open question is: if two multiphoton
states |φ1〉 and |φ2〉 can not be related using only linear optics, what is the maximal
efficiency for obtaining |φ2〉 out of |φ1〉 using linear optics and postselection?
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3 Visualization of quantum
sequences

3.1 Introduction
One of the key features of quantum mechanics is that increasing the number of

particles results in an exponential increase of the number of parameters we need to
describe the state. For example, a pure state ofN qubits needs 2N complex parameters.
It is a crucial feature, related to quantum phenomena such as entanglement and some
aspects of quantum computation. However, the exponential increase of parameters
makes it problematic to store, analyze, process or visualize many-particle quantum
states. Moreover, sometimes we are interested in analyzing quantum states of infinitely
many particles (for example, infinite spin chain lattices). While it is impossible even to
store all parameters, still we can work with (usually approximate) models describing
the state.
The problem is not unique to quantum mechanics — one already have it in statistical

physics, and more generally in statistics. That is, while each state can be described
with a number of parameters proportional to the number of particles, the probability
distribution requires an exponentially growing number of parameters. However, while
in classical systems we can avoid this problem by considering a single state, in quantum
mechanics this is not the case [16].
In this chapter we present methods for analysis of many-particle (and infinite par-

ticle) wavefunctions, based (or inspired) on similar methods in statistics. While the
problem is general, in this chapter we will focus of sequences — i.e. configuration of
particles, where they can be meaningfully arranged in a line. Every pure quantum
state of N particles can be expressed as in the computational basis, i.e.

|Ψ〉 =
∑

s1,s2,...,sN

αs1,s2,...sN |s1〉|s2〉 · · · |sN 〉, (3.1)

where αs1,s2,...sN are complex parameters and the sum is over respective number of
states for each particle, i.e. si ∈ {0, . . . , di − 1}.
We focus on systems of distinguishable particles of the same number of states, i.e.

d ≡ d1 = . . . = dN . We will put special emphasis on translationally-invariant states.
That is, let us define the shift operator by

T |s1〉|s2〉 · · · |sN−1〉|sN 〉 = |s2〉|s3〉 · · · |sN 〉|s1〉, (3.2)

then translationally invariant states are the states fulfilling

T |Ψ〉 = |Ψ〉. (3.3)
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3 Visualization of quantum sequences

The dimension of translationally invariant states still grows exponentially [154]. To see
that, let us take computational basis of N qudits, which is of the dimension dN , and
construct abstractions classes of basis states related by T k, for some k. As an orbit of
T k has at most N elements, the dimension of translationally invariant subspace is at
least dN/N . Nonetheless sometimes this symmetry simplifies substantially properties
of the state.
In this chapter we present a pictorial representation of quantum many-body wave-

functions, for which we have coined the name qubism1 [42]. In this visualization,
a wavefunction characterizing a pure state of a chain of N qudits is mapped to an
image with dN/2 × dN/2 pixels. It is presented in a few flavors and applied to ana-
lyze properties of ground states of commonly used Hamiltonians in condensed matter
and cold atom physics, such as the Heisenberg or the Ising model in a transverse
field (ITF). The main property of the plotting scheme is recursivity: increasing the
number of qubits reflects in an increase in the image resolution. Thus, the plots are
typically fractal-like, at least for translationally-invariant states. The two-dimensional
structure is especially capable of capturing correlations between neighboring particles.
Many features of the wavefunction, such as magnetization, correlations and critical-
ity, are represented by visual properties of the images. In particular, factorizability
can be easily spotted: entanglement entropy turns out to be the deviation from exact
self-similarity. Furthermore, we use similar a scheme to visualize density matrices and
operators.
We show that some properties of qubistic plots do not depend on particular graphical

representation, but are related to information theoretic properties of the state. Once
the measurement basis is chosen, we analyze outcomes as classical probabilistic se-
quences. We use tools such as (classical) conditional entropy and mutual information,
as well as Rényi fractal dimension, to describe the state.

3.1.1 Classical sequence analysis

Analysis of probabilistic sequence is one of important problems in classical informa-
tion theory. Initial considerations on how much information can be sent as a prob-
abilistic sequence of letters gave raise to Shannon entropy [5] and related tools such
as conditional and mutual information. These concepts have proven to be crucial in
communication — as they provide rigorous bounds both on how to avoid redundancy
by efficiently compressing information and how to add minimal redundancy, so that
the message can be decoded, even if it is subjected to noise [157, 158]. Moreover, they
remain one of the main general-purpose approaches to data analysis, as these tools
deal with abstract information and require little assumptions.
Information theory is widely used for analysis of stationary processes, that is, prob-

abilistic sequences of letters over an alphabet, with probabilities being invariant under
translation. They are a direct analogue of quantum translationally-invariant states
(3.3). Stationary processes are applied to as diverse topics as analysis of the structure

1The name qubism (inspired by Cubism, the art movement) should not be confused with QBsim
(quantum Bayesianism) [155, 156].
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3.1 Introduction

of languages [159], DNA sequences [160], heart arrhythmias [161] and correlations for
grounds states of a Hamiltonian [162]. One of key techniques for simplification and
modeling of stationary processes are hidden Markov models [163]. That is, certain pro-
cesses can be simulated as a memoryless stochastic process on the internal states (a
random walk on a fixed graph) and a observation matrix mapping the internal states
to probabilities of observing particular outcomes. Nonetheless, for some stationary
processes memory properties are crucial [161].

3.1.2 Data visualization

It is not uncommon for a communication in technical sciences to involve presenting
data, whether derived from an experiment, a numerical simulation or an exact formula.
It can be conveyed in the form of a table with numbers, a histogram, a line plot, a
scatter plot or a density map — to name only a few ways of visualizing data. However,
using plots to present data should not be taken for granted. Even typical plots such
as bar plots or scatter plots appeared for the first time in late 18th century [164].
When we interact with data (especially data coming from an experiment or simu-

lation), it is useful to have at the same time access to raw data and a representation
enabling us to get further insight. For example, when we are studying the correlation
between two variables, a scatter plot is often a better way to show the data than just
only the linear correlation coefficient. First, from raw data presented as such a plot
is easy to see correlations. Second, it also allows to see why such correlation happen
(maybe it is only due to a few outliers, or there is no correlation, but the data is still
highly dependent in a non-linear way).
While most of such plots are multi-purpose tools can be applied to various kinds of

data, some are more specific, with the visualization being deeply related to properties
of the visualized object. Perhaps the most beautiful example, Mendeleev’s periodic
table of elements, arranges elements in a way related to their nuclear (number of
protons) and chemical (electric structure of orbitals) properties [165].
It is important to remember that every data visualization puts emphasis on some

aspects of data at the expense of others. For example, scatter and bar plot are good
at showing relative differences, and put emphasis on values standing out of the crowd.
Yet they may mask small but crucial changes, for example:

• Prices $5.00 and $4.99 convey a different message to the consumer [166].

• In some voting models [60, 167] the parity of the number of participants may
matter even in the limit of infinitely many participants — i.e. adding two par-
ticipants changes the value less than adding one participant.

• Numerical value 1.57 is close to π/2, but does not have the unique properties of
the later.

Consequently, depending both on our data and the features we want to put the em-
phasis on, we need to choose, tweak or create visualization schemes according to our
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3 Visualization of quantum sequences

needs. It is a choice we cannot avoid as, all in all, even presenting numbers using Ara-
bic numerals (e.g. 0.231+0.150i) is a form of data visualization (and often abstraction,
if we round numbers with fixed point precision).

3.1.3 Visualizing sequences

Analysis of the statistical distribution of sequences is important in a few fields of
science. In natural language processing texts are cut into so called N -grams — se-
quences of N consecutive characters or words). Their distribution is being applied for
language recognition and for various statistical interferences about language [159].
Another application is in molecular genetics — analysis of deoxyribonucleic acid

(DNA) sequences. From the information theory perspective, each DNA sequence is
a word over the alphabet of 4 letters, {A,C,G, T}, denoting nucleobases — adenine,
cytosine, guanine and thymine, respectively. A triple of nucleobases encodes an amino
acid, the building block of a protein. Thus, presence and absence of sequences of
nucleobases is related to the structure of the proteins that are being encoded. To
visualize that, in 1990 Jeffrey [168, 169] used the so-called chaos game representation
to plot different sequences on the same graph. We describe the scheme, as it is directly
related to qubism.
The chaos game representation applied to DNA sequences works as follows. Fist,

we plot a square and put ({A,C,G, T}) on the edges, for example:

~A = (0, 0), ~C = (1, 0), ~G = (0, 1), ~T = (1, 1). (3.4)

Then for each sequence (s1s2s3, . . . , sN ) we find its position with the following iter-
ative procedure:

~r0 = (1/2, 1/2) (3.5)
~ri = (~ri−1 + ~si)/2. (3.6)

That is, we start in the middle of the square and for each consecutive symbol we
move the the position in the middle-way between its current position and the symbol’s
corner. See Fig. 3.1.
Written in other way, it is just

~rN =

N∑
i=1

2i−N−1~si, (3.7)

the two coordinates are related to the binary expansion of the reversed sequence, i.e.

~rN = (0.(sN )x(sN−1)x . . . (s2)x(s1)x1, (3.8)
0.(sN )y(sN−1)y . . . (s2)y(s1)y1),

where x and y mean the first and the second coordinate of the symbols, as in (3.4).
Because of the reversed order, typically it does not converge for infinite sequences.
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A C

G T

T
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TGA

Figure 3.1: Construction of the chaos game representation for a DNA sequence. Points
for a null sequence, T , TG and TGA.

If the sequence distribution is uniform, it gives raise to a uniform distribution of
points (up to the discretization) on square, see (3.8). If it is not, it typically looks
fractal, showing the presence (or absence) of some particular subsequences. For exam-
ple, we can cut a DNA into non-overlapping sequences of 6 nucleobases (each encoding
2 amino acids). Then the presence of particular strings says which pairs of amino acids
are being encoded.
Chaos game representation for DNA sequences was used as a starting point to com-

pare genes and calculate their information content [160] and multifractal properties
[170]. Moreover, it was applied to compare proteins basing on their structure [171].
The idea was rediscovered by [172], with mapping slightly different from (3.8). The
order of symbols in this formula is reversed, thus the first symbols carry more weight
in ~r that the last ones. In particular, it allows every sequence to be convergent at the
price of restricting ourselves to the analysis of sequences of the same length.
Unbeknownst of the previous works, in 2005 Latorre [173] used this mapping to

encode an image as a quantum state. These quantum states were written down as
states of a spin chain and then expressed it as matrix product states (MPS). This
proof-of-principle encoding was called qpeg compression.

3.2 Qubism

3.2.1 Basic mapping

To plot a pure quantum state of many qubits, let us start by writing it in the
computational basis (3.1). Similarly to the DNA sequence, we want to map each
sequence to a particular position (or region) on a unit square. Then we will color the
region depending on its amplitude.
For simplicity, in this section we concentrate on qubits, with an even number of
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3 Visualization of quantum sequences

particles. Generalization for qudits, particles of different dimension and an odd number
of particles is straightforward.

00 01

10 11

0000
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Figure 3.2: Qubism mapping for N = 2 and N = 4 particles. Adding more particles
results in recursive splitting.

We proceed as in Fig. 3.2, constructing the mapping recursively. We start with a
unit square. We divide it into four quadrants. Depending on the first two bits, we
pick a quadrant, according to:

00→ upper left 01→ upper right
10→ lower left 11→ lower right. (3.9)

Then for each quadrant, we proceed recursively with the remaining part of the se-
quence.
After mapping sequences to squares, we create a complex function on the unit square,

[0, 1]× [0, 1]→ C, that has values taken from the wavefunction amplitudes.
To be specific, for each sequence y1x1y2x2 . . . yN/2xN/2 we create a square with edge

size 2−N/2 and with position (i.e. its top left corner)

x =

N/2∑
i=1

2−ixi, y =

N/2∑
i=1

2−iyi, , (3.10)

where we plot the x coordinate from left to right and the y coordinate from up to
down.
We map complex numbers to colors [174, 175], using the absolute value |z| for

lightness or saturation and the phase (arg(z)) for hue. To be more specific, we use two
mappings, defined in hue-saturation-value (HSV) coordinates as follows:

light:

HS
V

 =

arg(z)/(2π)
max(|z|, 1)

1

 dark:

HS
V

 =

arg(z)/(2π)
max(|z|, 1)

1

 (3.11)

as in Fig 3.3. The mapping of the phase to hue is standard. However, there are various
convention for mapping of |z| to lightness or saturation; we adopt mapping as above,
without going into details.
For example, for state |0101〉 − |1010〉, the qubistic plot is as in Fig. 3.4.
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Figure 3.3: Examples of color mappings for a complex number z = x+ iy. For clarity,
only the unit disk is shown. Values can be scaled, so that full saturation
takes place |z|max.

Figure 3.4: Plot for the state (|0101〉− |1010〉)/
√

2. The red square denotes amplitude
of |0101〉, while the teal — of |1010〉.
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FM: 0000 . . .

FM: 1111 . . .

AFM: 0101 . . .

AFM: 1010 . . .

flip odd qubits

flip even qubits
flip all qubits

Figure 3.5: Basic geometrical symmetries of the plotting scheme as in Fig 3.2.

3.2.2 Properties

The visualization scheme described above has some interesting geometrical proper-
ties, which can be translated into symmetries of the state, as shown in Fig. 3.5.

• Corners correspond to:

– ferromagnetic states (i.e. |0000 . . .〉 for upper left and |1111 . . .〉 for lower
right), and

– antiferromagnetic states (i.e. |0101 . . .〉 for upper right and |1010 . . .〉 for
lower left).

• Rotation of the plot by 180◦ corresponds to 0↔ 1 (changing zeros into ones and
vice versa), or equivalently: application of bit swap on all particles (σx)⊗N ).

• Horizontal reflection flips every even qubit ((I⊗ σx)⊗N/2).

• Vertical reflections flips every odd qubit ((σx ⊗ I)⊗N/2).

The recursive structure is related to the state of consecutive pairs of qubits. Each
quadrant defines a subplot, related to the projection of a wavefunction on a certain
state of the first two qubits. For example, if we measure the first two qubits in
the basis {|0〉, |1〉}, and obtain 10, then our new wavefunction is 〈10|12|Ψ〉 up to its
normalization. But it is already in the plot — it is just the lower left quadrant.
If we measure the two last particles, then 〈10|N−1,N |Ψ〉 is the same as taking every
second pixel in both x and y direction, i.e. taking all pixels corresponding to sequences
ending with . . . 10. In particular, if a state is translationally invariant then the two
above coincide, i.e. 〈10|12|Ψ〉 = 〈10|N−1,N |Ψ〉.
The plotting scheme is valid for an arbitrary number of qubits. However, once

the number of particles gets bigger, it does make little sense to plot anything but
translationally-invariant states (3.3).
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3.2 Qubism

3.2.3 Examples

Product state

Let us start with the simplest possible state — a product state of the form

|Ψ〉 = (α|0〉+ β|1〉)⊗N , (3.12)

which is depicted in Fig. 3.6. The pattern is self-similar, but in some sort of trivial way
— each subplot is proportional to other subplots. For example 〈00|12|Ψ〉 ∝ 〈10|12|Ψ〉.
It is directly related to the fact that by measuring the state of one particle we do not
disturb the results for others. Or, in other words, that particles are not correlated in
any way.

ϕ
=

0.
0
π

ϕ
=

0.
1π

ϕ
=

0.
2
π

θ=0π

ϕ
=

0.
3π

θ=(1/4)π θ=(3/8)π θ=(1/2)π

Figure 3.6: An array of product states for N = 10 particles, for α = cos(θ/2) and
β = sin(θ/2) exp(iϕ).

Dicke states

The next state we would like to plot is the Dicke state [63], that is

DN
k =

(
N

k

)−1/2 ∑
inequiv. perm.

|0〉⊗(N−k)|1〉⊗k, (3.13)
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3 Visualization of quantum sequences

or, in other words, a state defined by all linear combinations of basis states with fixed
number of 1s. In particular, for k = 1 we get the W states, for N = 3 particles is

|001〉+ |010〉+ |100〉√
3

. (3.14)

For six particles we plot all Dicke states, in Fig. 3.7.

Figure 3.7: Dicke states for N = 6 particles, with k = 0, 1, . . . , N . Notice how the
plot changes from all zeros |000000〉, going through a state with the same
number of 0s and 1s (k = 3) to all ones |111111〉.

For even N we can consider Dicke states with the same number of 0s as 1s, that
is, with k = N/2. They can be related to the ground state of a fermionic system at
half-filling, where every fermion interacts with every other with the same coefficient.
This state is plotted in Fig. 3.8, for various particle numbers.

Figure 3.8: Dicke states with half-filling for N = 8, 10, 12 and 14 qubits. Notice how
the fractal structure develops.

Every Dicke state is permutation-symmetric, i.e. permutation of the particle order
leaves it unchanged. In fact, they form a basis for the permutation-symmetric subspace
of qubits; or equivalently —- for bosonic states in two modes, written in the particle
basis. This means that whenever we find a qubistic plot being a superposition of
shapes as in Fig. 3.7, the state is permutation symmetric.
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3.2 Qubism

Ising model in a transverse field

Let us consider spin-1/2 antiferromagnetic Ising model in a transverse field, in a 1D
spin chain

H =

N∑
i=1

σzi σ
z
i+1 − Γ

N∑
i=1

σxi , (3.15)

where Γ is a parameter describing the strength of the transverse field. Let us use
periodic boundary conditions, i.e. σzN+1 ≡ σz1 . That is, spins of neighboring parti-
cles are coupled through the z component of their spins, while at the same time a
perpendicular field tries to align spins along its axis.
Depending on the strength of the transverse field, one of two alignments domi-

nate. For Γ = 0 the ground state consists only of two Néel states (i.e. |0101 . . .〉 and
|1010 . . .〉). For Γ→∞ the ground state is a product of states pointing in the x direc-
tion, i.e. |+〉 = (|0〉+ |1〉)/

√
2. But the most interesting is what happens in between.

At Γ = 1 there is a quantum phase transition. The transition is plotted in Fig. 3.9.

σ
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Γ =0.1

σ
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Γ =0.75 Γ =1 Γ =1.33 Γ =10

Figure 3.9: Ground state of the Ising model with transverse field Hamiltonian with
N = 10 qubits and periodic boundary conditions. Values of the transverse
field are Γ = 0.1, 0.75, 1.0, 1.33, and 10. The critical point, Γc = 1,
corresponds central panel. We show results both in σz and σx basis.

Heisenberg Hamiltonian and Majumdar-Ghosh model

The next system we want to study is the 1D Majumdar-Ghosh model [176]

H =
∑
i=1

~σi · ~σi+1 + J
∑
i=1

~σi · ~σi+2, (3.16)

that is, an antiferromagnetic model with spin-spin interactions between nearest neigh-
bors and second nearest neighbors. The later are parametrized by J . We can consider
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3 Visualization of quantum sequences

different boundary conditions:

• periodic (spin chain forms a circle, summations in (3.16) are up to N ; we identify
~σN+1 ≡ ~σ1 and ~σN+2 ≡ ~σ2),

• open (spin chain does not form a circle, summations in (3.16) are up to N − 1
and N − 2).

Isotropic spin-spin interaction

1
2~σi · 1

2~σj = 1
4

(
σxi σ

x
j + σyi σ

y
j + σzi σ

z
j

)
(3.17)

is invariant with respect to collective rotation, i.e. U⊗N for any U ∈ SU(2). Conse-
quently, all eigenstates of the Hamiltonian built from these operators can be labeled
by their total spin number. In this case, for an even number of particles N , we expect
the ground state to be a singlet, i.e. to have total spin 0.

p
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J=0.0

o
p
e
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C

J=0.5 J=1.0

Figure 3.10: Majumdar-Ghosh model for periodic and open boundary conditions for
N = 10 qubits. For J = 0 it corresponds to the Heisenberg model, while
for J = 1/2 its ground state is the Majumdar-Ghosh state. The qubistic
plot is drawn only in one basis, as in other bases it is the same, due to the
ground state being a singlet. Notice the characteristic Z-like shape and
how it is affected by changing boundary conditions. See also Fig. 3.15.

For J = 0 we have only nearest neighbor interactions — the Heisenberg model. For
J = 0.5 the ground state can be exactly found and is called the Majumdar-Ghosh
state [177]. In Fig. 3.10 we plot the ground state for various J , both for periodic and
open boundary conditions.
One of the striking features of this qubistic plot is the Z-like shape. For now, let us

focus only on the anti-diagonal line. From their position in the plot, these states are
of the form:

{|01〉, |10〉}N/2. (3.18)
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As we see, absolute values of their amplitudes are the same, but their sign varies.
Colors in the upper-right quadrant (|01〉12) are complementary to colors in the lower-
left quadrant (|10〉12). Consequently, we can write the state as

|ψad〉 =
|01〉12 − |10〉12√

2
|ψad〉34...N . (3.19)

Noticing that the plot is recursive (either graphically or from the fact that we deal
with translation-invariant state, at least for periodic boundary conditions), we see that
the the anti-diagonal is a product of two-particle singlets (1, 2)(3, 4) . . . (N − 1, N) —
with the bracket (i, j) meaning the two-particle singlet state of i-th and j-th particle
— or

|ψad〉 =

( |01〉 − |10〉√
2

)N/2
. (3.20)

But how can we interpret the two remaining lines in the Z-like shape? For periodic
boundary conditions, the ground state needs to be translationally invariant. After
shifting (3.20) by 1 particle, we get a product of singlet pairs for (2, 3)(4, 5) . . . (N, 1).
It should be not surprising that this state has very low amplitude for open boundary
conditions. In fact, in [177] it was shown that the ground state of (3.16) for J = 1/2
and periodic boundary conditions is exactly a superposition of (3.20) and its shift, i.e.
(|ψad〉+ T |ψad〉)

√
2.

What may remain puzzling is why, in the qubistic plot, there are two lines for T |ψad〉.
It is related to the fact, that for plotting we use as our “alphabet” consecutive pairs of
spins. Position of a single amplitude is, in the binary system,

x = 0.s2s4 . . . sN , (3.21)
y = 0.s1s3 . . . sN−1. (3.22)

So, for the singlet pairs (1, 2)(3, 4) . . . (N − 1, N) we have

s2k = 1− s2k−1 so x ≈ 1− y, (3.23)

where the approximation is up to plot resolution. For the singlet pairs (2, 3)(4, 5) . . . (N, 1)
we have

s2k+1 = 1− s2k so x ≈ (1− 2y) mod 1, (3.24)

as multiplying by 2 shifts y into the already solved instance (3.23).

Spin-1 and AKLT states

The qubistic plotting scheme is by no means restricted to qubits. While we are pre-
senting more general theory in Sec. 3.2.4, it is straightforward to make a generalization
for quantum states built out of qudits (d-level systems).
For example, let us focus on d = 3 in terms of a spin-1 system. As a basis, we

can use eigenstates of the spin operator in the z-th direction. Then, the local basis is
{−1, 0, 1} or, for the sake of simplicity, {−, 0,+}. The only difference from d = 2 (or

77



3 Visualization of quantum sequences

−− −0 −+

0− 00 0+

+− +0 ++

Figure 3.11: Qubism plotting scheme for qutrits, analogous to Fig. 3.2.

Figure 3.12: Ground state of the AKLT spin-1 Hamiltonian, for N = 6 spins.

qubits), is that instead of dividing the square into 2 × 2 quadrants, we divide it into
3× 3 quadrants, see Fig. 3.11.
As an example, let us choose the Affleck-Kenedy-Lieb-Tasaki (AKLT) state [178],

i.e. the ground state of the following Hamiltonian:

H =

N∑
i=1

~Si · ~Si+1 +
1

3
(~Si · ~Si+1)2, (3.25)

where ~S is the spin-1 operator, i.e. ~S = (Sx, Sx, Sz) and

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 Sy =
1√
2i

 0 1 0
−1 0 1
0 −1 0

 Sz =

1 0 0
0 0 0
0 0 −1

 . (3.26)

This state is an example of a valence bond solid, and has attracted considerable
attention because of its relation to the Haldane conjecture [179], its non-local order
parameter [180] and as a source of inspiration for tensor-network states [181].
We plot the ground state in Fig. 3.12, and shows its fractal structure in Fig. 3.13,

where we abstract the wavefunction to zero and non-zero values. The qubistic plot
shows that there are no consecutive + or − in any sequence. Furthermore, we see
that when the last entry was + then the next one cannot start with + or be 0+
(and analogously for −). Thus, we arrive at a rather accurate description of AKLT
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Figure 3.13: Ground state of the AKLT spin-1 Hamiltonian, for N = 6, 8 and 10
spins. The same color is used to every non-zero amplitude. Notice how
the characteristic fractal structure of a snowflake develops.

state, which contains all sequences with alternating + and − separated by an arbitrary
number of 0 states.
It is worth noting that the AKLT state is a prototypical matrix product state. That

is, it can be written [182, Sec. 4.1.5.] as

αs1s2...sN = Tr [As1As2 · · ·AsN ] , (3.27)

where matrices are

A− = −
√

2
3

[
0 0
1 0

]
A0 =

√
1
3

[
−1 0
0 1

]
A+ =

√
2
3

[
0 1
0 0

]
. (3.28)

or with the notation from [183], i.e. using

A ≡ |−〉A− + |0〉A0 + |+〉A+ (3.29)

we get

A =

[ −1√
3
|0〉

√
2√
3
|+〉

√
2√
3
|−〉 1√

3
|0〉

]
. (3.30)

That is, we use pure states as matrix entries, and use tensor product when multiplying
matrices. For instance

Tr[AA] = Tr

[
1
3 |00〉+ 2

3 |+−〉 −
√

2
3 |0+〉+

√
2

3 |+ 0〉
−
√

2
3 | − 0〉+

√
2

3 |0−〉 2
3 | −+〉+ 1

3 |00〉

]
(3.31)

= 2
3 (|00〉+ |+−〉+ | −+〉) . (3.32)

3.2.4 General framework
From a very abstract point of view, a set of all possible visualization of a N -qudit

wavefunctions onto a unit square is:(
{0, 1, . . . , d− 1}N → C

)
→
(
[0, 1]2 → R3

≥0

)
, (3.33)
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3 Visualization of quantum sequences

where R3
≥0 stands for intensities of red, green and blue components. This formula is

very general — it also includes writing amplitudes with fixed precision numbers.
However, we want to focus on specific visualizations, where

• all amplitudes are shown,

• each amplitude is represented by a color,

• the position of the region in which a certain amplitude is drawn does not depend
on any of amplitude values.

That is, we restrict ourselves to visualizations which can be formulated as

[0, 1]× [0, 1]→ {0, 1, . . . , d− 1}N (3.34)

C→ R3
≥0,

that is, visualization schemes for which each position is related to some sequence ~s,
and the color there is the color for amplitude α~s.
When it comes to the spatial mapping, we would like to add assumptions related

to their recursive structure (making it a qubistic visualization, not — any ordering
of amplitudes on a square). For a function f as in (3.34), we take the inverse image
f−1({·}), which for every spin sequences gives the region domain it is mapped to:

f−1({s1s2 . . . sN}) = As1f
−1({s2s3 . . . sN}), (3.35)

where As is an affine transform and they are both complete and non-intersecting:⋃
s1

As1f
−1({s2s3 . . . sN}) = f−1({s2s3 . . . sN}) (3.36)

si 6= sj ⇒
(
Asif

−1({s2s3 . . . sN})
)
∩
(
Asjf

−1({s2s3 . . . sN})
)

= ∅. (3.37)

The second condition can be relaxed — it does need to be empty, measure zero is
enough.
Moreover, instead of using states of one particle, as an alphabet, we can use states

of a small number of consecutive particles e.g. {|00〉, |01〉, |10〉, |11〉}, though we will
not do it for all visualizations we study here. This recipe can be easily generalized for
qudits, and for higher dimensional representations. For example, 3D representations
can show relations between 3 consecutive particles easily.

Technical remarks

Since the global phase has no physical meaning, we can fix it by setting the phase
according to one of these recipes:

• Ensure that a certain selected amplitude is positive (arbitrary and not always
possible),

• Ensure that the sum of the wavefunction entries is positive (not always possible;
for singlet states it is always impossible).
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3.2 Qubism

• For a sequence of wavefunctions, ensure that 〈ψi|ψi+1〉 is positive (works only
for sequences, with consecutive entries being non-orthogonal; the starting global
phase remains arbitrary).

For real wavefunctions it is somehow easier, as only the sign can change. Yet, even in
this case, when for example, tracking how the ground state changes when Hamiltonian
parameters are being modified, it is better to have coherent colors. It is especially
important for processes where changes of the phase are important, for example — the
Berry phase [184] acquired for a state evolving in an adiabatically changed setting.
As another remark, recursive structure allows us to find the position of ferromagnetic

and antiferromagnetic states as a limit of

lim
N→∞

ANs1s2

1/2
1/2
1

 . (3.38)

3.2.5 Mappings
Typical mapping for qubits

The typical mapping for qubits, defined as in Fig. 3.14 and which we use in the
previous examples, can be defined with the following affine transformations:

As1s2 =

[
B ~rs1s2
0 1

]
(3.39)

where B is a matrix scaling down by factor 2, and ~rs1s2 is a translation dependent on
two consecutive spins, i.e.:

B =

[
1/2 0
0 1/2

]
(3.40)

~r00 =

[
−1/4
1/4

]
~r01 =

[
1/4
1/4

]
~r10 =

[
−1/4
−1/4

]
~r11 =

[
1/4
−1/4

]
(3.41)

00 01

10 11

Figure 3.14: Qubism mapping with affine transforms.

or as depicted in Fig. 3.14 (compare it to Fig. 3.2).

81



3 Visualization of quantum sequences

Alternate mapping for qubits

We can define an alternative mapping that puts emphasis on the difference between
ferromagnetic and antiferromagnetic states. It is similar to the original one, but posi-
tions for 01 and 10 are swapped. That is:

~r00 =

[
−1/4
1/4

]
~r01 =

[
−1/4
−1/4

]
~r10 =

[
1/4
1/4

]
~r11 =

[
1/4
−1/4

]
(3.42)

In this mapping ferromagnetic states are on the left, while antiferromagnetic are on
right.
In general, for qubits there are only three inequivalent qubistic square plotting

schemes. That is, there are 4! = 24 permutations of {|00〉, |01〉, |10〉, |11〉}, but the
symmetry group of square has 8 elements (identity, 3 rotations, 4 reflections). Or, in
other words, a square scheme for qubits can be defined by what is the square is on the
opposite site of |00〉. However, if we consider visualization of states up to translations,
then we end up with only two schemes.
Note that this alternate mapping is the same as the typical mapping of a state

subjected to a product of controlled swaps, i.e.

|ψ〉 7→
(
|0〉〈0| ⊗ I + |1〉〈1| ⊗ σx

)N/2
|ψ〉. (3.43)

For example, in Fig. 3.15 we show the grounds states of the Majumdar-Ghosh model
using the alternate mapping. The physical content is the same as in Fig. 3.10.

p
e
ri

o
d
ic

 B
C

J=0.0

o
p
e
n
 B

C

J=0.5 J=1.0

Figure 3.15: Majumdar-Ghosh model for periodic and open boundary conditions for
N = 10 qubits, plotted using alternate mapping for qudits. Cf. Fig. 3.10.
Note that for products of singlets of the form (1, 2)(3, 4) . . . (N − 1, N),
as in (3.20), we obtain a line on the right (instead of the diagonal line).
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3.2 Qubism

Square mapping for qudits

The square visualizations can be generalized for d-level systems, as exemplified in
Fig. 3.16. In this case we have:

B =

[
1/d 0
0 1/d

]
(3.44)

and

~rs1s2 =

[ 2s1+1
2d − 1

2
2f(s1,s2)+1

2d − 1
2

]
(3.45)

for s1, s2 ∈ {0, 1, . . . , d− 1}, where for the typical scheme we have

f(s1, s2) = s2 (3.46)

and for the alternate one:

f(s1, s2) = (s2 − s1) mod d. (3.47)

In general, f can be any permutation of s2 as a function of s1. Such mapping can be
also understood in terms of coordinates as (3.10), where instead of base 2 we use base
d. In fact, we have already used this mapping (for d = 3) in Figures 3.12 and 3.13.

00 01 02 03 04

10 11 12 13 14

20 21 22 23 24

30 31 32 33 34

40 41 42 43 44

00 01 02 03 04

11 12 13 14 10

22 23 24 20 21

33 34 30 31 32

44 40 41 42 43

Figure 3.16: Qubism mapping for qudits in two variants: typical (right) and alternate;
example for d = 5.

Triangular scheme

Square plots are not the only possibility. One of their shortcomings is that they
look differently for an even and odd number of particles. That is for an odd number
of particles they pixel is a rectangle, instead of a square.
Let us create a plot starting from a right triangle, with vertices at (−1, 0), (0, 1) and

(1, 0). It can be split into two similar triangles, scaled by a factor 1/
√

2. The shifts,

83



3 Visualization of quantum sequences

starting from the middle of the basis of the triangle, are

~r0 =

[
− 1

2
+ 1

2

]
~r1 =

[
1
2
1
2

]
(3.48)

and the linear transformations are

B0 =

[
−a2 − 1

2
a
2 − 1

2

]
B1 =

[
−a2 1

2
−a2 − 1

2

]
, (3.49)

where the parameter a = 1 is for rotation and a = −1 for reflection. Both variants are
depicted in Fig. 3.17. We provide example plots in Fig. 3.18.

0 1

scaling and rotation

01

00 11

10

scaling and reflection

00

01 10

11

Figure 3.17: Two variants for the triangular qubistic plotting schemes.

Other qubistic schemes

One can design other visualizations. For example, a qubistic scheme based on split-
ting a equilateral triangle into 4 similar triangles would produce a pattern similar to
that of Sierpiński triangle.
Furthermore, while presented visualizations emphasize two-body correlations, it is

possible to devise a qubistic scheme capturing a few-body relations. For instance, doing
a 3-dimensional visualization analogous to Fig. 3.2 would reveal 3-particle correlations.
Alternatively, particles can gather in tuples, so instead of considering a system of n
particles of d levels, we can consider n/k particles of dk levels.

Schmidt plot

Besides qubistic plotting schemes, with their recursive structure, we would like to
discuss one more type of plots — Schmidt plots. Justification for the name will be
given later, related to the Schmidt decomposition. A pure state of N particles can be
decomposed into correlated systems of k and N − k particles. That is, parameterizing
the wavefunction by indices related the respective sets of particles, we effectively get
a matrix |ψ〉µ,ν . We plot this matrix as a density plot, with the same color scheme as
discussed throughout this chapter.
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3.2 Qubism

product state

ITF ground state for Γ = 1

Heisenberg ground state

Figure 3.18: Triangular representations of many-body wavefunctions, all for N = 12
qubists.
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3 Visualization of quantum sequences

We call this kind of plot the Schmidt plot, as it is related to the Schmidt decompo-
sition (i.e. the Singular Value Decomposition of the matrix |ψ〉µ,ν). A product state
with respect to a given partition is a state

|ψ〉µ,ν = |φ1〉µ|ϕ1〉ν . (3.50)

Consequently, we can see entanglement by observing structure of the plot.
An alternative description of the Schmidt plot is plotting amplitudes of a wave-

function in a similar manner to that of (3.10), but using the y coordinate for first k
particles and x for the last N − k particles. Also note that the typical qubistic scheme
is equivalent to the Schmidt plot for odd vs even particles. In particular, if the qubistic
scheme is a product of horizontal and vertical lines, it means there is no entanglement
between subsets

(1, 3, 5, . . . , N − 1) and (2, 4, 6, . . . , N). (3.51)

Furthermore, the Schmidt plot is is related to a variant of qubistic scheme, where
instead of starting with the first particles, we start with the middle particles, i.e. with
the consecutive pairs being (N/2, N/2 + 1), (N/2 − 1, N/2 + 2), (N/2 − 2, N/2 + 3),
. . .. This plot is the same as the Schmidt plot for ordering the following ordering of
particles:

(N/2, N/2− 1, . . . , 1, N/2 + 1, N//2 + 2, . . . N). (3.52)

Thanks to these similarities, some Schmidt plots look the same as their qubistic vari-
ants: for example plots of permutation-symmetric states, for which the ordering of
particles is irrelevant.

3.2.6 Entanglement visualization

One of the hallmark properties of quantum mechanics is the existence of entangle-
ment [22, 185, 186] — many-particle correlations that cannot be described by classical
models. In this section we present a general way to visualize quantum entanglement.
While, given a pure state, it is easy to compute whether a system split into two parties
is entangled, is it possible to plot a state in a way that entanglement is visible?
For a pure state |ψ〉 we can perform the Schmidt decomposition:

|ψ〉 =
∑
i

λi|φi〉|ϕi〉, (3.53)

and entanglement is stored in the Schmidt coefficients λi. The Schmidt decomposition
is Singular Value Decomposition of the matrix |ψ〉µ,ν , where indices µ and ν are related
to the first and the second subsystem, respectively. A straightforward way to visualize
such system would be to show the matrix using a Schmidt plot, as in Sec. 3.2.5.
However, it allows us to visualize entanglement only for one particular splitting. We
will show that with qubism it is possible to show entanglement for various splittings
within one plot.
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3.2 Qubism

Alternatively to (3.53), we can perform the partial trace of one of the subsystems,
and get a reduced density matrix

ρ1 =
∑
i

λ2
i |φi〉〈φi|, (3.54)

where the states |φi〉 and numbers λi are exactly as in (3.53)
A general way to assess bipartite entanglement is to use the Rényi entropy of the

Schmidt coefficients

Hq({λi}) = 1
1−q ln

∑
i

λqi = 1
1−q lnTr (Tr1ρ)

q
. (3.55)

In particular, the most important entanglement measures can be expressed in terms
of (3.55) as follows:

• The von Neumann entropy is the Shannon entropy of the Schmidt coefficients
squared — i.e. Hq→1. It plays an important role in quantum information.

• The Schmidt rank (number of non-zero Schmidt components) is exp(Hq→0). It
is important for GL transformations of states, i.e. which states can be obtained
(with any non-zero probability) form a given state, when one can use any local
operations.

• State purity is 1−exp(H2) = 1−∑i λ
2
i . It is often used, as it is easy to calculate

it and relate to other quantities.

When there is only one non-zero Schmidt coefficient, the state is not entangled —
it is a product state:

|ψ〉 = |φ1〉|ϕ1〉 (3.56)

and has all entanglement entropies equal to 0. The maximally entangled state is

|ψ〉 = 1√
m

m∑
i=1

|φi〉|ϕi〉, (3.57)

where m is the smaller of the two dimensions. For such state all entropies are Hq =
lnm.
It is easy to compute (3.55), but how to visualize it? Let us go back to writing the

state as partitioned between two parties (but not Schmidt-decomposed, as in (3.53);
this time we used a fixed local basis)

|φ〉 =
∑
ik

αik|i〉|k〉 (3.58)

≡
∑
k

|Ξk〉|k〉.
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3 Visualization of quantum sequences

So, the reduced density matrix for the first subsystem reads

ρ1 =
∑
ijk

αikα
∗
jk|i〉〈j| (3.59)

=
∑
k

|Ξk〉〈Ξk|. (3.60)

Bear in mind that vectors |Ξk〉 are neither normalized not orthogonal to each other.
The Schmidt number is, equivalently, the rank of ρ1, i.e. the dimension of the subspace
spanned by

X = {〈Ξk|}k (3.61)

and the number of linearly independent components in X. All other entanglement
measures can be described by the set of vectors X. In particular, the purity is

Tr(ρ2
1) =

∑
kk′

|〈Ξk|Ξk′〉|2 (3.62)

=
∑
k

|〈Ξk|Ξk〉|2 +
∑
k 6=k′
|〈Ξk|Ξk′〉|2 .

As a side note, such vectors are related to classical probabilities, once off-diagonal
terms in ρ1 are removed. Then instead of the number of linearly independent terms
we get the number of non-zero terms, and in the case of purity — we get only the
k = k′ term in (3.63). Intuitively speaking, we lose the interference between different
vectors in X.

|Ξ0000〉

|Ξ0010〉

|Ξ1000〉

|Ξ1010〉

|Ξ0001〉

|Ξ0011〉

|Ξ1001〉

|Ξ1011〉

|Ξ0100〉

|Ξ0110〉

|Ξ1100〉

|Ξ1110〉

|Ξ0101〉

|Ξ0111〉

|Ξ1101〉

|Ξ1111〉

Figure 3.19: Schematic for presenting a qubistic plot for N qubits as 24 tiles, each
being a plot of N − 4 qubits.

Describing the system as two subsystems — one with the first k particles, and the
other — with the last N − k particles (3.59) can be readily presented graphically, see
Fig. 3.19. The same presentation makes it easy to perform a projective measurement.
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{|0〉, |1〉}4

{|P 〉, |M〉}4

|0000〉 |GHZ〉 |W 〉 |D4
2〉 |χ〉

Schmidt rank: 1 2 2 3 4
ent. entropy: 0 log 2 = 1 log 2 = 1 log 3− 1

3 log 4 = 2
≈ 1.25

Figure 3.20: Entanglement estimation for 2–2 partition of four-qubit states. As ex-
amples we use a separable state |0000〉, the Greenberger–Horne–Zeilinger
state |GHZ〉, the W state (i.e. the Dicke state with one excitation) |W 〉,
the Dicke state with two excitations |D4

2〉 and |χ〉 = (|0000〉 − |0101〉 −
|1010〉 + |1111〉)/2. They are presented in two different bases, where
|P 〉 = (|0〉+ |1〉)/

√
2 and |M〉 = (−|0〉+ |1〉)/

√
2. Dividing in blocks is re-

lated to separating the first two particles from the last two. The Schmidt
rank (m) equals the number of linearly independent blocks, which can
be counted by a naked eye. While the result is basis-invariant, in some
bases the task may be simpler than in others. For example, for |D4

2〉 in
the computational basis one easily sees that there are 3 different blocks
while in the other one needs to spot that top left and bottom right blocks
are linearly independent. Entanglement entropy is bounded from above
by logm.

If we measure the state of, say, the first 4 qubits, and the outcome is 0110 (what
happens with probability 〈Ξ0110|Ξ0110〉), the final state is |Ξ0110〉/

√
〈Ξ0110|Ξ0110〉.

As hinted, our goal is to visualize quantum entanglement. In Fig. 3.20 we provide
plots for some 4-qubit state and describe how entanglement between the first and last
two particles can be spotted, with no calculations.

3.2.7 Fractal dimension of the state

Qubistic plots often look fractal-like. It arises directly from the recursive nature of
the plotting scheme, see Fig. 3.21. In this section we will show that indeed some plots
are fractals [187] and calculate their fractal dimensions.
For a probability distributionX = (p1, . . . , pn), the Rényi entropy of order q [46, 188]

is defined as

Hq(X) =
1

1− q log

(
n∑
k=1

pqi

)
. (3.63)
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Meas. σz
1 , σ

z
2

Res: 0, 0

Meas. σz
3 , σ

z
4

Res: 0, 0

Meas: σz
5 , σ

z
6

Res: 0, 0

Figure 3.21: The figures show what happens if we measure two particles in the com-
putational basis σz and get results (+1,+1) (or state |00〉). For particles
(1, 2) we are in upper left quadrant, alike in the construction of a qubistic
scheme. For particles (3, 4) or (5, 6) we get tiles as in the picture. For
translationally invariant states all 3 subplots (once put together) are the
same.
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Throughout this work we use log ≡ ln, so we measure information in nits instead of
bits. Some entropies have particular names:

H0(X) = log (#{pi > 0}i) Hartley entropy (3.64)

H1(X) = −
n∑
k=1

pi log(pi) Shannon entropy (3.65)

H2(X) = − log

(
n∑
k=1

p2
i

)
collision entropy (3.66)

H∞(X) = log (#{pi = pmax}) max entropy (3.67)

Furthermore, as already discussed in Sec. 3.2.6, Rényi entropies can be used for quan-
tum states, in which case we use probabilities of pure components of a density matrix,
see also [189, 190].
Fractal dimension can be defined for a set, being a subset of a hypercube [0, 1]n.

There are a few different definitions of the fractal dimension. One numerical way for
defining the fractal dimension is called box counting. We divide the hypercube into
boxes (smaller hypercubes) of the linear size ε = 2−n. Then we count the number of
non-empty boxes, b(ε). The box counting dimension is defined as

d = lim
ε→0

log(b(ε))

log(1/ε)
, (3.68)

provided the limit exists. For example, as a function of n, for a point it stays constant,
for a line it grows linearly and for a square — quadratically. But what if instead of a set
we have a probability distribution? Then we can define the dimension, parametrized
by a real number q, using the Rényi entropy:

dq = lim
ε→0

Hq(X(ε))

log(1/ε)
, (3.69)

where X(ε) is the probability distribution coarse-grained by boxes of size ε, i.e.

pi =

∫
ith box

p(x)dnx. (3.70)

It is a generalization of the box counting dimension, since by mapping a set to a
probability distribution being non-zero on the set, and zero everywhere else we get
d = d0. In general d0 is dimension of the support. To calculate the fractal dimension
of a qubistic plot, in the first step we change amplitudes into probabilities, so that we
can use the above methods:

ps1...sN = |αs1...sN |2. (3.71)

The next one is to see how does the Rényi entropy scale with coarse-graining. In
the case of qubism, spatial coarse-graining is the same as coarse graining with respect
to particles — i.e. tracing out probabilities. Let us have

Pk ≡ {ps1...sk} (3.72)
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where
ps1...sk ≡

∑
sk+1,...,sN

ps1...sk...sN . (3.73)

That is Pk is the set of probabilities (in a selected basis) if we forget about the state
of the N − k last particles.
The fractal dimension [47, 48] is

dq = lim
k→∞

Hq(Pk)

log(1/ε)
, (3.74)

where ε is the linear box size. As we operate with two-dimensional visualizations,
ε = d−k/2. Or, alternatively, we can use l’Hôpital rule to get an alternative formula

dq = lim
k→∞

2 (Hq(Pk)−Hq(Pk−1)) . (3.75)

In other words — we can either look at the slope for linear fit (3.74) or the derivative
(3.75). For ideal fractals Hq(Pk) grows linearly with k, so both formulas give the same
result. In practical cases we work with systems of fixed size (for example, N = 12,
which is feasible for exact diagonalization). In this case formula (3.74) is sensitive to
short-range correlations, whereas (3.75) is to long range correlations. What seems to
be the best trade-off is to take the derivative in the middle k = N/2.
This definition of dq is basis-dependent. For example, for the product state(

cos( θ2 )|0〉+ cos( θ2 ) exp(iϕ)|1〉,
)N

(3.76)

a rotation of the local basis (equivalently, changing θ) results in a fractal dimension
changing from 0 to 2. For this state, Hq(Pk) = kHq(P1), so the fractal dimension is

dq = 2
1−q log

(
cos2q( θ2 ) + sin2q( θ2 )

)
, (3.77)

see Fig. 3.22. So, in general, fractal dimension alone does not suffice to tell much
about entanglement or any other properties which are basis-independent. Moreover,
for states that are not translationally invariant, qubistic plots typically are not fractal-
like and we do not have a well-defined fractal dimension as the relevant limit does not
exist.
A more interesting example is the ITF model, already discussed in Sec. 3.2.3. As

we already saw in Fig. 3.9, the plot changes with parameter Γ, from two points (Neél
state) to uniform color (as all particle point in the x direction). We quantify these
changes in Fig. 3.23.

3.2.8 Qubism for mixed states and operators
Above we described the qubistic visualization for pure states. Below, we show a

representation of mixed states and operators. As both of them are Hermitian matrices,
we can propose a single visualization scheme suitable for both of them. Note, that the
density matrix has twice as many coordinates as the wavefunction — so, unless we
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Figure 3.22: Fractal dimension (3.77) of the product state (3.76) changes with the
basis. Look at Fig. 3.6 for the respective qubistic plots.
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Figure 3.23: Fractal dimension of the Ising model in the transverse field. Note that for
the phase transition, Γ = 1, the fractal dimension related to the Shannon
entropy (q = 1) seems to be close to 1.
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are operating in four dimensions, we cannot straightforwardly use qubism for mixed
states. Also, a typical two-dimensional plot of a density matrix, i.e. ρij plotted as a
density plot, does not show multiparticle relations.
Let us introduce so-called frame representations, that is, the expression of a density

matrix as the following sum

ρ =
∑
~i

t~iσ
i1 ⊗ σi2 ⊗ · · · ⊗ σiN , (3.78)

where t~i are real numbers and σs are generators of d-dimensional density matrix. For
example for qubits (d = 2), they are the identity and the three Pauli matrices. The
scheme, for qubits, is presented in Fig. 3.24 (cf. Fig. 3.2), with examples for the
Majumdar Ghosh model (3.16) provided in Fig. 3.25. So, it can be seen as a qubistic

I ⊗ I I ⊗ σx I ⊗ σy I ⊗ σz

σx ⊗ I σx ⊗ σx σx ⊗ σy σx ⊗ σz

σy ⊗ I σy ⊗ σx σy ⊗ σy σy ⊗ σz

σz ⊗ I σz ⊗ σx σz ⊗ σy σz ⊗ σz

Figure 3.24: Scheme for presenting mixed qubit states with qubism.

visualization of sequence-like objects, but where instead of d symbols we have d2

symbols. Unfortunately, t~i can be interpreted as neither amplitudes nor probabilities.
They are related to purity, though,∑

~i

t2~i = dNTr[ρ2]. (3.79)

3.2.9 Discussion

Qubistic plots allow to visualize any pure state of N qudits and, with modifications,
of any operator and mixed state of particles in a finite number of levels. Moreover, it
makes it possible to show:

• two-particle correlations between nearest neighbors,

• entanglement between the first k particles and the rest,
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3.2 Qubism

Figure 3.25: A plot of the Majumdar Ghosh Hamiltonian (3.16) for J = 1/2 (left)
and its ground state, expressed as a density matrix (right).

• some other patterns: for example permutation invariance or the structure of a
singlet state.

However, it has its own limitations. For example:

• states which lack any symmetry may produce very cluttered plots,

• three and more particle correlations are not always visible,

• it is basis-dependent (as any representation of a state in a given basis),

• for the square plot there is a difference between having even and odd number of
particles,

• adding particles changes the plot, although only in the resolution for translation-
invariant states.

The last two remarks make it harder to compare, say, the ground states of a given
system as a function of number of particles. Moreover, plots of state look the same
when we add |+〉 = (|0〉 + |1〉)/

√
2 state to its end, in other words, |Ψ〉 and |Ψ〉 ⊗

|+〉k yield the same plot. Furthermore, dependence on the local basis implies also
dependence on phase. It is a feature of the wavefunction the description of quantum
states, so it should not be surprising. If we want to plot numerical or experimental
data, it may be useful to know how to disregard phase. However, due to phase-to-hue
mapping it should be not that hard even visually.
We proposed a few variants of qubistic plots. It seems that for most applications

the typical, square qubistic plotting scheme should be the standard choice. However,
other plotting schemes may be useful for putting emphasis on certain features of the
wavefunction, e.g. ferromagnetism.
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4 Quantum walks on complex
networks

4.1 Introduction

In this chapter we develop a complex networks [51, 52, 191] approach to the unitary
evolution of a single particle, which we interpret as a quantum walk. We study the
analogies between this process and related classical walks. The focus is on studying
the long time probability distribution and the coherence between nodes, which brings
tools for analyzing properties of quantum walk on a complex network. In particular,
we consider a splitting of a complex networks into independent pieces that are not
related by quantum superposition.

4.1.1 Networks and quantum walks

Study of quantum walks goes back to the Feynman checkerboard [192], a toy model
in which a particle travels as the speed of light on a one-dimensional lattice, while
being subjected to reversal with some amplitude. The effective behavior of this par-
ticles turns out to be the same as for a massive particle, evolving as described by the
Schödinger equation. Another seminal model is a quantum walk with a coin [193],
where the path taken by a particles is specified by tossing a quantum coin. For an
overview of quantum walks see [194, 195].
In general, the quantum dynamics of any discrete system can be re-expressed and

interpreted as a single particle quantum walk [196, 197], which is capable of performing
universal quantum computation [198]. One dimensional walks can be simulated with
photons, both in the single particle variant [199] and the walk with a coin variant [200].
Quantum walks are used to study transport properties in physical systems [201–

205], such as transport of energy through biological complexes or artificial solar cells.
Additionally, there have been theoretical proposals for speed-up of algorithms for large
social and links networks [206, 207], for example for PageRank [208], the famous rank-
ing algorithm based on the simulation of a random walk through Internet. It has been
studied used quantum annealing [209–212], that is, a simulation of the procedure by
which a quantum system is driven to its ground state, chosen so that the same ground
state represents the Google ranking vector.
While analytical results have been obtained for some specific topologies, such as

star-like [213–215], regular or semi-regular [216] networks, progress in analyzing quan-
tum walks on complex networks has largely been based on numerical analysis. More
general analytic results, applicable to real-world complex systems, can be brought by
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studying the probability distribution of finding the walker at each node in the long
time limit of a certain continuous-time unitary quantum walk. For unitary quantum
walks, even for arbitrary long times there are oscillations rather than a steady state;
this is not necessarily the case for open quantum walks [217, 218]. Consequently,
we work with the long time averages, which are equivalent to removing oscillations
[213, 219]. We show that the result can be approximated by the steady state of a
classical random walk. Moreover, we measure the quality of this approximation, by
studying a certain parameter, which is called quantumness [53] — a number in the
unit interval quantifying the strength of quantum effects. In classical random walks
on undirected, connected graphs, there is a unique steady state, so the long time limit
does not depend on the choice of the initial state. However, in the quantum walk
the final state depends on the initial conditions. In particular, we show how these
quantum effects are related to the energy of a given state and the degree distribution
of the underlying network.
As a case study, we investigate quantum walks on a range of model complex net-

work structures, including the Barabási-Albert, Erdős-Rényi, Watt-Strogatz and ran-
dom geometric networks. We repeat this analysis for several real-world networks,
specifically a karate club social network [220], the e-mail network of the URV univer-
sity [221], the Caenorhabditis elegans network [222], and a coauthorship network of
scientists [223]. Let us make a brief introduction to the models we use as benchmarks.
They are parametrized by the number of nodes N and some other parameter that can
be mapped to the number of edges M .
The Erdős-Rényi (ER) model is one of the first random graph models [224, 225].

We create a random graph with M edges, that is, out of all possible graphs with N
nodes and M edges we select one.
TheWatt-Strogatz (WS) [226] is a model showing how addition of a few links changes

graph behavior from short to long range. We start with N nodes connected as a circle,
that is, with each node connected to its two neighbors. Then we add further N −M
edges, similarly as for the Erdős-Rényi (ER) model, so as to have M at the end.
In the random geometric (RG) model on a square [227] we start creating N points,

each of them from the uniform probability distribution on a unit square. Then we
connect all pairs of nodes, which are closer than a certain distance cutoff r, which can
be adjusted so that we obtain M edges.
The Barabási-Albert (BA) model [228] is based on preferential attachment and serves

as a key example for scale-free behavior of real-world networks. We start with a few
nodes, connected with each other. New nodes are added and linked to the old ones
with a probability proportional to their degree. This way nodes having many edges
get new edges easier than others.

4.1.2 Community detection

Real-world complex networks are typically not homogeneous — some of their regions
are much more connected internally than with the rest of networks. These regions are
called communities. The identification of the community structure within a network
addresses the problem of characterizing the mesoscopic boundary between the micro-
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scopic scale of basic network components (herein called nodes) and the macroscopic
scale of the whole network [54, 229, 230]. The detection of community structures
dates back to 1927 [231], when index of cohesion within a community was introduced to
study behavior of political parties in the United States. The analysis of the community
structure has revealed countless important hierarchies of community groupings within
real-world complex networks. Salient examples can be found in social networks such
as human [220] or animal relationships [232], biological [233–236], biochemical [237]
and technological [238, 239] networks, as well as numerous others [229]. In quantum
networks, as researchers explore networks of an increasingly complex geometry and
large size [240–242], the tractability of their analysis and understanding may rely on
identifying relevant community structures.
An interesting application is the quantum simulation of electric excitation trans-

port in biological dissipative networks [203–205, 243–246]. The major light harvesting
complex of plants, photosystem II (LHCII) [247], is of particular interest. In past
works, researchers have divided this complex by hand in order to gain more insight
into the system dynamics [248–250]. We have devised methods that optimize the task
of identifying communities within a quantum network ab initio and, as we will show,
the resulting communities consistently point towards a structure that is different to
those previously identified for the LHCII [59]. We also consider larger networks, for
which an automatic method would appear to be the only feasible option.
We introduce a set of novel methods based on community detection for quantum

walks [59]. As in typical classical methods, the backbone our approach is a hierarchical
aggregation of communities [251]. That is, we start with N communities, each of them
consisting of a single node. We define a closeness function between each pair of nodes.
In each iteration, we merge the two closest communities into a new one and proceed
until all communities are merged into a single one. The output of the algorithm can
be either the splitting a network into a given number of communities, or the splitting
that maximizes some target function. The procedure is depicted in Fig. 4.1.
Unlike the classical case, where classical modularity [55] is used both for measur-

ing closeness and establishing the target function, we introduce a few modularity-like
functions based on coherence and transport properties of a quantum walk [252]. All
our methods are based on the full unitary dynamics of the system, as described by the
Hamiltonian, and account for quantum effects such as coherent evolution and interfer-
ence. In fact, phases are often fundamental to characterize the system evolution. For
example, in [253] it was shown that in light harvesting complexes interference between
pathways is important even at room temperature. We use our community detection
methods to automatically find communities, which turn out to be in good agreement
with communities picked by hand by experts studying this system. As with the case
of classical community structure, there are many possible definitions of a quantum
community. We restrict ourselves to two broad classes based on transport properties
and fidelity under unitary evolution.
The use of community detection in quantum systems addresses an open challenge in

the drive to unite quantum physics and complex network science. We expect such par-
titioning, based on our definitions or extensions such as above, to be used extensively
in making the large quantum systems currently being targeted by quantum physicists
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tractable to numerical analysis.

4.1.3 Structure

This chapter is structured as follows. First, in Sec. 4.2, we look at similarities
between a classical random walk and quantum walk on a graph [53]. Sec. 4.2.1 an
introduction to the dynamics for a continuous-time random walk and a continuous time
unitary quantum walk. We describe the long time averaged probability distribution of
the quantum walk. In Sec. 4.2.2 we introduce quantity called quantumness to assess
the difference between the classical and quantum behavior on a given graph. Sec. 4.2.3
is dedicated to numerical studies of this quantity on a range of artificial and real-world
complex network topologies.
Second, in Sec. 4.3. we design community detection algorithms for quantum system

[59]. They are based on quantum walk and depend on properties such as interference
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Figure 4.1: Hierarchical community structure arising from a quantum evolution. Left:
the closeness matrix c(i, j) between n = 60 nodes. Right: the dendro-
gram showing the resulting hierarchical community structure. The dashed
line shows the optimum level within this hierarchy, according to the max-
imal modularity criterion. The particular example shown here is the one
corresponding to Fig. 4.6d.
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4.2 Classical and quantum walk

different paths, thus cannot be replicated by any classical random walk. Moreover,
some of our definitions of communities are directly to quantum informational properties
of the equilibrium state. In Sec.4.3.1 we begin by recalling several common notions
from classical community detection that we rely on in this work. This sets the stage for
the development of a quantum treatment of community detection in Section 4.3.2. We
then turn to several examples in Section 4.3.3 including the LHCII complex mentioned
previously. Some technical details of community detection are left for Sec. 4.4.

4.2 Classical and quantum walk

4.2.1 Walks framework
We consider a walker moving on a connected network of N nodes, with each weighted

undirected edge between nodes i and j described by the element Aij of the off-diagonal
adjacency matrix A. The matrix is symmetric (Aij = Aji) and has real, non-negative
entries, with zero entries being equivalent to absence of an edge. We use Dirac notation
and represent A =

∑
ij Aij |i〉〈j| in terms of N orthonormal vectors |i〉.

The network gives rise to both a quantum walk and a corresponding classical walk.
There is no unique mapping from a network to evolution. However, there is a number
of conditions required to be kept.
For a classical random walk, the infinitesimal generator needs to ensure that for any

state:

• probabilities sum up to one,

• probabilities are non-negative.

Operators fulfilling these criteria are called infinitesimal stochastic operators, and are
defined by

• all columns sum up to zero,

• all off-diagonal entries are positive.

Additionally, one more property is added — requirement that rate of leaving a node is
the same for all nodes. Thus, it has an interpretation of a random walk, rather than
any probability flow. It translates to property, that all diagonal values of the generator
are the same.
On contrary, for quantum evolution the only property we need for infinitesimal

stochastic operators is Hermitian symmetry, so that generated evolution is unitary. It
is not possible to ensure that rate of leaving each nodes is the same, due to interference.
However, at least we can set diagonal terms to be of the same value and normalize
amplitudes on edges.
The classical stochastic walk S(t) = e−HCt we consider is generated by the infinites-

imal stochastic (see e.g. Refs. [254–256]) operator

HC = LD−1, (4.1)
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where D =
∑
i di|i〉〈i| is a diagonal matrix of the node degrees, di =

∑
j Aij and L is

the graph Laplacian, defined as L = D − A. For this classical walk, the total rate of
leaving each node is identical, what is ensured by the normalization by multiplying by
D−1.
The corresponding unitary quantum walk U(t) = e−iHQt is generated by the Her-

mitian operator
HQ = D−

1/2LD−
1/2. (4.2)

For this quantum walk, the energies 〈i|HQ|i〉 at each node are identical.
The generators HC and HQ are similar matrices, related by

HQ = D−
1/2HCD

1/2. (4.3)

This mathematical framework, represented in Fig. 4.2, underpins our analysis. As we
will describe in Sec. 4.2.1, the long time behavior of the classical walk generated by
HC has been well explained in terms of its underlying network properties, specifically
the degrees di. Our goal in Sec. 4.2.1 is to determine the role this concept plays in the
quantum walk generated by HQ.

Figure 4.2: Relating stochastic and quantum walks. An undirected weighted network
(graph) G is represented by a symmetric, off-diagonal and non-negative
adjacency matrix A. There is a mapping from A (by summing columns)
to the diagonal matrix D with entries given by the weighted degree of
the corresponding node. The node degrees are proportional to the steady
state probability distribution of the continuous-time stochastic walk (with
uniform escape rate from each node) generated by HC = LD−1, where
L = D − A is the Laplacian. The steady state probabilities, represented
by the vector |π0〉, are proportional to the node degrees. We generate
a corresponding continuous-time unitary quantum walk by the Hermitian
operator HQ = D−1/2LD−1/2, which is similar to HC . The probability of
being in a node in the stochastic stationary state |π0〉 and the probability
arising from the ground state of the quantum walk are the same.
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Classical walks

In the classical walk the probability Pi(t) of being at node i at time t evolves as
|P (t)〉 = S(t)|P (0)〉, where |P (t)〉 =

∑
i Pi(t)|i〉. The stationary states of the walk are

described by eigenvectors |πki 〉 of HC with eigenvalues λi equal to zero. We assume
throughout this work that the walk is connected, i.e., it is possible to transition from
any node to any other node through some series of allowed transitions. In this case
there is a unique eigenvector |π0〉 = |PC〉 with λ0 = 0, and λi > 0 for all i 6= 0 [254, 257–
259]. This (normalized accordingly) eigenvector |PC〉 =

∑
i(PC)i|i〉 describes the

steady state probability distribution

(PC)i =
di∑
j dj

. (4.4)

In other words, the process is ergodic and after long times the probability of finding
the walker at any node i is given purely by the importance of the degree di of that
node in the network underlying the process.

Quantum walks

When considering quantum walks on networks, it is natural to ask what is the long
time behavior of a quantum walker [201, 209, 219, 260]. This problem is similar to
some thermalization problems [261], in which the unitary evolution does not drive the
system towards a steady state. Therefore, to obtain a static picture we consider the
long time average probability (PQ)i of being on node i, which reads

(PQ)i = lim
T→∞

1

T

∫ T

0

dt 〈i|U(t)ρ(0)U†(t)|i〉. (4.5)

For ease of comparison with |PC〉 we will also write the distribution in Eq. (4.9) as a
ket |PQ〉 =

∑
i(PQ)i|i〉. Unlike the classical case, Eq. (4.5) depends on the initial state

ρ(0). The long time average can be carried out

(PQ)i = lim
T→∞

1

T

∑
kl

∫ T

0

dt 〈i|φk〉e−iEkt〈φk|ρ(0)|φl〉eiEjt〈φl|i〉 (4.6)

= lim
T→∞

1

T

∑
kl

∫ T

0

dt 〈i|φk〉〈φk|ρ(0)|φl〉〈φl|i〉ei(Ej−Ek)t (4.7)

=
∑

kl: Ek=El

〈i|φk〉〈φk|ρ(0)|φl〉〈φl|i〉. (4.8)

That is, interference between subspaces of different energy vanish in the long time
average, so we obtain an expression for the probability (PQ)i in terms of the energy
eigenspace projectors Πj of the Hamiltonian HQ,

(PQ)i =
∑
j

〈i|Πjρ(0)Πj |i〉. (4.9)
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Here Πj =
∑
k |φkj 〉〈φkj | projects onto the subspace spanned by the eigenvalues |φkj 〉 of

HQ corresponding to the same eigenvalue λj . In other words, the long time average
distribution is a mixture of the distributions obtained by projecting the initial state
onto each eigenspace.
Due to the similarity transformation HQ = D−1/2HCD

1/2 the classical HC and
quantum HQ generators share the same eigenvalues λi ≥ 0, and have eigenvectors
related by |φki 〉 = D−1/2|πki 〉 up to their normalizations. In particular, the unique
eigenvectors corresponding to λ0 = 0 are |π0〉 = D|1〉 and |φ0〉 = D1/2|1〉 up to their
normalizations, with |1〉 =

∑
i |i〉. Therefore the probability vector describing the

outcomes of a measurement of the quantum ground state eigenvector |φ0〉 in the node
basis is the classical steady state distribution |π0〉 = |PC〉.
The state vector |PC〉 appears in Eq. (4.9) for the quantum long time average distri-

bution |PQ〉 with weight 〈φ0|ρ(0)|φ0〉. Accordingly we split the sum in Eq. (4.9) into
two parts, the first we call the “classical term” |PC〉 and the rest we call the “quantum
correction” |P̃Q〉, as

|PQ〉 = (1− ε)|PC〉+ ε|P̃Q〉. (4.10)

The normalized quantum correction |P̃Q〉 =
∑
i(P̃Q)i|i〉 is given by

(P̃Q)i =
1

ε

∑
j 6=0

〈i|Πjρ(0)Πj |i〉, (4.11)

and the weight
ε = 1− 〈φ0|ρ(0)|φ0〉, (4.12)

we call quantumness is a function both of the degrees, through |φ0〉, and the initial
state.
We can think of the parameter ε, which controls the classical-quantum mixture,

as the quantumness of |PQ〉 for the following three reasons. First, the proportion of
the elements in (PQ)i (4.10) that corresponds to the genuinely quantum correction
is ε. Second, the trace distance between the normalized distribution (PC)i and the
unnormalized distribution (1−ε)(PC)i forming the classical part of the quantum result
is also ε. Last, using a triangle inequality, the trace distance between the normalized
distributions (PC)i and (PQ)i is upper bounded by 2ε.
This expression for the quantumness in Eq. (4.12) enables us to make some physical

statements about a general initial state. By realizing that |φ0〉 is the ground state of
zero energy λ0 = 0 and the gap ∆ = mini 6=0 λi in the energy spectrum is non-zero
for a connected network [254, 257–259], the above implies a bound E/∆ ≥ ε for the
quantumness ε of the walk in terms of the energy E = tr{HQρ} of the initial state.
The bound is obtained through the following steps

E = tr{HQρ} =
∑
j 6=0

λjtr{Πjρ(0)}

≥ ∆
∑
j 6=0

tr{Πjρ(0)} = ∆ (1− tr{Π0ρ(0)}) = ∆ε. (4.13)
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The above demonstrates that the classical stationary probability distribution will
be recovered for low energies. A utility of this result is that it connects the long
time average distribution to a simple physical property of the walk, the energy, which
provides a total ordering of all possible initial states.

4.2.2 Degree distribution and quantumness
Quantumness is both a function of the degrees of the network nodes and the initial

state. To compare the quantumness of different complex networks, we fix the initial
state ρ(0). For our example we choose the even superposition state ρ(0) = |Ψ(0)〉〈Ψ(0)|
with |Ψ(0)〉 = |1〉/

√
N . This state has several appealing properties, for example, it is

invariant under node permutations and thus independent of the arrangement of the
network. In this case the quantumness is given by the expression

ε = 1− 〈
√
d〉2
〈d〉 , (4.14)

where 〈d〉 =
∑
i di/N is the average degree and 〈

√
d〉 =

∑
i

√
di/N is the average root

degree of the nodes. As such, the quantumness depends only on the degree distribution
of the network and increases with network heterogeneity.
This statement is quantified by writing the quantumness

ε = 1− 1

N
exp

[
H1/2

({
di∑
j dj

})]
, (4.15)

in terms of the Rényi entropy

Hq({pi}) =
1

1− q ln

(∑
i

pqi

)
, (4.16)

where di/
∑
j dj = (PC)i are the normalized degrees.

To obtain an expression in terms of the more familiar Shannon entropy H1 (obtained
by taking the q → 1 limit of Eq. (4.16)), we recall that the Rényi entropy is non-
increasing with q [262]. This leads to the upper bound

ε ≤ 1− 1

N
exp

[
H1

({
di∑
j dj

})]
. (4.17)

The quantumness approaches this upper bound in the limit that M nodes have uni-
form degree di = M〈d〉/N and all others have di = 0. This limit is never achieved
unless M = N and ε = 0, e.g., a regular network. Physically, ε = 0 for a regular
network because the symmetry of the Hamiltonian HQ implies its eigenvectors are
evenly distributed. The only eigenvector of this type that is positive is the initial state
|Ψ(0)〉, which due to the Perron-Frobenius theorem must also be the ground state
|Ψ(0)〉 = |φ0〉. Therefore E = 0 and so, from Eq. (4.13), ε = 0.
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In another limit, the quantumness takes its maximum value ε = (N − 2)/N ≈ 1
when the degrees of two nodes are equal and much larger than those of the others
(note that the symmetry of A prevents the degree of a single node from dominating).
In the case that Aij ∈ {0, 1}, i.e., the network underlying the walks is not weighted,
the quantumness of a connected network is more restricted. It is maximized by a walk
based on a star network—where a single node is connected to all others. For a walk
of this type ε = 1/2−

√
N − 1/N ≈ 1/2.

Next, in Sec. 4.2.3 we study the form of the quantum correction |P̃Q〉 given by
Eq. (4.11) for a range of complex network topologies.

4.2.3 Numerical results

To obtain numerical results, we consider non-weighted binary networks Aij ∈ {0, 1}
with various complex network topologies. Specifically we consider the Barabási-Albert
scale free network [228], the Erdős-Rényi [225] and the Watt-Strogatz [226] small world
networks, and the random geometric (on a square) [227], a network without the scale
free or small world characteristics. We set number of nodes to be N = 500 and
the average degree 〈d〉 ≈ 6. If a disconnected network is obtained, only the giant
component is considered.
The long time average probability of being on each node i is plotted against its degree

di for a quantum (PQ) and stochastic (PC) walk in Fig. 4.3. The two cases are nearly
identical for these binary networks and the evenly distributed initial state, illustrating
that the quantumness ε is small, below 0.13. See Tab. 4.1 for the comparison of values.
Within these, the Barabási-Albert network shows the highest quantum correction.
This is expected since the Barabási-Albert network has the higher degree heterogeneity.
The Watt-Strogatz network, which is well known to have quite uniform degrees [263],
is accordingly the network with the lowest quantum correction.
For many of the network types the typical quantumness can be obtained from

the expected (thermodynamic limit) degree distribution. In the Barabási-Albert net-
work, the degree distribution approximately obeys the continuous probability density
P (d) = 〈d〉2/2d3 [228]. Integrating this to find the moments, results in ε = 1/9,
which is independent of the average degree 〈d〉 and is compatible with our numer-
ics. The degree distributions of the Erdős-Rényi and random geometric networks both
approximately follow the Poissonian distribution P (d) ≈ 〈d〉de−〈d〉/d! for large net-
works, which explains the similarity of their quantumness ε values. For 〈d〉 = 6 we
recover ε ≈ 0.046, which is compatible with the values for the particular networks
we generated. From the general form, calculating the quantumness numerically and
performing a best fit we find that ε ≈ κ1〈d〉−κ2 , with fitting parameters κ1 = 0.429
and κ2 = 1.210.
The size of the quantum effects can be enhanced by introducing heterogeneous

weights Aij within a network. We have done this for a Barabási-Albert network using
several iterations of the following procedure. A pair of connected nodes is randomly
selected then the associated weight is doubled of halved at random. As anticipated,
the effect is to increase the discrepancy between the classical and quantum dependence
of the long time average probability on degree, illustrated in Fig. 4.3. As the num-
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Figure 4.3: Long time average probability and degree for nodes in a complex network.
Eight networks are considered: Barabási-Albert (BA), Erdős-Rényi (ER),
Watt-Strogatz (WS), random geometric (RG), karate club (KC), e-mail
(EM), C. elegans metabolic (CE) and coauthorship (CA). We plot the
classical (PC)i (red dashed line) and quantum (PQ)i (black +) probabilities
against the degree di for every node i. We overlay this with a plot of the
average degree distribution P (d) against d for each network type (grey full
line), when known, along with the distribution for the specific realization
used (grey +). Alongside the Barabási-Albert network we also plot (PQ)i
for the optimized BA (BA-opt) network, in which the internode weights of
the BA network are randomly varied in a Monte Carlo algorithm to reach
ε = 0.6 (orange ×). We do not include a plot of the degree distribution for
this network.

ber of iterations is increased, the quantumness follows the bound given in Eq. (4.17).
In fact, most networks are found close to saturating this bound, especially for low
quantumness.
Further, the energy E = 〈Ψ0|HQ|Ψ0〉 of the given initial state has a simple expression

E = 1− (1/N)
∑
ij Aij/

√
didj , which allows us to determine the extent to which the

bound E/∆ ≥ ε is saturated by comparing the values of E/∆ and ε. We find that for
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type ε E/∆
Barabási-Albert 0.1299 0.5583
Erdős-Rényi 0.0431 0.1734
random geometric 0.0396 11.2875
Watt-Strogatz 0.0164 0.0846
Barabási-Albert-opt 0.6092 844.9181
karate club 0.1204 1.3471
C. elegans metabolic 0.2247 4.7622
e-mail 0.1987 1.5449
coauthorship 0.1138 39.8535

Table 4.1: Quantumness, energy and gap. The quantumness ε and its upper bound
E/∆, the ratio of energy and gap, for each of the nine networks considered
in Fig. 4.3. Note that the energy gap can be arbitrarily small, and zero for
disjoint networks; this gives raise to very high E/∆ values.

some networks, e.g., the BA, ER and WS networks, the bound is quite restrictive and
reasonably saturated. However for the other networks we find that quantumness takes
a low value without this being ensured by the bound only, see Table 4.1.
Finally, our numerical calculations reveal the behavior of the quantum part P̃Q of

the long time average node occupation. We find that the quantum part enhances
the long time average probability of being at nodes with small degree relative to
the classical part. More precisely (P̃Q)i/(PC)i exhibits roughly (di)

−κ3 scaling, with
κ3 ≈ 1, as shown in Fig. 4.4. Interestingly, there is a correlation between the amount of
enhancement, given by κ3, and the type of complex network. The network types with
smaller diameters (order of increasing diameter: Barabási-Albert, then Erdős-Rényi
and Watt-Strogatz, then random geometric) have the smallest κ3, and the quantum
parts enhance the low degree nodes least. Moreover, the enhancement κ3 seems to be
quite independent of the internode weights. Thus our numerics show a qualitatively
common quantum effect for a range of complex network types. Quantitative details
vary between the network types, but appear robust within each type.
The models of networks examined in the previous subsection have very specific

topologies and therefore degree distributions, and do not capture the topological prop-
erties of all real-world networks (for details see chapter 9 of Ref. [264]). We therefore
now study the behavior of the quantumness and gap for topologies present in a variety
of real-world networks: a karate club (KC) social network [220], the e-mail (EM) net-
work of the URV university [221], the C. elegans metabolic (CE) network [222], and a
coauthorship (CA) network of scientists [223].
Despite the variety of topologies, we again find that the quantumness is consistently

small, see Tab. 4.1. Therefore the classical and quantum distributions are very close,
as shown in Fig. 4.3. Additionally, the quantum correction exhibits the same generic
behavior as observed for the artificial networks. Interestingly, the quantumness of
real-world networks is appreciably smaller than enforced by the bound of Eq. (4.13),
with E/ε∆ taking large values.
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Figure 4.4: Quantum effects. The ratio of the quantum (P̃Q)i and classical (PC)i
probabilities plotted against degree di (black +) for every i, for the the
networks considered in Fig. 4.3. We also plot the best fitting curve (red
dashed line) to this data of the form (P̃Q)i/(PC)i ∝ (di)

κ3 whose exponent
κ3 is given in the plot.

4.3 Community detection for quantum walks

4.3.1 Community detection

Community detection is the partitioning of a set of nodes N into non-overlapping
and non-empty subsets A, B, C, . . . ⊆ N , called communities, that together sum up
to N .
There is usually no agreed upon optimal partitioning of nodes into communities.

Instead there is an array of approaches that differ in both the definition of optimality
and the method used to achieve, exactly or approximately, this optimality (see [54]
for a recent review). In classical networks optimality is, for example, defined statisti-
cally [265], e.g. in terms of connectivity [229] or communicability [266, 267], or increas-
ingly, and sometimes relatedly [268], in terms of stochastic random walks [269–271].
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4 Quantum walks on complex networks

Our particular focus is on the latter, since the concept of transport (e.g. a quantum
walk) is central to nearly all studies conducted in quantum physics. As for achieving
optimality, methods include direct maximization via simulated annealing [236, 272] or,
usually faster, iterative division or agglomeration of communities [273]. We focus on
the latter since it provides a simple and effective way of revealing a full hierarchical
structure of the network, requiring only the definition of the closeness of a pair of
communities.
Formally, hierarchical community structure detection methods are based on a (sym-

metric) closeness function c(A,B) = c(B,A) of two communities A 6= B. In the ag-
glomerative approach, at the lowest level of the hierarchy, the nodes are each assigned
their own communities. An iterative procedure then follows, in each step of which the
closest pair of communities (maximum closeness c) are merged. This procedure ends
at the highest level, where all nodes are in the same community. To avoid instabilities
in this agglomerative procedure, the closeness function is required to be non-increasing
under the merging of two communities, c(A ∪ B, C) ≤ max(c(A, C), c(B, C)), which al-
lows the representation of the community structure as a linear hierarchy indexed by
the merging closeness. The resulting structure is often represented as a dendrogram
(as shown in Fig. 4.1).1

This leaves open the question of which level of the hierarchy yields the optimal
community partitioning. If a partitioning is desired for simulation, for example, then
there may be a desired maximum size or minimum number of communities. However,
without such constraints, one can still ask what is the best choice of communities
within those given by the hierarchical structure.
A type of measure that is often used to quantify the quality of a community parti-

tioning choice for this purpose is modularity [55, 56, 275], denoted Q. It was originally
introduced in the classical network setting, in which a network is specified by a (sym-
metric) adjacency matrix of (non-negative) elements Aij = Aji ≥ 0 (Aii = 0), each
off-diagonal element giving the weight of connections between nodes i and j 6= i 2.
The modularity attempts to measure the fraction of weights connecting elements in
the same community, relative to what might be expected. Specifically, one takes the
fraction of intra-community weights and subtracts the average fraction obtained when
the start and end points of the connections are reassigned randomly, subject to the con-
straint that the total connectivity ki =

∑
j Aij of each node is fixed. The modularity

is then given by

Q =
1

2m
tr
{
CTBC

}
, (4.18)

where m = 1
2

∑
i ki is the total weight of connections, B is the modularity matrix with

elements Bij = Aij − kikj/2m, and C is the community matrix, with elements CiA
1In general it may happen that more than one pair of communities are at the maximum closeness.
In this case the decision on which pair merges first can influence the structure of the dendrogram,
see [251, 274]. In [251] a permutation invariant formulation of the agglomerative algorithm is
given, where more than two clusters can be merged at once. In our work we use this formulation
unless stated otherwise.

2As will become apparent, we need only consider undirected networks without self-loops.
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equal to unity if i ∈ A, otherwise zero. The modularity then takes values strictly less
than one, possibly negative, and exactly zero in the case that the nodes form a single
community.
As we will see, there is no natural adjacency matrix associated with the quantum

network and so for the purposes of modularity we use Aij = c(i, j) for i 6= j. The
modularity Q thus measures the fraction of the closeness that is intra-community,
relative to what would occur if the inter-node closeness c(i, j) were randomly mixed
while fixing the total closeness ki =

∑
j 6=i c(i, j) of each node to all others. Thus both

the community structure and optimum partitioning depend solely on the choice of the
closeness function.
Finally, once a community partitioning is obtained it is often desired to com-

pare it against another. Here we use the common normalized mutual information
(NMI) [276–278] as a measure of the mutual dependence of two community partition-
ings. Each partitioning X = {A,B, . . . } is represented by a probability distribution
PX = {|A|/|N |}A∈X , where |A| =

∑
i CiA is the number of nodes in community A.

The similarity of two community partitionings X and X ′ depends on the joint distri-
bution PXX′ = {|A∩A′|/|N |}A∈X,A′∈X′ , where |A∩A′| =

∑
i CiACiA′ is the number

of nodes that belong to both communities A and A′. Specifically, NMI is defined as

NMI(X,X ′) =
2 I(X,X ′)

H(X) +H(X ′)
. (4.19)

Here H(X) is the Shannon entropy of PX , and the mutual information I(X,X ′) =
H(X) +H(X ′)−H(X,X ′) depends on the entropy H(X,X ′) of the joint distribution
PXX′ . The mutual information is the average of the amount of information about the
community of a node in X obtained by learning its community in X ′. The normaliza-
tion ensures that the NMI has a minimum value of zero and takes its maximum value
of unity for two identical community partitionings. The symmetry of the definition of
NMI follows from that of mutual information and Eq. (4.19).

4.3.2 Quantum community detection
The task of community detection has a particular interpretation in a quantum set-

ting. The state of a quantum system is described in terms of a Hilbert space H,
spanned by a complete orthonormal set of basis states {|i〉}i∈N . Each basis state |i〉
can be associated with a node i in a network and often, as in the case of single exci-
ton transport, there is a clear choice of basis states that makes this abstraction to a
spatially distributed network natural.
The partitioning of nodes into communities then corresponds to the partitioning of

the Hilbert spaceH =
⊕
A∈X VA into mutually orthogonal subspaces VA = spani∈A{|i〉}.

As with classical networks, one can then imagine an assortment of optimality objec-
tives for community detection, for example, to identify a partitioning into subspaces
in which inter-subspace transport is small, or in which the state of the system remains
relatively unchanged within each subspace. In the next two subsections we introduce
two classes of community closeness measures that correspond to these objectives. A
more detailed derivation can be found in Sec. 4.4.
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Our closeness measures take into account the full unitary evolution of an isolated
system governed by its Hamiltonian H. Rather than being applicable to isolated
systems only however, this type of community partitioning could be used, among other
things, to guide the simulation or analysis of a more complete model in the presence
of an environment, where this more complete model may be much more difficult to
describe.

Inter-community transport

Several approaches to detecting communities in classical networks are based on
the flow of probability through the network during a classical random walk [268–
271, 279, 280]. In particular, many of these methods seek communities for which
the inter-community probability flow or transport is small. A natural approach to
quantum community detection is thus to consider the flow of probability during a
continuous-time quantum walk, and to investigate the change in the probability of
observing the walker within each community:

TX(t) =
∑
A∈X

TA(t) =
∑
A∈X

1

2
|pA {ρ(t)} − pA {ρ(0)}| , (4.20)

where ρ(t) = e−iHtρ(0)eiHt is the state of the walker, at time t, during the walk
generated by H, and

pA {ρ} = tr {ΠAρ} (4.21)

where ΠA =
∑
i∈A |i〉〈i| is the projector on the A subspace, is the probability of a

walker in state ρ being found in community A upon a von Neumann-type measure-
ment.3

The initial state ρ(0) can be chosen freely. The change in inter-community trans-
port is clearest when the process begins either entirely inside or entirely outside each
community. Because of this, we choose the walker to be initially localized at a single
node ρ(0) = |i〉〈i| and then, for symmetry, sum TX(t) over all i ∈ N . This results in
the particularly simple expression

TA(t) =
∑

i∈A,j /∈A

Rij(t) +Rji(t)

2
=

∑
i∈A,j /∈A

R̃ij(t), (4.22)

whereR(t) is the doubly stochastic transfer matrix whose elementsRij(t) = |〈i|e−iHt|j〉|2
give the probability of transport from node j to node i, and R̃(t) its symmetrization.
This is reminiscent of classical community detection methods, e.g. [271], using closeness
measures based on the transfer matrix of a classical random walk.

3Equivalently, pA {ρ} is the norm of the projection (performed by projector ΠA) of the state ρ onto
the community subspace VA.
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We can thus build a community structure that seeks to reduce TX(t) at each hier-
archical level by using the closeness function

cTt (A,B) =
TA(t) + TB(t)− TA∪B(t)

|A||B|

=
2

|A||B|
∑

i∈A,j∈B
R̃ij(t) (4.23)

where the numerator is the decrement in TX(t) caused by merging communities A and
B. The normalizing factor in Eq. (4.23) avoids the effects due to the uninteresting
scaling of the numerator with the community size.
Since a quantum walk does not converge to a stationary state, a time-average of

the closeness defined in Eq. (4.23) is needed to obtain a quantity that eventually
converges with increasing time. Given the linearity of the formulation, this corresponds
to replacing the transport probability Rij(t) in Eq. (4.23) with its time-average

R̂ij(t) =
1

t

∫ t

0

Rij(t
′) dt′. (4.24)

It follows that, as with similar classical community detection methods [269], our
method is in fact a class of approaches, each corresponding to a different time t. The
appropriate value of t will depend on the specific application, for example, a natural
time-scale might be the decoherence time. Not wishing to lose generality and focus on
a particular system, we focus here on the short and long time limits.
In the short time limit t → 0, relevant if tHij � 1 for i 6= j, the averaged transfer

matrix T̂ij(t) is simply proportional to |Hij |2. Note that in the short time limit there
is no interference between different paths from |i〉 to |j〉, and therefore for short times
cTt (i, j) does not depend on the on-site energies Hii or the phases of the hopping
elements Hij . This is because, to leading order in time, interference does not play a
role in the transport out of a single node. For this reason we can refer to this approach
as “semi-classical”.
In the long time limit t → ∞, relevant if t is much larger than the inverse of the

smallest gap between distinct eigenvalues of H, the probabilities are elements of the
mixing matrix [281],

lim
t→∞

R̂ij(t) =
∑
k

| 〈i |Λk| j〉 |2, (4.25)

where Λk is the projector onto the k-th eigenspace of H. This thus provides a simple
spectral method for building the community structure.
Note that, unlike in a classical infinitesimal stochastic walk where each R̂ij(t) even-

tually becomes proportional to the connectivity kj of the final node j, the long time
limit in the quantum setting is non-trivial and, as we will see, R̂ij(t) retains a strong
impression of the community structure for large t.4

4Note that, apart from small or large times t, there is no guarantee of symmetry Rij(t) = Rji(t)
in the transfer matrix for a given Hamiltonian. See [252]. Hamiltonians featuring this symmetry,
e.g., those with real Hij , are called time-symmetric.
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4 Quantum walks on complex networks

Intra-community fidelity

Classical walks, and the community detection methods based on them, are fully
described by the evolution of the probabilities of the walker occupying each node.
The previous quantum community detection approach is based on the evolution of the
same probabilities but for a quantum walker. However, quantum walks are richer than
this, they are not fully described by the evolution of the node-occupation probabilities.
We therefore introduce another community detection method that captures the full
quantum dynamics within each community subspace.
Instead of reducing merely the change in probability within the community sub-

spaces, we reduce the change in the projection of the quantum state in the community
subspaces. This change is measured using (squared) fidelity, a common measure of
distance between two quantum states. For a walk beginning in state ρ(0) we therefore
focus on the quantity

FX(t) =
∑
A∈X

FA(t) =
∑
A∈X

F 2 {ΠAρ(t)ΠA,ΠAρ(0)ΠA} , (4.26)

where ΠAρΠA is the projection of the state ρ onto the subspace VA and

F {ρ, σ} = tr
{√√

ρσ
√
ρ

}
∈ [0,

√
tr{ρ}tr{σ}] (4.27)

is the fidelity, which is symmetric between ρ and σ.
We build a community structure that seeks to maximize the increase in FX(t) at

each hierarchical level by using the closeness measure

cFt (A,B) =
FA∪B(t)− FA(t)− FB(t)

|A||B| ∈ [−1, 1], (4.28)

i.e., the change in FX(t) caused by merging communities A and B. Our choice for the
denominator prevents uninteresting size scaling, as in Eq. (4.23).
The initial state ρ(0) can be chosen freely. Here we choose the pure uniform super-

position state ρ(0) = |ψ0〉〈ψ0| satisfying 〈 i |ψ0 〉 = 1/
√
n for all i. This state was used

to investigate the effects of the connectivity on the dynamics of a quantum walker
in Ref. [53].
As for our other community detection approach, we consider the time-average of

Eq. (4.28) which yields

cFt (A,B) =
2

|A||B|
∑

i∈A,j∈B
Re(ρ̂ij(t)ρji(0)), (4.29)

where ρ̂ij(t) = 1
t

∫ t
0

dt′ρij(t′). In the long time limit, the time-average of the density
matrix takes a particularly simple expression:

lim
t→∞

ρ̂ij(t) =
∑
k

Λkρij(0)Λk, (4.30)
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where Λk is as in the previous Sec. 4.3.2.
The definition of community closeness given in Eq. (4.28) can exhibit negative values.

In this case the usual definition of modularity fails [282] and one must extended it.
In this work we use the definition of modularity proposed in [282], which coincides
with Eq. (4.18) in the case of non-negative closeness. The extended definition treats
negative and positive links separately, and tries to minimize intra-community negative
links while maximizing intra-community positive links.

4.3.3 Performance analysis

To analyze the performance of our quantum community detection methods we ap-
ply them to three different networks. The first one (Sec. 4.3.3) is a simple quantum
network, which we use to highlight how some intuitive notions in classical community
detection do not necessarily transfer over to quantum systems. The second exam-
ple (Sec. 4.3.3) is an artificial quantum network designed to exhibit a clear classical
community structure, which we show is different from the quantum community struc-
ture obtained and fails to capture significant changes in this structure induced by
quantum mechanical phases on the hopping elements of the Hamiltonian. The final
network (Sec. 4.3.3) is a real world quantum biological network, the LHCII light har-
vesting complex, for which we find a consistent quantum community structure differing
from the community structure cited in the literature. These findings confirm that a
quantum mechanical treatment of community detection is necessary as classical and
semi-classical methods cannot be reproduce the structures that appropriately capture
quantum effects.
Below we will compare quantum community structures against more classical com-

munity structures, such the one given by the semi-classical method based on the short
time transport and, in the case of the example of Sec. 4.3.3, the classical network from
which the quantum network is constructed. Additionally we use a traditional classical
community detection algorithm, OSLOM [265], an algorithm based on the maximiza-
tion of the statistical significance of the proposed partitioning, whose input adjacency
matrix A must be real. For this purpose we use the absolute values of the Hamiltonian
elements in the site basis: Aij = |Hij |.

Simple quantum network

Here we use a simple six-site network model to study ways in which quantum effects
lead to non-intuitive results, and how methods based on different quantum properties
can, accordingly, lead to very different choices of communities.
We begin with two disconnected cliques of three nodes each, where all Hamiltonian

matrix elements within the groups are identical and real. Fig. 4.5 illustrates this highly
symmetric topology. The community detection method based on quantum transport
identifies the two fully-connected groups as two separate communities (Fig. 4.5a), as
is expected. Contrastingly, the methods based on fidelity predict counter-intuitively
only a single community; two disconnected nodes can retain coherence and, by this
measure, be considered part of the same community (Fig. 4.5b).
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Figure 4.5: Simple quantum network — a graph with six nodes. Each solid line
represents transition amplitude Hij = 1. For dashed and dotted lines the
transition amplitude can be either zero (a, b and c) or the absolute value
is the same |Hij | = 1 but phase is (d and g) coherent (all ones), (e and
h) random exp(iϕk) for each link, (f and i) canceling (ones for dashed red
and minus one for dotted green). Plots show the node closeness for both
methods based on transport and fidelity (only the long-time-averages are
considered, in plots (g), (h) and (i) we used a perturbed Hamiltonian to
solve the eigenvalues degeneracy, this explains the non-symmetric closeness
in (i)).
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This symmetry captured by the fidelity-based community structure breaks down if
we introduce random perturbations into the Hamiltonian. Specifically, the fidelity-
based closeness cFt is sensitive to perturbations of the order t−1, above which the
community structure is divided into the two groups of three (Fig. 4.5c) expected from
transport considerations. Thus we may tune the resolution of this community structure
method to asymmetric perturbations by varying t.
Due to quantum interference we expect that the Hamiltonian phases should sig-

nificantly affect the quantum community partitioning. The same toy model can be
used to demonstrate this effect. For example, consider adding four elements to the
Hamiltonian corresponding to hopping from nodes 2 and 3 to 4 and 5 (see diagram in
Fig. 4.5). If these hopping elements are all identical to the others, it is the two nodes,
1 and 6, that are not directly connected for which the inter-node transport is largest
(and thus their inter-node closeness is the largest). However, when the phases of the
four additional elements are randomized, this transport is decreased. Moreover, when
the phases are canceling, the transport between nodes 1 and 6 is reduced to zero, and
the closeness between them is minimized (see Figs. 4.5d–4.5f).
The fidelity method has an equally strong dependence on the phases (see Figs. 4.5g–

4.5i), with variations in the phases breaking up the network from a large central
community (with nodes 1 and 6 alone) into the two previously identified communities.

Artificial quantum network

The Hamiltonian of our second quantum network is constructed from the adjacency
matrix A of a classical unweighted, undirected network exhibiting a clear classical par-
titioning, using the relation Hij = Aij . We construct A using the algorithm proposed
by Lancichinetti et al. in [283], which provides a method to construct a network with
heterogeneous distribution both for the node degree and for the communities dimen-
sion and a controllable inter-community connection. We start with a rather small
network of 60 nodes with average intra-community connectivity 〈k〉 = 6, and only 5%
of the edges are rewired to join communities. The network is depicted in Fig. 4.6a.
To confirm the expected, the known classical community structure is indeed obtained
by the semi-classical short-time-transport algorithm5 and the OSLOM algorithm (see
Figs. 4.6b–4.6e), achieving NMI = 0.953 and NMI = 0.975 with the known structure,
respectively.
The quantum methods based on the long-time average of both transport and fidelity

reproduce the main features of the original community structure while unveiling new
characteristics. The transport-based long-time average method (NMI = 0.82 relative
to the classical partitioning) exhibits disconnected communities, i.e. the corresponding
subgraph is disconnected. This behavior can be explained by interference-enhanced
quantum walker dynamics, as exhibited by the toy model in the previous subsection.
The long-time average fidelity method (NMI = 0.85) returns the four main classical
communities plus a number of single-node communities. Both methods demonstrate
that the quantum and classical community structures are unsurprisingly different, with
5In the case of short-time transport, a small perturbation was also added to the closeness function
in order to break the symmetries of the system.
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Figure 4.6: Artificial community structure. (a) Classical community structure used
in creating the network. (b–e) Community partitionings found using the
three quantum methods and OSLOM. (f,g) Behavior of the approaches
as the phases of the Hamiltonian elements are randomly sampled from a
Gaussian distribution of width σ. The mean NMI, compared with zero
phase partitioning (f) and the classical model data (g), over 200 samplings
of the phase distribution is plotted. The standard deviation is indicated
by the shading. Both OSLOM and cT0 are insensitive to phases and thus
do not respond to the changes in the Hamiltonian.

the quantum community structure clearly dependent on the quantum property being
optimized, more so than the different classical partitionings.

Adjusted phases

As shown in Sec. 4.3.3, due to interference the dynamics of the quantum system
can change drastically if the phases of the Hamiltonian elements are non-zero. This
is known as a chiral quantum walk [252]. Such walks exhibit, for example, time-
reversal symmetry breaking of transport between sites [252] and it has been proposed
that nature might actually make use of phase controlled interference in transport
processes [253]. OSLOM, our semi-classical short-time transport algorithm and other
classical community partitioning methods are insensitive to changes in the hopping
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phases. Thus, by establishing that the quantum community structure is sensitive to
such changes in phase, as expected from above, we show that classical methods are
inadequate for finding quantum community structure.
To analyze this effect we take the previous network and adjust the phases of the

Hamiltonian terms while preserving their absolute values. Specifically, the phases are
sampled randomly from a normal distribution with mean zero and standard deviation
σ. We find that, typically, as the standard deviation σ increases, when comparing
quantum communities and the corresponding communities without phases the NMI
between them decreases, as shown in Fig. 4.6f. A similar deviation reflects on the
comparison with the classical communities used to construct the system, shown in
Fig. 4.6g. This sensitivity of the quantum community structures to phases, as revealed
by the NMI, confirms the expected inadequacy of classical methods. The partitioning
based on long-time average fidelity seems to be the most sensitive to phases.

Light-harvesting complex

An increasing number of biological networks of non-trivial topology are being de-
scribed using quantum mechanics. For example, light harvesting complexes have drawn
significant attention in the quantum information community.
One of these is the LHCII, a two-layer 14-chromophore complex embedded into a

protein matrix (see Fig. 4.7 for a sketch) that collects light energy and directs it toward
the reaction center where it is transformed into chemical energy. The system can be
described as a network of 14 sites connected with a non-trivial topology. The single-
exciton subspace is spanned by 14 basis states, each corresponding to a node in the
network, and the Hamiltonian in this basis was found in Ref. [250].
In a widely adopted chromophore community structure [249], the sites are parti-

tioned by hand into communities according to their physical closeness (e.g. there are
no communities spanning the two layers of the complex), and the strength of Hamilto-
nian couplings (see the top right of Fig. 4.7). Here, we apply our ab initio automated
quantum community detection algorithms to the same Hamiltonian.
All of our approaches predict a modified partitioning to that commonly used in the

literature. The method based on short-time transport returns communities that do
not connect the two layers. This semi-classical approach relies only on the coupling
strength of the system, without considering interference effects, and provides the closest
partitioning to the one provided by the literature (also relying only on the coupling
strengths). Meanwhile, the methods based on the long-time transport and fidelity
return very similar community partitionings, in which node 6 on one layer and node 9
on the other are in the same community. These two long-time community partitionings
are identical, except one of the communities predicted by the fidelity based method is
split when using the transport based method. It is therefore a difference in modularity
only.
The classical OSLOM algorithm fails spectacularly: it gives only one significant

community involving nodes 11 and 12 which exhibit the highest coupling strength. If
assigning a community to each node is forced, a unique community with all nodes is
provided.
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Figure 4.7: Light harvesting complex II (LHCII). (top left) Monomeric subunit of the
LHCII complex with pigments Chl-a (red) and Chl-b (green) packed in
the protein matrix (gray). (top center) Schematic representation of Chl-a
and Chl-b in the monomeric subunit, here the labeling follows the usual
nomenclature (b601, a602. . . ). (top right) Network representation of the
pigments in circular layout, colors represent the typical partitioning of
the pigments into communities. The widths of the links represent the
strength of the couplings |Hij | between nodes. Here the labels maintain
only the ordering (b601→1, a602→2,. . . ). (a,b,c) Quantum communities
as found by the different quantum community detection methods. Link
width denotes the pairwise closeness of the nodes.

4.4 Appendix

4.4.1 Definitions
Modularity

Assume we have a directed, weighted graph (with possibly negative weights) and
self-links, described by a real adjacency matrix A. The element Aij is the weight of
the link from node i to node j.
The in- and outdegrees of node i are defined as

kin
i =

∑
j

Aji, kout
i =

∑
j

Aij . (4.31)

For a symmetric graph A is symmetric and the indegree is equal to the outdegree. The
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total connection weight is m =
∑
i k

in
i =

∑
i k

out
i =

∑
ij Aij .

The community matrix C defines the membership of the nodes in different commu-
nities. The element CiA is equal to unity if i ∈ A, otherwise zero.6 The size of a
community is given by |A| = ∑

i CiA. For strict (non-fuzzy) communities we can de-
fine C using an assignment vector σ (the entries being the communities of each node):
CiA = δA,σi

. This yields (CCT )ij = δσi,σj
.

There are many different ways of partitioning a graph into communities. A simple
approach is to minimize the frustration of the partition, defined as the sum of the
absolute weight of positive links between communities and negative links within them:

F = −
∑
ij

Aijδσi,σj
= −tr

(
CTAC

)
. (4.32)

Frustration is inadequate as a goodness measure for partitioning nonnegative graphs
(in which a single community containing all the nodes minimizes it). For nonnegative
graphs we can instead maximize another measure called modularity :

Q =
1

m

∑
A,ij

(Aij − pij)CiACjA =
1

m
tr
(
CT (A− p)C

)
, (4.33)

where pij is the “expected” link weight from i to j, with
∑
ij pij = m, and is what

separates modularity from plain frustration. Different choices of the “null model” p
give different modularities. Using degrees, we can define pij = kout

i kin
j /m.

For graphs with both positive and negative weights the usual definitions of degrees
do not make much sense, since usually negative and positive links should not simply
cancel each other out. Also, plain modularity will fail e.g. when m = 0. This can be
solved by treating positive and negative links separately [282].

Hierarchical clustering

All our community detection approaches share a common theme. For each (pro-
posed) community A we have a goodness measure MA(t) that depends on the system
Hamiltonian, the initial state, and t. This induces a corresponding measure for a
partition X:

MX(t) =
∑
A∈X

MA(t). (4.34)

Using this, we define a function for comparing two partitions, X and X ′, which only
differ in a single merge that combines A and B:

MA,B(t) = MX′(t)−MX(t) = MA∪B(t)−MA(t)−MB(t). (4.35)

We can make MA,B(t) into a symmetric closeness measure c(A,B) by fixing the time t
and normalizing it with |A||B|. Using this closeness measure together with the agglom-
erative hierarchical clustering algorithm (as explained in Sec. 4.3.1) we then obtain a
6For a fuzzy definition of membership we could require CiA ≥ 0 and

∑
A CiA = 1 instead.
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community hierarchy. The goodness of a specific partition in the hierarchy is given by
its modularity, obtained using the adjacency matrix given by Aij = c(i, j).
The standard hierarchical clustering algorithm requires closeness to fulfill the mono-

tonicity property

min(c(A, C), c(B, C)) ≤ c(A ∪ B, C) ≤ max(c(A, C), c(B, C)). (4.36)

for any communities A,B, C. If this does not hold, we may encounter a situation where
the merging closeness sometimes increases, which in turn means that the results cannot
be presented as a dendrogram indexed by decreasing closeness. The real downside of
not having the monotonicity property, however, is stability-related. The clustering
algorithm should be stable, i.e. a small change in the system should not dramatically
change the resulting hierarchy. Assume we encounter a situation where all the pairwise
closenesses between a subset of clusters S = {Ai}i are within a given tolerance. A
small perturbation can now change the pair {A,B} chosen for the merge. If Eq. (4.36)
is fulfilled, then the rest of S is merged into the same new cluster during subsequent
rounds, and hence their relative merging order does not matter.

Notation

Let the Hamiltonian of the system have the spectral decomposition H =
∑
k EkΛk.

The unitary propagator of the system decomposes as U(t) = e−iHt =
∑
k e
−iEktΛk.

We denote the state of the system at time t by

ρ(t) = U(t)ρ(0)U(t)†. (4.37)

Sometimes we make use of the state obtained by measuring in which community sub-
space VA the quantum state is located, and then discarding the result. The resulting
state is

ρX(t) =
∑
A∈X

ΠAρ(t)ΠA. (4.38)

This state is normally not pure even if ρ(t) is.
The probability of transport from node b to node a, the transfer matrix, is given by

the elements

Rab(t) = |〈a|U(t)|b〉|2. (4.39)

R(t) is doubly stochastic, i.e. its rows and columns all sum up to unity. We use
R̃ = (R+RT )/2 to denote its symmetrization.
The time average of a function f(t) is denoted using f̂(t):

f̂(t) =
1

t

∫ t

0

f(t′) dt′. (4.40)
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Now we have

R̂ab(t) =
∑
jk

1

t

∫ t

0

e−i(Ej−Ek)t′ dt′〈a|Λj |b〉〈b|Λk|a〉. (4.41)

The tH � 1 and t→∞ limits of this average are

R̂ab(t→ 0) = δab

(
1− t2

3
(H2)aa

)
+
t2

3
|Hab|2 +O(t3),

R̂ab(t→∞) =
∑
jk

δjk〈a|Λj |b〉〈b|Λk|a〉 =
∑
k

|〈a|Λk|b〉|2. (4.42)

The time average of the state of the system is given by

ρ̂(t) =
∑
jk

1

t

∫ t

0

e−i(Ej−Ek)t′ dt′Λjρ(0)Λk. (4.43)

It can be interpreted as the density matrix of a system that has evolved for a random
time, sampled from the uniform distribution on the interval [0, t]. Again, in the short-
and infinite-time limits this yields

ρ̂(t→ 0) =ρ(0)− it

2
[H, ρ(0)] +

t2

3

(
Hρ(0)H − 1

2

{
H2, ρ(0)

})
+O(t3),

ρ̂(t→∞) =
∑
k

Λkρ(0)Λk. (4.44)

4.4.2 Closeness measures
Inter-community transport

Considering the flow of probability during a continuous-time quantum walk, let us
investigate the change in the probability of observing the walker within a community:

TA(t) =
1

2
|pA {ρ(t)} − pA {ρ(0)}| , (4.45)

where pA {ρ} = tr (ΠAρ) is the probability of a walker in state ρ being found in commu-
nity A upon a von Neumann-type measurement.7 A good partition should intuitively
minimize this change, keeping the walkers as localized to the communities as possible.
TX =

∑
A∈X TA is of course minimized by the trivial choice of a single community,

X = {A}, and any merging of communities can only decrease TX . Therefore we have
TA∪B(t) ≤ TA(t) + TB(t).
The initial state ρ(0) can be chosen freely. For a pure initial state ρ(0) = |ψ〉〈ψ| we

obtain

TA(t) =
1

2

∣∣〈ψ ∣∣U†(t)ΠAU(t)
∣∣ψ〉− 〈ψ |ΠA|ψ〉∣∣ . (4.46)

7 Equivalently, pA {ρ} is the norm of the projection (performed by projector ΠA) of the state ρ onto
the community subspace VA.
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4 Quantum walks on complex networks

The change in inter-community transport is clearest when the process begins either
entirely inside or entirely outside each community. Because of this, we choose the
walker to be initially localized at a single node ρ(0) = |b〉〈b| and then, for symmetry,
sum (or average) TA(t) over all b ∈ N :

TA(t) =
1

2

∑
b

∣∣〈b ∣∣U(t)†ΠAU(t)
∣∣ b〉− 〈b |ΠA| b〉∣∣

=
1

2

∑
b

∣∣∣∣∣∑
a∈A

(Rab(t)− δab)
∣∣∣∣∣

=
1

2

(∑
b∈A

∣∣∣∣∣1−∑
a∈A

Rab(t)

∣∣∣∣∣+
∑
b/∈A

∣∣∣∣∣∑
a∈A

Rab(t)

∣∣∣∣∣
)

=
1

2

 ∑
a/∈A,b∈A

Rab(t) +
∑

a∈A,b/∈A
Rab(t)


=

∑
a∈A,b/∈A

Rab(t) +Rba(t)

2
=

∑
a∈A,b/∈A

R̃ab(t), (4.47)

since R(t) is doubly stochastic. Now we have

TA,B(t) = TA(t) + TB(t)− TA∪B(t) = 2
∑

a∈A,b∈B
R̃ab(t) (4.48)

with 0 ≤ TA,B(t) ≤ 2 min(|A|, |B|). The short- and long-time limits of the time-
averaged TA,B(t) can be found using Eqs. (4.42):

T t→0
A,B = 2

∑
a∈A,b∈B

(
δab +

t2

3

(
|Hab|2 − δab(H2)aa

)
+O(t3)

)
, (4.49)

T t→∞A,B = 2
∑

a∈A,b∈B

∑
k

|(Λk)ab|2. (4.50)

Intra-community fidelity

Our next measure aims to maximize the “similarity” between the evolved and initial
states when projected to a community subspace. We do this using the squared fidelity

FA(t) = F 2 {ΠAρ(t)ΠA,ΠAρ(0)ΠA} , (4.51)

where ΠAρΠA is the projection of the state ρ onto the subspace VA and

F {ρ, σ} = tr
{√√

ρσ
√
ρ

}
∈ [0,

√
tr{ρ}tr{σ}], (4.52)
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is the fidelity, which is symmetric between ρ and σ. If either ρ or σ is rank-1, their
fidelity reduces to F {ρ, σ} =

√
tr{ρσ}. Thus, if the initial state ρ(0) is pure, we have

FA(t) = tr (ΠAρ(t)ΠAρ(0)) . (4.53)

This assumption makes FX(t) equivalent to the squared fidelity between ρX(t) and a
pure ρ(0):

FX(t) =
∑
A∈X

tr (ΠAρ(t)ΠAρ(0)) = tr (ρX(t)ρ(0))

= F 2{ρX(t), ρ(0)} = F 2{ρ(t), ρX(0)}, (4.54)

and yields

FA,B(t) = FA∪B(t)− FA(t)− FB(t)

= 2 Re tr (ΠAρ(t)ΠBρ(0))

= 2
∑

a∈A,b∈B
Re (ρab(t)ρba(0)) . (4.55)

We use as the initial state the uniform superposition of all the basis states with arbi-
trary phases: |ψ〉 = 1√

n

∑
k e

iθk |k〉, which gives

FA,B(t) =
2

n2

∑
a∈A,b∈B

∑
xy

Re
(
ei(θx−θy+θb−θa)UaxUby

)
. (4.56)

In this case the short-term limit does not yield anything interesting. The long-time
limit of the time-average of FA,B(t) is

F t→∞A,B =
2

n2

∑
a∈A,b∈B

∑
xy,k

Re
(
ei(θx−θy+θb−θa)(Λk)ax(Λk)yb

)
.

We may now (somewhat arbitrarily) choose all the phases θk to be the same, or average
the closeness measure over all possible phases θk ∈ [0, 2π].

Purity

The coherence between any communities X = {A,B, . . . } is completely destroyed
by measuring in which community subspace VA the quantum state is located, see
Eq. (4.38). If the measurement outcome is not revealed, the purity of the measured
state ρX(t) is, due to the orthogonality of the projectors,

PX(t) = tr
(
ρ2
X(t)

)
=
∑
A∈X

tr
(
(ΠAρ(t))2

)
=
∑
A∈X

PA(t),

where

PA(t) = tr
(
(ΠAρ(t)ΠA)2

)
= tr

(
(ΠAρ(t))2

)
. (4.57)
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If ρ(t) is pure, we have (cf. Eq. (4.54))

PX(t) =
∑
A∈X

tr(ΠAρ(t)ΠAρ(t)) = F 2{ρX(t), ρ(t)}. (4.58)

The change in purity of the state after a projective measurement locating the walker
into one of the communities is

PA,B(t) = PA∪B(t)− PA(t)− PB(t)

= 2tr (ΠAρ(t)ΠBρ(t))

= 2
∑

a∈A,b∈B
|ρab(t)|2 ≥ 0. (4.59)

Again, we will use the initial state |ψ〉 = 1√
n

∑
k e

iθk |k〉:

PA,B(t) =
2

n2

∑
a∈A,b∈B

∣∣∣∣∣∑
xy

ei(θx−θy)Uax(t)Uby(t)

∣∣∣∣∣
2

. (4.60)

As with the fidelity-based measure, the short-time limit is uninteresting. The long-time
limit of the time-average of PA,B(t) is

P t→∞A,B = 2
∑

a∈A,b∈B

| 〈a |ρ̂(∞)| b〉 |2 +
∑
k 6=m
| 〈a |Λkρ0Λm| b〉 |2


= 2

∑
a∈A,b∈B

|∑
kxy

ei(θx−θy)(Λk)ax(Λk)yb|2 (4.61)

+
∑
k 6=m
|
∑
xy

ei(θx−θy)(Λk)ax(Λm)yb|2
 . (4.62)
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5 Conclusion
This PhD thesis is devoted to three threads:

• Invariants for bosonic and symmetric states,
about relations between permutation symmetry of a state and its other prop-
erties related to quantum information. The main focus was on local unitary
equivalence of states, transformations achievable with linear optics and polyno-
mial invariants.

• Visualization of quantum sequences,
about a plotting scheme for many-body states, qubism. This tool allows to show
entanglement and phase transitions, as well as discover other symmetries of a
pure state.

• Quantum walks on complex networks,
about using complex network approach to study quantum systems, with the spe-
cial emphasis on community detection. We use it to asses the range of quantum
effects in a biochemical system.

Each of these topics give raise to further questions and lines of investigation. How-
ever, this combination of topics is a source of creativity and open paths to further
developments, particularly:

• Geometric representations for mixed states.
Majorana representation for symmetric qubit states serves both as a visualization
and a mathematical isomorphism giving rigorous insight into properties of the
state. A variant for mixed states would be beneficial.

• General visualization schemes putting emphasis on symmetries of a given state.
We plotted amplitudes, which represent all knowledge about the state, but also
are susceptible to “unimportant” changes (e.g. local basis). Directly showing
symmetries of a state, whether rigorous or approximate, may be fruitful.

• Special visualizations for symmetric and antisymmetric states.
Qubism representation, while can be used for any state, focuses on translationally
invariant states. It is likely that there are plotting schemes that are more suitable
for states with different symmetries.

• Relation of quantum community detection to other hierarchical schemes.
Splitting a system into subsystem that are weakly correlated is the key principle
standing behind matrix product states (MPS) and projected entangled pair states
(PEPS). There are analogies between these techniques and quantum community
detection, which are worth pursuing.
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5 Conclusion

• Community detection methods for many-body systems. We performed splitting
of a one-particle systems into subsystem not sharing coherent quantum super-
position. A natural extension would be to work on multiparticle systems and,
instead of coherence, work on entanglement.
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